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Abstract

We introduce a novel technique for the numerical solution of systems of advection-
diffusion partial differential equations with nonlinear source terms. The method is
based on a spatiotemporal decomposition that makes use of any conventional spatial
and temporal discretization schemes, and is applicable to either explicit or implicit
time-integration. In the case of spatially localized source terms, the decomposition
allows severe truncation of the resulting algebraic system. The technique and its
variations are introduced in the context of the magnetohydrodynamical dynamo
equations describing the evolution of the large-scale magnetic field of the sun and
stars, but they are of more general applicability. We offer a few examples show-
ing the usefulness of this technique in the solar dynamo context, not only for the
computation of numerical solutions per se, but also as an analysis tool to better
understand the behavior of the solutions on long temporal scales.
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1 Dynamo models of the solar cycle

The solar cycle, driven by the cyclic regeneration of the sun’s internal mag-
netic field, is the engine powering the various phenomena that collectively de-
fine solar activity. First discovered in the mid-nineteenth century on the basis
of sunspot counts, its magnetic origin was demonstrated in the early twen-
tieth century when magnetic fields were detected and measured in sunspots.
It has since been shown that the frequency of all geoeffective solar eruptive
phenomena, such as coronal mass ejections and flares, is strongly modulated
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by the amplitude of the magnetic activity cycle, that the sun’s photosphere
and corona are structured by its magnetic field, and that even the sun’s lu-
minosity varies, albeit slightly, in phase with the solar cycle. Studies of the
physical mechanisms underlying the solar cycle are thus at the root of research
efforts in space weather prediction and assessment of the sun’s possible role
in climate change.

Figure 1 illustrates the longest extant direct record of the solar cycle, namely
the variation of sunspot numbers. The most prominent feature of this dataset
is cyclic variability with a period of approximately eleven years. Sunspots
appear on the solar surface when azimutally-oriented “ropes” of magnetic
field, originally located deep in the solar interior, are destabilized by magnetic
buoyancy, and rise through the sun’s convective envelope, producing sunspots
by impeding convective energy transport where they pierce the photosphere
[26]. Sunspot counts are thus a measure of the strength of the internal so-
lar magnetic field, so that the sunspot cycle is a proxy for the underlying
magnetic cycle 1 . The cycle shows up quite prominently from about 1715 on-
wards, although its amplitude is seen to vary significantly from one cycle to the
next. The 1645-1715 time period is also noteworthy, in that very few sunspots
were seen on the sun even though historical researches have shown that nu-
merous competent and well-equipped astronomers were actively looking for
them [15,18]. It is not yet understood whether this period, now known as the
Maunder Minimum, is due to the magnetic cycle shutting off completely and
restarting again 60 years later, (a case of intermittency), or to its amplitude
falling below the threshold above which sunspots can form from the large-scale
internal solar magnetic field (a case of strong amplitude modulation). Indirect
indicators of solar activity such as the cosmogenic radioisotope records of 10Be
and 14C indicate that such periods of strongly suppressed cyclic activity have
recurred irregularly in the more distant past [2].

It is now almost universally accepted that the solar cycle owes its origin to
dynamo action associated with the motion of electrically conducting fluid in
the solar interior. In light of the physical conditions pervading therein, this dy-
namo process is well-described by the so-called magnetohydrodynamic (MHD)
induction equation, describing the evolution of a magnetic field B in response
to the inductive action of a flow U and Ohmic dissipation [11]:

∂B

∂t
= ∇× (U × B − η∇× B) , (1)

1 The polarity of the sun’s magnetic field reverses from one cycle to the next, so
that the true period of the magnetic cycle is twice that of the sunspot cycle; this is
because sunspots —as well as all other manifestations of solar magnetic activity—
are insensitive to the polarity of the Sun’s magnetic field. Thus it remains common
usage to speak of the sun’s “11-yr activity cycle”.
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Fig. 1. The solar cycle, as evidenced by variations of the sunspot number. Two
historical data reconstructions are shown, the first (black line) being the standard
Zürich Sunspot Number, the other (in gray) the Group Sunspot Number [19]. Data
is sparse in the 1610-1640 interval, but the extreme paucity of sunspots in the
1645-1715 time period is real, rather than an artefact of insufficient data (see text).

where η is the magnetic diffusivity, inversely proportional to the electrical con-
ductivity. Equation (1) must be complemented by suitable evolution equations
for U, and remains subjected to the solenoidal constraint ∇ · B = 0.

Because of the vast disparity of time and length scales involved, and of the
turbulent nature of fluid motions in the sun’s outer layers, the solar dynamo
problem is rarely tackled as a direct solution of eq. (1) in three-dimensional
spherical geometry. A very common simplifying assumption, which is reason-
ably well supported observationally, is to assume that the sun’s magnetic field
and flow are both axisymmetric about the rotation axis, at least on the larger
spatial scales. Working in spherical polar coordinates (r, θ, φ), such magnetic
field and flow can be written as

B(r, θ, t) = ∇× (A(r, θ, t)êφ) + B(r, θ, t)êφ , (2)

U(r, θ) = ur(r, θ)êr + uθ(r, θ)êθ + $Ω(r, θ)êφ , (3)

where the vector potential A defines the poloidal component of the magnetic
field (that contained in meridian planes), B is the toroidal (i.e., azimuthally-
directed) magnetic component, and $ ≡ r sin θ. The angular velocity Ω is
very well-constrained by helioseismic inversions [10], down to a fractional ra-
dius r/R¯ ' 0.4 inside the sun, and the meridional flow components by direct
surface observations as well as helioseismic inferences down to r/R¯ ' 0.85.
Note that here both these flow components are considered steady, which de-
fines the so-called kinematic approximation. Having thus foregone dynamical
backreaction of the magnetic field on the driving flow, substitution of eqs. (2)
and (3) in (1) leads to a system of two coupled partial differential equations
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for A and B, of advection-diffusion structure, that entirely specify the dynamo
problem once an appropriate form for U has been adopted:

∂A

∂t
+

1

$
up · ∇($A) = η

(

∇2 −
1

$2

)

A , (4)

∂B

∂t
+ $∇ ·

(

upB

$

)

= η
(

∇2 −
1

$2

)

B +
1

r

∂η

∂r

∂(rB)

∂r

+$(∇× Aêφ) · (∇Ω) , (5)

for a magnetic diffusivity depending only on radius r in the solar model, and
where up ≡ urêr + uθêθ for brevity. Structurally similar equations arise in the
study of dynamo action in planetary cores, accretion disks, and galaxies.

