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Preface

The book addresses the nature of the Earth�s rotation instabilities and associated
geophysical processes. The spectrum of the Earth�s rotation instabilities that com-
prise variations in the length of the day, polarmotion, and precession and nutation of
the rotation axis in inertial space, includes periods of several hours to thousands of
years. Instabilities of the Earth�s rotation are related to various geophysical processes
such as terrestrial, oceanic and atmospheric gravitational and thermal tides;
redistribution of air and water masses; variations in the angular momentum of
the atmosphere and ocean; air mass exchange between the summer and winter
hemispheres; mechanical interaction between the atmosphere, the ocean and
the solid Earth; the quasibiennial wind oscillation in the equatorial stratosphere;
the El Niño–Southern Oscillation, multiyear atmospheric and oceanic waves, atmo-
spheric circulation epoch change, climate variations, evolution of ice sheets, and
so forth.
All these processes are discussed in the book, their nature and the mechanism of

their influence on the rotation of the Earth described as far as possible.
There are several books on the Earth�s rotation published. The publications

mainly address either the celestial-mechanical or astrometry and geodetic problems
of determination of the Earth�s rotation instabilities or the observation data proces-
singmethods. In contrast to these, our monograph covers the physical aspects of the
nonuniformity of the Earth�s rotation and polar motion and nutation. In terms of the
research area, our book is closest to the book by Munk and MacDonald (1960), but
this was issued about 50 years ago. Since then the study of all aspects of the Earth�s
rotation and adjacent areas has phenomenally progressed, so a new book seems long
overdue.
The author has studied the Earth�s rotation instabilities and related geophysical

problems for about 45 years and has received a number of fundamental scientific
results. Among them are a concept of translational–rotational motion of continua,
theories of zonal atmospheric circulation and seasonal variations in the Earth�s
rotation rate, excitation mechanisms of the Chandler wobble and annual polar
motion, methods of calculation of global water exchange and hydrometeorological
forecasting based on the Earth�s rotation parameters, a concept of multiyear and

IX



decadal fluctuations in the Earth�s rotation rate, and others. The author has dis-
covered: diurnal nutation of the atmospheric angular momentum vector with a wide
spectrum of oscillations; an interhemispheric thermal engine in the atmosphere;
interannual oscillations of the Earth–ocean–atmosphere system; multiyear waves in
the ocean and atmosphere; superharmonics of the Chandler period in phenomena
of the El Niño–Southern Oscillation and quasibiennial atmospheric oscillations;
correlations between the decadal fluctuations in the Earth�s rotation, on the one
hand, and the changes in the ice mass in Antarctica, variations of atmospheric
circulation epochs and global air temperature variations, and so forth, on the other.
The results made it possible to understand the nature of many peculiarities of the

Earth�s rotation. When interpreting the Earth�s rotation instabilities, the author
frequently faced situations when observation data were radically contrary to gen-
erally accepted concepts. In those cases, a criterion of true was the concordance of a
model with observation data rather than with abstract mathematical theorems,
theories and conclusions. That is why some of the author�s models and estimations
conflict with the fixed notions and have not been recognized yet (a concept of
translational–rotational motion of continua, a theory of zonal atmospheric circula-
tion, models of macroturbulent transport of the angular momentum, the El Niño–
Southern Oscillation, tidal impacts on atmospheric processes, and so forth.).
The problems addressed in the book lie at the interface between astronomy,

physics of the Earth, physics of atmosphere and ocean, climatology, glaciology,
and so forth. The subject of the research is dealt with all the areas of geosciences.
All materials in the book are presented in detail, so that the book could be accessible
even to nonspecialists and some specialists may probably find this approach ele-
mentary. We had great difficulties in mathematical notations because of a variety of
geophysical parameters under study. So, different parameters are sometimes
denoted by identical symbols. The author apologizes in advance for such incon-
veniences.
Study of any natural phenomenon is confined, as a rule, to its observation,

analysis, interpretation, and use in solving scientific and practical problems. In
accordance with this approach, the book logically expounds the following: the results
of calculation of parameters of the Earth�s rotation instabilities (Chapter 3), the
lunisolar tides and their effects on the Earth�s rotation (Chapter 5), the influence of
atmospheric and hydrospheric processes on the Earth�s rotation, more focus being
given to the nature of these phenomena (Chapters 6–11). The studies described in
Chapters 5–11 could be difficult to understand without a general knowledge about
the Earth�s motion and the theory of estimation of the Earth�s rotation instabilities.
Hence, a brief account of these subjects is given in the first three chapters. The
closing chapter (12) addresses the use of the geodynamic laws revealed by the author
in hydrometeorological forecasting. Tables of data on the rotation and some global
processes are given in the Appendix. A list of the abbreviations used is given in the
Appendix as well.
The Earth�s rotation instabilities are correlated with many characteristics of

natural processes in all frequency ranges. It can be argued from the author�s
multiyear experience that the Earth�s rotation variations can be used as a good

X Preface



validation test for various geophysical models because these variations are a unique
index to many processes in all spheres of the Earth, including the biosphere. Various
problems can be solved using the Earth�s rotation parameters. The reader will find
some methods in this book and can derive others from studying how some
particular characteristics available to him/her are related to the parameters of the
Earth�s rotation given in the Appendix.
The author is deeply obliged to Michael Efroimsky for his assistance in the

publication of the book, L.P. Kuznetsova, I.V. Ruzanova and B.M. Shubik for their
help in translation of the text into English, and to G.L. Averina for her help in the
manuscript preparation. Many results were obtained thanks to the support of the
Russian Foundation for Basic Research (Projects 02-02-16178a, 06-02-16665a).
We would be grateful if readers would send us their remarks or point out

any mistakes or slips. Our address is: Hydrometcentre of Russian Federation,
B. Predtechensky pereulok, 11–13, Moscow, 123242 Russia. E-mail: sidorenkov@
mecom.ru
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1
Introduction

The Earth�s rotation accounts for the alternation of day and night, the daily cycle
of solar radiation influx, formation of diurnal and semidiurnal tidal waves and
finally causes diurnal variations in all characteristics of the atmosphere, hydrosphere
and biosphere. The revolution of the Earth around the barycenter of the Earth–Moon
system and the revolution of the Earth–Moon system around the Sun modulate the
amplitudes of the diurnal oscillations of the solar radiation influx and atmospheric
tides, and in the end define the variability of terrestrial processes over periods of up to
several years.
The Sun revolves around the barycenter of the Solar System along compound

curves of the fourth order (conchoids of a circle), so-called �Pascal�s limacons�.
The curvature of the Sun�s trajectory constantly changes and the Sun moves with
varying acceleration. Being a satellite of the Sun, the Earth revolves around it and
alsomoveswith the Sun around theSolar System�s barycenter. Like the Sun, theEarth
undergoes all varying accelerations. Similar to the lunisolar tides, the accelerations
disturb processes in the Earth�s shells, producing decadal fluctuations in the latter.
Movements in the Earth�s shells are observed mainly from the earth surface.

Reference systems for description of the movements are tied to the Earth as well.
Different points of the earth surface move with different velocities and varying
accelerations. For this reason any movement looks rather complicated in a reference
system tied to the Earth. Newton�s laws are valid in such a reference system provided
that so-called inertial forces, the Coriolis force and centrifugal force, are taken into
account. The Coriolis force and centrifugal force are caused by the movement of the
terrestrial reference system in an inertial system rather than by the interaction of
bodies. Terrestrial processes are formed under the action of many forces. Among
them the inertial forces connected with the Earth�s rotation play a key role. Their
contribution to atmosphere dynamics is especially significant. As a result of the
Earth�s rotation, the direction of movement of air masses deflects to the right in the
Northern hemisphere and to the left in the Southern hemisphere; the cyclonic and
anticyclonic vortices arise; systems of western winds and east winds (trade winds)
are formed in the middle latitudes and in the equatorial latitudes, respectively;
zones of higher pressure are formed in the subtropical latitudes and zones of lower
pressure, near to the polar circles. The centrifugal force makes level surfaces
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(equigeopotential surfaces) stretch out along the equatorial axis and compress
along the polar axis, as a result, these surfaces tend to form ellipsoids of rotation.
Owing to the fact that the reference system is noninertial, atmospheric transfer
processes seem so complicated that for the sake of their interpretation geophysical
hydrodynamics has accepted the concept of negative viscosity, which contradicts to
physical laws.
Bodies and particles in continua move along elliptic gravity potential surfaces

and everywhere gravity is vertically directed to the center of the Earth. Gravity
force tends to adjust moving bodies and particles in continua to a direction of the
local gravity vertical. As a result, all bodies and particles of geophysical continuamove
in a translational–rotational manner. An exact description of their motion requires
not only momentum conservation equations but also angular momentum conser-
vation equations.
The Earth�s rotation around its axis gives a basis for celestial and terrestrial

reference systems in astronomy, serves as a natural standard of time and allows
the universal time scale to be defined. The Earth�s rotation is characterized by the
vector of instantaneous angular velocity, which can be decomposed into three
components: one component along the mean axis of rotation and two others,
in the perpendicular plane. The first component defines the instantaneous velocity
of the Earth�s rotation around its mean axis, or the length of day, and the other
two the coordinates of the instantaneous pole. The vector of the angular velocity of the
Earth�s rotation does not remain constant. Change in the vector�s first component is
manifested in nonuniformity of the Earth�s rotation, and the two other in the
motion of the poles.
Polar motion is the movement of the rotation axis in the body of the Earth

measured relative to the Earth�s crust. But the Earth�s rotation axis alsomoves relative
to the inertial celestial reference system and undergoes precession and numerous
nutations.
Instabilities of the Earth�s rotation (nonuniformity of rotation, polar motion,

precession and nutation) distort the coordinates of celestial objects and complicate
the universal time scale. The distortions can be taken into account only if peculiarities
of the Earth�s rotation are known and there is a theory of the Earth�s rotation
nonuniformity, polar motion, and precession and nutations. Nowadays, astronom-
ical measurement accuracy requirements are becoming increasingly stringent
in connection with the necessity of solving a number of scientific and applied
problems in astronomy, geodesy, space research and so forth. Therefore, the study of
the Earth�s rotation is of great importance to modern astrometry, geodesy and
geophysics.
Traditionally, the Earth�s rotation instabilities are studied by astrometry. Astro-

nomical methods register rotation instabilities. By their nature, the Earth�s rotation
instabilities are purely geophysical phenomena. They are related to processes in
geospheres and depend on the structure and physical properties of the Earth�s shells.
The Earth�s rotation instabilities reflect geophysical processes and give irreplaceable
information on the latter, serving as natural integral characteristics of them and
associated phenomena. Studying instabilities of the Earth�s rotation broadens our
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knowledge in various areas of Earth sciences.Data on the Earth�s rotation instabilities
serve as criteria that can be used to verify some theories and models in geophysics,
geology, space science, and so forth.
Doubts concerning constancy of the Earth�s rotation rate arose after E. Halley

discovered the secular acceleration of the Moon in 1695. The idea of secular slowing
down of the Earth�s rotation under the effect of tidal friction was first proposed by
I. Kant in 1755. Nowadays, it is universally recognized that the secular slowing down
of the Earth�s rotation really exists and is caused by the tidal friction. The value of the
secular slowing down is only discussed (Yatskiv et al., 1976).
Simon Newcomb first suggested irregular fluctuations in the Earth�s rotation rate

in 1875. Their existence was ultimately proved at the beginning of the twentieth
century. During the last hundred years, deviations in the length of day from the
average value reached �45� 10�4 s.
Evidence of polar motion was also obtained then. Seth C. Chandler discovered

a 14-month period of the latitude variations in 1891. The International Latitude
Service (ILS) was established in 1899 for the purpose of monitoring the North
Pole�s motion. The main components of the polar motion are the Chandler motion
whose amplitude is about 160ms of arc, the annual motion, whose amplitude is
about 90ms of arc, and the secular motion toward North America with a velocity of
about 10 cm/year.
In the 1930s, quartz clocks allowed seasonal variations of the Earth�s rotation rate

to be discovered. A more uniform scale of the Atomic Time was created in 1955 and
parameters of seasonal variations began to be determined quite confidently. The
length of day was established to have annual and semiannual variations with
amplitudes of 37� 10�5 s and 34� 10�5 s, respectively.
Until the 1980s, estimations of polar motion and nonuniformity of the Earth�s

rotation were based on optical astrometric observations of latitude variations and the
universal time variations. The observations were nonuniform and had various
systematic errors. Reanalysis of the optical astrometric data in the Hipparch system,
performed under the direction of J. Vondrak (Vondrak, 1999), partly eliminated these
shortcomings and the data could be used in studying long-period instabilities of the
Earth�s rotation.
In the late 1970s, new engineering complexes were introduced: very long baseline

interferometer (VLBI), global positioning system (GPS), satellite laser ranging (SLR),
lunar laser ranging (LLR), Doppler orbitography and radio navigation (DORIS
service) and new methods of monitoring the Earth�s rotation instabilities with
unprecedented accuracy. Instead of traditional astrooptical time and latitude estima-
tions, scientists began to observe extragalactic radio sources and satellites of the Earth
and process the results of the measurements (time and geometrical delays) to
produce corrections to the universal time, the coordinates of the Earth�s pole, and
corrections to precession and nutation. Thanks to these methods, the resolution and
accuracy of the estimation of rotation instabilities has increased 100-fold and are now
000.0001 of arc for the pole coordinates and nutation, and 0.000 005 s for corrections to
Universal time UT1; which corresponds to several millimeters on the Earth surface.
The time resolution of measurements reached several hours.
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Regular rawinsounding of atmosphere by means of aerological station network
started in the postwar years. The estimations based on thesefirst, very limited data on
the winds in atmosphere showed that seasonal variations in the Earth�s rotation were
mostly caused by redistribution of the angular momentum between the Earth and
atmosphere (Pariiski, 1954; Munk and MacDonald, 1960).
The decadal fluctuations in the Earth�s rotation rate, which are changes in the

rotation rate with characteristic times of 2 to 100 years, are many times the seasonal
variations. The fluctuations can be explained by extremely large increments of either
the angular momentum of the atmosphere or the moment of inertia of the Earth.
Therefore, it is believed that the decadal fluctuations in the Earth�s rotation rate
cannot be caused by geophysical processes on the Earth�s surface (Pariiski, 1954;
Munk andMacDonald, 1960). Thefluctuations are usually considered to be related to
the processes of interaction of the Earth�s core and mantle (Hide, 1989).
Practically all variations in the Earth�s rotation rate with periods of several days to

two-three years (this range includes seasonal, quasibiennial and 55-day variations)
are caused by changes in the atmospheric angular momentum (Munk and
MacDonald, 1960; Lambeck, 1980; Sidorenkov, 2002a). Polar motion with a one-
year period is mainly caused by seasonal redistribution of air masses between
Eurasia and oceans. In the case of the Chandler wobble and nutation of the Earth�s
axis, the role of the atmosphere is still unclear and requires further study.
Although the mass and moment of inertia of the atmosphere is almost a million

times less than those of the Earth and a hundred times less than those of the ocean,
it appears that its contribution to the Earth�s rotation instabilities with periods of
several days to several years is prevailing. This paradoxical fact is explained by the
high mobility of air. Whereas the characteristic velocity of movement within the
Earth�smantle is 1mm/year and the velocity of ocean currents is 10 cm/s, the velocity
of wind in jet streams may exceed 100m/s.
As a result of strong winds, changes in the atmospheric angular momentum

considerably surpass variations in the angular momentum of the ocean and the
liquid core. Energy estimations confirm the reliability of that conclusion as well.
In fact, the Earth�s rotation instabilities, on account of the law of angular momen-
tum conservation, may be a consequence of movements with reversed sign in the
shells surrounding the solid Earth: the atmosphere, hydrosphere, cryosphere,
liquid core or the space. It is clear that the power of the energy sources exiting those
movements should be not less than that of instabilities of the Earth�s rotation. For
the within-year and interannual nonuniformities of the Earth�s rotation, the power
is as follows:

dE
dt

¼ Cw
dw
dt

� 1014�1015 W ð1:1Þ

where E is the kinetic energy of the Earth�s rotation, C is the polar moment of
inertia, w is the angular velocity and dw/dt is the angular acceleration equal to
10�19–10�20 s�2. The average powers of the energy sources are approximately as
follows: atmospheric air movements – 2� 1015W, oceanic currents – about 1014W,
geomagnetic storms – 1012W, auroras polaris – 1011W, earthquakes – 3� 1011W,
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volcanoes – 1011W, heat flows from the Earth�s deep interior – 1013W, interplan-
etary magnetic field and solar wind interacting with magnetosphere – less than
1012W (Magnitskiy, 1965; Kulikov and Sidorenkov, 1977; Zharkov, 1983). The
presented values indicate that only atmospheric air movements, and possibly
currents in the ocean as well, are likely to cause the Earth�s rotation instabilities.
The power of other geophysical processes is small compared with the power of
variations of the Earth�s rotation. Note that such important, in terms of the Earth�s
rotation, effects as transport of water from the ocean to the continent (including the
ice sheets of Antarctica and Greenland) and global redistribution of air masses
would be impossible in the absence of atmospheric air movements. Bearing all the
above in mind, as well as the fact that currents in the ocean are mostly generated by
winds, we come to the conclusion of the paramount importance of atmospheric
processes as far as the nature of the Earth�s rotation instabilities is concerned.
Changes in the Earth�s rotation rate are partly caused by changes in the moment

of inertia of the Earth, which in turn results from tidal deformations. A theory of
these oscillations is well developed (Woolard, 1959; Yoder,Williams and Parke, 1981;
Wahr, Sasao and Smith, 1981). Therefore, the tidal oscillations are usually excluded
from evaluation of the influence of various geophysical processes on the Earth�s
rotation.
The diurnal and semidiurnal atmospheric tides cause small changes in polar

motion, nutation and the Earth�s rotation rate. Themost important effect is the direct
annual nutation whose amplitude is about 0.1ms of arc and excitation of free
nutation of the core with amplitude ranging between 0.1 and 0.4ms of arc. However,
the excitation of the Earth�s rotation instabilities by the diurnal and semidiurnal
oceanic tides is approximately by two orders of magnitude greater than the corre-
sponding influence of the atmospheric tides (Brzezinski et al., 2002).
The book consists of thirteen chapters.
Chapter 1 describes the role of the Earth�s rotation in dynamics of terrestrial

processes, and gives a history of discovery and interpretation of the Earth�s rotation
instabilities. Also, the structure of the book is given here.
Chapter 2 acquaints the reader with motions of the Earth around the Sun and the

barycenter of the Earth–Moon system. Compound motions of the Earth�s rotation
axis are described, and their geometrical interpretation given.
Chapter 3 addresses the motion of the geographical poles and variations of the

angular rate of the diurnal Earth�s rotation. A history of discovery of themotion of the
Geographical North Pole and nonuniformity of the Earth�s rotation rate is given in
this chapter. Time series of instrumental observations of theNorthPole�s coordinates
and the Earth�s rotation rate are given. The results of mathematical analysis of the
time series are presented, and the seasonal, multiyear and secular components are
separated.
The theory of estimations of the Earth�s rotation instabilities is described in

Chapter 4. The differential equations are deduced for instabilities of rotation of an
absolutely firm and perfectly elastic Earth under the action of exciting functions
empirically calculated. The advantages and disadvantages of �balance method� and
�method of the moment of forces� used to estimate various effects on the Earth�s
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rotation instabilities are presented. Polar motion under the action of a harmonious
exciting function is described. Basic equations of the theory of precession and
nutation are deduced.
Chapter 5 addresses the lunisolar tides and their influence on the Earth�s rotation

instabilities. The derivation and decomposition of tidal potential is given in this
chapter. The basic harmonics of zonal, diurnal and semidiurnal tides are given. A
theory of tidal oscillations of the Earth�s rotation angular velocity, polar motion,
precession and nutation of the Earth axis is expounded. Introductory information on
atmospheric tides is given.
The effects of seasonal redistribution of air masses on the Earth�s rotation are

addressed in Chapter 6. Detailed calculations of seasonal redistribution of airmasses
in the atmosphere are given. Components of the tensor of inertia of the atmosphere
and the amplitude of their annual variations are calculated. Annual variations of the
Earth�s rotation rate and polar motion are estimated and compared with the
calculations carried out by other authors.
The results of a study into the atmospheric angular momentum are discussed

in Chapter 7. Data on zonal atmospheric circulation are analyzed. Series of
components of the atmospheric angular momentum calculated by David Salstein
(Atmospheric and Environment Research, Inc., USA) on the basis of the NCEP/
NCAR reanalysis data from 1948 to the present time are described. The results
of analysis of time series of the axial and equatorial components of the angular
momentum of winds in the atmosphere are given. The existence of diurnal nutation
of the vector of the angularmomentumof atmospheric winds is shown. Components
of lunisolar tides are separated. The contribution of variations of the angular
momentum of winds to seasonal variations of the Earth�s rotation rate and nutation
is evaluated.
The zonal atmospheric circulation is described in Chapter 8. A concept of

translational–rotational motion of geophysical continua is formulated. The origin
of the zonal circulation and atmosphere superrotation is shown. A special theory
of zonal circulation and subtropical maxima of pressure is developed. A new
mechanism of seasonal variations of the angular momentum of the atmosphere
and seasonal variations of the Earth�s rotation is suggested.
Chapter 9 addresses the interrelation of the Chandler motion with oceanic

variations known as the El Niño and La Niña, and with atmospheric oscillations
manifested as the Southern Oscillation and Quasibiennial Oscillation of winds.
Proofs of the existence of multiyear waves in the ocean and atmosphere are offered.
The results of analysis of oceanic and atmospheric characteristics indicating that
there is a connection between the variations in the ocean and atmosphere and
Chandler variations of the Earth are described. Anewmodel of excitation of free polar
motion is presented.
Chapter 10 addresses the moments of forces of friction of wind and pressure on

mountains. A theory of mechanical interaction of the atmosphere with the under-
lying surface is expounded. The results of calculations of the Earth�s rotation rate by
the method of moment of forces are described. A mechanism of the movement of
lithosphere plates is proposed.
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Chapter 11 discusses the geophysical processes that may be responsible for the
decadal components (periods of 2 to 100 years) in the Earth�s rotation rate fluctua-
tions. The contribution of interplanetary magnetic field and solar wind is estimated;
as well as the influence of glaciers and variations of the sea level on changes in the
Earth�s rotation. Variations in themass of ice in Antarctica, Greenland and the ocean,
which are necessary for explanation of the observed decadal instabilities of theEarth�s
rotation, are calculated. Data on the connection of the decadal fluctuations in the
Earth�s rotation rate with geomagnetic variations, decadal variations in atmospheric
circulation and climate change are given. The nature of these connections is
discussed.
Chapter 12 discusses how laws of tidal oscillations in the Earth�s rotation can be

used in hydrometeorological forecasting. Lunar cycles in variations of hydromete-
orological characteristics are discovered. A technique of air-temperature forecasting
is described. It is revealed that there is a connection between the extremality of
natural processes and long-term variability of tidal forces. It is justified that tidal
forcesmust be introduced intomotion equations for global atmospheric and oceanic
models in order to radically improve weather forecasting.
Unsolved problems of the Earth�s rotation instabilities and prospects of further

researches are discussed in Chapter 13.
The Appendix contains descriptions of surface spherical functions; the figure of

theEarth, list of acronyms, tables of the annual values of theEarth�s rotation velocities
and secular polar motion, and the mass of ice in Antarctica, Greenland and themass
of water in the ocean, which are calculated from the above data, and indices of
quasibiennial oscillations.
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2
Motions of the Earth

