Reproducing Kernel Hilbert Spaces

Lorenzo Rosasco

9.520 Class 03

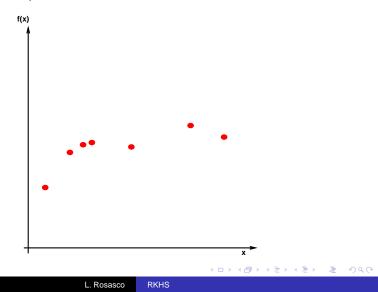
February 12, 2007

L. Rosasco RKHS

Goal To introduce a particularly useful family of hypothesis spaces called Reproducing Kernel Hilbert Spaces (RKHS) and to derive the general solution of Tikhonov regularization in RKHS.

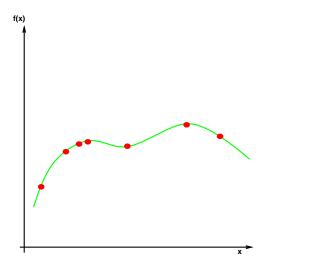
Function Approximation from Samples

Here is a graphical example for generalization: given a certain number of samples...



Function Approximation from Samples (cont.)

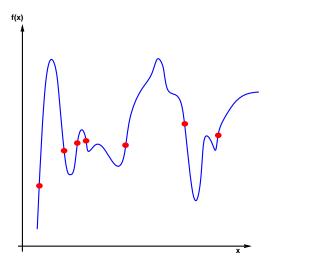
Suppose this is the "true" solution...



L. Rosasco RKHS

The Problem is III-Posed

... but suppose ERM gives this solution!



∃ ► < ∃ ►</p>

L. Rosasco RKHS

The basic idea of regularization (originally introduced independently of the learning problem) is to restore well-posedness of ERM by constraining the hypothesis space \mathcal{H} .

Penalized Minimization

A possible way to do this is considering *penalized* empirical risk minimization, that is we look for solutions minimizing a two term functional

$$\underbrace{\mathsf{ERR}(f)}_{\mathsf{ERR}(f)} + \lambda \quad \underbrace{\mathsf{pen}(f)}_{\mathsf{ERR}(f)}$$

empirical error

penalization term

the regularization parameter λ trade-offs the two terms.

Tikhonov regularization amounts to minimize

$$\frac{1}{n}\sum_{i=1}^{n}V(f(\mathbf{x}_{i}),\mathbf{y}_{i})+\lambda\|f\|_{\mathcal{H}}^{2}, \quad \lambda>0$$
(1)

- V(f(x), y) is the loss function, that is the price we pay when we predict f(x) in place of y
- $\bullet ~ \| \cdot \|_{\mathcal{H}}$ is the norm in the function space $\mathcal H$

Such a penalization term should encode some notion of smoothness of *f*.

The "Ingredients" of Tikhonov Regularization

- The scheme we just described is very general and by choosing different loss functions V(f(x), y) we can recover different algorithms
- The main point we want to discuss is how to choose a norm encoding some notion of smoothness/complexity of the solution
- Reproducing Kernel Hilbert Spaces allow us to do this in a very powerful way

(日)

Some Functional Analysis

A **function space** \mathcal{F} is a space whose elements are functions *f*, for example $f : \mathbb{R}^d \to \mathbb{R}$.

A **norm** is a nonnegative function $\|\cdot\|$ such that $\forall f, g \in \mathcal{F}$ and $\alpha \in \mathbb{R}$

- ① $||f|| \ge 0$ and ||f|| = 0 iff f = 0;
- 2 $||f+g|| \le ||f|| + ||g||;$
- $\|\alpha f\| = |\alpha| \|f\|.$

A norm can be defined via a **dot product** $||f|| = \sqrt{\langle f, f \rangle}$. A **Hilbert space** (besides other technical conditions) is a (possibly) infinite dimensional linear space endowed with a dot product.

< ロ > < 同 > < 回 > < 回 > .

A **function space** \mathcal{F} is a space whose elements are functions *f*, for example $f : \mathbb{R}^d \to \mathbb{R}$.

A **norm** is a nonnegative function $\|\cdot\|$ such that $\forall f, g \in \mathcal{F}$ and $\alpha \in \mathbb{R}$

$$\|f\| \ge 0 \text{ and } \|f\| = 0 \text{ iff } f = 0;$$

2
$$||f+g|| \le ||f|| + ||g||;$$

3 $\|\alpha f\| = |\alpha| \|f\|.$

A norm can be defined via a **dot product** $||f|| = \sqrt{\langle f, f \rangle}$. A **Hilbert space** (besides other technical conditions) is a (possibly) infinite dimensional linear space endowed with a dot product.