The last term on the RHS of eq. (5) is an inductive source for B, corresponding
to shearing of the poloidal component into a toroidal component by differential
rotation. However no equivalent source term exists in eq. (4). This implies
that a purely axisymmetric flow cannot sustain an axisymmetric magnetic
field against Ohmic dissipation, a result known as Cowling’s theorem in the
dynamo literature. For this reason a source term S must be added to the RHS
of eq. (4). This is nowhere as ad hoc as one may think, as numerous mechanisms
can act to effectively produce a poloidal component from the toroidal field B;
these include (1) mean electromotive force associated with induction by the
small-scale turbulent flow, (2) instabilities of the toroidal field, and (3) surface
decay of sunspots, to name but three of the leading contenders (see [25,5] for
recent reviews). Equation (4) is thus replaced by

∂A

∂t
+

1

$
up · ∇($A) = η

(

∇2 −
1

$2

)

A + S(B) . (6)

Within the kinematic approximation, the source term S(B) for A usually
ends up being the only nonlinear term appearing in the axisymmetric dynamo
equations.

Constructing a solar dynamo model then amounts to solving eqs. (5) and (6)
in a meridional plane [r, θ], for a prescribed large-scale flow U, usually taken
from (or at least inspired by) helioseismic inferences, and for a specific physical
formulation of the source term S(B). The fact that various plausible options
exist for the latter explains the bewildering number of distinct dynamo models
to be found in the extant solar and astrophysical literature [5].
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Solar cycle models of the Babcock-Leighton type ascribe the source of poloidal
field to the surface decay of sunspots [1,21]. While there is no strong reason
to believe that this is the only (or most efficient) poloidal field regeneration
mechanism, it has the great virtue of being observed operating on the solar
surface for now over 40 years, and so it seems natural to pursue solar cycle
modelling within this framework [33,14,12,23,9]. Figure 2 herein illustrates the
basic operation of a Babcock-Leighton solar cycle model. Because the amplifi-
cation and storage of the toroidal field is believed to take place in the vicinity
of the interface between the solar radiative core and overlying convective en-
velope (at a fractional radius r/R¯ ' 0.7), a transport mechanism is required
to link the two source regions, a role which is nowadays usually ascribed to
meridional circulation. Because the sunspot-forming toroidal field originates
from this interface, the poloidal source term is non-local, in that it is spatially
localized at the surface but depends on the toroidal field strength at a depth
r/R¯ ' 0.7 in the interior (see §2.1 in ref. [7] for further discussion; also [14,23]
for alternate formulations of the Babcock-Leighton source term).

In the following section we describe the two spatiotemporal decomposition
techniques that are at the heart of this paper. We then examine the efficiency
and accuracy of the resulting solution schemes in the context of the Babcock-
Leighton solar cycle model (§3). The upshot there is that the new techniques
are computationally attractive only for very long simulation runs or specific
types of model analyses. However, by their very formulation they also allow to
efficiently and accurately analyze some properties of the simulations that are
of great physical interest, examples for these being provided in §4. The paper
concludes (§5) with a brief discussion of the technique’s broader applicability
to physically interesting PDE systems other than the MHD dynamo equations.

2 Spatiotemporal decomposition of dynamo solutions

We introduce in what follows two decomposition techniques that allow solar
dynamo solutions to be computed numerically. These physically-based decom-
positions are not spectral decompositions in the usual sense, but instead rely
on the use of a conventional discretization scheme to build the functional basis
in terms of which the solutions are expressed. We first briefly outline one such
discretization scheme, based on Galerkin bilinear finite elements and single-
step implicit time stepping, with explicit evaluation of the nonlinear source
term. However, it should be emphasized already at this juncture that the
decomposition techniques themselves can be used in conjunction with other
common spatial discretization schemes such as finite differences, or with higher
order time-stepping schemes, be they implicit or explicit.
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Fig. 2. Schematic representation of large-scale flows in the solar interior, showing
the operation of solar cycle models based on the Babcock-Leighton mechanism of
poloidal field regeneration. The left quadrant shows isocontours of angular veloc-
ity (in nHz, with 20 nHz spacing), as inferred helioseismically (rotational inversion
kindly provided by J. Christensen-Dalsgaard, Århus University, Denmark). The
right quadrant shows streamlines of meridional circulation in the sun’s convective
envelope. This is not a formal helioseismic inversion, but rather a minimalistic ideal-
ization consistent with extant helioseismic results, surface measurements, and basic
physical constraints such as mass conservation. The dotted line indicates the in-
terface between the stably stratified radiative core, and the overlying convective
envelope. Meridional circulation advects the poloidal magnetic flux liberated at the
surface by the decay of sunspots poleward and down to the core-envelope interface
(D→A→B), where is it sheared by the sharp gradient of angular velocity therein,
while being transported equatorward (B→C). Destabilisation of the toroidal field
so produced, followed by buoyant rise to the surface (C→D) produces sunspots that
will later undergo decay, and in doing so close the regenerative dynamo loop.

2.1 A traditional discretization scheme

Equations (6) and (5) define an initial-boundary value problem in two spatial
dimensions, linear but for the presence of the source term S. We can express
this in the general form:

γ
∂v

∂t
= λv + σ(v) , (7)

where v = {A,B} is a generalized variable, the operators γ and λ are in general
functions of position, and the (nonlinear) source term σ of both position and
time. Spatial discretization of whatever type yields a system of coupled ODEs:
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Γ
∂vi

∂t
= Λvi + s(vi) , i = 1, ..., N , (8)

where Γ and Λ are matrices whose structure is determined by the mesh struc-
ture and technique used for spatial discretization. In what follows we use
standard C0-bilinear finite elements so that the above matrices assume a band-
diagonal structure.

