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[Identifying variances of complicated estimation procedures]

T
his article discusses some examples of jackknifing multitaper estimates of spectra,
coherences, and frequency estimates. Examples include barometric pressure data,
where spectrum with an extremely large range plus many narrow-band processes
are seen. Analysis of dropped-call rates in cellular phone systems and their coher-
ence with solar radio data illustrates further uses of the jackknife and some of the

complexities encountered in processes with many spectral lines. The third example is a re-
examination of the 663-year record of Nile River levels, a process claimed to be long-memory.
There are persistent terms, but not of the form usually classed as long-memory. We begin by
explaining the terms in the title.

The term jackknife was introduced into statistical usage by John W. Tukey in an unpublished
1962 memorandum with a Meaning Given in [1]:

Tukey adopted the name ‘jackknife’ for this procedure, since a boy scout’s jackknife is
symbolic of a rough-and-ready instrument capable of being utilized in all contingencies and
emergencies.

I recall John giving a very similar description himself. While an outline of the method will be
given in the following, it is, briefly, a general method to estimate the variance of complicated esti-
mation procedures without making overly restrictive assumptions. It was originally introduced
[2] as a method of bias reduction, but as most of the bias in time-series problems is subtly
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different from that in general statistics, bias reduction is less use-
ful than the variance estimate.

Multitaper refers to methods for estimating power spectra,
coherences, and related quantities using an orthogonal set of
data tapers, specifically the discrete prolate spheroidal or Slepian
sequences. This method was introduced in [3] and is outlined in
a following section. Multitaper methods are ideally suited to jack-
knifing and have been used with the jackknife almost since their
discovery. They were described outside Bell Labs at Scripps
Institution of Oceanography in 1983 and at the 1984 Brighton
ISIT, with details appearing in [4]. The combination has been
responsible for both scientific and engineering progress.

In this article, spectrum refers to the power spectrum or
power spectral density used to describe the distribution of ener-
gy as a function of frequency and not in the physicist’s sense of
density of charged particles as a function of energy or the math-
ematician’s usage to characterize operators or eigenvalues.

Finally, estimates implies that we are working with data and
specifically, attempting to estimate the power spectral density as
a function of frequency from a time-series.

Much of this research was initiated as part of my study of
problems in various communications systems at Bell Labs: geo-
metric distortions in millimeter waveguides and optical fibers,
abnormal rates of dropped calls in cellular phone systems, out-
ages in communications satellites, induced voltages on ocean
cables, and non-white noise backgrounds. These are mostly
problems that occur after the system is designed and installed,
and consequently, one is dealing with field measurement data
rather than laboratory measurements. Typically, these are nei-
ther simple nor Gaussian. It was realized that finding engineer-
ing solutions required better understanding of the physics. This
understanding, in turn, depended on advances in signal process-
ing. Some of this work [5]–[7] has begun to change our view of
space physics. A summary of the solar and space physics back-
ground, estimation procedures, and additional references is
given in [8]. As a specific example, the most important outcome
of work that began as an investigation of communications satel-
lite outages was showing that what superficially appeared to be
harmonics of solar rotation in energetic particle fluxes were not
harmonically related [9]. This demonstration depended on jack-
knife confidence intervals for frequency estimates.

This section is followed by short introductions to the jack-
knife, multitaper estimates, and their combination. These are
followed by examples: microbarometer data, dropped calls in a
cellular phone system, and the Nile River data. The article ends
with some general notes on the methods and a summary.

THE JACKKNIFE
Details on the jackknife are given in numerous texts and papers
(see, e.g., [4] and [10]–[12]) so only a summary is given here.

Assume that we have a sample of K independent observa-
tions, {xi}, i = 1, . . . K, drawn from some distribution charac-
terized by a parameter θ , which is to be estimated. Here, θ is
usually a spectrum or coherence at a particular frequency or a
simple parameter such as the frequency of a periodic compo-

nent. Denote an estimate of θ made using all K observations by
θ̂all. Next, subdivide the data into K groups of size K − 1 by
deleting each entry in turn from the whole set, and let the esti-
mate of θ with the i th observation deleted be

θ̂\i = θ̂{x1, . . . xi−1, xi+1, . . . xK} (1)

for i = 1, 2, . . . , K, where the subscript \ is the set-theoretic
sense of without. Using • in the statistical sense of averaged
over, define the average of the K delete-one estimates as

θ\• = 1
K

K∑
i =1

θ̂\i (2)

and the jackknife variance of θ̂all as

V̂ar{θ̂all} = K − 1
K

K∑
i =1

(θ̂\i − θ\•)2 . (3)

The scale factor reflects the fact that the various delete-one esti-
mates θ̂\i are not independent. The jackknife variance estimate
is conservative, and Reeds [13] showed that under a set of condi-
tions that appear to be reasonable for most time-series data
encountered in the physical sciences, jackknifed maximum like-
lihood estimates behave properly. Specifically, the jackknife
mean and variance estimates converge to the population values
under only slightly weaker conditions than are required for
maximum-likelihood. Almost sure convergence of the jackknife
variance estimate, however, requires a moment condition; for
the estimators considered here, this is satisfied.