2.1
Earth�s Revolution

2.1.1
Introduction

The Sun is the main body of the Solar System. The Sun�s diameter is 1 390 600 km,
which corresponds to 109.1 diameters of the Earth. Its volume is equal to 1 301 200
volumes of the Earth, and themass is 333 434 times greater than Earth�s mass. Since
the ratio between the Sun�s and the Earth�s volumes is much higher than their mass
ratio, the Sun�s average density is only 0.256 of the Earth�s density. The Sun rotates
with respect to one of its diameters with various velocities in different points rather
than as a rigid body, all points of which have the same angular velocity. Thus, the
points on the surface of the Sun�s equatorial zonemake one revolutionwith respect to
the stars during 25.38 days, and the points laying further from the equator rotate
more slowly. The further a point is from the equator the longer is the period of its
rotation, and, consequently, the lower is its velocity. For example, the period of
rotation of the near-pole points is 30 days or longer.
Eight planets, many minor planets, comets, meteoric streams, and meteoritic

bodies move around the Sun. The Earth is the third planet distant from the Sun
(after Mercury and the Venus). The Moon, its satellite, moves around the Earth at an
average distance of 384 400 km from it. The diameter of the Moon is approximately
3.1 times smaller than the Earth�s diameter. During one Earth revolution around the
Sun theMoonmakes about 13.5 revolutions,moving almost in the orbital plane of the
Earth�smotion around the Sun.Hence, theMoon is either ahead of the Earth (the last
quarter) or behind it (the first quarter), between the Earth and Sun (the new moon)
and further from the Earth (the full moon). Therefore, the lunisolar attraction forces
acting on the Earth from the Moon and the Sun continuously change, thereby
strongly complicating the Earth�s motion.
The Earth makes two apparent motions with respect to the Sun: the daily motion

(from east to west) as a result of the Earth�s rotation around its axis and the annual
motion (fromwest to east with a rate of about 1�/day) as a result of the Earth�s orbital
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motion around the Sun. The trajectory of the apparent annual motion of the Sun
among the stars, as seen by an observer on the Earth, passes near the ecliptic and
among the constellations: Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio,
Sagittarius, Capricornus, Aquarius, andPisces. Amore accurate determination of the
ecliptic needed for our discussion is given below.
Letusconsidernowtheplanepassing through theSun�s centerS, themasscenterof

the Earth–Moon system (the barycenter) T, and the velocity vectorVof the barycenter
moving around the Sun. It will be an instantaneous orbit plane of the center of mass
of the Earth–Moon system. This plane does not keep its position unchanged in
space (relative to the stars) but rotates around the center of the Sun S, due to the
attraction of the Earth and the Moon (and, consequently, the barycenter) by planets.
The motion of the orbital plane of the mass center of the Earth–Moon system,

which occurs due to the planets perturbation, can be divided into twomotions: a slow
displacement of the plane with a low velocity and a series of its very small periodical
fluctuations.
The plane passing through the center of the Sun and possessing only the secular

motion of the instantaneous orbital plane of the Earth–Moon system center of gravity
is called the heliocentric ecliptic plane. The plane parallel to it and passing through
the Earth�s center is called the geocentric ecliptic plane. The intersection of the
celestial sphere by the geocentric ecliptic plane is called the ecliptic.
Because the ecliptic is displaced as a result of the secular motion, it is accepted to

refer it to a certain time or epoch to fix the position of the vernal equinox point. For
example, one talks about the ecliptic of the adopted epoch J1950.0, J2000.0, and so
forth. Themovable ecliptic position for any instant can be givenwith respect to one of
the motionless ecliptics.
Let us recall that the points of intersection of the celestial sphere with an imaginary

axis of the Earth�s rotation are called the celestial poles. The celestial pole found in the
area of the Ursa Minor constellation is the North celestial pole, opposite to it is the
South celestial pole. The great circle of the celestial sphere, which is perpendicular to
the Earth�s rotation axis andwhose plane passes through the celestial sphere center, is
called the celestial equator. The ecliptic is intersected with the celestial equator in two
diametrically opposite points. One of these points, where the Sun moves along the
ecliptic passes from the southern hemisphere of the celestial sphere to the northern
one, is called the vernal equinox point. At present, it is in the Pisces constellation. The
opposite point of intersection of the equator and the ecliptic is the autumnal equinox
point. It is situated in the Virgo constellation. The ecliptic points that are equidistant
from the vernal and autumnal equinox points are called the solstice points. In the
Northern hemisphere of the celestial sphere (in the Taurus constellation) the point of
the summer solstice is situated, and in the Southern hemisphere (in the Sagittarius
constellation) is the point of the winter solstice. The Sun passes through the vernal
equinox point approximately on March 21, the summer solstice – June 22, the
autumnal equinox point – September, 23, and the winter solstice – December 22.
Two diametrically opposite points of the celestial sphere, equidistant from all

ecliptic points, are called the poles of the ecliptic. The north ecliptic pole is situated in
the Dragon constellation, the southern one – in the Dorado constellation.
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According to the universal gravitation law, twomass points (or bodies) withmasses
M andm are mutually attracted with the force directly proportional to the product of
their masses and inversely proportional to the square of distance R between them.

F ¼ g
Mm
R2

ð2:1Þ

where g ¼ 6673� 10�14m3 kg�1 s�2 is the coefficient of proportionality, or the
gravitational constant.M in the product gM¼ 39 860 044� 107m3 s�2 is the Earth�s
mass.
The point ofmass, onwhich the external forces do not act, can be only at two states:

at relative rest or a uniform and rectilinear motion. This is the concept of Newton�s
first law – the law of inertia.
The motion of a rigid body is more complicated. It can make the translation

motion: translation and rotate simultaneously with respect to the center ofmass. The
center of inertia or the body center ofmass (thematerial system) is the point in which
the totalmass of the body or the system is supposed to be concentrated and all external
forces acting on the body points or system are applied to. The motion of the inertia
center, or the center of mass follows the same laws as the motion of an individual
point of mass.
The Earth makes a variety of motions of both the periodic and secular types.

It rotates around its axis, doing a complete circuit in 23h 56m 04s (86 164.09 s) and
revolves (that is, describes the translational motion) around the Sun with a period of
365.2422 days. Simultaneously with the motion around the Sun, the Earth�s center
of gravity rotates around the center of mass of the Earth–Moon system with a period
of 27.3217 days. The Earth rotation axis makes the long-periodical motion (system-
atically divided into precession and nutation) with a period of 25 784 years, being the
generating line of the almost circular cone. The Earth�s body, in its turn, wobbleswith
respect to the axis of rotation, owing to which the Earth�s geographic poles are
displaced over its surface, describing complicated helical curves.
The Sun, in addition to the rotation around its axis (which does not influence the

Earth�s motion), rotates around the center of mass of the entire Solar System, the
position of which depends on the planet�s position for the given time. The orbital
motion of the Sun basically consists of two almost circular motions with a radius of
about 0.003 astronomical unit and the periods close to the Jupiter and the Saturn
periods of revolution. Like many stars, the Sun also has its proper motion and
displaces in the direction of theHercules constellationwith a velocity of 19.5 km/s, or
6� 108 km/year. And,finally, the Solar Systemmoves around theGalaxy centerwith a
velocity of 250 km/s, doing the full circuit each200million years. TheEarth, being the
Sun�s satellite, also participates in all these motions.

2.1.2
Orbit of the Earth�s Center

All the bodies of the Solar System, the Earth including, move around the Sun
along their own orbits. The mean distance between the Earth and the Sun is
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149 600 000 km. It is called the astronomical unit and used as a standard for all
astronomical and astronomy–geodetic calculations.
Let us consider at first a simplified problem of the Earth�s motion.We will assume

that the Solar System consists only of two bodies: the Sun and the Earth (without
the Moon). The Sun center of gravity will be away from the mass center of the
Sun–Earth system at a distance of X ¼ ME

MS þME
�A ¼ 0:00003 astronomical unit,

(1:332 480¼ 0.000 030 077), whereMS is the mass of the Sun,ME is the mass of the
Earth. The distance X is small in comparison with the astronomical unit; therefore
we suppose also that the Earth moves around the motionless Sun. If we assume that
the Sun and the Earth are spheres with a density decreasing to the periphery and the
dimensions of the Earth and the Sun are small in comparison with the distance
between them, then this problem can be solved as a problem of motion of two mass
points mutually attracted by the universal gravitation law.
In this case, the Earth�s translation motion around the Sun is described by two of

Kepler�s laws. The first law states that the orbit of each planet (the Earth) is an ellipse
with the Sun at one focus of the ellipse. The second law defines that the line
connecting the planet to the Sun (the Earth�s radius-vector) sweeps equal areas in
equal time intervals.
Like any ellipse, the orbit of the Earth�s center of gravity in its motion around the

Sun has two axes of symmetry – themajor and theminor axes (Figure 2.1). Themajor
axis passes through the ellipse focuses, that is, through the Sun S. Its intersection
points with the orbit are called the apses.
The rate of change in the distance between the Earth and the Sun in apses is equal

to zero; therefore, the Earth is closest to the Sun in one of the apses and as far as
possible removed from the Sun in another apse. The pointP, where the Earth is the
closest to the Sun, is called the perihelion; the most remote point A is the aphelion.
The Earth�s position in the orbit is determined by the anglePSE reckoned from the

perihelion towards in the direction of the Earth�s motion up to its radius-vector SE.
This angle is called the true anomaly and is designated as q.

Figure 2.1 Earth�s orbit.
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The orbit of the Earth is determined by a and b semiaxes. But, as a rule, instead of
the minor semiaxis b the orbit eccentricity is used, equal to

e ¼ c
a
¼ a�PS

a
¼ 0:01675 ð2:2Þ

where a is the orbit semimajor axis, c is the distance from the focus to the center of the
ellipse, PS is the perihelion distance of the Earth from the Sun.
The distance between the Earth and the Sun continuously changes owing to the

ellipticity of the Earth�s orbit. The velocity of the Earth�s motion along the orbit also
changes: the further the Earth is from the Sun the lower is its velocity. In the most
distant point of the orbit, Earth�s velocity is Vmin¼ 29.27 km/s; in the nearest point
(that is, in the perihelion) Vmax¼ 30.27 km/s. The product of the radius-vector r of
the Earth�s inertia center by its velocity is a constant value (rVC¼ const). It is
impossible to observe directly the Earth�s motion around the Sun. But the Earth�s
motion among the stars, which is observed from the Sun, will be the same as the
Sun�s motion among the stars, which is observed from the Earth. Therefore, in order
to study theEarth�smotion around the Sun it is necessary to observe the Sun�smotion
among the stars and other distant objects.
When the distance between the Earth and the Sun is the shortest (the Earth is in the

perihelion) the velocity of the Sun�s motion among the stars is the highest. It is
possible to conditionally say that the Sun is in the perigee.
At the maximum distance between the Earth and the Sun, the speed of the Sun�s

motion among the stars is the lowest. An apparent deceleration caused by themotion
of more remote objects (which is less visible than the motion of closer objects)
perpendicular to the beam of sight is also added to the true slow displacement of the
Sun. Therefore, the velocity of the Sun�s motion among the stars changes during the
year.Toobtain thevelocityofmotionforsometimeduring theyear, theaveragevelocity
is taken (for example, the average arithmetic of the velocities in the perihelion and the
aphelion). This average velocity is considered constant during the year; then one
searches the correction for thegivenmoment of the year. Since the true velocitywithin
onehalfof theorbit ishigher than themeanvelocityandwithinanotherhalfof theorbit
it is lower than themean velocity (in the opposite points of the orbit, the corrections to
the mean velocity are equal but of different sign), then it is easy to understand that
the above correction changes during the year according to the sine law.

2.1.3
Motion of the Barycenter of the Earth–Moon System Around the Sun

Let us consider now the joint motion of the Earth and the Moon around the Sun.
Unlike the case where the Earth�smotion around the Sun alone was considered, here
the Earth�s orbit will not be an ellipse but a complicated curve whose points do not lie
in one plane. The full solution of the problem of motion of the Earth–Moon system
around the Sun is very difficult. Despite the efforts of the greatest mathematicians of
the nineteenth and twentieth centuries, it was only possible to obtain solutions for
some special cases rather than the general solution.
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Let us assume that theMoon�smotion is connectedwith theEarth�smotion in such
a way that their general center of mass moves around the Sun along an ellipse. This
assumption does not quite correspond to the truth.However, since the distance to the
Sun exceeds by many times the distance from theMoon to the Earth and the mass of
the Sun is very large, the errors can be neglected in this case.
The position of the Earth–Moon system center of mass (further on – the

barycenter) is given as usual

MEx ¼ MMðaM�xÞ ð2:3Þ
whence

x ¼ MM

ME þMM
aM ð2:4Þ

where MM is the mass of the Moon, aM is the distance between the Earth and the
Moon.
Themean distance between theMoon and the Earth is 384 400 km, and the Earth�s

mass is larger by 81.30 times than that of the Moon. Proceeding from this, x¼ 4670
km, that is, the mass center of the Earth–Moon system is situated inside the Earth
and is closer to its surface than to the center.
Over onemonth, the Earth�s center ofmass E describes an elliptic orbit around the

barycenterOl, this orbit being similar to the orbit of theMoonmass centerM around
the same barycenter; however, the first orbit is smaller in the ratio MM/ME and is
turned in its plane by 180� (Figure 2.2). The terrestrial ellipse dimensions are smaller
than the lunar ellipse dimensions by as many times as the Moon�s mass MM is

Figure 2.2 Revolution of theMoon and Earth around the center of
inertia O1 of the Earth–Moon system.
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smaller than the Earth�s mass ME. Due to the motion of the Earth and the Moon
around the barycenter, the observer from the Sun will see the Earth in front of the
barycenter at the Moon first quarter and behind the barycenter at the Moon last
quarter (half the synodic month, or 14.76 mean solar days later) (Figure 2.3). This is
the so-called lunar inequality in the Earth�s motion. The period of this inequality is
the synodic month and its value L¼ 600.44. The same pattern, that is, the same
inequality, is observed from the Earth in the motion of the Sun among the stars. But
the plane of the lunar orbit in its motion around the Earth does not coincide with the
barycenter orbital plane and is inclined to it at an angle of 5�090. Hence, the Earth�s
center occurs above the barycenter orbital plane or below it. The observer from
the Earth�s center will see the reverse picture: the center of the Sun is situated below
the barycenter orbital plane or above it. Due to this inequality (its value is approx-
imately 000.6), the Sun�s geocentric latitude is not always equal to zero.
In addition to the Earth�s complicated motion caused by the Moon, other changes

in the Earth�smotion occur, namely in the apsis (a straight line connecting the apses)
and the orbital elements. The apsis rotates in its plane towards the Earth�s motion,
due to which the orbital perihelion longitude p, that is, the angle between the
directions from the Sun to the perihelion and to the equinox point g increases by
6100.9 per year. At present, the perihelion longitude is about 102�80. The period of the
longitude change p is equal to 20 900 years.
As for the orbital elements of the mass center of the Earth–Moon system moving

around the Sun, theymay be considered very stable, due to which the orbit is close to
an ellipse (Kepler�s motion). The semimajor axis a, eccentricity e, and the mean
velocity change only slightly and periodically. Instead of the mean velocity astron-
omers use the mean motion 2p/P, where P is the period of revolution. These
elements (they are called the osculation elements) indicate that the orbit gradually
changes in its form and dimensions. Notice that if the orbital elements of a body
moving along an ellipse do not change or change periodically we may say about a
stablemotion: the body canmove in the same position forever. If the orbital elements
change progressively (this, for example, is characteristic of the satellites motion near
the Earth), then the motion is unstable. In this case the elliptic orbit of the body can
change its orbital elements, and the satellite will fall down onto the Earth.

Figure 2.3 Earth�s and Moon�s motion around the barycentere. Phase of the Moon.
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Frequently, one asks how long the Earth will move around the Sun and whether it
will suffer a catastrophe through descending from its orbit? In other words, whether
one can say about the stable Earth�s motion or, generally speaking, about the stable
Solar System?
Laplace, the well-known French scientist, was the first who tried to solve the

problem of the Solar System stability. He proved this stability, but not completely
(only in the first and second approaches). In any case, the secular perturbations of
the first and second orders are absent in the semimajor axes of the major planets of
the Solar System. Lagrange, another French scientist, has also approximately proved
that the secular perturbations in the eccentricities and the orbital inclinations of the
major planets are of the type oscillatory and are rather small. At present, one can tell
with confidence that the changes in the orbits of the major planets over a future ten
thousand years will be small. In particular, the Earth�s and the Moon�s orbits
around the Sun over the last hundred thousand years have differed little from their
present-day orbits.
In the 1960s, A.N. Kolmogorov and A.I. Arnold, the soviet mathematicians, had

proved the stability of the bodies system that differed considerably from the Solar
System.A.I. Arnold has also obtained the examples of the systems that are unstable in
individual cases. However, all these results cannot be extended to the Solar System.
The pattern of motion will change slightly, if themotion of the barycenter Taround

the Sun is considered taking into account the attraction of the Earth–Moon system by
other planets (that is, the disturbed motion of the center of mass of the Earth–Moon
system). Under the influence of the gravitational perturbations, the Earth–Moon
system�s center of mass moves around the Sun along an orbit close to an elliptic one
but somewhat changed (perturbed) due to the Earth�s and Sun�s attraction by planets.
Owing to these perturbations, themotion of the Earth–Moon system�s center of mass
deviates from the motion following by Kepler�s laws. The deviations are insignificant:
the change of the longitude l caused by the Moon does not exceed �700.377, by
Mercury –�000.050, by Venus –�1700.57, byMars –�700.02, by Jupiter –�1500.65, and
by Saturn –�100.04 (in total –�4800.71). The latitude deviation does not exceed�000.8.

2.2
Motion of the Earth�s Spin Axis in Space

2.2.1
Dynamics of the Spinning Top

The Earth can be considered as a huge celestial gyroscope. To understand themotion
peculiarity of the Earth�s rotation axis, let us remember the laws of dynamics of rigid
bodies. Let us consider the quickly rotating top. Let its axis of rotation be deviated
from thenormal by angle q (Figure 2.4). The gravity acting on the top isP¼mg, where
m is the top mass, g is the gravity acceleration vector. One would think that under the
gravity influence the top should fall. In reality the fall is not observed. The top rotation
axis is continuously shifting perpendicularly to gravity rather than in its direction.
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The axis describes a cone around the normal. This top axis motion is called the
precession. Why does the top behave in such a way? Let us analyze its dynamics in
order to understand this behavior.
The top�s vector of angular momentum H¼ JW, where J is the top�s moment of

inertia with respect to its axis of rotation andW is the angular velocity vector. GravityP
creates the force moment L with respect to the fulcrum O: L¼ [RP], where R is the
radius-vector of the center of gravity. Under the effect of the forcemoment L the top�s
angular momentum will change with a speed dH

dt ¼ L. Since the vector of L is
perpendicular to R and P and the direction of vector H coincides with that of R,
the end of vector H and the top rotation axis shift in the direction perpendicular to
the direction of gravity P. When friction is absent, vector H will change only in the
direction: it will rotate, describing a cone with its apex at fulcrum O.
What is the angular velocity w of the top precession? During the time interval dt

vectorH receives increment dH¼ Ldt, perpendicular to itself and lying in the plane of
horizon. The ratio dH to the projection of vector H on the plane of horizonH sin q
gives angle dj through which this projection turns during time interval dt:

dj ¼ L
H sinq

dt ð2:5Þ

The derivative dj/dt is the required angular velocity of precession:

w ¼ L
H sinq

¼ mgR sinq
JW sinq

¼ mgR
JW

ð2:6Þ

The angular velocity of precession is directly proportional to the value of the
gravity moment with respect to the top fulcrum and inversely proportional to the top

Figure 2.4 Precession of the top.
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angular momentum. The direction of precession is defined by the rule: the force
moment L sets segment R sin q into rotation around the point O towards vector L.
Amore rigorous consideration shows that in addition to the precession the top axis

makes fast fluctuations of a small amplitude. These fluctuations (axis tremblings) are
called the nutation (in Latin nutatio is wiggle).
The doubled amplitude q1� q0 and the period t of the top nutation are approx-

imately equal to:

q1�q0 � 2AmgR sinq0
ðJWÞ2 ; t � 2pA

JW
ð2:7Þ

where q1 and q0 are the limits of the angle q change due to nutation;A is themoment
of the top inertia with respect to the axis passing through pointO perpendicularly to
the axis of rotation.