In the solar dynamo context, an implicit scheme for time discretization is often
preferable, because of the long integration times required to produce solutions
spanning many cycles, since the latter’s period is much longer than typical
advective timescales associated with U. In what follows, for linear terms we
use the so-called Θ-method, a simple one-step implicit scheme [35] whereby
the solution vector and its temporal derivatives are evaluated as a weighted
average of their values at steps m and m + 1, e.g.:

v = Θv(m+1) + (1 − Θ)v(m) , 0 ≤ Θ ≤ 1 . (9)

The non-linear source term, however, is evaluated explicitly (corresponding
to Θ = 0). Use of this temporal discretization turns eq. (8) into a system of
linear algebraic equations described by

Ψ(m)v(m+1) = σσσσ(m) , (10)

where

Ψ(m) =
(

1

∆
Γ + ΘΛ

)

(11)

σσσσ(m) =
(

1

∆
Γ − (1 − Θ)Λ

)

v(m) + s(v(m)) (12)

with ∆ as the timestep size, 0.5 < Θ ≤ 1 for numerical stability (we use Θ =
2/3 in what follows), and initial condition v(0). This is an entirely conventional
solution scheme that has been used extensively in the stellar and solar dynamo
context (e.g., [6,8,9]). The dynamo solutions obtained in this manner will
serve as a baseline against which to compare solutions obtained by different
means. In addition, part of this computational machinery is actually needed
in the design of the the following two, far less conventional approaches to the
solutions of the dynamo equations.
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2.2 Decomposition over space

Our first decomposition is straightforward. Since we are solving for A and B,
two numerical coefficients (or nodal values) are needed at each node j of the
spatial mesh. Thus, with a spatial resolution of nθ × nr bilinear elements, the
solution vector v contains n = 2(nθ + 1)(nr + 1) nodal coefficients.

In our decomposition, v is treated simply as a n-dimensional vector, with
components [v1, v2, ...vn]. The set of all v’s forms a vector space, with the
usual vector addition, and dot product. We will first use the obvious basis:

b[1] = (1, 0, 0, ....0) (13)

b[2] = (0, 1, 0, ....0) (14)

... (15)

b[n] = (0, 0, 0, ....1) (16)

(17)

This basis is trivially orthonormal, and any vector v can be written as a linear
combination 2

v =
n

∑

i=1

(vib[i]) . (18)

Now, we use the finite-element-based procedure outlined in §2.1 to advance
the vector v one step forward in time. Specifically, denote by L(v) the result of
running the finite-element code for one time-step, with initial field conditions
corresponding to the vector v, and with the non-linear source term turned off.
The operator L is linear, and so:

L(v) = L(
n

∑

i=1

(vi b[i])) =
n

∑

i=1

(vi L(b[i])) . (19)

This equation is the core of the foregoing spatiotemporal decomposition tech-
niques. It can be rewritten concisely in matrix form:

L(v) = M ∗ v , (20)

2 Here and in what follows, we use a subscript within square brackets, e.g. [i], to
denote an individual basis vector, and an unadorned subscript (e.g., vi) to denote
the ith element of a vector v.
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where the columns of M are the vectors L(b[i]), and a “∗” indicates a matrix-
vector multiplication. Note that M depends only on the coefficients of the
governing partial differential equations, but not on the initial condition.

All we have left to do is to include the non-linear source term S. This is done
explicitly, like in the conventional method outlined in §2.1:

F(v) = L(v) + S(L(v)) = M ∗ v + S(M ∗ v) , (21)

where S is the non-linear operator associated with the source term. The
pseudo-operator F designates the use of the finite-element machinery to ad-
vance the solution by one time step using the Θ-method. It is written in this
way to emphasize that the decomposition is exact. Every linear operator on
the RHSs of eqs. (4) and (5) ends up discretized in the matrix M .

In practice, to calculate the matrix M , one needs to run some discretiza-
tion/time stepping scheme n times, once for every vector in our basis, in order
to evaluate L(b[i]). Each such run uses an initial condition v = 0 everywhere,
except at the ith node value where vi = 1, and is integrated forward in time
over a single time step with the non-linear source term turned off. The result-
ing vector L(b[i]) is the ith column of matrix M . Care must also be taken to
ensure that the boundary conditions are respected, as some b[i]’s might violate
them.

This yields a straightforward algorithm for time-stepping:

v(m) = M ∗ v(m−1) + S(M ∗ v(m−1)) . (22)

where here and in what follows a superscript in parenthesis indicates the time
step count. The performance of this first scheme is analyzed in section 3, where
it is shown to be accurate but not particularly advantageous computationally
as compared to the conventional discretization scheme of §2.1. However, it
serves as the basis for the foregoing, second decomposition, which also turns
out to be accurate, as well as computationally competitive and physically
useful.

2.3 Decomposition of the source term

We begin with a look at the properties of the matrix M introduced in §2.2. As
discussed therein (cf. eq. (22)), if we want to move m steps forward in time,
without the non-linear source term, we write:
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v(1) = L(v(0)) = L(v(0)) (23)

v(2) = L(v(1)) = L2(v(0)) (24)

v(3) = L3(v(0)) (25)
... (26)

v(m) = Lm(v(0)) (27)

where

L2(v) ≡ L(L(v)) , L3(v) ≡ L(L(L(v))) , . . . etc . (28)

What is the behavior of Lm when m → ∞? Without the non-linear source
term, A (the poloidal component of the magnetic field) has no source, so the
advection, diffusion and boundary conditions will ensure that it tends to 0
asymptotically. The decay should be roughly exponential, after a short initial
mixing period. Likewise, even if the toroidal component B has a (linear) source
term that is included in L, it is proportional to A, and since A goes to 0, B
will also go to 0. This is precisely the essence of Cowling’s theorem. Therefore,
provided even minimal Ohmic dissipation is present, we can rightfully expect
that:

lim
m→∞

Lm(v) = 0 , (29)

for any vector v.