To conclude this section, I must emphasize that the jackknife
variance estimate (3) should always be compared with its expect-
ed value under standard assumptions. If the estimate disagrees
significantly with its expected value, we must look for the cause.
In my experience, the most common causes in spectrum esti-
mation problems have been unsuspected periodic components
(see the section on Nile data), complicated structure in the con-
tinuum spectrum (detectable with quadratic-inverse methods
[14]), and nonstationarity. In long series, nonstationarity is best
shown by dynamic spectrum estimates and their singular value
decomposition [15], but in short series, nonstationary quadrat-
ic-inverse methods [7] are preferred.

MULTITAPER ESTIMATES OF SPECTRA
While the theory of multitaper estimates is given in several
papers ([3], [7], [14], [16]), the cook book recipe for comput-
ing a multitaper spectrum estimate consists of the following
four steps.

First, choose a time-bandwidth product Co = NW = BT
where N is the sample size, W is the bandwidth in standard-
ized units, T = Nδt (the total time duration of the sample), δt
is the sample spacing, typically in seconds, and B is the analy-
sis bandwidth in physical units, typically in Hertz. If Co is too
small, the estimate will be unstable and may not have enough
dynamic range, but if Co is too large, the estimate may not



have adequate frequency resolution. For a given choice of Co,
there are K = �2Co� data tapers, the dimension of the time-
frequency region. Similarly, except for the origin and Nyquist
frequency with real-valued data, each dimension contributes
two degrees-of-freedom (DoF), so one has ν = 2K = 4Co DoF.
Because the energy concentration of the higher-order tapers is
poorer than that of the low-order ones, it is common to choose
K one or two less than �2Co�.

Second, compute the data tapers. These are a set of spe-
cial  functions known as discrete prolate spheroidal
sequences, or, in honor of their inventor, David Slepian,
Slepian sequences. Slepian sequences are defined as the real,
unit-energy sequences on [0, N − 1] having the greatest
energy in a bandwidth W . I use Slepian’s notation v(k)

n (N, W)

[17] for sample n of the k th sequence, or for short, v(k)
n .

These sequences are solutions of the symmetric Toeplitz
matrix eigenvalue equation

λkv(k)
n =

N−1∑
m=0

sin 2πW(n − m)

π(n − m)
v(k)

m (4)

for 0 ≤ n ≤ N − 1 and are defined by this equation for n outside
this interval. Note that solving this equation directly is not the
way to compute Slepian sequences. Use the tridiagonal form in
Appendix B of [14] instead.

The eigenvalues are bounded between zero and one with
the first

K ≈ �2NW� (5)

of them large, i.e., nearly one, and the rest nearly zero, so the
dimensionality of the subspace is approximately 2NW.

Third, compute the eigencoefficients

yk( f) =
N−1∑
t=0

x(t)v(k)
t e−i 2π f t, (6)

where {x(t)} is the sequence of data samples and f is the fre-
quency in standard units. These eigencoefficients are Fourier
transforms of the data multiplied by a window, or taper, exactly
the form suggested by Tukey [18]. Pragmatically, we begin with
a time-bandwidth product, Co = NW, between about three and
six, with four to ten windows. This gives bandwidths of a few
times the Rayleigh resolution.

Fourth, estimate the spectrum using the adaptive weighted
forms introduced in [3]. Using a minimum mean-square-error
estimate of the ideal eigencoefficients xk( f ) of the form
x̂k( f ) = dk( f )yk( f ), where the dk( f )’s are weights, this is
essentially a Wiener filter on the Slepian basis. In terms of the
spectrum S( f ) and bias Bk( f ), the weights are

dk( f ) =
√

λkS( f )

λkS( f ) + Bk( f )
(7)

with a corresponding spectrum estimate

Ŝ( f ) =
∑K−1

k=0 |dk( f )yk( f )|2∑K−1
k=0 |dk( f )|2

. (8)

Because S( f ) and Bk( f ) in (7) are unknown, we use estimates
and iterate. See, e.g., [3] and [7] for details. The resulting spec-
trum estimate, Ŝ( f ), is the solution of

K−1∑
k=0

λk(Ŝ( f ) − |yk( f )|2)
[λkŜ( f ) + B̂k( f )]2

= 0, (9)

where B̂k( f ) is an estimate of the bias of |yk( f )|2 at frequency f. A
simple estimate of, and an upper bound, for B̂k( f ) is (1 − λk)σ

2,
where σ 2 is the process variance. Denote the eigenspectra corre-
sponding to the individual tapers by Ŝk( f ) = |dk( f )yk( f )|2 .
When the range of the spectrum is small, the weights are typically
all nearly one, and ̂Sk( f ) ≈ |yk( f )|2.