< ロ > < 同 > < 回 > < 回 > < □ > <

A **function space** \mathcal{F} is a space whose elements are functions *f*, for example $f : \mathbb{R}^d \to \mathbb{R}$.

A **norm** is a nonnegative function $\|\cdot\|$ such that $\forall f, g \in \mathcal{F}$ and $\alpha \in \mathbb{R}$

1
$$||f|| \ge 0$$
 and $||f|| = 0$ iff $f = 0$;

2
$$||f + g|| \le ||f|| + ||g||;$$

3 $\|\alpha f\| = |\alpha| \|f\|.$

A norm can be defined via a **dot product** $||f|| = \sqrt{\langle f, f \rangle}$.

A **Hilbert space** (besides other technical conditions) is a (possibly) infinite dimensional linear space endowed with a dot product.

・ロット (雪) (日) (日) (日)

A **function space** \mathcal{F} is a space whose elements are functions *f*, for example $f : \mathbb{R}^d \to \mathbb{R}$.

A **norm** is a nonnegative function $\|\cdot\|$ such that $\forall f, g \in \mathcal{F}$ and $\alpha \in \mathbb{R}$

1
$$||f|| \ge 0$$
 and $||f|| = 0$ iff $f = 0$;

2
$$||f + g|| \le ||f|| + ||g||;$$

$$\|\alpha f\| = |\alpha| \|f\|.$$

A norm can be defined via a **dot product** $||f|| = \sqrt{\langle f, f \rangle}$. A **Hilbert space** (besides other technical conditions) is a (possibly) infinite dimensional linear space endowed with a dot product.

< ロ > < 同 > < 回 > < 回 > < □ > <

 Continuous functions C[a, b] : a norm can be established by defining

$$\|f\| = \max_{a \le x \le b} |f(x)|$$

(not a Hilbert space!)

 Square integrable functions L₂[a, b]: it is a Hilbert space where the norm is induced by the dot product

$$\langle f,g\rangle = \int_a^b f(x)g(x)dx$$

イロト イ理ト イヨト イヨト

3

 Continuous functions C[a, b]: a norm can be established by defining

$$\|f\| = \max_{a \le x \le b} |f(x)|$$

(not a Hilbert space!)

 Square integrable functions L₂[a, b]: it is a Hilbert space where the norm is induced by the dot product

$$\langle f,g
angle = \int_a^b f(x)g(x)dx$$

< ロ > < 同 > < 回 > < 回 > .

RKHS

A linear evaluation functional over the *Hilbert space of functions* \mathcal{H} is a linear functional $\mathcal{F}_t : \mathcal{H} \to \mathbb{R}$ that *evaluates* each function in the space at the point *t*, or

$$\mathcal{F}_t[f]=f(t).$$

Definition

A Hilbert space \mathcal{H} is a reproducing kernel Hilbert space (RKHS) if the evaluation functionals are bounded, i.e. if there exists a *M* s.t.

 $|\mathcal{F}_t[f]| = |f(t)| \le M \|f\|_{\mathcal{H}} \ \forall f \in \mathcal{H}$

3

< ロ > < 同 > < 回 > < 回 > .

RKHS

A linear evaluation functional over the *Hilbert space of functions* \mathcal{H} is a linear functional $\mathcal{F}_t : \mathcal{H} \to \mathbb{R}$ that *evaluates* each function in the space at the point *t*, or

$$\mathcal{F}_t[f]=f(t).$$

Definition

A Hilbert space \mathcal{H} is a reproducing kernel Hilbert space (RKHS) if the evaluation functionals are bounded, i.e. if there exists a *M* s.t.

$$|\mathcal{F}_t[f]| = |f(t)| \le M \|f\|_{\mathcal{H}} \ \forall f \in \mathcal{H}$$

Evaluation functionals are not always bounded. Consider $L_2[a, b]$:

- Each element of the space is an equivalence class of functions with the same integral ∫ |f(x)|²dx.
- An integral remains the same if we change the function in a countable set of points.