Now, let us put the source term back into the calculations, and examine how
the field v(i) can be expressed as a function of the source terms at the previous
time steps. We start with eq. (22) for v(i), and expand v(i−1) on the RHS using
the same equation:

v(i) = L(v(i−1)) + S(L(v(i−1))) , (30)

where, for brevity, s(m) = S(L(v(m−1))) is the vector containing source contri-
butions at all spatial nodes at the mth time step, evaluated explicitly using the
solution vector from the preceeding time step. Expanding v(i−1) using eq. (30)
recursively:

v(i) =L(v(i−1)) + s(i) (31)

=L2(v(i−2)) + L(s(i−1)) + s(i) (32)

=L3(v(i−3)) + L2(s(i−2)) + L(s(i−1)) + s(i) (33)
... (34)
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v(i) =
∞
∑

m=1

Lm(s(i−m)) + s(i) . (35)

In other words, v(i) is equal to the source term for the current time step,
plus the source term from the previous time step advected and diffused once,
plus the source term from the second-previous time step advected and diffused
twice, and so on ad infinitum. This equation is, once again, exact.

In practice, we cannot evaluate the infinite series exactly, so we have to trun-
cate it at some point s, which we will call the memory of the decomposition.
The technique “ignores” the source terms that operated more than s time steps
ago. Those are operated on by Lm, with m > s, so as long as s is sufficiently
large, this should not make much of a difference, since limm→∞ Lm(v) = 0.
This claim is quantified in the next section.

Now let us express Lm(s(i)) using the basis vectors introduced earlier in 2.2:

Lm(s(m)) = Lm

(

n
∑

k=1

s
(m)
k b[k]

)

=
n

∑

k=1

s
(m)
k Lm

(

b[k]

)

; (36)

Equation (35) can then be rewritten in matrix form:

v(i) =
s

∑

m=1

n
∑

k=1

s
(i−m)
k Lm

(

b[k]

)

+ s(i) = K ∗ w(i−1) + s(i) , (37)

where K is a rectangular matrix defined as the concatenation:

[

L(b[1])
] [

L(b[2])
]

. . .
[

L(b[n])
] [

L2(b[1])
] [

L2(b[2])
]

. . .
[

Ls(b[n])
]

, (38)

and w(i) is the vector obtained by a similar concatenation of all source term
vectors s back to step i − s:

(

s
(i)
1 s

(i)
2 . . . s(i)

n s
(i−1)
1 s

(i−1)
2 . . . s(i−1)

n . . . si−s
n

)T
. (39)

The procedure used to build the matrix K is quite similar to that outlined for
the matrix M : for each basis vector b[i], run the discretization scheme/time
stepping code for s time steps, with b[i] as initial condition. The solution vector
at the mth time step of the model run corresponding to b[i] is the (i+m×n)th

column of the matrix K.

The matrix K is absolutely huge by any standard: n × ns. For a (modest)
spatial resolution of 100×100 bilinear elements and a memory of s = 103 time
steps, it contains some 4 × 1011 entries. Fortunately, there are ways around
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this, which will be introduced in due time further below. For the time being,
notice that eq. (37) is structurally identical to eq. (35) above; in fact, inasmuch
as the truncation approximation holds, we have

L(v(i)) = M ∗ v(i) = K ∗ w(i) . (40)

And so, much like for equation (35), we can do time-stepping by evaluating
the right-hand side to get v(0). For the second time step, the last “subvector”
of w (corresponding to the source term s time steps ago) is flushed, and s(0)

is inserted at the front, in the fashion of a push-down stack. And so on for
subsequent time steps. The vector w(0) is the inital condition and should be
taken from a previously calculated solution that has run over at least s time
steps. Notice that this is rather unusual for a time-stepping algorithm; instead
of providing the state of the field at every point on the mesh, we must provide
a time series of the nonlinear source term over at least s preceding time steps.

Actually using this technique to calculate solutions is utterly unreasonable,
because of the exceedingly large dimension of matrix K. To bypass this prob-
lem, we must take advantage of the actual structure of the source term S. The
time-stepping algorithm outlined above remains valid, however.

2.3.1 Spatially decomposable source term

Suppose that the source term in equation (37):

v(1) = K ∗ w(0) + s(1) (41)

can be expressed as a linear combination in a basis αααα of l vectors. We would
have:

s(m) =
l

∑

i=1

(a
(m)
i αααα[i]) (42)

where a
(m)
i is the coefficient in the basis, for the time step m (compare with

eq. 18).

We can then rebuild our matrix K, using αααα instead of b as our basis. The
procedure is quite similar to that outlined for the matrix M : for each new
basis vector αααα[i], run the discretization scheme/time stepping code for s time
steps, with αααα[i] as initial condition. The solution vector at the mth time step
of the model run corresponding to αααα[i] is the (i+m∗ l)th column of the matrix
K. We can then rebuild our matrix K using αααα instead of b as our basis, again
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using the same procedure described earlier. Note that the size of the matrix
then reduces from n2 × s to n × s × l.

In the Babcock-Leighton dynamo model, the explicit source term represents
the poloidal field production associated with the surface decay of sunspots.
In our model implementation it is only nonzero within the layer of elements
that are very near the surface r/R¯ = 1. Each vector of the source basis
corresponds to the effect of the source term at a specific emergence latitude.
Hence, we have as many basis vectors as there are elements spanning the
domain in the latitudinal direction (nθ). This reduces the size of our matrix
K from n2s to n× s× nθ. Typically, we have n ' 20000 and nθ = 100, so the
savings are considerable.

2.3.2 Skipping unnecessary calculations

Recall that time-stepping using the matrix K consists in calculating v =
K ∗ w + s, and then updating the vector w with the source term s. One
might wonder at this point if we really need to calculate all of v, if all that we
need is s. Indeed, if s does not depend on the whole of v, we can save some
calculations. Of course, v is the complete solution of the equations that we
are solving, namely the values of the vector potential A and magnetic field B
at every spatial mesh point. So any savings along these lines will inevitably
come at the price of information loss about the solutions.