When the range of the spectrum is not too large, that is, the
bias terms satisfy B̂k( f ) � |yk( f )|2, the multitaper estimate (9)
reduces to

Ŝc( f ) = 1
K

K−1∑
k=0

Ŝk( f ). (10)

If the spectrum varies slowly in the narrow band
( f − W, f + W), the various yks will be approximately uncorre-
lated because the Slepian sequences are orthonormal and the
estimate will be distributed as χ2

2K . In this case, the multitaper
estimate is approximately maximum likelihood [19].

Since the spectrum estimate is, at least approximately, a χ2

random variate, the expected value of its logarithm is biased [7],

E{ln Ŝ } = ln S + Bχ (K), (11)

where the bias Bχ (K) is given by

Bχ (K ) = ψ(K ) − ln K (12)

with ψ being the digamma function. Similarly, the variance of
such an estimate is

Var{ln Ŝ } = ψ ′(K ), (13)

where ψ ′ is the trigamma function.
If the data being studied were Gaussian and stationary, these

formulae would be adequate, but with real data, these conditions
rarely hold, and we must obtain estimates from the observations
themselves. The first problem is to find an appropriate form of
the estimation equations. Minimum requirements for such esti-
mators are first, that they work well in the stationary Gaussian
case and second, that they are sensitive enough to detect depar-
tures from assumptions. The jackknife is an ideal tool for this.

JACKKNIFING MULTITAPER SPECTRA
To jackknife multitaper spectrum estimates, my approach has been
to begin with (9), omit the jth eigencoefficient from the weight
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calculation, and take θ\ j = ln Ŝ\ j ( f ) at each frequency. This
treats the eigencoefficients as exchangeable data and effectively
deletes each taper in turn. This is called “jackknifing over tapers”
or, as the terms taper and window are used synomonously in spec-
trum estimation, “jackknifing over windows.” When the approxi-
mation (10) is valid, one computes the delete-one values as

ln Ŝ\ j ( f ) = ln


 1

N − 1

K−1∑
k=0
k�= j

Ŝk( f )


 (14)

or, in general, by including the adaptive weighting and solving

K−1∑
k=0
k �= j

λk(Ŝ\ j − |yk( f )|2)[
λkŜ( f ) + B̂k( f )

]2 = 0 . (15)

Then take the average

ln Ŝ\•( f ) = 1
K

K∑
j=1

Ŝ\ j ( f ) (16)

and compute the variance estimate

V̂J( f ) = K − 1
K

K∑
j=1

[ln Ŝ\ j ( f ) − ln Ŝ\•( f )]2, (17)

as in the general jackknife prescription.
Experiments with these estimators show that the variances

of ln Ŝ ( f ) and ln Ŝ\•( f ) are nearly identical. The jackknife vari-
ance is slightly conservative, and [20] showed that (17) is too
large by a factor of approximately (K − (1/2))/(K − 1). Thus, I
recommend replacing the preceding equation with

V̂J( f ) = (K − 1)2

K
(

K − 1
2

) K∑
j=1

[ln Ŝ\ j ( f ) − ln Ŝ\•( f )]2 . (18)

The variance of this estimate was given in [20] in terms of
trigamma functions. Their asymptotic expansion gives

E{V̂J( f )} � (K − 1)3 (K − 3)(
K − 1

2

)
K(K − 2)3

, (19)

a formula that is reasonably accurate for K ≥ 4.

JACKKNIFE VERSUS DIRECT VARIANCE
A common question is, “Why go through the complications of
delete-one estimates and the jackknife procedure instead of sim-
ply finding the average and variance directly?” One could com-
pute the log-average

ln S( f ) = 1
K

K−1∑
k=0

ln Ŝk, (20)

where ̂Sk( f ) ≈ |yk( f )|2 and the corresponding variance

V̂ard{ln S( f )} = 1
K − 1

K−1∑
k=0

[
ln Ŝk − ln S( f )

]2
. (21)

This is Lehmann’s test for homogeneity of variances [4]. From
the preceding section, E{ln Sk( f )}is biased by ψ(1) ≈ −.57721,
and, as this is removable, the bias is not a problem. In contrast,
for the variance estimate (21), we have

Var{ln Ŝk( f )} = ψ ′(1) = π2

6
(22)

so that

E{̂Vard{ln S( f )}} = 1
K − 1

ψ ′(1) = 1
K − 1

π2

6
, (23)

and this is unacceptably large. Taking K = 4 as an example, the
exact form of (19) gives 0.2795, about one-half the variance of
0.5483 given by the obvious approach (23). The heuristic expla-
nation is that for stationary Gaussian data, the individual eigen-
spectra Sk( f ) have a χ2

2 (exponential) distribution so that the
most probable value is zero and the distribution of ln Sk( f ) has
a very heavy lower tail. The delete-one estimates Ŝ\ j ( f ) on the
other hand, have a χ2

2K−2 distribution, so the logarithms are
much better behaved. Just going to a χ2

4 from a χ2
2 reduces the

variance of ln S from 1.6449 to 0.6449, a factor of 2.55, so the
jackknife approach gives a more efficient estimate of variance.