Reproducing kernel (rk)

If *H* is a RKHS, then for each *t* ∈ *X* there exists, by the Riesz representation theorem a function *K_t* of *H* (called representer) with the **reproducing** property

$$\mathcal{F}_t[f] = \langle K_t, f \rangle_{\mathcal{H}} = f(t).$$

 Since K_t is a function in H, by the reproducing property, for each x ∈ X

$$K_t(x) = \langle K_t, K_x \rangle_{\mathcal{H}}$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

The reproducing kernel (rk) of $\mathcal H$ is

$$K(t,x) := K_t(x)$$

Reproducing kernel (rk)

If *H* is a RKHS, then for each *t* ∈ *X* there exists, by the Riesz representation theorem a function *K*_t of *H* (called representer) with the **reproducing** property

$$\mathcal{F}_t[f] = \langle K_t, f \rangle_{\mathcal{H}} = f(t).$$

 Since K_t is a function in H, by the reproducing property, for each x ∈ X

$$K_t(\mathbf{x}) = \langle K_t, K_{\mathbf{x}} \rangle_{\mathcal{H}}$$

イロト イポト イヨト イヨト

The reproducing kernel (rk) of \mathcal{H} is

$$K(t,x) := K_t(x)$$

Let X be some set, for example a subset of \mathbb{R}^d or \mathbb{R}^d itself. A *kernel* is a symmetric function $K : X \times X \to \mathbb{R}$.

Definition

A kernel K(t, s) is positive definite (pd) if

$$\sum_{i,j=1}^n c_i c_j K(t_i,t_j) \ge 0$$

for any $n \in \mathbb{N}$ and choice of $t_1, ..., t_n \in X$ and $c_1, ..., c_n \in \mathbb{R}$.

The following theorem relates pd kernels and RKHS

Theorem

a) For every RKHS the reproducing kernel is a positive definite kernel

b) Conversely for every positive definite kernel K on $X \times X$ there is a unique RKHS on X with K as its reproducing kernel

Sketch of proof

a) We must prove that the rk $K(t, x) = \langle K_t, K_x \rangle_{\mathcal{H}}$ is symmetric and *pd*.

Symmetry follows from the symmetry property of dot products

$$\langle K_t, K_x
angle_{\mathcal{H}} = \langle K_x, K_t
angle_{\mathcal{H}}$$

• K is pd because

$$\sum_{i,j=1}^n c_i c_j \mathcal{K}(t_i,t_j) = \sum_{i,j=1}^n c_i c_j \langle \mathcal{K}_{t_i}, \mathcal{K}_{t_j} \rangle_{\mathcal{H}} = ||\sum c_j \mathcal{K}_{t_j}||_{\mathcal{H}}^2 \geq 0.$$

イロト イポト イヨト ・ヨ

Sketch of proof (cont.)

b) Conversely, given *K* one can construct the RKHS \mathcal{H} as the *completion* of the space of functions spanned by the set $\{K_x | x \in X\}$ with a inner product defined as follows. The dot product of two functions *f* and *g* in span $\{K_x | x \in X\}$

$$f(\mathbf{x}) = \sum_{i=1}^{s} \alpha_i K_{\mathbf{x}_i}(\mathbf{x})$$
$$g(\mathbf{x}) = \sum_{i=1}^{s'} \beta_i K_{\mathbf{x}'_i}(\mathbf{x})$$

is by definition

$$\langle f, \boldsymbol{g} \rangle_{\mathcal{H}} = \sum_{i=1}^{s} \sum_{j=1}^{s'} \alpha_i \beta_j \boldsymbol{K}(\boldsymbol{x}_i, \boldsymbol{x}'_j).$$

< ロ > < 同 > < 回 > < 回 > .

Very common examples of symmetric pd kernels are • Linear kernel

$$K(x, x') = x \cdot x'$$

Gaussian kernel

$$\mathcal{K}(\mathbf{x},\mathbf{x}') = \mathrm{e}^{-rac{\|\mathbf{x}-\mathbf{x}'\|^2}{\sigma^2}}, \qquad \sigma > \mathbf{0}$$

Polynomial kernel

$$K(x,x') = (x \cdot x' + 1)^d, \qquad d \in \mathbb{N}$$

For specific applications, designing an effective kernel is a challenging problem.

< ロ > < 同 > < 回 > < 回 > < □ > <

RKHS were explicitly introduced in learning theory by Girosi (1997). Poggio and Girosi (1989) introduced Tikhonov regularization in learning theory and worked with RKHS only implicitly, because they dealt mainly with hypothesis spaces on unbounded domains, which we will not discuss here. Of course, RKHS were used much earlier in approximation theory (eg Wahba, 1990...) and computer vision (eg Bertero, Torre, Poggio, 1988...).