In the Babcock-Leighton dynamo model, sunspots appear because of mag-
netic instabilities in magnetic flux tubes stored at the base of the convection
zone (fractional radius r/R¯ = 0.7 in our solar model), whenever the mag-
nitude of the toroidal field exceeds a certain threshold. This idea is strongly
supported by stability analyses carried out under the so-called thin flux tube
approximation (see, e.g., [22,30]). Accordingly, our source term depends only
on the toroidal fields within the finite elements located at r/R¯ = 0.7. Thus,
we can remove from K the rows corresponding to all of the mesh points that
are not adjacent to the elements at 0.7, as well as all the rows corresponding
to the vector potential A since the source term depends only on B. We are
left with 2(nθ + 1) rows in our matrix, where nθ is the number of elements in
the latitudinal direction.

We can actually do slightly better. If bilinear finite-elements are used for
spatial discretization, the value at the center of an element is equal to the
average of the coefficients at its four node-points. This is a linear operation,
so we can get the value at the center of the element directly in the matrix
by averaging the four rows corresponding to the four node points adjacent
to every element. We then have only nθ rows left in the matrix K, one for
every element. Once again such strategies can be carried over to higher order
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elements, or finite difference-based discretization schemes.

2.3.3 Relationship to Green’s function approach

Although fully numerical, the solution technique described above is opera-
tionally similar to analytical methods based on Green’s function. In solving
time-dependent linear differential equations in one spatial dimension, one can
often seek a solution u(x, t) in the form:

u(x, t) =
∫

D

G(x, y, t)f(y)dy +

t
∫

0

∫

D

G(x, y, t − t′) F (y, t′)dy dt′ , (43)

where D stands for the spatial domain, f is the initial condition at t = 0 and
F is a forcing term. Green’s function G, depends on the specific equations
being solved, but not on the initial condition. The usual interpretation is
that G(x, y, t) represents, for a given y, the evolution in time of a δ-function
centered at y as a function of position and time.

Equation (43) has two terms, one for the initial condition and one for the
forcing. In view of the interpretation for G, the first term gives the evolution
of the initial condition as a sum (actually, an integral) of δ-functions at t =
0 whose effects are contained in G, weighed by the initial condition f(y).
Likewise, the second term accounts for the effects of the forcing term. The
solution u(x, t), is the sum of the effects of the delta functions “caused” by
the initial condition at t′ = 0 and by the forcing term for 0 < t′ < t

If we consider t À 0, and assume that limt→∞ G(x, y, t) = 0, the first term
can be neglected, as well as the contributions of the forcing from 0 to t − s,
with s being the memory of the system (in other words, only the forcing from
t − s to t has an impact):

u(x, y) =

s
∫

0

∫

D

G(x, y, τ ′) F (y, t − τ ′)dydτ ′ , (44)

where τ ′ = t − τ . This is really the same idea embodied in equation (37):

v(i) =
s

∑

m=1

n
∑

k=1

Lm
(

b[k]

)

s
(i−m)
k + s(i) = K ∗ w(i−1) + s(i) , (45)

The matrix K is a discretized equivalent of Green’s function, with the source
term playing the role of F . Indeed, recall that the K matrix is built from the
evolution of N discrete δ-functions, one for every node in our domain, and
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equation (37) sums up the contributions of the δ-functions associated with all
source term contributions from preceeding time steps.

Finally, note that, unlike our source term S(B), the forcing term F (x, t) does
not depend on u. The development in terms of Green’s function would not be
possible if that were the case, without some kind of temporal discretization.
This is precisely what we are doing by updating the source term vector w at
every time step with the newly calculated S(B), cf. eq. (37).

3 Efficiency and accuracy

In the preceding section, we have seen how the decomposition of the finite-
element technique into a spatiotemporal linear basis naturally yields two new
ways of doing time-stepping. We will analyze here how they perform, in com-
parison with the more traditional discretization schemes. We first examine
the efficiency of the decomposition techniques, in terms of required operation
count. We then ascertain the accuracy of the resulting dynamo solutions, us-
ing as a comparison point a reference solution obtained via the FEM-based
approach outlined in §2.1.

3.1 Efficiency considerations

We consider first the “conventional” approach described in §2.1, using bilinear
finite elements for spatial discretization and the Θ-method for time-stepping.
We use a mesh of nθ × nr quadrilateral bilinear elements, which leads to
n = 2(nθ + 1)(nr + 1) nodal values for the discretization of our two coupled
PDEs in a meridional quadrant [r, θ].

We denote by PFE the preprocessing time for the finite-element technique, and
by TFE the time required to do a single time step. Likewise, we define PM,
TM, PK and TK for the techniques using the M and K matrices. For the K
matrix, we will assume that the improvements outlined in §§2.3.1 and 2.3.2
have been introduced in the solution scheme, keeping in mind that it does not
yield the solution over the whole domain. Furthermore, we will neglect the
cost of evaluating the source term, since it is the essentially the same for all
three techniques (with a slight advantage for the K-based technique, since the
solution is directly expressed in the basis associated with the source term).

The standard solution approach described in §2.1 formally scales as n3 per time
step in the case of implicit time-stepping. However, here for a fixed timestep
size and steady flow U, the matrix Ψ can be constructed (a n2 operation)
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and triangularized (a n3 operation) once and for all. The RHS vector is then
recomputed at every time step following the update of the source term (a
n2 operation), and the solution advanced by backsubstitution (also n2). We
therefore have, to leading order

PFE ∝ n3 , TFE ∝ n2 . (46)

For the matrix M , the preprocessing is quite simple. Put a unit-vector po-
tential at a node, and 0 everywhere else, then run the FE code, and save the
result. Repeat as many times as there are nodes. Hence,

PM = PFE + n TFE . (47)

This is an upper bound on the time; an eager programmer could take advan-
tage of the particuliar initial conditions (which is 0 almost everywhere) and
of the absence of the non-linear source term to speed up significant portions
of the code.

Time-stepping involves a multiplication of a n × n matrix with a vector of
length n, so that

TM ∝ n2 . (48)

The matrix M is somewhat sparse, since the 1 unit field that we put at one
place is never advected and diffused quite far in a single time step. Further-
more, a quarter of the matrix is always strictly 0 in our model, since a toroidal
field B cannot produce any poloidal field A in the absence of the non-linear
source term.