BAROMETER DATA
Barometric pressure data provides examples of two distinct
phenomena; first, it contains many high-Q, high-significance
peaks; second, it provides an excellent example of some of the
dangers in spectrum estimation. Many seismic stations also
have microbarometers, and the data shown here is from Black
Forest Observatory (BFO). The data is sampled at a 10 s interval
and has been carefully filtered before sampling. The least-sig-
nificant-bit sensitivity of this instrument is −1/303 Pa.

The spectra shown in Figure 1 uses 800 samples (2.2 hours)
typical of the block lengths used in many dynamic spectra. Using a
time-bandwidth Co = 5 and K = 8 tapers gave the spectrum
shown. This spectrum has a range of ∼1012, somewhat less than
the 1017 found using longer data spans. The raw data for this sam-
ple (not shown) appears to have an approximately linear trend, but
as this is just part of the day-to-day fluctuation of atmospheric
pressure associated with passage of storm fronts and the like, there
is no justification for subtracting a trend from the data.

The jackknife 5–95% confidence region, shown by the upper
and lower red curves, goes from relatively tight limits at some
low frequencies, approximately what one would expect for a χ2

16
distribution, to a factor of ∼106 at high frequencies. This range
results mostly from loss of DoF associated with the large
dynamic range, but a significant part comes from unresolved
peaks in the spectrum.



Prewhitening and using longer data sections (6.9 days) give
the spectrum shown in Figure 2. Here, the largest peaks are
about 9.9σ above background. Leaving aside the question of
their origin (see [8]), there are 98 peaks above the 99% signifi-
cance level in this frequency range that cover 26% of the total
bandwidth. Estimating the noise level, or baseline, in such spec-
tra must be done carefully because the peaks bias the average
and even the median significantly. These spectra have a noncen-
tral χ2 distribution at modal frequencies and a central χ2 distri-
bution between modes. I have found (see [6, Appendix C]) that
the lower 5% point of the prewhitened spectra gives a reason-
able estimate the baseline. The variance of ln S is 2.92 times its
expected value. Applying Bartlett’s M-test across frequency gives
a probability that this portion of the spectrum could be a ran-
dom sampling fluctuation from a white spectrum of ∼10−42.
Most of the rest of the spectrum shows similar structure, so one
must conclude that we are not dealing with a trivial process that
can be described by a low-order autoregressive (AR) or similar
parametric model.

DROPPED CALLS IN CELLULAR PHONE SYSTEMS
A perplexing problem in communications systems is that of
excessive dropped calls in cell phone systems. Because the sys-
tems operate in an interference-limited, fading environment,

dropped calls were expected. Experience showed
that, instead of the expected Poisson statistics,
the rate fluctuated wildly from day to day and
had a strong seasonal dependence. Exploratory
analysis involving more than 30 time series of
possible explanatory variables showed that one of
the more promising was the U.S. Air Force’s solar
radio noon flux measured by their radio solar tel-
escope network (RSTN) [21]. This was surprising
because the peak noon flux was under 100 solar
flux units (SFU) (1 SFU = 10−22W/m2-Hz) and
the average ∼50 SFU, several decibels below the
thermal noise level of an ideal receiver and
approximately 40 dB below typical signal levels.
More information and references are given in
sections 10 and 19 of [8]. Figure 3 shows 590
days of the percentage of calls that fail during the
afternoon rush hour in a typical midwestern U.S.
AMPS (analog FM) system during the 1996–1997
solar minimum. The data is for the busiest hour,
typically 6:00 p.m. on workdays, 2:00 or 3:00
p.m. on weekends, and this switching may
reduce the coherence slightly. The data were
truncated at 590 days to avoid confusion due to a
change in system parameters. Solar radio data
were not available at the 900 MHz band used by
the cellular phone system so, as a compromise,
the 606 and 1415 MHz noon fluxes were aver-
aged. There are, as usual, a few missing data in
both series, and these were interpolated before
averaging. As shown in Appendix A of [6],

[FIG2] A higher resolution prewhitened spectrum of the barometer data for the
interval 21 March – 15 May 1999. The data was low-pass filtered and decimated to
1 min, prewhitened, and analyzed on ten blocks of 10,000 samples each and the
spectra averaged. The resulting estimate has ∼144 DoF, so the largest peak is
about 10σ above background. The horizontal dashed lines marked 5%, 50%,
90%, and 99% are quantiles for a χ2