Norms in RKHS and Smoothness

Choosing different kernels one can show that the norm in the corresponding RKHS encodes different notions of smoothness.

• Sobolev kernel: consider $f : [0, 1] \rightarrow \mathbb{R}$ with f(0) = f(1) = 0. The norm

$$\|f\|_{\mathcal{H}}^2 = \int (f'(x))^2 dx = \int \omega^2 |F(\omega)|^2 d\omega$$

is induced by the kernel $K(x,y) = \Theta(y-x)(1-y)x + \Theta(x-y)(1-x)y.$

Gaussian kernel: the norm can be written as

$$\|f\|_{\mathcal{H}}^2 = \frac{1}{2\pi^d} \int |F(\omega)|^2 \exp^{\frac{\sigma^2 \omega^2}{2}} d\omega$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

where $F(\omega) = \mathcal{F}{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$ is the Fourier tranform of f.

Norms in RKHS and Smoothness

Choosing different kernels one can show that the norm in the corresponding RKHS encodes different notions of smoothness.

• Sobolev kernel: consider $f : [0, 1] \rightarrow \mathbb{R}$ with f(0) = f(1) = 0. The norm

$$\|f\|_{\mathcal{H}}^2 = \int (f'(\mathbf{x}))^2 d\mathbf{x} = \int \omega^2 |F(\omega)|^2 d\omega$$

is induced by the kernel $K(x,y) = \Theta(y-x)(1-y)x + \Theta(x-y)(1-x)y.$

Gaussian kernel: the norm can be written as

$$\|f\|_{\mathcal{H}}^2 = \frac{1}{2\pi^d} \int |F(\omega)|^2 \exp^{\frac{\sigma^2 \omega^2}{2}} d\omega$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Norms in RKHS and Smoothness

Choosing different kernels one can show that the norm in the corresponding RKHS encodes different notions of smoothness.

• Sobolev kernel: consider $f : [0, 1] \rightarrow \mathbb{R}$ with f(0) = f(1) = 0. The norm

$$\|f\|_{\mathcal{H}}^2 = \int (f'(\mathbf{x}))^2 d\mathbf{x} = \int \omega^2 |F(\omega)|^2 d\omega$$

is induced by the kernel $K(x,y) = \Theta(y-x)(1-y)x + \Theta(x-y)(1-x)y.$

Gaussian kernel: the norm can be written as

$$\|f\|_{\mathcal{H}}^2 = \frac{1}{2\pi^d} \int |F(\omega)|^2 \exp^{\frac{\sigma^2 \omega^2}{2}} d\omega$$

where $F(\omega) = \mathcal{F}{f}(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$ is the Fourier tranform of f.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Our function space is 1-dimensional lines

$$f(x) = w x$$
 and $K(x, x_i) \equiv x x_i$

where the RKHS norm is simply

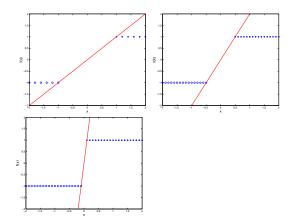
$$\|f\|_{\mathcal{H}}^2 = \langle f, f \rangle_{\mathcal{H}} = \langle K_w, K_w \rangle_{\mathcal{H}} = K(w, w) = w^2$$

so that our measure of complexity is the slope of the line. We want to separate two classes using lines and see how the magnitude of the slope corresponds to a measure of complexity. We will look at three examples and see that each example requires more "complicated functions, functions with greater slopes, to separate the positive examples from negative examples.

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

Linear case (cont.)

here are three datasets: a linear function should be used to separate the classes. Notice that as the class distinction becomes finer, a larger slope is required to separate the classes.



The algorithms (*Regularization Networks*) that we want to study are defined by an optimization problem over RKHS,

$$f_{S}^{\lambda} = \arg\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} V(f(\mathbf{x}_{i}), \mathbf{y}_{i}) + \lambda \|f\|_{\mathcal{H}}^{2}$$

where the *regularization parameter* λ is a positive number, \mathcal{H} is the RKHS as defined by the *pd kernel* $K(\cdot, \cdot)$, and $V(\cdot, \cdot)$ is a **loss function**.

Note that \mathcal{H} is possibly infinite dimensional!

< ロ > < 同 > < 回 > < 回 > .