For K, the preprocessing involves using the FE code to evolve the l vectors in
our source term basis, each over s time steps each. The result of each time step
corresponds to a column in the K matrix (keeping only the relevant elements,
as mentioned in §2.3.2). Therefore, we have:

PK = PFE + l s TFE . (49)

Time-stepping is a multiplication of a l × sl matrix (assuming however that
the number of relevant elements is equal to l) and a vector of length sl:

TK ∝ l2s . (50)

For short runs, the preprocessing time required to build K dominates over
the actual time-stepping, and the total time ends up much larger than that
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required by the conventional scheme. However, for very long runs (i.e., many
105 time steps), it becomes advantageous to use the decomposition-based tech-
nique. In the context of solar cycle modelling, the study of intermittency
[29,24,8] does require the computation of very long simulation runs (typically
tens of thousand of dynamo cycles, requiring in excess of 106 timesteps) to
properly assess the intermittency statistics. Moreover, for this purpose it is
not necessary to have available the whole solution vector v at each time step
Our K-based method is then ideally suited for this task.

Furthermore, notice that the matrices K and M do not depend at all on the
form and strength of the non-linear source term. In particular, we have used
our model to generate bifurcation diagrams in which the strength of the source
term acts as the control parameter (see [9], Fig. 3). Those require, typically,
hundreds of model runs to be computed, but here they can all be computed
from the same K matrix. The required time is then

PFE + l s TFE + 100 × N TK , (51)

while the standard scheme of §2.1 requires a time

PFE + 100 N TFE (52)

where N is the number of time steps over which the solution need be run to
achieve stabilization of the cycle amplitude; typically, N is a few 103. Recalling
that a typical working spatial mesh leads to n ∼ 104 and that PFE scales as n3

but TFE as n2, it is clear that significant savings can be achieved here using
the K-based decomposition technique.

3.2 Accuracy considerations

As stated in section §2.2, the time-stepping technique defined in terms of the
matrix M is mathematically equivalent, under exact arithmetics, to the numer-
ical technique that was used to generate M (in our case, bilinear finite-elements
with single-step implicit time integration). Comparing both solutions for our
reference run yields a peak relative nodal difference reaching about 0.2 per-
cent after ten full magnetic cycles. While this may appear high, examination
of both solutions reveals that the discrepancy is associated with the M -matrix
solution having a very slightly longer period. This phase error is nonetheless
quite small, amounting to one tenth of a time step after 4000 timesteps, or a
fraction ∼ 2×10−5 of the period per cycle. This can be traced to the different
realizations of roundoff errors in the two schemes. While the same arithmetical
operations are ultimately being carried out in both cases, the order in which
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they are computed is markedly different in the standard FEM scheme than
it is in the decomposition method. A relatively sensitive dependency of the
cycle period on discretization error is in in fact a well-documented property
of numerical dynamo solutions (see, e.g., [31,6]).

With the K-matrix method, the analysis is more interesting. The technique
remains arithmetically exact as long as all the terms in the infinite sum in
equation (37) are retained, but the computationally attractive aspect is pre-
cisely to truncate that sum to accelerate the calculation of dynamo solutions.
This can be justified physically because the model equations (4)—(5) contain
dissipative terms, corresponding to Ohmic decay of the electrical current sys-
tems supporting the magnetic field. The characteristic diffusion time τ over
which a magnetic field on a scale comparable to the solar radius R undergoes
resistive decays is readily found by dimensional analysis of eq. (1) to be

τ =
R2

η
. (53)

One obviously expects the truncation point s to have to be of the order of this
diffusion time for accurate solutions to be produced by the truncated version
of the K-based decomposition scheme. The results of using two different trun-
cation points (or “memory”, as the technique ignores the source contributions
that acted more than s time steps ago) are presented in Figure 3, along with
our reference numerical solution. With a memory corresponding to half a dif-
fusion time, the solution is almost exactly faithful to the original, but with
a slightly (less than one percent) longer period. Even with a memory of 0.1
diffusion time, the solution does not differ that much from the reference run.
A solution computed with s = τ is indistinguishable from the FEM solution
on the scale of this plot. Table 1 lists the cycle’s period P and peak ampli-
tudes of these various solutions. The latter is normalized in terms of the scale
factor B0 entering the definition of the nonlinear source term (see [9]). It is
noteworthy that for all but the lowest memory (s = 0.1τ), the solution error
remains dominated by the spatial discretization of the FEM scheme.

In light of the above analysis, one can but conclude that our decomposition-
based techniques are sufficiently accurate even for relatively low memory s,
but, from the point of view of operation count and execution time, only be-
come computationally competitive for very long simulation runs, or in the
case of specific types of model studies, such as the construction of bifurcation
diagrams. These are interesting and scientifically useful uses of the techniques,
but one may rightfully wonder whether they are enough to justify the effort
put into their development. It turns out that the spatiotemporal decomposi-
tion also allows us to directly examine physical issues that are very difficult
to get at in the context of standard approaches to spatial and temporal dis-
cretization. This is the topic to which we now turn.
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Table 1

Global characteristics of solutions with varying memory s

Method Mesh (nr × nθ) s/τ P (10−2τ) Amplitude (B0)

K-matrix 64 × 48 0.1 8.1278 8.8358

K-matrix 64 × 48 0.2 8.6083 8.4260

K-matrix 64 × 48 0.5 8.7969 8.2288

K-matrix 128 × 96 0.5 8.6861 8.0625

K-matrix 64 × 48 1.0 8.7500 8.2555

M -matrix 64 × 48 N/A 8.7565 8.2279

FEM 64 × 48 N/A 8.7556 8.2281

FEM 128 × 96 N/A 8.6348 8.0923

Fig. 3. Time traces of the toroidal magnetic field component at the core-envelope
interface r/R = 0.7, colatitude θ = 60◦. The solid line is from a reference solution
computed using bilinear finite elements and implicit time-stepping, as described in
§2.1, with a mesh size nθ×nr = 64×48, and a time step equal to 10−5 of a diffusion
time τ , yielding ' 360 time steps per dynamo cycle. This is a singly-periodic solution
with Rm = 420 (cf. [9]). The dashed line is a K-matrix solution for the same
discretization level, and memory s = 0.2τ , and the dotted line a solution with
s = 0.5τ . The discrepancy between solutions is primarily at the level of the cycle
period.
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4 Beyond time-stepping: physical analysis of dynamo models