2.2.2
Precession and Nutation of the Earth�s Spin Axis

The Earth rotates around its axis with a velocity of 7.29� 10�5 rad/s and moves by
the elliptic orbit around the Sun S. The inclination angle W of the Earth�s rotation
axis to the ecliptic plane is 66�330 (Figure 2.5). The Earth�smoment of inertia is equal
to 8.04� 1037 kgm2. The Earth�s figure is close to the ellipsoid of rotation with a
bulge along the equator.
Let us consider the action of the solar attraction on the Earth at themoments of the

vernal and autumnal equinoxes. The longitude of the Sun during these moments is

Figure 2.5 Effect of the Sun�s gravity on the Earth within different parts of its orbit.
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equal to 0� or 180�. The solar attraction force acts on the Earth along the line of
intersection of the equator and the ecliptic planes, that is, in the plane of symmetry of
the Earth�s equatorial bulge. Hence, it passes through the center of the Earth and
perturbs only the translation of the Earth around the Sun, not causing any rotation
(shift) of the Earth�s rotation axis. There is no any pair of forces here.
Let us consider now the action of solar attraction at the moment of the summer or

winter solstices, when the Sun�s longitude is 90� or 270� (Figure 2.5). In this case the
Earth�s rotation axis and the straight line connecting theEarth andSun lie in the plane
perpendicular to the ecliptic plane. Since the Sun�s attraction force that acts on a part
of the Earth equatorial bulge closer to it is stronger than the force acting on its more
distant part, their resultant force does not pass through the Earth�s center. Here, the
attraction force is equivalent to some force applied to the Earth�s mass center and to
some pair forces striving to straighten the Earth�s axis and tomake it perpendicular to
the ecliptic plane.However, since the rotating Earth has the possibility to turn around
itsmass center, this pair of forces can cause the precession and nutation of the Earth�s
rotation axes around the perpendicular to the plane of ecliptic.
Below, we consider the intermediate positions of the Sun on the ecliptic, when the

Sun�s longitudes differ from those of the equinoxes and solstices.
At the Sun�s longitude equal, for example, to 45�, (it is possible to decompose the

moment m of the pair of forces lying in the plane of the Earth�s meridian
perpendicular to this plane, into two moments mg and mb by the parallelogram
rule (Figure 2.6). One of themwill be directed to the vernal equinox point and the pair
corresponding to this moment will lie in the solstitial colure plane. Anothermoment
will be directed to point B, and the pair corresponding to it will lie in the plane of
equinoctial colure. This pair will turn the Earth�s rotation axis to the point of the
autumnal equinox.
At the Sun�s longitude equal to 135� the action of the first pair, havingmomentmg,

on theEarthwill be the same as at a longitude of 45�. The secondpair, havingmoment
mb, will make the reverse action (than at the longitude of 45�), that is, it will turn the
Earth�s rotation axis to the vernal equinox point.
Thus, in any position of the Sun on the ecliptic, the pair of forces created by the Sun

can be decomposed into two pairs. One of them lies in the solstices plane and will
always turn the Earth counterclockwise around the straight line directed to the vernal
equinox point. Another pair of forces that lies in the equinoxes plane changes its
direction of rotation depending on the Sun�s position on the ecliptic, shifting the
Earth�s rotation axis periodically either towards the autumnal or the vernal equinoxes.
It is easy to understand that the value of the pair of forces created by the Sun depends
on the position of the Sun on the ecliptic (in other words, on its longitude and
declination).
The Moon is closer to the Earth than the Sun and exerts a stronger influence on it.

The Moon creates another pair of forces, which tends to bring the terrestrial equator
plane into coincidence with the lunar orbital plane. But the motion of the Moon is
muchmore complicated than themotion of the Sun, because theMoonmoves along
the orbit inclined by 5�090 to the ecliptic. Moreover, the points of intersection of the
ecliptic and the lunar orbit (called the lunar nodes) move from east to west (in the
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direction opposite to the Moon motion), with a period of about 18.6 years, which
markedly complicates the Moon�s motion.
Since the pair of forces caused by the Moon acts similarly to the pair caused by the

Sun�s attraction, it can also be decomposed into two pairs: one situated in the solstitial
colure plane, the other in the plane of the equinoctial colure.
Thus, there are two perturbing pairs of forces (from the side of the Sun and the

Moon) acting counterclockwise in the plane of solistial colure and rotating the Earth
around the axis directed to the vernal equinox point. This rotation, together with the
Earth�s proper daily rotation, creates a new vector of angular velocity and, conse-
quently, a new axis of rotation, which shifts to the vernal equinox point. Owing to the
continuous total action of these two pairs of forces, the Earth�s rotation axis slowly
shifts (precesses) around an immobile axis, which is directed to the ecliptic pole P
(Figure 2.7) and describes a conic surface with the vertex in the center of the Earth.
The described secular shift of the Earth�s axis is called the lunisolar precession.
Also, two pairs of forces (from the side of theMoon and the Sun) form in the plane

of the equinoctial colure. They change the direction of rotation depending on
the position of the Sun in the ecliptic and the Moon in its orbit. As a result, we
do not have the translation movement of the Earth�s rotation axis in the plane
(the plane of the equinoctial colure) but the oscillatory–periodical movement with
different periods. For example, the Sun�smotion in the ecliptic causes the annual and

Figure 2.6 Effect of the Sun�s gravity on the Earth at the Sun�s longitude equal to 45�.
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semiannual periods of the Earth�s axis oscillation; the Moon�s motion produces the
oscillation period of 18.6 years that corresponds to the motion of the lunar nodes by
the ecliptic with the monthly and shorter oscillations. This oscillatory–periodical
motion of the Earth�s rotation axis in the plane of equinoctial colure, which is
perpendicular to the precession, is called the nutation of the Earth�s axis (Figure 2.7).
The kinematic pattern of the precession and the Earth�s proper rotation can be

interpreted as follows. One can imagine a narrow circular cone with its vertex in the
Earth�s center, which is symmetric relatively to its figure axis OC and rigidly
connected with the Earth (Figure 2.8). Next, let us imagine the second circular cone
that does not rotate with respect to the ecliptic. Its central axis coincides with the
ecliptic axis OP and the vortex is in the center of the Earth. When the Earth rotates,
the first cone rolls without sliding along the second cone; the Earth, rigidly connected
with it, rotates and precesses simultaneously.
The instantaneous axis of rotation is always a tangent, or the cones� common

generating line OP. As the Earth rotates together with the small cone, its instanta-
neous rotation axis (in the planet body) revolves every day along the circular basis of
the small cone around the axis of figureOC. Hence, the pole of rotation P shifts over
the Earth�s surface. This occurs when the initial rotation around the axis of figureOC
is disturbed by an external force; as a result, the rotation axis OP deviates from the
figure axis OC. In this case, there is an additional shift of the poles, which is
superimposed upon the poles� motion caused by the perturbing forces from the
side of the Moon and the Sun. The radius of this shift is the hundredth of an arcsec.
But it is impossible to disregard this shift when discussing the kinematic pattern of

Figure 2.7 Diagram of the spatial motion of the Earth�s rotation axis for an extraterrestrial observer.
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the Earth�s rotation. Themotion of the poles described above is mainly caused by the
precession of the terrestrial axis, that is, it is a consequence of theMoon and the Sun
attraction. Therefore, it would be more correct to call it the lunisolar motion of the
poles.
The nutation distorts the above pattern of the motion of the Earth rotation axis,

being the cause of changes in the rate of precession _y and the inclination angle e of
the instantaneous rotation axis to the ecliptic plane. The deviations of the angles of
precession Dy and inclination De are described by the trigonometric series:

Dy ¼ �17
00
:2064 sinW�1

00
:3171 sin2h�0

00
:2276 sin2sþ 0

00
:2075 sin2Wþ . . .

ð2:8Þ

De ¼ 9
00
:2052 cosWþ 0

00
:573 cos2hþ 0

00
:0978 cos2s�0

00
:0897 cos2Wþ . . .

ð2:9Þ
where W is the mean longitude of the ascending node of the lunar orbit,
which regularly decreases with time and changes by 2p per 18.613 years; h is the
mean longitude of the Sun, regularly increasing by 2p per the tropical year; s is the
mean longitude of the Moon, regularly increasing with a speed of 2p per the tropical

Figure 2.8 Kinematic patterns of the Earth�s rotation and of the
precession of the Earth�s rotation axis.
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month (27.32 days). The periods of the nutation harmonics are approximately
equal to 18.61 years, 0.5 year, 13.66 days, 9.3 years, respectively. The entire series
of the nutation harmonics contain the components with periods from 18.61 years to
several hours.
Summarizing the aforesaid, it is possible to make the following conclusion. The

total action of the Sun and the Moon attraction onto the flattened Earth leads to
shifting the celestial pole around the ecliptic pole along a complicated curve.
Methodically, this is a complicated motion; it is divided into two simpler motions:
the secular motion (that is, the precession motion) and the periodic motion (that is,
the nutation motion) (Figure 2.7).
Due to the precession, the north celestial pole Pmoves around the ecliptic pole P

that is considered to be immobile among the stars. This pole moves along a
small circle with a spherical radius equal to 23�230 and a constant velocity of
approximately 2000/year. The trajectory of the pole P passes through the constella-
tions: Ursa Minor, Cepheus, Cygnus, and Draco. Since the vector of the pole�s shift
is directed to the vernal equinox point, this point continuously steps back (shifts)
along the ecliptic toward the Sun annual motion with a rate of 2000/sin 23�260 ¼
5000 .371 per year (�1� during 72 years). This motion of the vernal equinox point
along the ecliptic towards the Sun is the lunisolar precession (the forestalling of
equinoxes). The period of precession is equal to 360� 60� 6000/5000.371¼ 25 729
years, where the numerator is the number of seconds in the circle (1 296 00000), the
denominator is the distance covered by the vernal equinox point along the
ecliptic over a year.
Due to the precession, the time period from one equinox to another (that is, the

tropical year) is 20min shorter than the period of one revolution of the Sun with
respect to the zodiac constellations (that is, the sidereal year). The tropical year
presents the basis for the calendar. The calendar dates, months and seasons are
calculated using this year. The cyclic recurrence of the Sun�s motion by the zodiac
constellations is determined using the sidereal year. The moments of the Sun�s
entrance into the zodiac constellations are constantly displaced with respect to the
calendar dates and seasons due to the 20-min difference between the sidereal and
the tropical years.
Thus, 2100 years ago the spring camewhen the Sun passed the Aries constellation

(the vernal equinox point was in this constellation). At present, the Sun is in the
Pisces constellation in spring. After a lapse of 6000 years, the Sagittarius will be the
spring constellation, 12 500 years later – the Virgo, 19 000 years – the Gemini
constellation; 25 729 years later the cycle will finish, and the Pisces constellation
will again be vernal. Over 25 729 years, each sign of the zodiac passes through all
calendar dates, months, and seasons.
The designation of the points of equinoxes and solstices and the signs of the zodiac

were introduced during the astronomy�s blossoming times in ancient Babylon and
Greece over 2100 years ago. At that time the Sun passed the Aries and the Libra
constellations during the moments of the vernal and the autumnal equinoxes, and
the Cancer and the Capricornus constellations – during the summer and winter
solstices, respectively. At present, the equinoxes coincides with the Sun�s passage
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through the Pisces and the Virgo constellations, and the solstices –with the position
of the Sun in theGemini and Sagittarius constellations, respectively, (that is, almost a
month earlier). All the calendar dates of the zodiac signs, which are used by
astrologers, are also a month ahead of the true moments of the Sun�s entrance
into the corresponding zodiac constellations. Nevertheless, the ancient schedule
of dates of the zodiac signs is still used by astrologers for making horoscopes.
Therefore, there is no sense in connecting the signs of the zodiac with the respective
constellations.
The angle of inclination of the Earth�s rotation axis to the ecliptic (66�330) due to the

lunisolar precession does not change, that is, the geographical coordinates of the
Earth�s stations remain invariable.
Thefluctuationswith the periods equal to the tropical year (the period of revolution

of the Sun along the ecliptic), half a year, 18.6 years (the period of the lunar nodes�
shift along the ecliptic), half the lunar month (13.7 days), and with many shorter
periods are superimposed on the secular motion of the celestial pole.
The celestial pole that has only the secular – the precession –motion is called the

mean celestial pole P0. The celestial equator corresponding to themean celestial pole,
is the mean equator at the given moment; and the vernal equinox point on the mean
equator, is the mean point of the vernal equinox at this moment.
The celestial pole having not only the secular (the precession) but also the

periodical (the nutation) motion is called the true celestial pole P. The celestial
equator and the vernal equinox point corresponding to the true polar position for the
given moment of time is the true equator and the true vernal equinox point at this
moment.
In the nutation relative motion, the true celestial pole P moves around the mean

pole, following a complicated elliptical curve, whose major axis passes through the
pole of eclipticP. As it ismentioned above, themean point of the vernal equinox g0 is
progressively moving due to the secular motion of the mean celestial pole and is
shifting (with a nearly constant rate) along the ecliptic tomeet the Sun annualmotion.
As a result of periodicmotion of the true celestial pole, the true vernal equinox point g
oscillates around the mean point of the vernal equinox with different periods, the
main of which is 18.6 years. Themotionwith this period occurs along the ellipse. The
major axis of the ellipse is perpendicular to the direction of precession motion and
equal to 1800.4; theminor axis is parallel to this direction and equal to 1300.7. Thus, the
Earth�s rotation axis describes awave-like trajectory on the celestial sphere, the points
of the trajectory lying at an average angular distance of about 23�270 from the pole of
the ecliptic (Figure 2.7).
The forces acting on the Earth and the Moon from the side of the planets of the

Solar System disturb the motion of the mass center of the Earth–Moon system and,
hence, displace the ecliptic plane and its pole P. Approximately, the motion of the
north ecliptic pole occurs as follows. The ecliptic pole Pmoves with a rate of 0.4700/
year (Figure 2.9) along the arc of the major circle at an angle of 7� to linePP passing
through the celestial pole P and the pole of eclipticP. As the ecliptic shifts (due to the
planets� perturbations), the vernal equinox point also shifts along the ecliptic towards
the Sun�s motion.
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Thus, the full shift of the vernal equinox point along the ecliptic is equal to p� l0

cos e, where p is the lunisolar precession at longitude and l0 is the planet�s precession
equal to 0.1300/year.
The orbital revolutions of many planets of the Solar System are resonantly

intercorrelated. In addition, the orbital revolutions of the major natural satellites
of the planets are in most cases synchronous with their spin rotations, so that the
satellite�s angular velocities of orbital revolution and spin rotation appear to be equal.
Due to this, the satellite always presents the same hemisphere to an attracting planet.
In the celestialmechanics, this phenomenon is called �the synchronous rotation� of a
satellite.

Figure 2.9 Spatial motion of the ecliptic pole P.
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3
Polar Motion and Irregularities in the Earth�s Rotation Rate

3.1
Motion of the Earth�s Poles

3.1.1
Motion of the Spin Axis in the Earth�s Body

In 1765 Leonard Euler theoretically proved that if the axis of the Earth�s rotation does
not coincide with the axis of the Earth�s figure (that is, the axis of the maximum
moment of inertia), then themovement of the geographical poles around the figure�s
poles should take placewith a period ofTR ¼ A

C�A
2p
W � 305 sidereal days (whereA and

C are the equatorial and polar Earth�s moments of inertia; W is the Earth�s rotation
angular velocity expressed in radians per day).
Let us explain the kinematics of this process with the help of Figure 3.1. Let the

Earth�s figure axis OC be deviated by the angle m from the rotation axis OP along
which the vector of the instantaneous angular velocity w is directed. Then, the
directionOH of the vector of the Earth�s angularmomentumHwill not coincidewith
directionOPof the vectorwbutwill be situated betweenOCandOPaxes and deviated
from axis OP by the angle n. When the external forces are absent, H¼ const and
direction OH does not change in space. In this case, the Earth�s motion occurs in
such a way that axis OP describes two cones: the movable wide cone with the figure
axis OC connected with the Earth and the, motionless in space, narrow cone with
an axis of the angular momentum OH. The angles at the vortexes of the wide and
narrow cones are equal to 2m and 2n, respectively.
The wide cone hooks (by its inside surface) the narrow cone and rolls around it,

whereas axisOH remainsmotionless in space all the time, that is, it is always directed
to the same point of the sky (Figure 3.2). Hence, the narrow cone as if rotates around
the axis of the angular momentum OH. Therefore, owing to the Earth�s rotation,
thewide cone rolls around themotionless narrow cone; thewide cone centerCmoves
along the circle (dotted line in Figure 3.2). The cones generatrix OP is an instan-
taneous axis of the Earth�s rotation. In the counterclockwise motion, as viewed from
the north celestial pole, point P describes two circles – the bases of the cones: the
circles withC andH centers. One revolution of the Earth aroundH (the sidereal day)

j27



and of point C aroundH (the dotted circle in Figure 3.2) occurs over the same time
interval. Point P will pass the full circle (the base of the wide cone) over as many
sidereal days as the circles of the narrow cone are contained in the circle of the wide
cone (or however many radii of the narrow cone base are contained in the radius
of the wide cone base). Since the wide cone is connected with the Earth, then point C
on the Earth�s surface and the large circle with center C are motionless; the small
circle with centerH rolls around the inside surface of the great circle with a center C
(Figure 3.3). At this time point P – the point of the circles� inside contact – moves
counterclockwise along the circle with center C. Point P is the Earth�s north
instantaneous pole; point C is the figure�s North Pole. Hence, as the Earth rotates,
its pole moves constantly around the figure�s pole, which is called the instantaneous
pole of the Earth�s rotation.
According to the theory,

m

m
¼ C

C�A
� 305:6 ð3:1Þ

The angle m, being the deviation of the rotation axis OP from the figure axis OC of
the Earth, is obtained from the astronomical observations. Its value does not exceed
000.5. Consequently, angle n� 000.001. Because of its small value, this angle cannot be
obtained from observations. Therefore, it is assumed that the axis of the angular
momentum H coincides with the Earth�s rotation instantaneous axis OP.

Figure 3.1 Euler�s motion of the Earth�s rotation axis.
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Figure 3.2 Geometric interpretation of the Earth�s rotation axis motion.

Figure 3.3 A small circle with center H rolls along the inside surface of a large circle with center C.
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3.1.2
International Latitude Service

The conclusions of Euler�s theory have stimulated the latitude observations. The
analysis of some observations in the nineteenth century has shown that the
geographical latitudes of observatories do not remain constant. The geographical
latitude of a certain site is the angle between the vertical line at this site and the plane
of the Earth�s equator. The geographical latitude changes either with the change in
the direction of the local vertical line, or with the displacement of the Earth�s rotation
axis inside the Earth�s spheroid.
Let us assume that the latitude of an observational station changes with the

changing position of the rotation axis within the Earth�s body. Then, the values of the
latitude� changes at two stations located at the meridians 180� away from each other
should be equal (the same) but of opposite sign: at one site the latitude increases,
at another site it decreases by the same value.
To test this conception, the special latitude station has been built in Honolulu on

the Sandwich (nowadays the Hawaiian) islands in the Pacific Ocean in 1890. It was
away from Berlin at 180� in longitude. Simultaneous observations at two stations,
Berlin andHonolulu, had to either confirm or deny the hypothesis about the rotation
axis displacement in the Earth�s body. It was found that the curve of latitude change
for Honolulu is a mirror reflection of the respective curve for Berlin. Hence, it has
been proved that the change in the latitude of any point on the terrestrial surface
occurs due to the displacement of the Earth�s rotation axis in the planet body
itself. However, if the Earth�s rotation axis moves, the point of intersection of this
axis with the Earth�s surface (in other words, the Earth�s pole) shifts along this
surface, describing some curve.
Vain attempts to find the 305-day period in the series of latitude observations at the

observatories of Pulkovo, Washington, Berlin, and others were repeatedly under-
taken in the nineteenth century. In 1891 S. Chandler (Chandler, 1891) published the
results of his analysis of the latitude observations and showed that those series had
termswith periods of 428 and 365days. Atfirst, such unexpected results evoked some
doubt. However, soon S. Newcomb pointed out that the period of 305 days is correct
if we assume the Earth to be an absolutely rigid body. The Earth�s and ocean�s elastic
deformations can increase this period from 10 to 14 months.
The 11th Conference of the International Geodetic Association (IGA) in Berlin

(1895) proposed to organize the International Latitude Service (ILS) for obtaining
more accurate data that would allow studying more comprehensively the motion of
the Earth�s geographic poles. The Central Bureau (which was founded just after the
conference) started practical activity – the development of a uniform observational
program, choosing the sites for stations, the instrumentation, the design of pavilions
identical to all stations, and so forth.
The preliminary results of the Central Bureau activity were considered and

confirmed by the 12th IGA Conference in Stuttgart in 1898.
In 1898 six latitude stations were built at the parallel of 39�080 N, at the sites most

suitable in terms of meteorological and seismological conditions. These sites are
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Mizusawa (Japan); Tschardjui (Russia); Carloforte (Italy); Gaithersburg, Cincinnati,
and Ukiah at the east, middle, and west parts of North America, respectively. All
stations had pavilions of similar design and were equipped with zenith telescopes.
The systematic observations at the ILS stations have been carried out since 1899.
In 1962, the ILS was reorganized into the International PolarMotion Service (IPMS).
In the 1980s, the astrooptical observations were replaced by new measurement
methods based on using the very long baseline interferometers (VLBI), the satellites
laser ranging (SLR), the lunar laser ranging (LLR), and the global positioning systems
(GPS). It has become clear that due to new methods the accuracy of observations
increased by many times. Therefore in 1988, IPMS and the Earth rotation section of
the Bureau International de l�Heure (BIH) were reorganized into the International
Earth Rotation Service (IERS). The IERS function was to calculate the universal time
corrections and the coordinates of the Earth�s pole, using the results obtained by
new observational methods.