144 distribution scaled to unit mean.
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[FIG1] Estimated spectrum with jackknife 5% and 95%
confidence intervals for the barometer data. Note that, as
opposed to a range of ∼4 expected under a Gaussian hypothesis,
the range estimated by the jackknife is often closer to 106. To
emphasize this point, the range predicted using stationary
Gaussian statistics is too small by about a factor of 100,000.
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interpolating 5% of the sample does not change the spectrum
very much but may reduce high coherences slightly. Figure 4
shows an estimate of the magnitude-squared-coherence (MSC)
between the two series using Co = 5 and K = 8. The very
skewed distributions of sample MSC can be transformed to
approximately Gaussian by use of a tanh−1 transform, see [4] for
details and references and [22] for a second example. I use√

2K − 2tanh−1(|c\ j ( f )|) transforms of the delete-one coher-
ence estimates

c\ j ( f ) =
∑K−1

k=0
k�= j

x̂k( f ) ŷ∗
k ( f )

[∑K−1
k=0
k �= j

|x̂k( f )|2 ∑K−1
k=0
k �= j

| ŷk( f )|2
] 1

2

, (24)

where x̂k( f ) and ŷk( f ) are the weighted eigencoefficients of the
two series. The scaling is such that, if the data were ideal (sta-
tionary, Gaussian, with all spectral details resolved), the variance
of the estimate should be 1.0. Here, the average jackknife vari-
ance is 1.0034, very close to expected. The minimum and maxi-
mum, however, are 0.058 and 7.2, respectively, somewhat
unusual. It may also be seen that the plot appears to be bimodal,
i.e., the MSC is either very low or very high, and we find that
91.1% of the estimates are above the
nominal 10% level but 13.4% are above
the 90% level. This is examined more
closely in connection with Figure 5. To
see the detailed structure, Figure 6
shows the normal (tanh−1) transform of
MSC and the jackknife estimate of its
variance between 4–5.6 µHz. The vari-
ance has a very spiky appearance, i.e., the
variance is either excessively high or low.
This seems to be very common with
such data, and I attribute it to three
causes: first, at frequencies where there
is an isolated high-Q mode, the data is
essentially deterministic and the vari-
ance is low; second, at frequencies where
two or more modes are interfering, the
variability is high; and third, we have a
finite data segment and are attempting
to achieve high frequency resolution
(the bandwidth of the estimate is 100
nHz) resulting in only ∼16 DoF, so the
estimate is naturally fairly variable. This
figure shows the ratio of the normal
MSC to the jackknife standard deviation
and a comparison with frequencies
observed on the Ulysses spacecraft [5].
When these frequencies were first
encountered in a study of outages on
communications satellites, they superfi-
cially appeared to be harmonics of solar
rotation. Closer examination [9] showed

that they were not harmonics. Indeed, had we not had jackknife
error estimates on these frequency estimates, the presence of

[FIG3] Data used in the dropped call study. The upper, thick,
black curve shows the average of the 606 and 1415 MHz noon
flux measured at Palehua, HI on the left-hand scale. Some
missing data was interpolated in both series before averaging.
The lower, red curve shows the rush-hour dropped call rate in
percent for an advanced mobile phone service (AMPS) system
operating in the U.S. Midwest on the right-hand scale. 
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[FIG4] Magnitude-squared-coherence (MSC) between the rush-hour dropped call rate and
the Palehua noon flux. The three axes show MSC in conventional units; a tanh−1

transform of MSC in approximate N(0, 1) units; and, on the right, the cumulative
distribution for independent data.
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discrete frequencies in the solar wind would likely have gone
unnoticed. Similarly, had it not been for the accident of study-
ing both the space physics and dropped call data nearly simulta-
neously, the agreement between the frequencies in the
coherence and those seen on Ulysses and Voyager would proba-
bly have been missed. These Ulysses frequencies, or their aliases,
are marked by the vertical dashed lines in Figure 6. Not all peaks
are marked because Table 2 in [5] only listed 35 out of the many
thousands of modes that are predicted to exist in this frequency
range and because Ulysses is in an almost sidereal orbit, fre-
quencies will disagree by ≈(32 m) nHz from those observed on
Earth, where m is the longitudinal quantum number from the
spherical harmonic expansion of the mode on the Sun. 