4.1 Intermittency and phase coherence

In discussing Figure 1 we already alluded to the period of strongly suppressed
activity evidenced in the sunspot record between 1645 and 1715. Such episodes
continue to retain the attention of solar physicists and climatologists alike,
because of the possible correlations with climatic events such as the so-called
“Little Ice Age” [15]. An important question regarding these “Grand Min-
ima” periods of strongly suppressed activity is whether they represent phases
of fundamentally distinct dynamical behavior, or particularly strong cases
of amplitude modulation. Dynamo models exhibiting both types of behavior
abound in the astrophysical literature (e.g., [29,3,20,27,24,4,8]). One possible
way to distinguish between these two classes of explanation is to establish the
persistence of the cycle phase across Grand Minima; models based on ampli-
tude modulation would, in general, predict a good phase persistence, since
the same underlying cycle is operating at all times; whereas in the context of
intermittency-based explanations one would expect that, upon emerging from
a Grand Minima, the cycle would have lost all “memory” of its state prior
to entering the Grand Minima. This expectation is however complicated by
the fact that magnetic fields take a finite time to resistively decay. Moreover,
in dynamo models of the Babcock-Leighton type, the decaying magnetic field
continues to be transported by the meridional flow; since the latter is the
primary determinant of cycle period in this class of dynamo models [12], low
amplitude pseudo-cyclic behavior with preserved phase can in principle mate-
rialize [8]. This remnant field can help to restart the cycle, so that the timing
of that restart is more likely to occur at a phase consistent with that of the
cycle prior to entering the off phase. But after Ohmic dissipation has taken
its toll, one would no longer expect any such systematic phase coherence.

Our decomposition based on the K matrix allows us to examine this question
quite confidently in the context of our Babcock-Leighton solar cycle model. In
these models, intermittency occurs because the poloidal source term is only
acting in a limited range of toroidal field strength. If the toroidal field leaves
this operating range, the source term vanishes and the dynamo shuts off until
the toroidal field returns to the operating range, either via its own internal
dynamics or an external agent such as low-amplitude stochastic forcing.

Let us consider the model run excerpt shown in Figure 4, taken from ref. [8].
This is a strongly fluctuating solution, operating in the model’s chaotic regime
and undergoing occasional intermittency episodes, one starting here around
t/τ ' 0.05. The bottom panel shows a trace of the toroidal field at r/R = 0.7
and 60 degrees colatitude, and the top panel the corresponding time series of
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Fig. 4. Time traces of the toroidal magnetic field component at the core-envelope
interface (panel B) and source term intensity (panel A), both at colatitude θ = 60◦,
in a dynamo solution exhibiting intermittency (see [8]). For our illustrative purposes,
the absolute value of the time trace on panel (B) is an adequate model proxy for
sunspot number.

the surface poloidal source at the same latitude. While the source term shuts
off abruptly at t/τ ' 0.045, a clear oscillation remains visible in the toroidal
field up to t/τ ' 0.06. Adding low-amplitude stochastic noise to this model
run could trigger a restart which would be more likely where the amplitude
of the residual field is the strongest in the source region. The cyclic dynamo
would then be more likely to restart at one of the peaks during those 2-3
remnant pseudo-cycles, thus preserving phase. It may well restart subsequently
of course, but no phase coherence would then be expected.

One should evidently do better than this very qualitative analysis. Could the
magnetic field keep on oscillating in the absence of a source term for more than
3 cycles here, simply through the advective action of the meridional flow? A
limited set of empirical results has suggested that it can [8], but the issue
clearly remained to be examined in greater detail.

This is where the K-matrix decomposition proves extremely useful. Figure
5 (top) shows the basis corresponding to the parameters of this model run.
Each curve corresponds to the effect of a 1G source deposited at a colatitude
θ at the surface at t = 0, on the toroidal field produced at colatitude θ′ at
r/R = 0.7 at a subsequent time t. There are (nθ + 1)2 such basis “elements”
for a spatial mesh with nθ elements in the latitudinal direction, but here only
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Fig. 5. A sample of source term basis elements in two different parameter regimes.
Each curve gives, as a function of time, the toroidal magnetic field at the
core-envelope interface and colatitude θ′ produced by a unit surface source de-
posited at colatitude θ at t = 0. The top panel corresponds to the solution shown
on Figure 4 with a magnetic Reynolds number Rm = 2335, and the bottom panel
to a more diffusive solutions having Rm = 420. Time is expressed in units of the
diffusion time τ (which is five times larger for the solution in the top panel) and
the vertical dotted lines indicate the cycle half-period (the model’s equivalent to a
sunspot cycle).

a sample of representative curves is shown in order not to overcrowd the plot.
Clearly the effects of surface sources have a finite persistence, corresponding
here to three half-cycles at most. The bottom panel shows a similar plot, this
time for a more diffusive solution, characterized by a magnetic diffusivity 5.5
times larger than on the top panel.

It is clear from Figure 5 that the magnetic field is decaying faster in the
presumably less diffusive solution (Rm = 2335, top) than in the more diffusive
solution (Rm = 420, bottom). Why is the overall persistence of surface source
effects not scaling as 1/τ , as per eq. (53)? The decaying magnetic field is not
simply undergoing resistive decay, it is also being advected by a steady closed
circulatory flow, namely meridional circulation in [r, θ] planes. Indeed, the
decay of the toroidal vector potential A obeys the same advection-diffusion
equation describing classical hydrodynamical mixing problems [28]. The key
dimensionless parameter here is the magnetic Reynolds number Rm, defined
in terms of the characteristic velocity u0 of the meridional flow:
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Rm =
u0R

η
. (54)

In the high-Rm regime, the component of the magnetic field perpendicular to
the meridional flow is then expected to undergo flux expulsion (e.g., [34,16]),
with associated decay timescale scaling as R−1/3

m (in units of the diffusion time
τ), which is much faster than the timescale for purely resistive decay (equal
to unity in diffusion time units of τ). This occurs because in the high-Rm

regime, the advective effect of the flow leads to the buildup of magnetic field
structures on length scales (`, say) that gradually decrease over time, so that
there always comes a point where the local dissipation time (∝ `−2) exceeds the
inductive timescale (∝ `−1). The results on Figure 5 are in general agreement
with this expectation. This indicates that a high magnetic Reynolds number
does not guarantee persistence of the (here dominant) toroidal component of
the magnetic field on timescales much longer than the circulation turnover
time.