3.1.3
North Pole Motion

The position of the pole is specified by the rectangular coordinates x and y. The origin
of coordinates is taken to be the pole�s average position for 1900–1905. It is called
the Conventional International Origin (CIO). The x axis is directed from CIO origin
along the zeromeridian (to Greenwich), and the y axis – along themeridian of 270�E.
The measurement units are tenths of an arcsec.
The instantaneous pole moves along the Earth�s surface around the mean pole

in the direction of the Earth�s rotation, that is, from west to east. The trajectory of the
polar motion looks like a helix that periodically twists or untwists. The maximum
deviation of the instantaneous pole from the helical center does not exceed 15m.
Figure 3.4 shows the trajectory of the instantaneous North Pole in 1990–1996.

In 1990–1993, the pole was twisting, more andmore approaching its mean position.
In 1993 it most closely approached the helical center; then, since 1994, the pole was
untwisting, moving off the mean polar position. Its maximum deviation from the
mean position was registered in May–July, 1996. Then, the pole began to twist and
continued twisting up to 2000, when the pole approached again at the minimum
distance to the helical center (Figure 3.5).
It is shown in Figure 3.5 that the center of the helix is away from the origin of

coordinates – the Conventional International Origin. The reason is the so-called
secular polar motion. To obtain the coordinates of the mean pole, the annual and
Chandler components are eliminated from the polar coordinates. It is found that
themean pole shifts too. The trajectory of themean pole during 1890–2000 is shown
in Figure 3.5 (solid zigzag line). One can see that during the whole observational
period the mean pole was shifting along a complex zigzag curve with the predom-
inant direction towards North America (the 290� E meridian) at a velocity of about
10 cm/year.
At present, there is a continuous series of the North Pole coordinates calculated

by the International Earth Rotation Service (IERS) since1890 up to the present, with
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a discrete interval of 0.05 year (IERS Annual Report). Figures 3.6 and 3.7 shows the
changes in the x and y polar coordinates over thewhole observational period.One can
see the secular- and decade-long variations and the six-year beats of the annual
component. An interesting peculiarity of the polar motion is its drastic attenuating
in 1925–1940 and strong �untwisting� in 1905–1915 and 1950–1960.
The classical spectral analysis of these series allows us to distinguish two dominant

harmonics: Chandler�s harmonic with a frequency of about 1/1.18¼ 0.85 cycle/year
and the annual one – 1.0 cycle/year (Figure 3.8).
Chandler�s harmonic is the main mode of the Earth�s free nutation. The annual

harmonic is the forced oscillation caused by the seasonal movements of the air and
water masses over the Earth�s surface. An addition of the Chandler and annual
harmonics generates the beats, as a result of which the radius of the polar motion
trajectory changes from the maximum to the minimum value (with a period of
approximately 6 years) (Figures 3.6 and 3.7).
The curves 2 and 3 in Figures 3.6 and 3.7 present the temporal changes of the

Chandler and annual harmonics over the whole period of observations. One can see
that the Chandler harmonic has the amplitude modulation with a period of about
40 years. The maximum amplitudes were observed about 1915 and 1955, and the
deep minimum – about 1930. Due to this, the spectra of the polar coordinates have
a side peak at a frequency of 1/1.24 cycle/year near the Chandler frequency peak
(Figure 3.8). The parameters of the annual harmonic change with time without
pronounced peculiarities. The bottom curve in Figures 3.6 and 3.7 demonstrates the

Figure 3.4 Trajectory of movement of the North geographical
pole of the Earth in 1990–1996 (the yearly parts of the trajectory are
marked by the respective year).
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temporal course of residuals after the elimination of the trend and the Chandler
and annual components.

3.2
Irregularities in the Earth�s Rotation Rate

It is known that the Earth rotates around its axis with periods equal to 86 164.099 s
and 86 400 s with respect to themotionless stars and the Sun, respectively. Themean
solar day is equal to 1.002 738 sidereal days. However, the velocity of the Earth�s
rotation is variable.
At the end of nineteenth – the beginning of twentieth centuries, the fluctuations

in the motions of the Moon, Sun, Mercury, Venus, Mars, and the satellites of Jupiter
were found. It appeared that all the obtained residuals are proportional to the rates of
the apparent motions of these celestial bodies. This has meant that the deviations of
the observed positions of celestial bodies from their calculated positions (ephemer-
ides) are due to the fluctuations of the rate of the Earth�s daily rotation. Really, if the
Earth rotation slows down, the day becomes longer and the celestial body passes this

Figure 3.5 Polar motion trajectory in 1996–2000. The continuous
polygonal curve denotes the path of the mean polar motion in
1890–2000 (IERS Annual Report . . ., 2002).
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Figure 3.7 Pole�s coordinate y and its components in 1890–2000 (IERS Annual Report . . ., 2002).

Figure 3.6 Pole�s coordinate x and its components in 1890–2000 (IERS Annual Report . . ., 2002).
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or that route over a shorter time period. When calculating the ephemerides, the day
length is considered to be constant. Therefore, the impression is gained that the
celestial body movement accelerates. In the case of acceleration of the Earth�s
rotation, on the contrary the impression is gained that the celestial body movement
slows down. Thus, the necessity arose to separate the time scales.
In 1950 the concept of the ephemeris time (ET) – a uniformly running time – was

introduced and had been used for calculations of the celestial bodies� ephemerides.
TheUniversal Time (UT) (the localmean solar time on themeridian ofGreenwich) is
the irregular time, because the Earth�s rotational velocity is variable. Analyzing the
differences between theUTandETtime scales, it is possible to calculate the variations
in the Earth�s rotation velocity around the axis, or the changes in the diurnal length.
Since the seventeenth century, the instrumental observations of the Moon, the Sun
and some of the planets were episodically carried out, the coordinates of the planets
being calculated with low precision. It was only in the nineteenth century that the
accuracy of observationsmade it possible to satisfactorily estimate the changes in the
Earth�s rotational velocity.
A progressive jump in the accuracy of determining the changes in the Earth�s

rotation velocity occurred in 1955, when the atomic clock was created and the atomic
time scale (AT or TA, according to English or French) was introduced. The intro-
duction of the atomic time has opened up a new stage in studying the irregularity
of the Earth�s rotation. The reliability of determination of changes in the Earth�s
rotation velocity became dependent only on the accuracy of the Universal Time
determination. Over the last 20 years, the classical astronomical methods of the UT
determination have been gradually replaced by the new methods based on the
Doppler observations of the Earth�s artificial satellites, lunar laser ranging, and
observations with the very long baseline interferometers. The accuracy of the UT
determination has increased by two orders. As a result, there appeared the possibility
to study the short periodical oscillations of the Earth�s rotation velocity with periods
as short as one day and even (during some periods of special series of observations)
several hours.

Figure 3.8 Spectrum of variations of the pole�s coordinate x.
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The Earth�s rotation velocity can be characterized by the dimensionless value

m ¼ ðw�WÞ
w

¼ �ðT�PÞ
P

ð3:2Þ

where T and P are the length of the terrestrial day and the length of the standard
(the ephemeris or atom) day, respectively. The standard day is equal to 86 400 s,
w¼ 2p/TandW¼ 2p/P are the angular velocities corresponding to the terrestrial and
standard days. Since the value of w changes only in the ninth-eighth decimal digit,
then the n values have an order of 10�9–10�8.
Beginning from the seventeenth century, the velocity of the Earth�s rotation has

been determined from the observations of the Moon, the Sun and some of the
planets. We have the series of the mean semiannual deviations of the day length
(T�P) since 1656 to the present time. The accuracy of these data for the seventeenth
and eighteenth centuries is very low.
Figure 3.9 represents the curves of changes in the mean annual velocity of the

Earth�s rotation obtained by the data of (McCarthy and Babcock, 1986) since 1656,
(Stephenson and Morrison, 1984) since 1650, and (Brower, 1952; Sidorenkov and
Svirenko, 1991; Sidorenkov, 2000c) since 1820. The years and the relative deviations
of the angular velocity n (multiplied by 1010) are plotted on the abscissa and ordinate
axes, respectively. The divergence of the above curves allows us to judge the accuracy
of determination of the rotation velocity. One can see that with time, as the accuracy
increases, the agreement between the curves becomes closer and closer. The Earth�s
rotation velocity changed considerably in the seventeenth century and since 1860 to

Figure 3.9 Changes in the Earth�s rotation angular velocity over the last 350 years.
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the present time. In 1700–1860, the fluctuations of the velocity were much smaller.
Irregularfluctuations of the angular velocity of the Earth�s rotationwith characteristic
periods of the order of several decades are well pronounced. The Earth rotated most
quickly about 1870 (the n values attained þ 340� 10�10) andmost slowly about 1903
(the valuen attained�470� 10�10). From1903 to 1934, the acceleration of theEarth�s
rotation was observed and from the late 1930s to 1972 – the deceleration of rotation
(which was sometimes replaced by short periods of slight acceleration). From 1973
to now, the velocity of rotation increases (the deceleration recorded in 1989–1994was
an ordinary fluctuation).
A low resolution of the Moon�s longitude discrepancy has generated a problem of

�the turning points� (Munk and MacDonald, 1960) in calculating the characteristics
of the Earth�s rotational velocity. Brown (Brown, 1926) thought that �the changes of
the angular velocity occur most probably by jumps rather than gradually�. De Sitter
(de Sitter, 1927) approximated the curve of correction Dt¼UT�ET by straight lines,
replacing the turning points by the arcs of parabolas. Brower (Brower, 1952)
represented the curve Dt in the segments of parabolas arcs, which corresponds to
the jump-like changes in accelerations dn/dt. He assumed that fluctuations dn/dt
are accidental and there is no correlation between their values in various years.
According to Brower, the accumulation of small random fluctuations is responsible
for the form of the curve of the decadal fluctuations n.
In 1955, the International Atomic Time scale (TAI) was introduced. The compar-

ison of TAI with UTmakes it possible to calculate the (T�P) or the n values with a
much higher accuracy than was possible earlier. There appeared the possibility to
calculate the mean monthly or even five-day values of n. The International Earth
Rotation Service calculates the corrections UT–TAI of the Universal and Atomic
Time scales. Using these data, it is easy to calculate the monthly mean velocity n of
the Earth�s rotation from 1955 to now (Sidorenkov, 2002a, 2002b). Since 1984 the
International Earth Rotation Service calculates daily values of n.
The temporal course of the monthly means of the Earth�s rotation angular velocity

n during 1955–2008 is presented in Figure 3.10. It gives a picture of the variations
in the Earth�s rotation velocity with the characteristic times ofmore than twomonths
(that is, about the spectrum in the range of frequencies below 2� 10�7Hz). One can
see that in 1956–1961 and in 1973–2003 the rotation of the Earth accelerated, and
in 1962–1972 and from 2004 to now it decelerates. The deceleration of the Earth�s
rotation, which ended in 1972, had begun in 1935, that is, outside of the period
represented in Figure 3.10. The acceleration that had begun in 1973 was ended in
2003. The acceleration of rotation in 1956–1961 and the deceleration in 1989–1994
are the short-term fluctuations. The seasonal variations of the Earth rotation velocity
are well seen against the background of the long-term fluctuations. The rotational
velocity isminimum inApril andNovember, andmaximum in January and July. One
observes the quasi-two-year cyclicity of nmaxima in January and the six-year cyclicity
of n maxima in July.
Figure 3.10 shows that the Earth�s rotation velocity changes gradually, without

any jumps. The jumps in the data prior to 1900 are due to a large discrete interval of
calculated values n (more than 5 years). The angular accelerations of the Earth�s
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rotation feature neither of the unexpected jump-like changes. The seasonal variations
in dn/dt are most regular.
Over the recent twenty years, there is the possibility to calculate the daily values

of the Earth�s rotation angular velocity n. The temporal course of the n daily values in
2007 as reproduced according to the IERS Annual Report data is represented in
Figure 3.11 (curve 1). In addition to the seasonal variations caused by hydromete-
orological processes, the tidal variations of the Earth�s rotation velocity are also seen
here. They rank slightly below the seasonal variations in amplitudes, but their periods
are shorter by tens of times than the periods of seasonal variations, being close to
14 days.
The components with the annual and semiannual periods, the 13.7, 27.3, 9.1

day-long periods are distinguished in the spectrum of the variations of the Earth�s
rotation velocity. The spectral analysis of all the available series of the nmean values
reveals the maximum of the spectral density at a period of about 70 years. Fluctua-
tions with this period are most pronounced over the last 150 years. At the beginning
of the twentieth century, the amplitude of the 70-year long fluctuations was as long as
2ms. Slight fluctuations with periods of 33, 22, and 6 years are also distinguished.
It is known that the Earth�s rotational velocity decelerates under the influence of

the tidal friction. It is very difficult to reveal this deceleration using the observations
for the last 350 years. A longer series of observations is needed for this purpose.
The tendency of rotation to slow down over the last 100–150 years cannot be
indentified with confidence with the secular deceleration, because it can also be
considered as a drop in some irregular speed change, having a typical time of some
hundreds of years.

Figure 3.10 Monthly mean angular velocity of the Earth�s rotation in 1955–2007.
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It is always necessary to take into account that if a random process has a
component, the period of which exceeds the length of realization, a systematic
change or a trend can be observed. When investigating the tidal deceleration of
the Earth�s rotation velocity, one often forgets about this fact and, as a result, the
estimations of the tidal deceleration are not identical for the various observational
periods. For example, Morrison (Morrison, 1973), after having treated the instru-
mental observations for 1663–1972, has obtained the velocity deceleration equal
to 1.5ms per century. The investigations of the ancient astronomical observations
(first of all, the Sun and Moon eclipses) show that for the last 3000 years the
deceleration of the velocity was 2.3ms per century (Newton, 1970; Stephenson, 1997).

Figure 3.11 Daily angular velocity of the Earth�s rotation during
the period of October 1, 2006–December 31, 2007: (1) data of
observations; (2) tidal oscillations, which were calculated using
the theory of Section 5.3.
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4
Estimation Theory of the Effect of Atmospheric Processes
on the Earth�s Spin

4.1
General Differential Equations of the Rotation of the Earth Around its Mass Center

Let us consider the motion of the Earth around its mass center. The translational
motion of the Earth�s mass center in space does not concern us in this study.
We assume it to be known and completely eliminated. Let us take the system of the
moving Cartesian coordinates (Oxi), which is constantly fixed in the Earth and
rotates with it, with angular velocityv, relative to the inertial coordinates system (Oji)
fixed in space. Let both coordinate systems have the same datum point – the Earth�s
mass center O and let axes Oxi coincide with the principal axes of the ellipsoid
of inertia of the undisturbed Earth. The basis of the rotating system {e1, e2, e3} is
chosen in such away that thefirst twounit vectors specify the equatorial plane and the
third one is directed along axis Ox3.
As is known from theoretical mechanics, in the inertial system of coordinate Oji

the velocity of changes in the Earth�s angular momentum H relative to the mass
center is equal to themoment of external forces (torque)M on the Earth relative to the
same center O.

DH
Dt

¼ M ð4:1Þ

where D/Dt is the sign of the time derivative in the inertial coordinates system Oji.
If wewrite Equation 4.1 for the inertial coordinate systemOxi, then, differentiating

H with respect to time, we must also find the derivatives of the moments of inertia
with respect to time, which is very inconvenient.
It is much more convenient to consider the variations in the Earth�s angular

momentumHwith respect to themoving coordinate systemOxi. It is known that the
absolute derivative of vector H with respect to coordinate system Oji is connected
with the local derivative of the same vector relative to coordinate system Oxi by the
following equation:

DH
Dt

¼ dH
dt

þ w�H½ � ð4:2Þ
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The variation of vector H relative to the moving coordinate system Oxi consists
of two components: one is due to the variation of vectorH itself, whereas another is
due to themotion of axesOxi ontowhich it is projected. For the vectorH this variation
is equal to [v�H], similar to the way that it was equal to [v� r] for radius vector r
for the linear velocity of the point V¼ [v� r].
Substituting expression (4.2) into (4.1), we obtain the differential equation

of the Earth�s motion with respect to its mass center in the moving coordinate
system Oxi:

dH
dt

þ v�H½ � ¼ M ð4:3Þ

If expressed in the projections onto axes Ox1, Ox2, and Ox3, this equation, with
account for the expansion in terms of the basis:

H ¼
X3
i¼1

Hiei � Hiei; w ¼ wiei; M ¼ Miei;

takes the form:

dH1

dt
þw2H3�w3H2 ¼ M1

dH2

dt
þw3H1�w1H3 ¼ M2

dH3

dt
þw1H2�w2H1 ¼ M3

ð4:4Þ

Equations 4.4 are the differential equations of the Earth�s motion that are related
to the moving coordinate system Oxi that is rigidly bound to the Earth.
The vector of angular momentum H is specified by the equation:

H ¼
ð
A

ðr�WÞrdV ð4:5Þ

where r is the radius-vector of the unit volume dV, r is the density, A is the volume
of the body, W is the velocity of the volume motion with respect to the inertial
system Oxi (the absolute velocity):

W ¼ ðv� rÞþ u ð4:6Þ

where u is the velocity of motion of volume dV with respect to the moving
systemOxi (the relative velocity). Substituting the expression forW into (4.5), wefind:

H ¼
ð
A

r� ðw� rÞrdV þ h ¼
ð
A

½r2w�rðw rÞ�rdV þ h ð4:7Þ
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where h ¼ Ð
Aðr� uÞrdV is the relative angular momentum. Introducing the tensor

notations, one can rewrite Equation 4.7 in the form:

Hi ¼
ð
A

ðx2l wi�xixkwkÞrdV þ hi ¼ wk

ð
A

ðx2l dik�xixkÞrdV þ hi

¼ Nikwk þ hi ð4:8Þ

Here, Nik is the inertia tensor.
Hence, the projections of the angular momentum Hi onto the axes Oxi are the

linear functions of the projections of the angular velocity wi, whose coefficients are
the components of the inertia tensor Nij:

H1 ¼ N11w1 þN12w2 þN13w3 þ h1

H2 ¼ N21w1 þN22w2 þN23w3 þ h2

H3 ¼ N31w1 þN32w2 þN33w3 þ h3

ð4:9Þ

The components of the inertia tensor are calculated by the formulas:

Nij ¼

ð
A

rðx22 þ x23Þ dV �
ð
A

rx1x2 dV �
ð
A

rx1x3 dV

�
ð
A

rx2x1 dV
ð
A

rðx21 þ x23Þ dV �
ð
A

rx2x3 dV

�
ð
A

rx3x1 dV �
ð
A

rx3x2 dV
ð
A

rðx21 þ x22Þ dV

0
BBBBBBBBB@

1
CCCCCCCCCA

ð4:10Þ

The diagonal components of the inertia tensor are called the Earth�s axial moments
of inertia relative to the axes of Ox1, Ox2, and Ox3; the other components are the
centrifugal moments of inertia with respect to the same axes. The axes of the
coordinates in which the inertia tensor is brought to the diagonal form are called
the principal axes of inertia; and the corresponding axialmoments of inertia are called
the principal moments of inertia.
The hi values are the relative angular momentums that are due to the interior

motions of substances (air, water, and so on) with respect to the coordinate
system Oxi:

h1 ¼
ð
A

rðx2u3�x3u2ÞdV

h2 ¼
ð
A

rðx3u1�x1u3ÞdV

h3 ¼
ð
A

rðx1u2�x2u1ÞdV ð4:11Þ
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4.2
Disturbed Motion of the Absolutely Solid Earth

The redistribution of masses and the interior relative motions cause small displace-
ments of the Earth relative to the axis of rotation. To describe these displacements,
we use the dimensionless components of the instant angular velocity of the Earth�s
rotation ni:

n1 ¼ w1

jwj ; n2 ¼ w2

jwj ; n3 ¼ w3�jwj
jwj

Here, |w|�W¼ const is the modulus of the vector of the angular velocity of the
Earth�s rotation; n1, n2, and (1 þ n3) are the direction cosines of the instant axis of
the Earth�s rotation (n3� 0). They can also be interpreted as the components of the
vector of small additions n:

n ¼ w�We3
W

¼ n1e1 þ n2e2 þ n3e3 ð4:12Þ

whereW¼ 7.29� 10�5 s�1 is the undisturbed angular velocity of the Earth�s rotation,
which corresponds to the period T0¼ 2p/W¼ 86 174 s; ei are the unit vectors of the
axes Oxi.
In the undisturbed state, the axial moments of inertia can be considered constant

values and the centrifugalmoments are equal to zero. The redistribution ofmasses in
the atmosphere, hydrosphere, and so on slightly changes (disturbs) the components
of the inertia tensor. It is natural to assume these disturbances to be small values.
They can be presented in the form of small additions to the values (A, B, C, 0, 0, 0)
of the components of the inertia tensor of theundisturbedEarth–atmosphere system:

N11 ¼ Aþ ~n11;N22 ¼ Bþ ~n22;N33 ¼ Cþ ~n33;
N12 ¼ N21 ¼ ~n12;N13 ¼ N31 ¼ ~n13;N23 ¼ N32 ¼ ~n23.