Returning to the bimodal distribution of coherences,
Figure 5 is a histogram of the MSC in standardized units. The
individual MSCs |c|2 were transformed to a uniform U(0, 1)

distribution by a probability integral transform

u = 1 − (1 − |c|2)K−1 , (25)

the cumulative distribution function of MSCs estimated
between independent processes [4]. The u’s were binned. If the
dropped calls and solar data were independent, this histogram
should approximate a uniform distribution, which it clearly
does not. The conclusion is that the coherence is high if one is
at a frequency corresponding to a solar mode and low at fre-
quencies between modes. An explanation of the peak at low

coherence levels is less certain, but one possibility is the pres-
ence of solar modes in the RSTN data that have little effect on
cell phones, possibly by having the wrong polarization. A mod-
erately strong component in one series of a coherence esti-
mate and not the other suppresses estimates below that
expected if the series were independent. The phase of the
coherence is complicated, but remembering that the solar data
is in fact noon flux (made at local noon to have a vertical path
through the atmosphere) and, similarly, that the dropped call
data is for the afternoon rush hour, one should expect the
presence of aliases. I note that it is useful to plot the phase
only at frequencies where the MSC has a significant local max-
imum because in problems where the coherence has a bimodal
distribution, the phase between modes wanders randomly and
causes more confusion than understanding, which is unsuit-
able for a tutorial paper.

THE NILE DATE
There have been numerous papers published in the last few
years on so-called long-memory processes. These are processes
supposedly having a fractional power-law spectrum near the ori-
gin, i.e., a spectrum of the form S( f ) ∝ f−α with 0 < α < 1.
The autocorrelations of such processes decay very slowly, and
because their spectral representations are correlated on three
lines, they are an intermediate form between stationary and
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[FIG5] A histogram of the MSC estimates (shown in Figure 4)
across frequency. For a null hypothesis of independence, the MSC
estimates have been converted to U(0, 1) by a probability
integral transform. The bimodal character is obvious.
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[FIG6] Transformed MSC, jackknife variance, and the ratio of
transformed MSC to jackknife standard deviation between 4.0
and 5.6 µHz. The center blue dashed curve shows the normal
transform of MSC from Figure 4 and the bottom red line the
jackknife variance estimate. The ratio of the normal MSC to the
jackknife standard deviation is shown by the top black line. The
average is about 1.27σ with one peak at 6σ . The red dashed
vertical lines are from [5, Table 2] or their aliases.
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nonstationary processes [23]. Moreover, such processes seem to
be inevitably described for frequencies around the origin with-
out frequency translation, which is very odd from an engineer-
ing perspective.

The evidence for such a physically unreasonable claim is
often nothing more than an unwindowed periodogram,
known for over a century to be an inconsistent estimate of the
spectrum.

Given this, it is of interest to see what the jackknife and mul-
titaper estimates can show. For this I chose a classic example, the
663 years of recorded minimum levels of the Nile River. Farm
taxes were based partly on the level of the annual flood, and a
continuous series from 622–1281, inclusive, is available [24].

Figure 7 shows a low resolution spectrum of the complete
series after prewhitening with an AR-20 prediction error filter.
The prewhitening reduces the range of the spectrum from
almost 1,000 to � 2 and has three major effects: first, like most
AR estimates, it shows the overall shape of the spectrum but
almost nothing of interest; second, the adaptive weights for the
prewhitened data are all close to unity; and third, one can distin-
guish the three lines in Figure 7 more easily than one can when
the full range must be plotted. Here, Co = 16 and K = 30 win-
dows were used. The adaptive weighting gave a minimum of
59.84 DoF and an average jackknife variance on ln Ŝ of 0.03587,
close to the expected ψ ′(30) ≈ 0.03398. The maximum, howev-
er, is 0.1649 and correlation coefficient between V̂jk and Ŝ is
0.194, highly significant at this sample size. Figure 8 also shows
a very high jackknife variance near the origin and also numer-

ous smaller but suggestive features. Long-memory processes
have a spectrum concentrated near the origin, thus, if I were not
a natural skeptic, I would stop here and say, “case proven.” As
emphasized above, my opinion is that peculiarities in jackknife
variances and other statistics show that the process needs to be
examined more closely, and this is done in the next subsection.

TEST FOR LONG MEMORY
A possible test for long memory is to compute the canonical
coherences (CCs) between parts of the process separated in time
[25]. It is known that CCs define the mutual information
between processes, and if a process is truly long memory, infor-
mation must persist. Begin by defining the eigencoefficients
beginning at time t, centered on frequency f , over a block of N
samples

yk(t, f ) =
N−1∑
n=0

x(t + n)v(k)
n e−i 2πnf . (26)

These may be inverted to recover the data, so they contain all
the information for the time-frequency region and the CCs
between the eigencoefficients at time t and those at t + τ , a
measure of the mutual information. To estimate the CCs, define
the matrices

G( f, τ ) =




y0(1 + τ, f ) · · · yK−1(1 + τ, f )

y0(2 + τ, f ) · · · yK−1(2 + τ, f )
...

...

y0( J + τ, f ) · · · yK−1( J + τ, f )


 , (27)

where J denotes the number of time blocks and compute the
CCs, denoted C( f, τ ), between G( f, 0) and G( f, τ ) [25].