If the positive loss function $V(\cdot, \cdot)$ is convex with respect to its first entry, the functional

$$\Phi[f] = \frac{1}{n} \sum_{i=1}^{n} V(f(\mathbf{x}_i), \mathbf{y}_i) + \lambda \|f\|_{\mathcal{H}}^2$$

is *strictly convex* and *coercive*, hence it has exactly one local (global) minimum.

Both the squared loss and the hinge loss are convex.

On the contrary the 0-1 loss

$$V = \Theta(-f(x)y),$$

< ロ > < 同 > < 回 > < 回 > .

where $\Theta(\cdot)$ is the Heaviside step function, is **not** convex.

An important result

The minimizer over the RKHS \mathcal{H} , f_{S} , of the regularized empirical functional

 $I_{\mathsf{S}}[f] + \lambda \|f\|_{\mathcal{H}}^2,$

can be represented by the expression

$$f_{\mathcal{S}}^{\lambda}(\mathbf{x}) = \sum_{i=1}^{n} c_i \mathcal{K}(\mathbf{x}_i, \mathbf{x}),$$

for some *n*-tuple $(c_1, \ldots, c_n) \in \mathbb{R}^n$. Hence, minimizing over the (possibly infinite dimensional) Hilbert space, *boils down to minimizing over* \mathbb{R}^n .

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト -

Define the linear subspace of \mathcal{H} ,

$$\mathcal{H}_0 = \operatorname{span}(\{K_{\mathbf{x}_i}\}_{i=1,\ldots,n})$$

Let \mathcal{H}_0^{\perp} be the linear subspace of \mathcal{H} ,

$$\mathcal{H}_0^{\perp} = \{f \in \mathcal{H} | f(\boldsymbol{x}_i) = 0, \ i = 1, \dots, n\}.$$

From the reproducing property of $\mathcal{H}, \forall f \in \mathcal{H}_0^{\perp}$

$$\langle f, \sum_{i} c_{i} K_{\mathbf{x}_{i}} \rangle_{\mathcal{H}} = \sum_{i} c_{i} \langle f, K_{\mathbf{x}_{i}} \rangle_{\mathcal{H}} = \sum_{i} c_{i} f(\mathbf{x}_{i}) = 0.$$

 \mathcal{H}_0^{\perp} is the orthogonal complement of \mathcal{H}_0 .

Every $f \in \mathcal{H}$ can be uniquely decomposed in components along and perpendicular to \mathcal{H}_0 : $f = f_0 + f_0^{\perp}$. Since by orthogonality

$$||f_0 + f_0^{\perp}||^2 = ||f_0||^2 + ||f_0^{\perp}||^2,$$

and by the reproducing property

$$I_{\mathsf{S}}[f_0+f_0^{\perp}]=I_{\mathsf{S}}[f_0],$$

then

$$I_{S}[f_{0}] + \lambda \|f_{0}\|_{\mathcal{H}}^{2} \leq I_{S}[f_{0} + f_{0}^{\perp}] + \lambda \|f_{0} + f_{0}^{\perp}\|_{\mathcal{H}}^{2}.$$

Hence the minimum $f_{S}^{\lambda} = f_{0}$ must belong to the linear space \mathcal{H}_{0} .

・ロット (雪) (日) (日) (日)

The following two important learning techniques are implemented by different choices for the loss function $V(\cdot, \cdot)$

Regularized least squares (RLS)

$$V = (y - f(x))^2$$

Support vector machines for classification (SVMC)

$$V = |1 - yf(x)|_+$$

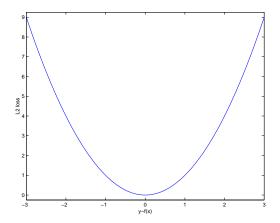
where

$$(k)_+ \equiv \max(k, 0).$$

・ロッ ・雪 ・ ・ ヨ ・ ・

The Square Loss

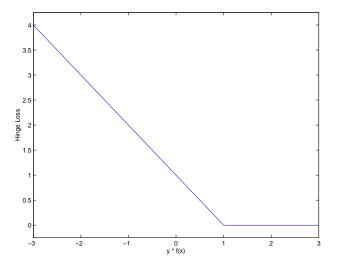
For regression, a natural choice of loss function is the square loss $V(f(x), y) = (f(x) - y)^2$.



< ロ > < 同 > < 回 > < 回 > .

3

The Hinge Loss



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Tikhonov Regularization for RLS and SVMs

In the next two classes we will study Tikhonov regularization with different loss functions for both regression and classification. We will start with the square loss and then consider SVM loss functions.