The relative angular momentums hi are also assumed to be small values.
Linearizing Equation 4.4 relative to small values ni, ~nij, hi, that is, neglecting the

productions of the form ~nijdnk=dt, njd~nik=dt, Wnj~nkl, njnlCW, we obtain:

AW
dn1
dt

þW2ðC�BÞn2 ¼ W2~n23 þWh2�W
d~n13
dt

� dh1
dt

þM1

BW
dn2
dt

�W2ðC�AÞn1 ¼ �W2~n13�Wh1�W
d~n23
dt

� dh2
dt

þM2

CW
dn3
dt

¼ �W
d~n33
dt

� dh3
dt

þM3

ð4:13Þ

Let us simplify Equations 4.13. For this purpose, we consider the Earth–atmo-
sphere system in the undisturbed state to be dynamically symmetric, that is,
its moments of inertia with respect to the equatorial axes to be similar (A¼B).
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Dividing all the terms of the first two Equations 4.13 by W2(C�A) and denoting
the circular frequency of the free motion of the poles of the absolutely solid Earth
(Euler�s nutation) as sr ¼ C�A

A W, we found:

1
sr

dn1
dt

þ n2 ¼ j2

1
sr

dn2
dt

�n1 ¼ �j1

dn3
dt

¼ dj3

dt

ð4:14Þ

Here, ji are the dimensionless components of the excitation function:

W2ðC�AÞj1 ¼ W2~n13 þWh1 þW
d~n23
dt

þ dh2
dt

�M2

W2ðC�AÞj2 ¼ W2~n23 þWh2�W
d~n13
dt

� dh1
dt

þM1

W2Cj3 ¼ �W2~n33�Wh3 þW
ðt

0

M3dt
0

ð4:15Þ

Equation 4.14 are called the Euler–Liouville equations. They link the changes in the
directing cosines of the Earth�s rotation axis with the excitation functions that
describe all kinds of geophysical phenomena. In particular, the terms of the excitation
functions 4.15 that contain the variable components of the inertia tensor ~nij
and W d~nij=dt reflect the effect of the redistribution of masses (air, water, ice, snow,
and so on) occurring on the Earth, whereas the terms of the form of Whi and dhi/dt
account for the relative movements (winds and currents). The terms Mi describe
the effect of themoments of external forces acting on the Earth from the outer space.
The first two equations of system (4.14) describe the poles� motion and the third
equation describes changes in the Earth�s rotational velocity.
These forms of Equations 4.14 are given in the publications of Pariiski (1954) and

Munk andMacdonald (1960), who, in their turn, refer to Young�s (1953) publication.
However, the excitation function was already being used from the end of the
nineteenth century (see, for example, Volterra (1895)).
It is shownbyBarnes et al. (1983) thatwhen estimating the effect of the atmosphere

and oceans on the instability of theEarth�s rotation, it is expedient to use the functions
of the angular momentum instead of the excitation functions ji:

~c1 ¼
1

WðC�AÞ ðW~n13 þ h1Þ

~c2 ¼
1

WðC�AÞ ðW~n23 þ h2Þ

~c3 ¼
1
CW

ðW~n33 þ h3Þ

ð4:16Þ

These functions do not contain derivatives, which facilitates both the calculation
of their magnitudes and the interpretation of various effects.
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Let us use complex values m ¼ n1 þ in2, j ¼ j1 þ ij2, ~c ¼ ~c1 þ i~c2, and
M ¼ M1 þ iM2 (their meaning is the coordinates of the instant poles of rotation,
excitation, angular momentum, and moment of external forces, respectively). Mul-
tiplying the first equation of system (4.14) by the value i and subtracting from it the
second equation,weobtain the equation for describing themotionof theEarth�s poles:

i
sr

dm
dt

þm ¼ j ¼ ~c� i
W
d~c
dt

þ iM

W2ðC�AÞ ð4:17Þ

If excitation is absent ðj ¼ 0Þ but at the initial moment t¼ t0 there is slope of
the instant axis of rotation mðt0Þ ¼ m0, then the solution of Equation 4.17 has the
form:

m ¼ m0e
isrðt�t0Þ ð4:18Þ

Hence, at a small deviation of the axis of the absolutely solid Earth from the axis
of themaximummoment of inertiaOx3, the instant axis of rotationmakes the circular
motion over the cone surface around Ox3. The radius of this motion is constant and
equal to the initial deviation m0; its period is 2p/sr¼ 304.4 days, because

2p
sr

¼ A
C�A

2p
W

¼ 1�H
H

� 1 day

where H ¼ C�A
C ¼ 1

305:44 is the precession constant, or the dynamical flattening
of the Earth.
However, observations are indicative of the free motion of the poles with a period

of not 304.4 days but approximately 430 days (Chandler, 1891). First, Newcomb
(1891) qualitatively and then Love and Larmore quantitatively (Jeffreys, 1959) have
shown that this elongation of the period of the poles� free motion is due to the fact
that the Earth is not an absolutely solid body but an elastic deformable body.

4.3
Disturbed Motion of the Elastic Earth

The deformations of the Earth depend on both the value of themechanical stress and
its duration. In the case of the stress short duration (the characteristic time t� 1 year),
the Earth is generally assumed to be an absolutely elastic body, and its deformations
are described by way of introducing the respective Love numbers (Love, 1927). The
effects associated withmore prolonged processes require accounting for the inelastic
deformations, the theory of which has not been developed yet.
The Earth�s deformations are reflected in the values of those terms in the

excitation function (4.15) that describe the pressure exerted to the Earth. Among
these are the terms containing the components of the inertia tensor nij, which reflect
the redistribution of masses over the Earth�s surface and the components of stresses
of external forces Mi, normal to the geoid.
As an example, let us consider the action of the air mass excess on the Earth.

Under the pressure of this mass DP¼�mg, the Earth deflects; at the same time,
the air mass attracts the Earth. As a result, the Earth�s surface rises. The total action
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of pressure and attraction shifts the Earth�s surface by value h0U/g, where U is the
internal gravitational potential caused by the excess of air mass; g is the gravity
acceleration; m is the anomaly of mass within a unit section of the atmospheric
column; h0 is Love�s number. The redistribution of masses in the Earth�s interior
entails an additional gravitational potential k0U. Since the effect of pressure exceeds
the effect of attraction, the Earth�s surface deflects consequently, Love�s numbers h0

and k0 are negative. Munk and Macdonald (1960) have shown that

k0 ¼ � 1
1þm

� �0:30 ð4:19Þ

where m is the parameter reflecting the rigidity of the Earth. Notice that the Earth is
here assumed homogeneous and incompressible.
Thus, the effect of the excessive air mass over the absolutely solid Earth is

expressed by the additions nij to the components of the inertia tensor; in the case
of the elastic Earth, further additions k0nij should be introduced. The total addition
will be n0ij ¼ ð1þ k0Þnij � 0:70nij. It is natural that such effects as winds, forces of
surface drag friction, and horizontal components of pressure forces do not cause
the vertical deformations of the Earth. Therefore, it is not necessary to change the
respective terms involved in the excitation function (4.15).
Apart from the deformations under the effect of prolonged loads and pressure,

the elastic Earth is subject to deformations due to its rotation. These deformations
are similar to the displacements due to the potential centrifugal forces Uw ¼ 1

2w
2l2,

where w is the instant angular velocity, l is the distance between point G and the
Earth�s instant axis PP0 (Figure 4.1).
It is seen from Figure 4.1 that

l2 ¼ r 02 sin2 q ¼ r 02�r 02 cos2 q ¼ ðx21 þ x22 þ x23Þ�½n1x1 þ n2x2 þð1þ n3Þx3�2
� x21 þ x22�2n3x23�2x3ðn1x1 þ n2x2Þ

Here, n1, n2, and (1 þ n3) are the direction cosines of the instant axis of
rotation (4.12); q is the polar angle.
Thus, the potential of centrifugal forces consists of (with an accuracy to the terms

of the second order of smallness) the sum of the time-independent terms
1
2w

2ðx21 þ x22�2n3x23Þ, which are additions reflecting an increase in the ellipticity,
and the terms w2x3(n1x1 þ n2x2), which vary with time. The latter terms present the
spherical harmonic of degree 2 and describe the Earth�s elastic deformation that
creates the gravitational potential outside the Earth:

V ¼ �k
a5

r5
w2x3ðn1x1 þ v2x2Þ ð4:20Þ

where a is the radius of the Earth, r is the distance between the Earth�s mass center
and the point of the circumterrestrial space under consideration, k is Love�s number.
At the same time, it is known that the gravitational potential of the deformed Earth

is described by MacCulagh�s formula (Jeffreys and Swirles, 1966):

W ¼ gM
r

þ g
2r3

ðN11 þN22 þN33�3IÞ ð4:21Þ
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where M is the mass of the Earth; g is the gravitational constant;
I ¼ N11n21 þN22n22 þN33ðn3 þ 1Þ2 þ 2N12n1n2 þ 2N13n1ð1þ n3Þþ 2N23n2ð1þ n3Þ is
the moment of inertia of the Earth relative to its instant axis of rotation PP0

(Figure 4.1).
Multiplying and dividing the second term in (4.21) by r2, one can rewrite

MacCulagh�sformula,withaccountforequalitiesx1¼ rn1,x2¼ rn2,and,x3¼ r(1 þ n3)
in the form:

W ¼ gM
r

þ g
2r5

N11ðx22 þ x23�2x21ÞþN22ðx21 þ x23�2x22Þ
þN33ðx21 þ x22�2x23Þ�6N12x1x2�6N13x1x3�6N23x2x3

� �

ð4:22Þ
Equating the terms that contain the same factors xixj in (4.20) and (4.21), we obtain:

N13 ¼ k
3g

w2a5v1 ¼ kq
3
Ma2v1 � Rv1

N23 ¼ k
3g

w2a5v2 ¼ kq
3
Ma2v2 � Rv2

ð4:23Þ

Here, we use parameter q ¼ w2a= gM
a2 ¼ 0:003 4678, which is equal to the ratio

between the centrifugal acceleration and the gravity acceleration, and introduce the
designation R ¼ kq

3 Ma2.
Now let us deduce the equations of the elastic Earth-disturbed motion. For this

purpose we use the same components of the instant angular velocity of the Earth�s
rotation ni that were used before. The components of the inertia tensor of the

Figure 4.1 A scheme for considering the potential of centrifugal forces.
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Earth–atmosphere system can be represented in the following form:

N11 ¼ Aþ ~n011; N22 ¼ Bþ ~n022; N33 ¼ Cþ ~n033;N12 ¼ N21 ¼ ~n012

N13 ¼ N31 ¼ Rv1 þ ~n013;N23 ¼ N32 ¼ Rv2 þ ~n023
ð4:24Þ

where ~n0ij ¼ ð1þ k0Þ~nij; A, B, and C are the principal moments of inertia of the
undisturbed Earth; ~nij is the variable components of the inertia tensor (for example,
those of the atmosphere).
Linearizing Equation 4.4 relative to small values ni, ~n0ij, and hi, we obtain:

ðAþRÞW dn1
dt

þW2ðC�B�RÞn2 ¼ W2~n023 þWh2�W
d~n13
dt

� dh1
dt

þM1

ðBþRÞW dn2
dt

�W2ðC�A�RÞn1 ¼ �W2~n013�Wh1�W
d~n023
dt

� dh2
dt

þM2

CW
dn3
dt

¼ �W
d~n033
dt

� dh3
dt

þM3

ð4:25Þ
With a sufficient degree of accuracy, we may, as previously, assume that A¼B.
Dividing all the terms of the first two equations of system (4.25) by W2ðC�A�RÞ

and designating s0 ¼ C�A�R
AþR W, we found:

1
s0

dv1
dt

þ v2 ¼ y2

1
s0

dv2
dt

�v1 ¼ �y1

dv3
dt

¼ dy3

dt

ð4:26Þ

where yi are the dimensionless components of the excitation function:

W2ðC�AÞy1 ¼ k W2~n013 þWh1 þW
d~n023
dt

þ dh2
dt

�M2

� �

¼ W2n13 þWkh1 þW
dn23
dt

þ k
dh2
dt

�kM2 ¼ W2ðC�AÞ c1 þ
1
W
dc2
dt

� �
�kM2

W2ðC�AÞy2 ¼ k W2~n023 þWh2�W
d~n013
dt

� dh1
dt

þM1

� �

¼ W2n23 þWkh2�W
dn13
dt

�k
dh1
dt

þkM1 ¼ W2ðC�AÞ c2�
1
W
dc1
dt

� �
þkM1

W2Cy3 ¼ �W2~n033�Wh3 þW
ðt

0

M3dt
0

¼ �W2ð1þ k0Þn33�Wh3 þW
ðt

0

M3dt
0 ¼ �W2Cc3 þW

ðt

0

M3dt
0

ð4:27Þ
Here, we have introduced the designation C�A

C�A�R � k.
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It is known from the theory of the Earth�s figure that C�A ¼ J2Ma2, where
J2¼ 1.08264� 10�3 is the gravitational moment (Zharkov and Trubitsyn, 1978).
Consequently,

k ¼ J2
J2�kq=3

� 1:43 ð4:28Þ

In (4.28) Love�s number kwas assumed equal to 0.28. It is easy to see that k(1 þ k0)
� 1, that is, the increase in the disturbance resulting from deformation due to
rotation is compensated by the decrease in the disturbance resulting from deflection
due to load. Therefore, thefirst terms of expressions fory1 andy2 (and also forc1 and
c2), which describe the effect of redistribution of masses, become eventually the
same as those for the absolutely solid Earth (4.15). The rest terms of the excitation
functions y1 and y1 (and also of the functions of the equatorial angular momentum
c1 and c2), which are irrelevant to deformations due to deflection, increase by k times
because of the effect of deformations due to rotation.
The terms representing the excitation function y3 and the function of the axial

angular momentum c3 are virtually irrelevant to the effect of deformations due to
rotation but are associated with deformations due to load. Therefore, only the term
W2~n33 that describes the redistribution of masses should be reduced (multiplied by
1 þ k0 � 0.7).
Let us use complex valuesm ¼ n1 þ in2,y ¼ y1 þ iy2, andc ¼ c1 þ ic2. Then the

first two Equation 4.26 that describe the poles� motion for the elastic Earth produce:

i
s0

dm
dt

þm ¼ y ¼ c� i
W
dc
dt

þ ikM
W2ðC�AÞ ð4:29Þ

If excitation is absent ðy ¼ 0Þ but there is slope ðmðt0Þ ¼ m0„0Þ, then integrat-
ing (4.29), we have:

m ¼ m0expfis0ðt�t0Þg ð4:30Þ
Thus, in the case of the elastic Earth the period of the poles� free motion T is not

equal to 304 days but is described by the following expression:

T ¼ 2p
s0

¼ AþR

C�A�R

2p
W

¼ J2 1þH
H

� �þ 1
3 kq

J2� 1
3 kq

� 1 day ð4:31Þ

It is here taken into account that A ¼ C�HC ¼ J2 1�H
H Ma2. Substituting the

above values of geophysical constants J2, H, and q in Equation 4.31 and assuming
Love�s number to be k¼ 0.3, we obtain: T¼ 448 days.
Expression (4.31) allows one to also solve the reverse problem – to estimate

Love�s number k by the observed period of the poles� free motion (Chandler�s
period T). The statistical analysis of a long series of observations of the poles�
coordinates yielded the following values for Chandler�s period (in the mean solar
days): 433.15	 2.23 (for 1899–1967, Jeffreys (1968)), 441.21	 2.56 (1846–1965,
Rykhlova (1971)), and 433.54	 2.12 (1846–1971, Yatskiv et al. (1976)). Substituting
these T values into (4.31), we find that Love�s number k is equal to 0.28, 0.29, and
0.28, respectively.
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It is worth mentioning that the above values of k, k0, and k are only valid for the
disturbances that are described by the spherical harmonics of the second order and
whose characteristic time is less than one year. They are not applicable for higher
harmonics and low-frequency disturbances.
Thus, the theory of motion of the elastic Earth adequately describes the extension

of the period of the poles� free motion. This theory allows one to calculate the poles�
coordinates n1 and n2 and the Earth�s rotational velocity n3 by the components of
excitation function yi determined from geophysical data. It is also possible to solve
the reverse problem – to calculate the components of excitation functionyi, using the
values of ni determined from astronomical observations, and thus to assess the
respective geophysical processes (Sidorenkov, 2002a, 2002b).

4.4
Interpretation of Excitation Functions

The dimensionless excitation functions yi are applicable for describing all kinds of
geophysical phenomena governing the motion of the Earth around its center of
masses. The investigation and calculation of functionsyi are among the fundamental
issues of studying the instabilities of the Earth�s rotation. It should be kept in mind
that the meaning of excitation functions yi depends on the particular problems and
methods of investigation. Let us consider functions yi as applied to estimating the
effect of the atmosphere on the diurnal rotation of the Earth. Two approaches are
possible here (Sidorenkov, 1968a).
Thefirst approach is based on the assumption that theEarth–atmosphere system is

closed; the problem is to study the balance of angularmomentum in this system. The
variations in the absolute angular momentum of the atmosphere are attended
with the equal in magnitude but opposite in sign variations in the angular momen-
tum of the Earth and, as a consequence of it, with small instabilities of the Earth�s
rotation. The initial causes of these changes are the variations in the intensity of
atmospheric circulation and the redistribution of air masses. The effect of atmo-
spheric circulation (of winds) is accounted for through the components of the
atmosphere relative angular momentum hi and their derivatives dhi

dt . The effect of
air mass redistribution is estimated by way of calculating the variable parts of the
components of the atmosphere�s inertia tensor ~nij and their derivatives d~nij=dt. In this
case, the moments of forces of mechanical interaction between the atmosphere and
the Earth cancel out (by virtue of Newton�s third law) and are completely eliminated
from consideration; that is, the components of the excitation function have the form:

W2ðC�AÞy1 ¼ W2n13 þWkh1 þW
dn23
dt

þk
dh2
dt

¼ W2ðC�AÞ c1 þ
1
W
dc2
dt

� �

W2ðC�AÞy2 ¼ W2n23 þWkh2�W
dn13
dt

�k
dh1
dt

¼ W2ðC�AÞ c2�
1
W
dc1
dt

� �

W2Cy3 ¼ �W2ð1þ k0Þn33�Wh3 ¼ �W2Cc3
ð4:32Þ
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where nij and hi are the components of the atmosphere inertia tensor and relative
angular momentum.
Equation 4.32 involve the effective angular momentum functions ci, which are

specified by formulas (4.16) with account for corrections for the elastic deforma-
tions of the Earth. One can see that functions yi and ci are linked by the following
equations:

y1 ¼ c1 þ
1
W
dc2
dt

y2 ¼ c2�
1
W
dc1
dt

y3 ¼ �c3

ð4:33Þ

The abovemethod of estimating the instabilities of the Earth�s rotation is called the
angular momentum approach.
The second approach is based on the consideration of the Earth without the

atmosphere but with account for the angular momentum flux through the Earth�s
surface due to mechanical interaction between the atmosphere and the Earth.
In this case, the absolute angular momentum of the atmosphere in not involved
into the equation of motion; instead, one estimates the moments of forcesMi acting
on the Earth from the side of the atmosphere. Thus, the excitation functions have
the following form:

W2ðC�AÞy1 ¼ �kM2

W2ðC�AÞy2 ¼ kM1

WCy3 ¼
ðt

0

M3dt
0

ð4:34Þ

The method described above is called the torque approach. It is fully valid for
depicting the changes in the Earth�s angular momentum due to atmospheric effects.
In particular, this method accounts for the effects of both the air mass circulation
(which is eventually due to isolation) and the circulation caused by the gravity field
of the closest to the Earth celestial bodies (by tides) or by the electromagnetic
interaction between the atmosphere and the interplanetary magnetic field, or solar
wind. The effects of redistribution of air and moisture masses are also accounted
for in this method, because the replacing masses never come into the state of rest
relative to the Earth�s surface until an excessive (insufficient) angular momentum is
transmitted through drag friction.
If the Earth–atmosphere system is closed, then both methods (the balance one

and that of the moments of forces) should in principle give similar results. Thus,
the choice of a method depends only on the available meteorological data. The
balance method requires at least the data series for the distribution of wind over
the entire globe and at all heights. Themethod of themoments of forces is based on
the data on the distribution of wind over the entire globe but only at one level – the
surface layer of the atmosphere.
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However, along with this advantage the latter method has significant disadvan-
tages, the main of which are the inadequacy of the theory of the angular momentum
exchange between the atmosphere and the Earth�s surface and the uncertainty
of the drag coefficients. Also, an essential disadvantage of this method is that it
yields not an integral value (the increment of the Earth�s rotational velocity) but a
differential one (the angular accelerations). The errors, inevitable when calculating
the Earth�s rotation angular accelerations by the torque approach, accumulate
when integrating and thereby misrepresent the progressive changes (trends) in the
velocity of the Earth�s rotation. If we take into account that the errors of calculated
angular accelerations are large whereas the progressive changes in the Earth�s
rotational velocity are relatively small, then it becomes clear that the torque
approach gives no way of estimating the potential contribution of atmospheric
circulation to the generation of these (progressive) changes in the Earth�s rotational
velocity.
The moments of forces of mechanical interaction between the atmosphere and

the Earth reflect all irregular and quasiperiodical variations in the atmospheric
circulation. Therefore, it is hoped that the respective irregular and quasiperiodical
variations in the velocity of the Earth�s rotation (of any periods) can be determined
by the torque approach with an accuracy to the constant multiplier.
The torque approach has one fundamental advantage over the angularmomentum

approach: the latter is based on the assumption that the atmosphere�s absolute
angular momentum can solely change due to the mechanical interaction between
the atmosphere and the Earth (the surface drag friction and pressure forces applied
to mountain ridges). Only in this case are the moments of forces applied to the
atmosphere canceled out by the, equal in magnitude and opposite in direction,
moments of forces acting (by virtue of Newton�s third law) onto the Earth. If there are
any other phenomena or presently unknown forces that are responsible for changes
in the absolute angular momentum of the atmosphere, then the balance may fail.
In this case, the balance method in the form (4.32) can only be used for the time
intervals that are sufficiently small for these unknown forces to exhibit the distorting
effects. At the same time, the torque approach can be used no matter what forces
and phenomena are responsible for changes in the atmosphere�s absolute angular
momentum, because this momentum is likely to be transmitted from the atmo-
sphere to the Earth only due to the moments of the drag and pressure forces. Other
moments of forces that are capable of transmitting the angular momentum from
the atmosphere to the Earth are unknown at present.
The effect of redistribution of moisture over the globe deserves special consid-

eration. The evaporation of moisture entails a decrease in the Earth�s inertia tensor,
whereas precipitation entails its increase. If precipitation and evaporation had
occurred within the same area, the components of the Earth�s inertia tensor would
not have changed. However, due to the atmospheric circulation, the water vapor
entering the atmosphere through evaporation is carried away for distances of
thousands of kilometers before it precipitates. This redistribution of moisture
alters the Earth�s inertia tensor and, as a consequence, causes the instabilities of
the Earth�s rotation. It should be mentioned that using the balance method in the
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above interpretation (see (4.32)), we do not obtain these instabilities of rotation,
because the atmosphere is solely amechanism ofmoisture redistribution, it does not
virtually change components nij, and hi. To adequately describe the effect ofmoisture
redistribution, it is necessary to introduce the terms that account for changes in the
components of the Earth�s inertia tensorNij into the excitation functions (4.32). Then,
the excitation functions take the form:

W2ðC�AÞy1 ¼ W2ðn13 þN13ÞþWkh1 þW
dðn23 þN23Þ

dt
þ k

dh2
dt

¼ W2ðC�AÞ c1 þ
1
W
dc2
dt

� �
þW2N13 þW

dN23

dt

W2ðC�AÞy2 ¼ W2ðn23 þN23ÞþWkh2�W
dðn13 þN13Þ

dt
�k

dh1
dt

¼ W2ðC�AÞ c2�
1
W
dc1
dt

� �
þW2N23�W

dN13

dt

W2Cy3 ¼ �W2ð1þ k0Þðn33 þ dCÞ�Wh3 ¼ �W2Cc3�W2ð1þ k0ÞdC

ð4:35Þ

When considering the interannual variations with the characteristic time intervals
of the order of a decade or longer, onemay neglect all the terms on the right-hand side
of each expression from (4.35) except for thefirst one. Indeed, considerablemultiyear
variations in the relative angular momentum of the atmosphere are not observed.
As has already been mentioned, the values of derivatives dnij/dt, and dhi/dt are
inversely proportional to the time interval (in days) under consideration.
In this case the torque approach (4.33), unlike the angular momentum

approach (4.32), yields correct results and does not require any modifications. The
point is that the moisture transferred by the atmospheric circulation does not retain
its angular momentum. The moisture exchanges its angular momentum with the
surrounding air and, eventually, with the Earth�s surface, thereby quenching
the velocity of relative motion. This exchange by the angular momentum occurs
at the expense of the drag friction and pressure forces. The torque approach, accounts
for the total flow of the angular momentum from the atmosphere to the Earth,
including the forces that arise at the Earth/atmosphere interface due to moisture
redistribution.
Thus, if the torque approach accounts only for themechanical interaction between

the atmosphere and the Earth, then the angular momentum approach allows us to
investigate the role of the atmosphere in the instability of the Earth�s rotation as well,
thus producingmore reliable results. However, as ismentioned above, this approach
is applicable to relatively short time intervals, insufficient to manifest the forces
of distortion. For longer periods only the torque approach is applicable, this approach
being very rough. Apart from thismethod, themodified balancemethod (4.35) can be
used for estimating the effect of moisture redistribution.
When studying the seasonal instabilities of the Earth�s rotation, the expressions for

the excitation functions yi can be simplified in many cases. In order to show this, let
us compare the terms containing time derivatives with the terms without time
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derivatives. Componentsnij, andhi varywith characteristic time intervalsTk. They can
be approximated by expressions:

nij ¼ �nij þ aij cos
2p
Tk

ðtþ t0Þ

hi ¼ �hi þ bi cos
2p
Tk

ðtþ t00Þ

where �nij and �hi are the values of nij, and hi averaged over period Tk; aij and bi are their
amplitudes, and t0 and t00 are the initial phases.
Let us assess the orders of ratios of the following pairs of terms (in days):

0
W2~nij

Wk
dnij
dt

0
BB@

1
CCA ¼

Waij cos
2p
Tk

ðt�t0Þ

kaij
2p
Tk

sin
2p
Tk

ðt�t0Þ
� W

2p
Tk

¼ Tk

0
Wkhi

k
dhi
dt

0
B@

1
CA ¼

Wbi cos
2p
Tk

ðtþ t00Þ

bi
2p
Tk

sin
2p
Tk

ðtþ t00Þ
� W

2p
Tk

¼ Tk

Here, it is taken into account that the parameters of variations in the components
under consideration are approximately equal; that is, a13� a23, and b1� b2.
Hence, when considering the disturbances with characteristic time intervals of an

order of one year (Tk¼ 365 days), the terms containing derivatives dnij/dt, and dhi/dt
may be neglected, because they are approximately by 365 times smaller than terms
W2~nij and Wkhi, respectively.

4.5
Harmonic Excitation Function and Motion of the Earth�s Poles

The instabilities of the Earth�s rotation cannot be theoretically determined, because
the excitation functions (4.27) are not calculated analytically but are found from
empirical data on the processes occurring in the atmosphere, oceans, and solid Earth,
these processes change very irregularly. Only some particular cases of the analytical
presentation of the excitation functions can be considered. One such case is the
excitations� seasonal variations, which are adequately approximated by the sum of
harmonics. The relationship between n3 and y3 is trivial; therefore we only consider
the relationship between complex values m and y.
The excitation function y that changes with time by the harmonic law with an

annual period can be represented in the form:

y ¼ y1 þ iy2 ¼ ða1cos
 þ b1sin
Þþ iða2cos
 þ b2sin
Þ
¼ Acosð
�j1Þþ iBcosð
�j2Þ ¼ yCcos
 þySsin

¼ ða1 þ ia2Þcos
 þðb1 þ ib2Þsin
 ð4:36Þ
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where 
¼ 2pt is the longitude of the mean Sun, t is the time in fractions of a year.
The values a1, a2, b1, and b2 are expressed in terms of the amplitudes (A and B) and
phases (j1 and j2) of the excitation function y :

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ b21

q
; B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ b22

q
ð4:37Þ

j1 ¼ arctg
b1
a1

; j2 ¼ arctg
b2
a2

ð4:38Þ

Alternatively, the same excitation function y can be expressed as the circular
movements in the positive (anticlockwise) and negative (clockwise) directions:

y ¼ y þ ei
 þy�e�i
 ¼ y þ cos
 þ iy þ sin
 þy�cos
�iy�sin

ð4:39Þ

Comparing (4.39) with (4.36), we find the expressions that connect the linear and
circular parameters of the excitation function:

yC ¼ y þ þy� ¼ a1 þ ia2 ð4:40Þ

yS ¼ iðy þ�y�Þ ¼ b1 þ ib2 ð4:41Þ

Hence,

y þ ¼ a1 þ b2
2

þ i
a2�b1

2
¼ jy þ jeilþ ð4:42Þ

y� ¼ a1�b2
2

þ i
a2 þ b1

2
¼ jy�je�il� ð4:43Þ

The radii and initial phases of these circular movements are obviously equal to:

jy þ j ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 þ b2Þ2 þða2�b1Þ2

q
ð4:44Þ

jy�j ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1�b2Þ2 þða2 þ b1Þ2

q
ð4:45Þ

lþ ¼ arctg
a2�b1
a1 þ b2

ð4:46Þ

l� ¼ arctg
�a2�b1
a1�b2

ð4:47Þ

Summing up, the positive and negative circular movements produce the elliptical
trajectory. Themajor axis of the ellipse is equal to the sum of radii ðjy þ jþ jy�jÞ and
the minor axis – to their difference ðjy þ j�jy�jÞ.
The eastern longitude of themajor semiaxis of the ellipse lE can be found from the

following considerations. When the pole passes one of the ends of the ellipse major
axis, the phases of circular movements coincide: 
þlþ ¼�(
 þ l�).
Hence:


 ¼ � 1
2
ðlþ þ l�Þ and lE ¼ 
þlþ ¼ 1

2
ðlþ�l�Þ ð4:48Þ
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The longitude of another end of the major axis is lE ¼ 180� þ 1
2 ðlþ�l�Þ. The

longitude of the minor axis is obviously equal to 	90� þ 1
2 ðlþ�l�Þ.

From Equations 4.42 and 4.43, it is easy to deduce the relationships for calculating
the coefficients of trigonometric terms, using the known parameters of the circular
movements:

a1 ¼ jy þ jcoslþ þ jy�jcosl�

b1 ¼ �jy þ jsinlþ�jy�jsinl�

a2 ¼ jy þ jsinlþ�jy�jsinl�

b2 ¼ jy þ jcoslþ�jy�jcosl� ð4:49Þ

Also, the formulas similar to (4.36–4.49) can be written for the pole�s complex
coordinate m .
The changes in the pole�s coordinate m ¼ n1 þ in2, which are due to the effect

of excitation y ¼ y1 þ iy2, are described by Equation 4.29 (as it is shown above).
With account for expressions s0¼ 2p/T and dt¼ d 
/(2p), it takes the form:

iT
dm
d
 þm ¼ y ð4:50Þ

The solution of this linear inhomogeneous differential equation of the first order
is easily found (for example, with the help of Bernoulli�s substitution or by the
method of variation of constants):

m ¼ m0e
i

T þ e

i

T

iT

ð


�¥

ye

0
iTd
0 ð4:51Þ

The first item in the right side of Equation 4.51 describes the free circular
movement of the pole (with Chandler�s period T and radius m0) and the second
item – the forced oscillation. Substituting the excitation function of the form (4.36)
in (4.51) and integrating the received expression, we determine the forced oscillation
in the explicit form:

mb ¼
1

T2�1
�ða1 þTb2Þ�iða2�Tb1Þ½ �cos
 þ ðTa2�b1Þ�iðTa1 þ b2Þ½ �sin
f g

ð4:52Þ
And if we use the excitation function of the form (4.38), then the poles� forced

motion is described by the expression:

mb ¼ � 1
T�1

y þ ei
 þ 1
T þ 1

y�e�i
 ð4:53Þ

To characterize the pole�s motion in the form similar to expressions (4.40)
and (4.41), we can write the equations:

mc ¼ m þ þm� ¼ nc1 þ inc2 ms ¼ iðm þ�m�Þ ¼ ns1 þ ins2 ð4:54Þ
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These equations give:

nc1 ¼ Reðm þ þm�Þ ¼ � 1
T�1

jy þ jcoslþ þ 1
T þ 1

jy�jcosl�

ns1 ¼ Imð�m þ þm�Þ ¼ 1
T�1

jy þ jsinlþ� 1
T þ 1

jy�jsinl�

nc2 ¼ Imðm þ þm�Þ ¼ � 1
T þ 1

jy þ jsinlþ� 1
T þ 1

jy�jsinl�

ns2 ¼ Reðm þ�m�Þ ¼ � 1
T�1

jy þ jcoslþ� 1
T þ 1

jy�jcosl�: ð4:55Þ

Hence, if the Earth is subject to the action of the factor that is described by the
harmonic excitation function with an annual period, the poles move with the same
period but different amplitude. The Earth�s dynamic system transforms the ampli-
tudes in such a way that the amplitude of the initial excitation grows by 1/(T� 1)
times for the positive circular movement and diminishes by 1/(T þ 1) times for the
negative circular movement (T � 1.2).
Also, Equation 4.50 allows one to solve the reverse problem: to find the parameters

of the excitation function by the known coordinates of the pole. In order to derive the
calculation formulas, we substitute expressions

m ¼ nc1cos
 þ ns1sin
 þ iðnc2cos
 þ ns2sin
Þ ð4:56Þ
and (4.36):y ¼ ða1 þ ia2Þcos
 þðb1 þ ib2Þsin
 into Equation 4.50, differentiatem,
and equate the similar terms. As a result we obtain:

a1 ¼ nc1�Tns2; b1 ¼ ns1 þTnc2
a2 ¼ nc2 þTns1; b2 ¼ ns2�Tnc1

ð4:57Þ

If we substantiate expressions

m ¼ m þ ei
 þm�e�i
 andy ¼ y þ ei
 þy�e�i
 ð4:58Þ

into (4.50), then in a similar manner we obtain:

y þ ¼ ð1�TÞm þ andy� ¼ ð1�TÞm� ð4:59Þ

Relationships (4.57)–(4.59) make it possible to calculate the needed parameters
of the excitation functions with the use of the observed characteristics of the Earth�s
poles� motion with an annual period.
When using functions ci of the atmospheric angular momentum, Equation 4.29

for the poles� motion has the form:

i
s0

dm
dt

þm ¼ � i
W
dc
dt

�c ð4:60Þ

Here, the equatorial components of the angular momentums of the Earth and
atmosphere are connected by the oscillation differential equation. The periods of the
free oscillations of the Earth and atmosphere are essentially different: for the Earth
T¼ 2p/s0¼ 430 days and for the atmosphere T0¼ 2p/w¼ 1 day.
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Let at t¼ 0 be m ¼ m0, and c ¼ c
0
. Then, solving Equation 4.60 by standard

methods and using the integration by parts, we find:

m ¼ eist m0�is 1þ s
w

	 
 ðt

0

ce�istdt

2
4

3
5� s

w
c�c

0
eist

h i
ð4:61Þ

4.6
Equation of Motion of the Earth�s Spin Axis in Space

The motion of the Earth with respect to its center of masses is most convenient to
be described with the help of Euler�s angles y, q, and j. They characterize the
orientation of the moving coordinate system Oxi with respect to the inertial space
coordinate system Oxi and are shown in Figure 4.2. As is seen from this figure, the
moving systemOxi can be transformed from some position of the inertial systemOxi
into the position shown in Figure 4.2, by way of three consecutive turnings:

1. the turning through angle y around axis Ox3, after which axis Ox2 takes up the
position of the line of knots ON and axis Ox1–the position of OA;

2. the turning through angle q around line ON, after which axis Ox3 matches with
axis Ox3 and line OA–with line OB;

3. the turning through angle j around axis Ox3, after which line OB matches with
axis Ox1 and line ON with axis Ox2.

Figure 4.2 Euler�s angles.
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Resulting from these turnings, axesOxi take up the position shown in Figure 4.2.
Angles y, q, and j are called the angles of precession, nutation, and proper rotation,
respectively.
Thus, the transition from coordinate system Oxi to coordinate system Oxi may be

represented as three successive turnings of Ti. The formula for transforming the
coordinates is described by equation x¼TX, where matrix Tmay be obtained:

T¼ T3ðjÞT2ðqÞT1 yð Þ

¼
cosj sinj 0

�sinj cosj 0

0 0 1

0
B@

1
CA �

cosq 0 �sinq

0 1 0

sinq 0 cosq

0
B@

1
CA �

cosy siny 0

�siny cosy 0

0 0 1

0
B@

1
CA

2
64

3
75

8><
>:

9>=
>;

¼
cosjcosqcosy�sinjsiny cosjcosqsinyþ sinjcosy �cosjsinq

�sinjcosqcosy�cosjsiny �sinjcosqsinyþcosjcosy sinjsinq

sinqcosy sinqsiny cosq

0
B@

1
CA

ð4:62Þ
The derivatives of Euler�s angles are the angular velocities that form the vector of
angular velocity w of the Earth�s rotation:

w¼ _jejþ _qeqþ _yey ð4:63Þ
where ej, eq, and ey are the unit vectors of axes Ox3, ON, and Ox3. Let us express
the projections of vector v{vx1,vx2,vx3} as Euler�s angles and their time derivatives.
For this purpose we project expression (4.63) onto axes Oxi. Then we obtain:

w1 ¼ _qsinj� _ysinqcosj
w2 ¼ _qcosjþ _ysinqsinj
w3 ¼ _jþ _ycosq

ð4:64Þ

Equations 4.64 are called Euler�s kinematics equations.
Also, one can express the derivatives of Euler�s angles as projections of wi:

_y ¼ 1
sinq

ðw2sinj�w1cosjÞ
_q ¼ w1sinjþw2cosj
_j ¼ w3 þðw1cosj�w2sinjÞctgq

ð4:65Þ

Let us assumeEuler�s anglesy,q, andj as the generalized coordinates and express
the kinetic energy E of the rotation of the dynamically symmetric Earth in terms of
these angles and their derivatives:

E ¼ 1
2

Að _q2 þ _y2sin2qÞþCð _jþ _ycosqÞ2
h i

ð4:66Þ

Knowing the Lagrangian function R¼E�U, we can set Lagrange�s equation:

d
dt
qR
q _qi

� qR
qqi

¼ 0 ð4:67Þ
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where U is the potential energy; q1¼y, q2¼ q, and q3¼j are Euler�s angles.
Calculating the partial derivatives of E and U and substantiating them in (4.67),
we obtain:

d
dt

A _ysin2qþCð _jþ _ycosqÞcosq� � ¼ � qU
qy

A€q�A _y2sinqcosqþCð _jþ _ycosqÞ _ysinq ¼ � qU
qq

d
dt

Cð _jþ _ycosqÞ½ � ¼ � qU
qj

¼ 0

ð4:68Þ

The potential energy does not depend on j, because the Earth is a body of
revolution and its gravity field is symmetrical with respect to the axis of rotation.
From the third Equation 4.68 it follows:

_jþ _ycosq ¼ const � W ð4:69Þ
With account for (4.69), Equation 4.68 can be rewritten in the following form:

A €ysin2qþ 2A _y _qsinqcosq�CW _qsinq ¼ � qU
qy

A€q�A _y2sinqcosqþCW _ysinq ¼ � qU
qq

ð4:70Þ

The velocities of precession _y and nutation _q of the Earth�s spin axis are by many
orders of magnitude lower than the angular velocity of the Earth�s diurnal rotation
_j ¼ W. Therefore, one may neglect the first two terms in the left part of (4.70). As a
result, we have:

dq
dt

¼ 1
CWsinq

qU
qy

sinq
dy
dt

¼ � 1
CW

qU
qq

ð4:71Þ

Complex variables are generally introduced into (4.71). In this case we obtain:

dq
dt

þ isinq
dy
dt

¼ 1
CW

1
sinq

qU
qy

�i
qU
qq

� �
ð4:72Þ

Equations 4.71 and 4.72 are called the Poisson equations. They describe changes
in the direction of the Earth�s spin axis with respect to the inertial space coordinate
system Oxi, which occur under the effect of gravity of the Moon, Sun, and planets.
These equations are the fundamental equations of the theory of precession and
nutation, which will be more thoroughly discussed in Chapter 5.
Thus, the theory of instabilities of the Earth�s rotation, which is presented in this

chapter, shows that these instabilities can be expressed with the help of the excitation
functions, which in most cases cannot be analytically obtained. They should be
determined from empirical data on the processes occurring on the Earth. In the case
of the effect of the atmosphere, the excitation functions are determined either from
the data on changes in the components of the moment of inertia (the effect of
redistribution of the air and water masses) and the variations in the relative angular
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momentum of the atmosphere (the effect of winds) or by calculating the torques of
the atmosphere acting onto the Earth�s surface. In the theory of precession and
nutation, the excitations are themoments of forces acting onto the Earth through the
attraction of celestial bodies surrounding the Earth. There are no principal difficulties
hindering the determination of these forces; the difficulties are associated with the
account for the complicated structure and physical properties of all the envelopes of
the Earth.
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5
Tides and the Earth�s Rotation

5.1
Tide-Generating Potential

Every particle of any geosphere (either atmosphere or ocean or lithosphere) is affected
by the gravitational forces of the Earth and the surrounding celestial bodies, and also
the inertial and electromagnetic forces. The latter two are usually ignored in the tide-
generating theories as they are much less than the former two. The surface of the
geosphere corresponds to a gravitational equipotential surface of all gravitational and
inertial forces. The Earth�s gravitational potential and the potential of the centrifugal
forces arising from the diurnal Earth�s rotation together form an unperturbed level,
while the gravitational potentials of the Moon and the Sun and the centrifugal
potentials arising from the orbital motion of the Earth vary with time and perturb the
geosphere level.
Let us first deduce an expression for the tide-generating potential of the Moon

alone. Following Lamb (1932), we take a unit-mass particle of a geosphere (for
example, ocean) at pointA (Figure 5.1). LetR and dM be the geocentric radii-vectors of
pointsA andMoonM, respectively; the angle zM is the zenith distance of theMoon at
point A, reduced to the Earth�s center. Then the gravitational potential of the Moon
WM at point A is as follows:

WM ¼ � gMM

jdM�Rj ¼ � gMM

dM
1�2

R
dM

cos zM þ R2

d2M

� ��1
2

ð5:1Þ

Here, y is the gravitational constant; MM is the Moon�s mass.

jdM�Rj ¼ ðd2M þR2�2dMR cos zMÞ1=2; ðR � dMÞ ¼ RdM cos zM ð5:2Þ
It is known that the Earth and the Moon revolve translating around the Earth–Moon
system�smass center, the Earth and theMoonmoving along their trajectories, which
are geometrically similar and represent ellipses with a common focus in the center of
mass O1 (Figure 2.2). The Earth�s ellipse E is as many times less than the Moon�s
ellipse of M as the mass of the Moon MM is less than the mass of the Earth ME.
Let us take a coordinate system whose origin is in the Earth�s center of mass and

whose axes are constantly directed at fixed celestial objects. In this coordinate system,
movement of substance is defined not only by the gravitational potential of the
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Moon (5.1) but also by the potential of centrifugal forces KM arising from the
translational motion of the coordinate system revolving, together with the Earth,
around the center of mass O1 of the Earth–Moon system. The centrifugal forces are
identical for all particles of the geosphere and parallel to vector dE (in the opposite
direction of theMoon). This force compensates the lunar gravity force averaged over
the total mass of the Earth�gMM

dM
d3M
. Hence, we find an equivalent of the potential of

the centrifugal force by means of integration by dR:

FM ¼ gMM

d2M
R cos zM þC ð5:3Þ

Summing expressions (5.1) and (5.3), we obtain:

UM ¼ WM þFM ¼ � gMM

dM
1�2

R
dM

cos zM þ R2

d2M

� ��1
2

þ gMM

d2M
R cos zM þC

ð5:4Þ
In the center of theEarth (R¼ 0), potentialUM is equal to zero, consequentlyC ¼ gMM

dM
.