Figure 9 shows ln(1 − C( f, τ )) computed using c0 = 3.5,
K = 4, N = 90-year blocks with a block offset of three years.
The first 60 years are omitted because, with 90-year blocks, the
overlapping blocks are necessarily highly coherent. The striking

[FIG7] Prewhitened spectrum of the Nile River annual minima
with jackknife 5% and 95% confidence limits. The raw data,
minus the average, was prewhitened with an AR-20 prediction
error filter and a time-bandwidth product Co = 16 with K = 30
windows was used here.
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[FIG8] Smoothed jackknife variance corresponding to the
spectrum shown in Figure 7. The horizontal dashed blue line
shows the expected value, and one notes significant departures
from it.
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feature of this plot is that features at several frequencies persist
and that frequencies near the origin are less persistent than
some of the others. These frequencies and the delays where
high coherence is seen are suggestive: 0.05 c/y of the Lunar
18.6-year nodal period and the Solar 22-year Hale magnetic
cycle. Delays near 78 years suggest the Gleisberg cycle; and the
104, 208, and 230 years are the Suess frequencies seen in 14C
[15]. The pattern at low frequencies suggests the 78-year
Gleisberg and 104-year Suess cycles with the 208- and 230-year
Suess cycles predominating.

Doing a harmonic F-test over the full record gives the results
seen in Figure 10. This test [3], [14], [15] minimizes the squared
error between the eigencoefficients, the yk( f ) from (6), and
those expected from a line component. If we have an isolated
periodic component with amplitude µ at some frequency fo, the
expected values of the eigencoefficients are

E{yk( fo)} = µVk(0), (28)

where Vk( f ), the k th Slepian function, is the Fourier transform
of the corresponding Slepian sequence. Usually, both the com-
plex amplitude µ and the line frequency fo are unknown. For a
given frequency f , we estimate the amplitude by ordinary least-
squares regression and tests for the significance of the regres-
sion. Specifically, w choose µ to minimize the residual
sum-of-squares

r2( f, µ) =
K−1∑
k=0

|yk( f ) − µ( f )Vk(0)|2 , (29)

so that

µ̂( f ) =
∑K−1

k=0 yk( f )Vk(0)∑K−1
k=0 V 2

k (0)
(30)

and test the hypothesis with an F-test, the ratio of the energy
explained by assuming a line component to the residual energy.
Standardizing to have an F-distribution with 2 and 2K − 2 DoF,
this gives

F( f ) =
1
2 |µ̂( f )|2 ∑K−1

k=0 |Vk(0)|2
1

2K−2 r 2( f, µ̂( f ))
. (31)

Next, I choose the frequency where F( f ) is maximum as an esti-
mate of fo with µ̂( f̂o) from (30) giving the amplitude and phase.
Under what John Tukey described as over-Utopian conditions (sta-
tionary Gaussian noise, a locally flat spectrum, and a constant ampli-
tude and frequency sinusoid) some tedious algebra shows that this
estimator approaches the Cramér-Rao bound for frequency esti-
mates. The variance of the estimate depends on the signal-to-noise
ratio that, in practice, is rarely known, but can be estimated by
F( f̂o). (The variance is larger than the bound by the efficiency factor
�−1

K given in section VII of [3], typically by 5–20%.) Moreover, with
the Nile data, we do not know what we have except for the single
realization. This may well contain outliers and errors in dates and is
almost certainly neither stationary nor Gaussian. Consequently, we
attempt to estimate errors by jackknifing over windows. This is done
by cycling through (30) and (31), withholding each eigencoefficient
in turn, and doing the standard jackknife variance estimates. I have
also found it useful to keep quantities such as the minimum and
maximum of f̂o\ j. In doing this, it is necessary to zero-pad the data
so the fast Fourier transform (FFT) mesh frequencies have a finer
spacing than the expected standard deviation. I use moderate zero-
padding followed by a slow Fourier transform to refine peak frequen-
cies. Also, although it was assumed above that the periodic terms are
isolated (i.e., separated from neighboring lines by a bandwidth of W
or more), in practice, the F-test seems to work reasonably for sepa-
rations down to one or two Rayleigh resolutions provided that the
lines have roughly equal amplitudes.

Returning to the Nile data, I find six low frequency lines
where the F-test is above the 95% significance level, five of them
corresponding to named periods within the estimation accuracy.
The jackknife errors on these frequency estimates are larger
than expected and are approximately equal to the Rayleigh reso-
lution, 1/ T. This, together with what appear to be systematic
departures from known periods, suggests possible errors in the
time scale. The estimated periods are 712 years, the first har-
monic of the Bond cycle; the 238-year Suess; 75-year Gleisberg;
21-year Hale; and 18.3-year Lunar Node. The accepted periods
are 735, 231, 78, ∼22, and 18.6, years, respectively.