These results also lead to the conclusion that persistence of the cycle’s phase
across an intermittent off-phase can be expected only for short phases of sup-
pressed activity, a few half cycles at most. Consequently, the good phase co-
herence observed in [8] is either atypical, or involves residual operation of the
source term, possibly sustained by the low amplitude stochastic noise included
in their model runs.

4.2 Influence of past cycles

Considerable effort has been and continues to be expended toward the goal
of forecasting solar cycle amplitudes [17]. While all relying on solar activity
data, the majority of current forecasting approaches are primarily statistical in
nature. For example, one class of technique consists in modelling the sunspot
time series N(t) (or any other indicator of solar activity) as a nonlinear au-
toregressive function incorporating multiple temporal lags τn, i.e.:

N(t) = f(N(t − τ1), N(t − τ2), N(t − τ3), ...) , (55)

where the functional f and time lags τ ’s are all to be determined by best
fit to the data up to the present, and then used to extrapolate to upcoming
cycles (see [32] for an example of the current state-of-the-art in this area).
Alternately, one can directly use a dynamo model to make cycle prediction,
using past solar surface magnetic data as input to the model [13]. Both of
these approaches are particularly justified in the context of Babcock-Leighton
solar cycle models. This is because of the time delay introduced in the dynamo
regenerative loop due to the finite time required for meridional circulation to
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transport poloidal fields produced at the surface down to the shear layer at
the core-envelope interface, where induction of the toroidal component takes
place (cf. Fig. 2 herein).

The physical underpinning of these forecasting methods for cycle amplitude
can be readily analyzed using our K-based decomposition. What the K matrix
does, in essence, is to sum the influence of all the previous time steps at all
source latitudes. Instead of carrying out that temporal sum, we can simply
examine each term in isolation to ascertain the individual influence of each
prior time step on the current step. The result of such an analysis is shown on
Fig. 6, for the same numerical solution segment as on Fig. 4. The sum of each
column on this grayscale plot yields the value of the toroidal field at time t, as
plotted on Fig. 4B. Beyond a few half-cycles in the past (moving upwards on
this diagram), the overall decay of amplitude is a direct reflection of Ohmic
decay.

With an average half-cycle period of ' 0.0025τ for this model run, the Figure
indicates that contributions to the current half-cycle come primarily from the
two preceeding half-cycles, with much weaker contributions from earlier half-
cycles. Note also that the current cycle’s poloidal source contributes essentially
nothing to the current cycle. This explains why, in the forecasting model of
ref. [13], based on a Babcock-Leighton solar cycle model almost identical to
that used here, the forecast for cycle n is found to be independent of the
surface magnetic source at cycle n.

The analysis presented above thus lends general support to the forecasting
scheme of [13], but also suggests that accurate forecasting is likely impossible
for more than two cycles in the future. Likewise, it provides physical bounds
on the lag values to be used in any lag-based autoregression models of the
type given by eq. (55).

5 Concluding remarks

We have introduced two spatiotemporal decomposition techniques allowing
the computation of numerical solutions of the axisymmetric kinematic dynamo
equations of common usage in planetary, solar, stellar and galactic magnetic
field modelling. Specific applications of the techniques requires the availability
of conventional computational schemes for spatial and temporal discretization.
In this paper we made use of finite elements for spatial discretization, and
a one-step implicit time integrator, but any other spatial and/or temporal
discretization (explicit rather than explicit, higher order, etc.) could have been
chosen instead. All that would change is the process of advancing the basis
elements in time, yiedling different numerical values for the coefficients of
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Fig. 6. Using the K-based decomposition to assess the potential for cycle amplitude
forecasting. The gray scale encodes the contribution to the toroidal field at time t
and colatitude 60 degrees from the 200 previous time steps, and the thick horizontal
line segments on the right indicate the mean cycle half-period for this simulation
run. The lack of significant amplitude in the most recent half-cycle indicates that
the surface poloidal source of the current cycle contributes essentially nothing to
the deep toroidal field of the current cycle.

matrices M and K but leaving their overall structure unchanged. Likewise,
the techniques are equally applicable in one, two or three spatial dimensions.

These spatiotemporal decomposition techniques have been shown accurate,
but in terms of operation count, only become competitive for very long time-
integration, such as needed in studies of intermittency, or for some specific
types of model analyses such as the construction of bifurcation diagrams. How-
ever, the techniques also offer a very natural and useful mean of investigation
into the long timescale behavior of numerical solutions. We have presented two
specific examples in the solar dynamo context, one related to phase persistence
during episodes of suppressed activity, the other related to cycle “memory”
and forecasting the cycle’s amplitude.

The techniques described here are in principle applicable to much wider classes
of partial differential equations of the general advection-diffusion type, includ-
ing in particular systems of coupled reaction-diffusion equations. However, to
be numerically competitive the physical systems must include dissipative ef-
fects, otherwise the truncation of the spatiotemporal decomposition cannot
be justified physically, and if carried out nonetheless, would then be guar-
anteed to lead to inaccurate results. It is worth emphasizing, however, that
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dissipative effects need not be dominant over advective transport; for the solar
dynamo equations used above to exemplify the use of the technique, Reynolds
numbers characterizing the relative importance of advection to diffusion can
exceed 103, yet relatively severe truncation of the decomposition was shown
to yield sufficiently accurate numerical solutions.

These spatiotemporal decomposition schemes become particularly competitive
computationally in cases where source terms are strongly localized spatially.
Even when this is not the case, they remain useful analysis tools to efficiently
and unambiguously investigate time lag effects and behavior occurring on
long timescales in the numerical simulations. They have certainly become a
key item in our solar cycle modelling and analysis tool box.

We thank an anonymous referee for picking out inconsistencies and errors in
some of the equations as typeset in the original version of this paper. This work
was supported by the Natural Sciences and Engineering Research Council of
Canada.
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