If the first term of the right part (5.4) is expanded into a series in powers of equatorial
parallax R/dM, we have:

UM ¼ � gMM

dM
� gMM

d2M
R cos zM þ gMM

X¥
n¼2

Rn

dnþ 1
M

Pnðcos zMÞ

þ gMM

d2M
R cos zM þ gMM

dM
¼ gMM

X¥
n¼2

Rn

dnþ 1
M

Pnðcos zMÞ
ð5:5Þ

where Pn(cos zm) is the Legendre polynomial of degree n.
Function UM is referred to as the tide-generating potential of the Moon. It

represents a series with the rate of convergence R/dM and the Legendre polynomials
Pn(cos zm), beginning with the second degree. Since R/dM is equal to 0.016, all
terms of the series, except for the first, can be neglected in the first approximation.
Then we have:

U2M ¼ gMM
R2

d3M

3
2
cos2zM� 1

2

� �
ð5:6Þ

Figure 5.1 A scheme for considering the tide-generating force of the Moon.
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If U2M is considered a function of the position of point A, it is a zonal spherical
harmonic of the second degree with an axis parallel to dM. It sufficiently accurately
describes the tide-generating potential of the Moon.
Similarly, expressions for the tide-generating potentials of the Sun, planets and

other celestial bodies are derived. ReplacingMM, dM and zM in (5.5) and (5.6) by the
mass of the Sun MS, its geocentric distance dS and geocentric zenith distance zS,
respectively, we find the tide-generating potential of the Sun US:

US ¼ gMS

X¥
n¼2

Rn

dnþ 1
S

Pnðcos zSÞ � gMS
R2

d3S

3
2
cos 2zS� 1

2

� �
ð5:7Þ

Let the Doodson constant G be introduced. Let us denote

GðRÞ ¼ 3
4
g 0m

R2

c3
ð5:8Þ

where g 0 is the gravitational constantmultiplied by the Earth�smass;m is themass of a
perturbingbody (inunits of theEarth�smass); c is the semimajor axis of theorbit of the
perturbing body; R is the distance from observer A to the Earth�s center. The average
radius of the Earth is denoted as a, and gravitational acceleration as g¼ g 0/a2. Hence:

GðRÞ ¼ 3
4
m
ga2

c3
R2 ¼ R

a

� �2

G ð5:9Þ

where G ¼ GðaÞ ¼ 3
4m

ga4

c3 ¼ 3
4 g

0m a2
c3 is referred to as the Doodson constant. Its value

depends on the perturbing body. For tides caused by the Moon (m¼ 1/81.30;
c¼ 60.27a; a¼ 6 371 012m; g¼ 9.8204m/s2), the Doodson constant is equal to:

GM ¼ 2:6364m=s2 ð5:10Þ
For solar tides when m¼ 332 946 and c¼ 23 466a:

GS ¼ 1:2091m2s�2 ¼ 0:46GM ð5:11Þ
The ratio of tide-generating potentials of the Moon and the Sun is equal to:

GM

GS
¼ MM

MS
� d

3
S

d3M
¼ 2:17

that is, the influence of theMoon is 2.17 times as great as that of the Sun. Similarly, it
can be shown that the influence of theMoon is by several orders ofmagnitude greater
than that of Jupiter, Venus, Saturn, and other planets.
The total influence of the lunar and solar tides gives height z(m) of a static tide:

x ¼ U
g
� GM þGS

g
cos 2zþ 1

3

� �
¼ 0:39 cos 2zþ 1

3

� �
ð5:12Þ

that is the reference surface of the Earth may range from þ 52 cm to �26 cm. The
Earth�s figure deformed by the tides of the type described by (5.12) is a harmonious
zonal-typespheroidof theseconddegreewhoseaxisgoes throughtheperturbingbody.
Expression for tide-generating potential U2 contains a coordinate of horizontal

system of celestial coordinates, namely geocentric zenith distance z of a perturbing
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body. It is inconvenient to use local coordinates. Therefore, the equatorial system of
celestial coordinates is used instead of the horizontal system (instead of z, declination
d, hour angleH and astronomical coordinates of an observation point (latitude j and
longitude l) are used (Melchior, 1971, 1983). The following basic formula of a
parallactical triangle is used:

cosz ¼ sin j sin dþ cos j cos d cosH ð5:13Þ
Let (5.13) be substituted in (5.6), performing the following transformations before:

cos2z ¼ sin 2j sin 2dþ cos 2j cos 2dcos 2H

þ 2sin j cos j sin d cos d cosH

cos2H ¼ cos 2Hþ 1
2

3cos 2z�1 ¼ 3sin 2j sin 2d�1þ 3
2
cos 2j cos 2d cos 2Hþ 1½ �

þ 3
2
sin 2j sin 2d cosH ¼ 3sin 2j sin 2d�1þ 3

2
cos 2j cos 2d

þ 3
2
cos 2j cos 2d cos 2Hþ 3

2
sin 2j sin 2d cosH

The first of these terms can be written as:

3sin2jsin2d�1þ 3
2
ð1�sin2jÞð1�sin2dÞ

¼ 3sin2j sin2dþ 3
2
sin2j sin2d� 3

2
sin2j� 3

2
sin2d�1þ 3

2

¼ 3
2

3sin2j sin2d�sin2j�sin2dþ 1
3

� �

¼ 3
2

3 sin2j� 1
3

� �
sin d� 1

3

� �� �

Finally (5.6) and (5.13) give:

U2 ¼ G
R
a

� �2 c
d

� �3

� cos2j cos2dcos2Hþ sin2j sin2dcosHþ 3 sin2j� 1
3

� �
sin2d� 1

3

� �� �

ð5:14Þ
whereG is theDoodson constant; c is themajor semiaxis of the lunar orbit and d is the
geocentric distance of the Moon; a is the average radius of the Earth.
Such separation of the tide-generating potential into three termswas introduced by

Laplace, who first gave physical and geometrical interpretation of the terms. Each of
the terms describes the corresponding type of tides and the spherical function of the
second degree.
The first spherical function (sectorial harmonic) has nodal lines (zero lines) on

the meridians located in 45� on every side of the meridian of a perturbing body
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(Figure 5.2 (3). These lines divide the Earth into four sectors where the function is
alternately positive and negative. One of the function multipliers is cos 2H, that is
the described tides have a semidiurnal period. The maximal amplitudes are
observed on the equator provided that the declination of the perturbing body is
zero. Tides are zero at the poles. Laplace named these tides of the third type. They
affect neither the short-period variations in the rate of the Earth�s rotation nor the
movement of the poles but cause the Earth�s secular spin-down due to the tide-
generating friction.
The second spherical function is referred to as a tesseral one. As the nodal lines, it

has the equator and the meridian located in 90� from the meridian of the perturbing
body (Figure 5.2 (2)). This function divides the sphere into the areas that have the sign
changed along with the change of the sign of declination d. The tesseral function
contains factor cos H, therefore it describes the tides with the diurnal period. The
maximal amplitudes of the tides are observed at latitudes of �45� provided the
maximal declinationof theperturbingbody.Zero tides are at theequator and thepoles.
Laplacenamed these tides of the second type. They influence the positionof the pole of
inertia, causing precession, nutation andmovement of the Earth�s poles. Tides of the
second type do not affect the rate of the Earth�s rotation.
The third spherical function (zonal harmonic) depends only on the latitude of a

site. Its nodal lines are parallels�35�160 (Figure 5.2 (1). This spherical function does
not explicitly depend on time (hour angleH) and its periods are defined by changes of
declination d and parallax a/c of a perturbing body. 14-day and 27.3-day periods of
lunar tides and 0.5-year and 1-year periods of solar tides prevail here. These tides are
referred to as long-period tides or first-type tides by Laplace�s classification. They do
not displace the pole of inertia but change the polar moment of inertia of the Earth.
Therefore, the zonal tides cause significant variations of the rate of the Earth�s
rotation, the variations having the above-mentioned periods. Due to zonal tides, the
reference surface is constantly displaced downwards at the pole (approximately by
28 cm) and raised at the equator (approximately by 14 cm), which somewhat
increases the compression of the Earth.

5.2
Expansion of Tide-Generating Potential

Tidal analysis and forecast should be based on solar and lunar motion theories.
For a long time the calculation of tides was based on Newcomb�s theory of the

Figure 5.2 Types of the tides: 1 – zonal; 2 – diurnal; 3 – semidiurnal.
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motion of the Sun and Brown�s theory of the Moon�s motion (Brown, 1905, 1919).
The best known is Doodson�s research (Doodson, 1922), who used Newcomb�s and
Brown�s theories in order to perform the harmonic expansion of the tide-generating
potential containing 396 harmonic terms. Subsequently, the expansion was per-
formed by Cartwright and Tayler (1971), Cartwright and Edden (1973), B€ullesfeld
(1985), Xi (1987, 1989), and Tamura (1987, 1995). Until recently the most accurate
expansions of tide-generating potential were performed by Hartmann and Wenzel
(1994, 1995) and Roosbeek (1996) who used different techniques.
Roosbeek (1996) applied an analytical method. He took ephemerides of attractive

bodies from the analytical series of the ELP2000–85 theory (Chapront-Touz�e and
Chapront, 1988) for the spherical coordinates of the Moon and the VSOP87 theory
(Bretagnon and Francou, 1988) for the orbital elements of the major planets of
the Solar System. Roosbeek obtained the expansion of the tide-generating potential
by consecutive multiplications of the initial analytical series for coordinates of the
Moon, the Sun and the planets. The accuracy of the final expansion is obviously
limited by the accuracy of the coordinates of attractive bodies in the initial analytical
series (at the present time, the accuracy of the coordinates is less than that of the
current numerical ephemerides of the Moon and the planets of series DE/LE
calculated by NASAs JPL).
Hartmann and Wenzel (1994, 1995) used a different approach to obtain the

expansion of the tide-generating potential. They used the JPLDE/LE 200 numerical
ephemeris (Standish andWilliams, 1981) to get the coordinates of attractive bodies.
The authors prepared a table of the tide-generating potential for a 300-year period
from 1850 to 2150, with a small interval, and performed Fourier analysis of the
data. This approach is based on the more accurate initial ephemerides of attractive
bodies as compared with the technique used by Roosbeek (1996). A classical
shortcoming of any spectral method is insufficient separation of close-frequency
components if the spectral analysis is carried out on the data calculated (or
measured) over a rather short time period. Nevertheless, Hartmann and Wenzel�s
analytical expansion of the tide-generating potential was the most accurate at that
time (1995).
A similar method was applied by Kudryavtsev (2004) but he used a new technique

of the expansion of an arbitrary tabulated function of the coordinates of the Moon,
the Sun and the planets into Poisson�s series. The technique implies that the
amplitudes and frequencies of the terms of the series are high-degree time
polynomials (as opposed to classical Fourier�s analysis, where the amplitudes and
frequencies of the final expansion are constants). The coordinates of perturbing
bodies were taken from the most accurate long-term DE/LE-406 numerical ephem-
eris (Standish, 1998). The new expansion (KSM03) includes 26 753 terms in the
original format (or 28 806 terms in the standard HW95 format) with amplitudes no
less than 10�8m2/s2.
The theories of the Moon�s motion and the Earth�s rotation employ the following

fundamental arguments: themean anomaly of theMoon l¼ s� p; themean anomaly
of the Sun l0 ¼ h� pS; the mean elongation of the Moon from the ascending node
F¼ s�N; the mean elongation of the Moon from the Sun D¼ s� h; and the mean
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longitude of the ascending node of theMoonN. The arguments depend on themean
longitudes s and h and perigees p and pS of theMoon and themean Sun, respectively.
All the basic arguments are almost linear functions of time. Reduced to the
fundamental epoch of 2000, January 1, 12 h TDB, they are described by the following
expressions (Simon et al., 1994):

l ¼ 134�:96340251þ 477198�:8675T þ 3100:8792T2

þ 000:051635T3�000:0002447T4

l0 ¼ 357�:52910918þ 35999�:05028T�000:5532T2

�000:000136T3�000:00001149T4

F ¼ 93�:27209062þ 483202�:0172T�1200:7512T2

�000:001037T3 þ 0:00000417T4

D ¼ 297�:85019547þ 445267�:1114T�600:3706T2

þ 000:006593T3�000:00003169T4

N ¼ 125�:044555501�1934�:1363T þ 700:4722T2

þ 000:007702T3�000:00005939T4

ð5:15Þ

where T is the time in Julian centuries (36 525 ephemeris days per century) starting
from the fundamental epochof 2000, January 1, 12 hTDB, that is from the JulianDate
JD 2451545.0.
Doodson used linear combinations of the following six independent variables as

arguments of some harmonics of his expansion of the tide-generating potential:

t¼ 180� þ H is the mean Grinvich lunar time,H is the hour angle of theMoon;

s is the mean longitude of the Moon;

h is the mean longitude of the Sun;

p is the mean longitude of the lunar perigee;

N0 ¼�N, where N is the mean longitude of the ascending node of the Moon�s
orbit;

pS is the mean longitude of the solar perigee.

Doodson�s variables are expressed through the fundamental arguments (5.15)
as follows:

t ¼ ST þp�s
s ¼ FþN
h ¼ s�D
p ¼ s�l
N 0 ¼ �N
ps ¼ s�D�l0

ð5:16Þ

The last five variables (5.16) are the mean longitudes measured along the ecliptic
from the average point of the vernal equinox. Each of Doodson�s variables is an
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almost linear time function. So, the mean longitudes reduced to the fundamental
Epoch of 2000, January 1, 12 h TDB, are described by the following expressions:

s ¼ 218�:3166456þ 481267�:8809T�500:279T2

þ 000:0067T3�000:0000552T4

h ¼ 280�:46607þ 36000�:7698T þ 100:089T2

þ 000:000057T3�000:0000235T4

p ¼ 83�:3532431þ 4069�:0134T�3700:1582T2

�000:0449T3�000:000189T4

N ¼ 125�:044555501�1934�:1363T þ 700:4722T2

þ 000:007702T3�000:0000594T4 ¼ �N 0

ps ¼ 282�:9369609þ 1�:71952T þ 100:6422T2

�000:000079T3�0:00001T4

ð5:17Þ

Here, as in (5.15), T is the time in Julian centuries. In (5.17), the mean longitudes
are taken equal to the right ascensions.
The mean solar time t can be determined if we equate sidereal times STcalculated

with the Moon (ST¼ t þ s) and with the Sun (ST¼ t þ h):

t ¼ tþ s�h ð5:18Þ
Doodson chose the variables for the expansion of the tide-generating potential so

that the corresponding angular velocities were positive (therefore the changed sign of
the longitude of the ascending angle N) and arranged in the decreasing order. So,
upon performing differentiation on the variables (5.17) with respect to time and
keeping only the constant term, we have the following angular velocities expressed
in �/mean solar hour:

_s ¼ 0:5490165
_h ¼ 0:0410686

_p ¼ 0:0046418

_N
0 ¼ 0:0022064

_ps ¼ 0:00000196

_t ¼ 14:492052109

S _T ¼ 15:0410686

ð5:19Þ

The fundamental periods given in Table 5.1 correspond to these angular velocities
of the variables commonly encountered in the tidal theories:
The tropical month and the tropical year are the time intervals between two

successive passages of the Moon and the Sun, respectively, through the vernal
equinox. The nodical (draconic) month determines the time interval between two
successive transits of the Moon through its ascending node. The anomalistic month
and anomalistic year are the time intervals between two successive transits of the
Moon and the Sun, respectively, through the perigee and perihelion. The synodic
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month determines the period of recurrence of lunar phases. The periods of evection
and variation correspond to cycles of the change of the lunar orbit�s eccentricity under
the influence of the gravitational attraction of the Sun.
The declination d, the hour angleH and the distance c/d of the Moon and the Sun

are complicated functions of time t. Therefore, the factors with these parameters in
the expression for the tide-generating potential U are expanded into the trigono-
metrical series (theoretically infinite). In the general case, it is usually represented in
the form (Lambeck, 1988; Moritz and M€uller, 1987):

U ¼
X¥
n¼2

Xn
m¼2

Pnmðsin jÞ
X
j

Cnmjcos wnmjtþ bnmj þmlþðn�mÞp
2

h i
ð5:20Þ

where Cnmj and bnmj are constants; wnmj is the angular velocity; Pnm(sinj) are
Legendre�s polynomials. This expansion differs from Doodson�s expansion in the
signs of coefficients C2mj and the phase angle ðn�mÞ p2 (specifically, the signs of C20j

and C21j and the angle ð2�mÞ p2).

5.2.1
Semidiurnal Waves

Let us deduce the basic harmonics of the tide-generating potential U2 for R¼ a by
using Melchior�s approach (Melchior, 1983). Let us first consider the semidiurnal
waves that are implied by the first term (5.14):

G
c
d

� �3
cos2j cos2d cos 2H ¼ Gj

c
d

� �3
cos2d cos 2H ð5:21Þ

Table 5.1 The fundamental frequencies in the Earth–Moon–Sun motion.

Variable Frequency, �/hour Period, mean
solar day

Definition

t 14.492052109 1.035050 The mean lunar day (24 h 50.47min)
s 0.549016530 27.321582 The mean tropical month of the Moon
H 0.041068639 365.242199 The mean tropical year of the Sun
P 0.004641837 8.847 yr The mean period of revolution of the

lunar perigee
N0 0.002206413 18.613 yr The mean period of regression of the

lunar nodes
ps 0.000 001 961 20 940 yr The revolutionperiod of theEarth orbital

perihelion
s�N 0.551222943 27.21222 The lunar draconic month
s� p 0.544 374 693 27.55 455 The lunar anomalistic month
h� pS 0.041066678 365.25964 The solar anomalistic year
s� h 0.507947891 29.53059 The lunar sinodic month
s� 2hþ p 0.471521089 31.81194 The evection period
2(s� h) 1.015895782 14.765330 The variation period
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For the Moon, the hour angleH¼ t. The declination changes from the maximal
value� 23�260 � 5� to the minimal value��(23�260 � 5�) over the tropical month
(27.321 days). Therefore, cos2 d can be approximated as:

cos2d � 1þ n cos 2s ð5:22Þ
Because of the ellipticity of the lunar orbit, the distance between the Earth and the

Moon varies over a month from 356 400 km to 406 700 km. This taken into account,
we can write:

c
d

� �3
� 1þm cosðs�pÞ ð5:23Þ

Substituting (5.22) and (5.23) in (5.21), we have:

Gj½1þm cos ðs�pÞ�ð1þ n cos 2sÞcos 2t
¼ Gjcos 2tþGjm cos ðs�pÞcos 2t
þGjn cos 2s cos 2tþGjm n cosðs�pÞcos 2s cos 2t

ð5:24Þ

Here, the basic wave (carrier) Gjcos2t is separated. As the product of cosines can
be written as:

cos a cos b ¼ 1
2
cosðaþ bÞþ 1

2
cosða�bÞ ð5:25Þ

the last three terms (5.24) give the following pairs of the side harmonics that are
equidistant, in terms of the arguments, from the basic wave:

cosðs�pÞcos2t ¼ 1
2
cos 2t�ðs�pÞ½ � þ 1

2
cos 2tþðs�pÞ½ � ð5:26Þ

cos2scos2t ¼ 1
2
cos2ðt�sÞþ 1

2
cos2ðtþ sÞ ð5:27Þ

cos2scosðs�pÞcos2t ¼ 1
4
cos 2tþð3s�pÞ½ � þ 1

4
cos 2t�ð3s�pÞ½ �

þ 1
4
cos 2tþðsþ pÞ½ � þ 1

4
cos 2t�ðsþ pÞ½ �

ð5:28Þ

All the above presented formulae are valid for the solar tides as well, if the lunar
constants and arguments are replaced by the solar ones.
Let us specify the symbolic designations introduced by Darwin and explain the

sense of the above waves.
M2 	 GM

j cos2t is the principal lunar semidiurnal wave (carrier). It corresponds to
the semidiurnal tide that is created by theMoonmoving uniformly along the circular
orbit in the equatorial plane, at the velocity equal to the true moon�s velocity. The
period of waveM2 is equal to half a lunar day (12 hour 25min), which corresponds to
an hourly velocity of 28�.984.
S2 	 GS

jcos2t is the principal solar semidiurnal wave (carrier) similar to the lunar
waveM2. The period of this wave is equal to half amean solar day, that is 12 hour, and
the angular frequency is 30� per hour.
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N2 	 GM
j mcos½2t�ðs�pÞ� and L2 	 GM

j mcos½2tþðs�pÞ� are two lunar elliptic
semidiurnal waves arising due to the variation in the distance c/d. As follows from
Table 5.1, the angular velocity s� p¼ 0�.544 h�1. Consequently, the angular velocities
w and the periods T of waves N2 and L2 are as follows:

ForN2: w ¼ 28�:984�0�:544 ¼ 28�:440; T ¼ 12 hour 39min;

For L2: w ¼ 28�:984þ 0�:544 ¼ 29�:528; T ¼ 12 hour 11min:

The amplitude of tides reaches its maximum when the Moon is at perigee
(s� p¼ 0�), and its minimum when the Moon is at apogee (s� p¼ 180�). The
velocity of the Moon moving along the orbit is greater at perigee and smaller at
apogee. Therefore, the amplitude and period of waveN2 is greater than the amplitude
and period of wave L2. Because of this, wave N2 is referred to as the principal elliptic
wave and wave L2, as the small elliptic wave.
Similar to the lunar waves N2 and L2, there are the following two waves T2 and R2

generated by the Sun:

T2 	 GS
jm

Scos½2t�ðh�pSÞ� is the large elliptic semidiurnal wave whose angular
velocity is 30� � 0�.041 þ 0� ¼ 29�.9589 h�1, and period, 12 hour 1min;

R2 	 GS
jm

Scos½2tþðh�pSÞ� is the small elliptic semidiurnalwavewhose angular
velocity is 30�.0411 h�1 and period, 11 hour 59min;

MK2	 nM
2 GM

j cos2ðtþ sÞ is the lunar declinational semidiurnal wave (that is
arising from the change of declination). The angular velocity of wave MK2:
w¼ 28�.984 þ 1�.098¼ 30�.082 h�1 is easily determined from the data in
Table 5.1. The period is 11 hour 58min, which is equal to half a sidereal day;

SK2	 nS
2 G

S
jcos2ðtþ hÞ is the solar declinational semidiurnal wave whose angular

velocity and period are the same as the velocity and period of the lunar waveMK2.
Thesewaves cannot be separated, therefore their combination ðMK2 þ SK2Þ ¼K2

is considered, referred to as the lunisolar semidiurnal wave.