Thus, the evidence for long memory seems to be insignifi-
cant relative to that for Newtonian dynamics and Solar influ-
ences on climate.

NOTES ON THE JACKKNIFE
Despite the fact that Quenouille’s discovery of the jackknife was
in a time series application, most of the theoretical development

[FIG9] Canonical coherences between the eigencoefficients at
time t and times t + τ for the Nile River data.
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and applications of resampling techniques assume independent,
identically distributed (i.i.d.) data. Of the methods that have
been developed for time series problems (see e.g., chapter 9 of
[26] or [27]), many rely on the assumption that either the resid-
uals of low-order parametric models
or the estimates computed on differ-
ent data segments are approximately
i.i.d. There may be interesting data
for which these assumptions hold,
but based on the data I have worked
with, they are not common. These
data come from problems in engi-
neering [8], [28], climate [7], [14],
[15], [22], space physics [5], [6], seis-
mology [29], [30], astrophysics, med-
ical imaging, and numerous other
sources. Much of these data either
include dozens to thousands of
modes or have a large dynamic range
and usually have both.

I have used the jackknife in preference to the bootstrap for
four reasons.

■ Some computational simplicity is important when large
data sets are involved. The barometer data set used in the
example in this article has 414,720 samples and is relative-
ly small compared to the full data
sets that have durations of many
years. In a multitaper context, the
number of data points in the time
domain is irrelevant; the jackknife
is applied over the K nominally
uncorrelated eigencoefficients. In
addition, many jackknife procedures
may be done by a simple one-step
downdating procedure.
■ Bootstrap estimates rely heavily on
random number generators, and
experience has shown that even good
random number generators cause
unexpected artifacts in spectrum esti-
mation problems.
■ It is my hope that the statistical
techniques I develop will be useful
tools for scientists and engineers. The
idea of random weighting used in
bootstrapping often gets a skeptical
reception from such people.
■ Finally, the most important reason
is Tukey’s original motivation of hav-
ing a rough-and-ready tool that can
usually give a warning when the
analysis is in trouble.

In many scientific and engineering
problems, the ability to separate period-
ic or other defined narrow-band signals

from the nondeterministic parts of the signal is crucial. It
should be noted that the parametric models that appear to cur-
rently dominate the signal processing and statistical literature
on time series are simply inadequate for these chores. As a spe-

cific example, solar and space
physics data may contain several
thousand periodic terms correspon-
ding to normal modes of the sun.
[Harvey (see [8, section 4]) esti-
mates that there are 10 million solar
modes.] Other problems aside, the
frequencies could not be estimated
from an AR model because of
numerical problems alone. Note,
however, that if a multitaper com-
plex demodulation [7] is used to
reduce the dimensionality of the
problem to 2NW from N, then para-
metric methods are useful.

Data with many periodic or approximately periodic compo-
nents are not restricted to problems involving the sun.
Terrestrial seismology is nearly as complicated, and trying to
count the number of gears, bearings, and rollers in manufactur-
ing equipment that can leave artifacts in products such as opti-
cal fibers can be dismaying.

[FIG10] A Harmonic F-test for periodic components done over the full Nile series using
Co = 4 and K = 5 giving a test with two and eight DoF. Of the six lines where the
significance exceeds the 95% level (shown by the horizontal dashed blue line), five are
close to named periods.
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THE JACKKNIFE VARIANCE
ESTIMATE IS CONSERVATIVE, AND

UNDER A SET OF CONDITIONS
THAT APPEAR TO BE

REASONABLE FOR MOST 
TIME-SERIES DATA ENCOUNTERED

IN THE PHYSICAL SCIENCES,
JACKKNIFED MAXIMUM
LIKELIHOOD ESTIMATES

BEHAVE PROPERLY.



SUMMARY
This article has summarized some theory on multitaper esti-
mates, the jackknife, and their use together, and given some
examples where the jackknife indicates problems with the basic
estimate. These examples all use jackknifing over windows, as
opposed to exchanging data blocks or residuals from parametric
models. Indeed, in most of the problems I have encountered,
spectra with both large ranges and many line components
appear to be the rule rather than the exception, and it is not
clear how any other method could work.

In spectrum estimation problems, the jackknife is rarely an
end in itself, but when studying scientific and engineering data
where the basic inferences depend on having accurate estimates
of spectra or descriptions of the data under study, it is an invalu-
able diagnostic of possible problems. In such problems, one
rarely cares if a particular statistic is significant at the 94% or
96% level, but a variance estimate that is ten or 100 times too
large or too small requires serious attention. Thus, when the
jackknife variance has a suspicious average or is either extreme-
ly low or extremely high at some frequencies, exploratory data
analysis is mandatory.
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