Other semidiurnal waves are related to perturbations of the lunar orbit caused by
the Sun. The ellipticity of the lunar orbit increases (decreases) when the Sun crosses
themajor (minor) axis of the lunar orbit. If the lunar perigee had not moved, the Sun
would have passed through each axis of the lunar orbit precisely every half a year and
the frequency of the eccentricity variation would have been (s� 2 h). However, the
lunar perigee moves from the west to the east with frequency p. Therefore, the
frequency of actual changes of the lunar orbit�s eccentricity (�20%) is (s� p)� 2
(h� p). This effect is referred to as evection. Its variable part can be approximated by
the following expression: [1� cos(s� 2h þ p)].
Under the influence of the gravitational attraction of the Sun, the eccentricity of the

lunar orbit increases at the full and new moon and decreases at the first quarter and
last quarter moon. In this case, the frequency of the eccentricity variation is 2 (s� h),
that is half a synodic month. This effect is referred to as variation. It is approximated
by the following expression: [1� cos2(s� h)].
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If multipliers [1� cos(s� 2h þ p)] and [1� cos2(s� h)] are substituted in (5.24)
and transformations (5.25) are performed we have a new series of pairs of the
harmonics corresponding to waves M2, N2, L2, MK2, and so forth. Here, we only
mention two waves of evection for M2, named as:
l2 with argument 2tþðs�2hþ pÞ
n2 with argument 2t�ðs�2hþ pÞ and wave of variation for M2, named as:

m2 with argument 2t�2ðs�hÞ
The amplitudes of the evectional and variational harmonics of waves N2, L2 and

MK2 are small and are not addressed here.

5.2.2
Diurnal Waves

Diurnal waves are described by the second term of expression (5.14):

G
c
d

� �3
sin 2j sin 2dcosH ¼ G2j

c
d

� �3
sin 2d cosH ð5:29Þ

Here, the basic source of waves is the variations of declination d and distance c/d of
theMoon and the Sun. Let us consider theMoon case, followingMelchior (Melchior,
1983, 1971). Using the sine formula of spherical trigonometry, it can be written: sind
sin 90� ¼ sin s sin e, where e is the inclination of the Moon�s orbit. Consequently
sind¼ sin e sin s. The average value ofmultiplier sin 2d is equal to zero and cosd� 1.
Therefore, multiplier sin 2d in (5.29) can be approximated by expression:

sin 2d � 0þ 2sin e sins ð5:30Þ
Substituting (5.23) and (5.30) in (5.29) and taking into account thatH¼ t, we have

2G2j½1þm cosðs�pÞ�sin e sin s cos t

¼ 2G2jsin e sin s cos tþ 2G2jm sin e cosðs�pÞsin s cos t

¼ G2jsin e½sinðtþ sÞ�sinðt�sÞ�

þ 1
2
G2jsin efsin ðtþ sÞþ ðs�pÞ½ � þ sin ðtþ sÞ� s�p½ �½ �g

� 1
2
G2jsin efsin ðt�sÞ�ðs�pÞ½ � þ sin ðt�sÞþ ðs�pÞ½ �g

ð5:31Þ

As the average value of sin 2d¼ 0, there is no basic lunar diurnal wave (carrier)M1

with argument t (angular velocity 14�.492) in the expansion (5.31). For the same
reason, there also is no basic solar wave (carrier) S1 with argument t and a period of 1
day. There are two declinational waves and four elliptic waves:

MK1 is the lunar declinational wave with argument (t þ s)¼ ST¼ 14�.492 þ
0�.549¼ 15�.041;
O1 is the principal lunar declinational wave with argument (t� s)¼
14�.492� 0�.549¼ 13�.943.

Theamplitude ofwaveO1 is a little greater than that ofwaveMK1, soO1 is referred to
as the principal wave. The period of wave MK1 is exactly equal to one sidereal day.
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Each of wave O1 and MK1 has two side elliptic waves:

Q1, with argument (t� s)� (s� p)¼ 13�.943� 0�.544¼ 13�.399 and a period of
26 hour 52min;
e (O1), with argument (t� s) þ (s� p)¼ 13�.943 þ 0�.544¼ 14�.487 and a
period of 24 hour 51min;
J1, with argument (t þ s) þ (s� p)¼ 15�.041 þ 0�.544¼ 15�.585 and a period
23 hour 6min;
eðMK1Þ with argument (t þ s)� (s� p)¼ 15�.041� 0�.544¼ 14�.497 and a
period of 24 hour 50min.

The angular velocities of waves e (O1) and eðMK1Þ are very close, for the difference
between their arguments is only 2p. The periods of waves e (O1) and eðMK1Þ are
practically the same as the period of the absent waveM1, therefore their combination
is usually designated by symbol M1.
In the solar tides case, the expansion of the type (5.31) gives the following waves

that are similar to the above-described lunar diurnal waves:

SK1 the solar declinational wavewith argument (t þ h)¼ST¼ 15�.000 þ 0�.041
¼ 15�.041 and the period exactly equal to sidereal day 23 h 56min;
P1 the principal solar declinational wave P1, with argument (t� h)¼ 15�.000�
0�.041¼ 14�.959 and a period of 24 hour 4min.

Thus, the solar wave SK1 cannot be distinguished from the lunar waveMK1. This is
why their combination K1, named the lunisolar diurnal wave, is addressed.
Each of the waves, SK1 and P1, has a pair of side harmonics arising from the

ellipticity of the Earth�s orbit:

p1, with argument (t� h)� (h� pS)¼ 14�.959� 0�.041¼ 14�.918 and a period of
24 hour 9min;
e (P1), with argument (t� h) þ (h� pS)¼ 14�.959 þ 0�.041¼ 15�.000 and a
period of 24 hour;
y1, with argument (t þ h) þ (h� pS)¼ 15.041 þ 0�.041¼ 15�.082 and a period
of 23 hour 52min;
eðSK1Þ, with argument (t þ h)� (h� pS)¼ 15�.041� 0�.041¼ 15�.000 and a
period of 24 hour.

Variable pS is very small, for its period is 20 940 years. Consequently, the angular
velocities and periods of waves e (P1) and eðSK1Þ are practically the same as the
missing main solar wave S1. So, the waves e (P1) and eðSK1Þ are usually considered
one wave that is designated by S1.
Longitudes s and h are counted along the ecliptic, and right ascensionsa, along the

equator, thereforea� s� 0.043 sin 2s. These relationships taken into account, we get
new waves:

the lunar declinational second order wave OO1 with argument t þ 3s ¼
14�.492 þ 1�.647¼ 16�.139 and a period of 22 hour 18min;
the solar declinational diurnal wave j1 with argument t þ 3h¼ 15�.000 þ
0�.123¼ 15�.123 and a period of 23 hour 48min.
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The influence of the evection and the variations give rise to the diurnal waves r1,
q1, c1, s1, SO2, and t1 that have small amplitudes.

5.2.3
Long-Period Waves

Long-period waves are described by the third term of expression (5.14):

3G
c
d

� �3
sin2j� 1

3

� �
sin2d� 1

3

� �
¼ 3

2
G3j

1
3
�cos2d

� �
ð5:32Þ

In this case, the waves result from the variation of the declination and distances c/d
of the Moon and the Sun.
TheMoon�s declination d changes with a period of 27.322 day, which corresponds

to an angular velocity of 0�.549 h�1. As the expression (5.32) contains cos2d, the
period of the lunar declinational waves is equal to half a period of d, that is 13.66 days.
This wave is denoted withMf, whichmeans the lunar fortnightly wave. The wave has
argument 2s and an angular velocity of 1�.098 h�1.
The Sun�s declination varies with a period of one year, so the period of the solar

declinational wave is 0.5 year. This wave is designated by symbol Ssa and has
argument 2h and an angular velocity of 0�.082 h�1.
Elliptic waves are created due to the variation of the distance c/d. Among these

waves, the most appreciable is the lunar monthly waveMm. Its argument is equal to
s� p¼ 0�.5490� 0�.0046¼ 0�.5444, and the period, 27.55 days.
The greatest among the solar elliptic waves is the solar annual wave SA with

argument

h�pS ¼ 0�:0411 h�1

The nodes of the lunar orbit slowly move along the ecliptic from East to West,
making a complete revolution in 18.6 years. The perigee of the lunar orbit moves
from West to East with a period of 8.85 years. Therefore, all the Moon-related
multipliers of the three tide types slowly vary with time. Also, the parameters of the
observable tides continuously vary.

5.2.4
General Classification of Tidal Waves

The arguments of all the above-described tidal waves represent linear combinations
of six independent Doodson�s variables with the constant coefficients assuming the
values 0, �1, �2, �3, . . .. Based on this, Doodson introduced argument numbers
that allowed all tidal waves to be classified. For this purpose, in his expression for
the argument of waves, he put the Doodson variables in order of decreasing
angular velocities and calculated the respective coefficients by using the six code

76j 5 Tides and the Earth�s Rotation



numbers dr:

d1tþðd2�5Þsþðd3�5Þhþðd4�5Þpþðd5�5ÞN 0 þ ðd6�5ÞpS ð5:33Þ

All dr are positive integers. As the arrangement of the variables in (5.33) is
unchangeable, a tidal wave can be characterized by a six-digit argument number
consisting of six code numbers d1d2d3d4d5d6.
The first code number d1 is always equal to the order m of the analyzed spherical

harmonic and consequently can assume values 0, 1 and 2 in the above-mentioned
expansion.Other codenumbersmay vary from8 to2. For example, according to (5.33),
the argument number of the solar elliptic wave p1 with argument t� 2h þ pS¼ t þ
s� 3h þ pS is 162 556.
As Doodson�s variables in (5.33) are arranged in order of decreasing angular

velocities, the angular velocity increases with the argument number of the wave. A
systematic classification of tidal waves can be based on this rule. The above-described
tidal waves are listed in Table 5.2 in order of increasing argument numbers (the
second column), and therefore in order of ascending angular velocities (the fourth
column), or in order of descending periods (the fifth column). Note that the first code
number is equal to 0 for the long-period waves; 1, for the diurnal waves; and 2, for the
semidiurnal tidal waves. The sixth column presents the amplitudes of the waves
calculated by Hartmann and Wenzel (1994, 1995).

5.3
Theory of Tidal Variations in the Earth�s Rotation Rate

Tidal deformations of the Earth�s figure result in changes in the components of the
Earth�s inertia tensor. This results in changes in the rate of the Earth�s rotation.
Jeffreys was the first to notice it (Jeffreys, 1928). Woolard calculated the basic
harmonics of the tidal variations in the timeUT1 based on his fundamental research
of the tide-generating potential (Woolard, 1959). There aremore accurate calculations
of the tidal effects on the Earth�s rotation rate (Wahr, Sasao and Smith, 1981; Yoder,
Williams and Parke, 1981). Let us consider the principles of the theory of the tide-
generated instability of the Earth�s rotation.
Let us consider the fluctuations in the Earth�s rotation rate with periods of 1 to 365

days. For these periods, the angular momentum of the Earth and its atmosphere
relative to the axis of rotation is constant:

I33w3 ¼ const ð5:34Þ

So, differentiating (5.34) and using increments, we have:

n 	 dw3

w3
¼ � dI33

I33
ð5:35Þ

5.3 Theory of Tidal Variations in the Earth�s Rotation Rate j77



Ta
bl
e
5.
2
Th

e
m
ai
n
tid

al
w
av
es
.

Ti
de

sy
m
bo

l
D
oo

ds
on

�
N
um

be
r

A
rg
um

en
t
a j

Fr
eq
ue
nc
y
o
j

(d
eg
re
e/
ho

ur
)

Pe
rio

d
(d
ay
s)

A
m
pl
itu

de
C
j,

(c
m

2
s�

2 )
Ti
de

na
m
e

Lo
n
g-
pe
ri
od

ti
de
s

M
0

05
5
55

5
0

0.
00
00

00
�5

94
4

C
on

st
an

t
fl
at
te
n
in
g
fr
om

M
oo
n

S 0
05

5
55

5
0

0.
00
00

00
�2

75
1

C
on

st
an

t
fl
at
te
n
in
g
fr
om

Su
n

S a
05

6
55

4
h
�
p s

0.
04
10

68
7

36
5.
25

�1
38

So
la
r
an

n
u
al

Ss
a

05
7
55

5
2h

0.
08
21

37
18

2.
62

�8
55

So
la
r
se
m
ia
n
n
u
al

M
s m

06
3
65

5
s�

2h
þ
p

0.
47
15

21
31

.8
1

�1
86

M
m

06
5
45

5
s�

p
0.
54
43

75
27

.5
5

�9
73

Lu
n
ar

m
on

th
ly

M
s f

07
3
55

5
2
(s
�
h)

1.
01
58

96
14

.7
7

�1
61

Lu
n
is
ol
ar

fo
rt
n
ig
h
tly

M
f

07
5
55

5
2s

1.
09
80

33
13

.6
6

�1
84

1
Lu

n
ar

fo
rt
n
ig
h
tly

07
5
56

5
2s
þ
N

0
1.
10
02

39
13

.6
3

�7
63

M
t m

08
5
45

5
3s
�
p

1.
64
24

08
9.
13

�3
53

D
iu
rn
al

ti
de
s

2Q
1

12
5
75

5
t
�
3s
þ
2p

12
.8
54

28
6

1.
16
69

13
0

Lu
n
ar

el
lip

ti
c
se
co
n
d
or
de
r

s
1

12
7
55

5
t
�
3s
þ
2h

12
.9
27
14

1.
16
04

15
7

Lu
n
ar

va
ri
at
io
n
al

Q
1

13
5
65

5
(t
�
s)
�
(s
�
p)

13
.3
98

66
1

1.
11
95

98
1

Lu
n
ar

la
rg
e
el
lip

ti
c:
w
it
h
O

1

r 1
13

7
45

5
(t
�
p)
þ
2(
h
�
s)

13
.4
71

51
5

1.
11
35

18
6

Lu
n
ar

la
rg
e
ev
ec
ti
on

al
O
1

14
5
55

5
t
�
s

13
.9
43
03
6

1.
07
58

51
25

P
ri
n
ci
pa
ll
u
n
ar

de
cl
in
at
io
n
al

M
1

15
5
65

5
(t
þ
s)
�
(s
�
p)

14
.4
96

69
4

1.
03
47

�4
03

Lu
n
ar

sm
al
le

lli
pt
ic
:w

it
h

M
K
1

p 1
16

2
55

6
(t
�
h)
�
(h
�
p S
)

14
.9
17

86
5

1.
00
55

13
9

So
la
r
el
lip

ti
c:
w
it
h
P
1

P
1

16
3
55

5
t�

h
14

.9
58

93
1

1.
00
27

23
80

P
ri
n
ci
pa
ls
ol
ar

de
cl
in
at
io
n
al

S 1
16

4
55

6
(t
þ
h)
�
(h
�
p S
)

15
.0
00

00
2

1.
0

�5
7

So
la
r
el
lip

ti
c:
w
it
h

S
K
1

M
K

1
16

5
55

5
t
þ
s¼

ST
þ
12

h
15

.0
41

06
9

0.
99
73

�4
92

5
Lu

n
ar

de
cl
in
at
io
n
al

S
K

1
16

5
55

5
tþ

h
¼
ST

þ
12

h
15

.0
41

06
9

0.
99
73

�2
28

0
So

la
r
de
cl
in
at
io
n
al

78j 5 Tides and the Earth�s Rotation



16
5
56

5
t
þ
sþ

N
0

15
.0
43

27
5

0.
99
71

�9
78

Lu
n
ar

c
1

16
6
55

4
(t
þ
h)
þ
(h
�
p S
)

15
.0
82

13
5

0.
99
46

�5
7

So
la
r
el
lip

ti
c:
w
it
h

S
K
1

j
1

16
7
55

5
tþ

3h
15

.1
23

20
6

0.
99
18

�1
02

So
la
r
de
cl
in
at
io
n
al

J 1
17

5
45

5
(t
þ
s)
þ
(s
�
p)

15
.5
85

44
3

0.
96
24

�4
03

Lu
n
ar

el
lip

ti
c:
w
it
h

M
K
1

O
O
1

18
5
55

5
t
þ
3s

16
.1
39

10
2

0.
92
94

�2
20

Lu
n
ar

de
cl
in
at
io
n
al

se
co
n
d
or
de
r

Se
m
id
iu
rn
al

ti
de
s

2N
2

23
5
75

5
2t

�
2
(s
�
p)

27
.8
95

35
5

0.
53
77

þ3
13

Lu
n
ar

el
lip

ti
c
se
co
n
d
or
de
r:
w
it
h
M

2

m 2
23

7
55

5
2t

�
2
(s
�
h)

27
.9
68

20
8

0.
53
63

þ3
78

Lu
n
ar

va
ri
at
io
n
al

N
2

24
5
65

5
2t

�
(s
�
p)

28
.4
39

73
0

0.
52
74

þ2
36

6
P
ri
n
ci
pa
l
lu
n
ar

el
lip

ti
c:
w
it
h
M

2

n 2
24

7
45

5
2t

�
(s
�
2h

þ
p)

28
.5
12

58
3

0.
52
61

þ4
49

Lu
n
ar

la
rg
e
ev
ec
ti
on

al
M

2
25

5
55

5
2t

28
.9
84

10
4

0.
51
75

þ1
23

56
P
ri
n
ci
pa
l
lu
n
ar

l 2
26

3
65

5
2t

þ
(s
�
2h

þ
p)

29
.4
55

62
5

0.
50
92

�9
1

Lu
n
ar

sm
al
l
ev
ec
ti
on

al
L 2

26
5
45

5
2t

þ
(s
�
p)

29
.5
28

47
9

0.
50
80

�3
49

Lu
n
ar

sm
al
l
el
lip

ti
c:
w
it
h
M

2

T
2

27
2
55

6
2t
�
(h
�
p S
)

29
.9
58

93
3

0.
50
07

þ3
36

So
la
r
la
rg
e
el
lip

ti
c:
w
it
h
S 2

S 2
27

3
55

5
2t

30
.0
00

00
0

0.
5

þ5
73

8
P
ri
n
ci
pa
l
so
la
r

R
2

27
4
55

4
2t
þ
h
�
p S

30
.0
41

06
7

0.
49
93

�4
8

So
la
r
sm

al
l
el
lip

ti
c:
w
it
h
S 2

M
K

2
27

5
55

5
2
(t
þ
s)
¼
2S

T
)

30
.0
82

13
7

0.
49
86

þ1
06
7

Lu
n
ar

de
cl
in
at
io
n
al

S
K

2
27

5
55

5
2(
tþ

h)
¼
2S

T
30

.0
82

13
7

0.
49
86

þ4
95

So
la
r
de
cl
in
at
io
n
al

M
3

35
5
55

5
3t

43
.4
76

15
6

0.
34
50

�1
50

P
ri
n
ci
pa
l
lu
n
ar

5.3 Theory of Tidal Variations in the Earth�s Rotation Rate j79



The Earth�s inertia tensor is as follows:

Iij ¼
ððð
V

rðx2l dik�xixkÞ dV ð5:36Þ

The trace of this tensor is as follows:

I11 þ I22 þ I33 ¼
ððð
V

ðx22 þ x23 þ x21 þ x23 þ x21 þ x22Þ r dV ¼ 2
ððð
V

r2r dV

ð5:37Þ
The shape of the Earth changes due to the lunisolar tide-generating potential. In

this context, however, the trace of the inertia tensor of the incompressible Earth does
not change. We will prove it by following Moritz and M€uller (Moritz and M€uller,
1987). Differentiating (5.37) and using increments, we have:

dðI11 þ I22 þ I33Þ ¼ 2
ððð
V

dðr2r dVÞ ¼ 2
ððð
V

f ðrÞYnðq; lÞ dV ð5:38Þ

This expression takes into account that the reaction of an incompressible body to
the nth-degree harmonic of the tide-generating potential is the nth-degree spherical
harmonicYn(q,l). Here, f(r) is some function of radius r ; q andl are the complement
of latitude and longitude, respectively; dV¼ r2 sin q dr dq dl is a volume element.
Owing to the orthogonality of the spherical harmonics, the integral taken through

the spherical surface of Yn(q, l) is equal to zero, so we have:

dðI11 þ I22 þ I33Þ ¼ 2
ðR

0

f ðrÞr2 dr
ð2p

l¼0

ðp

q¼0

Ynðq; lÞsinq dq dl ¼ 0 ð5:39Þ

The figure of the Earth is close to an ellipsoid of revolution, that is I11� I22 and
dI11� dI22. Consequently, (5.39) gives:

dI11 ¼ dI22 ¼ � 1
2
dI33 ð5:40Þ

The tidal deformation of the Earth results in an additional potential dW, which is
proportional to the perturbing tide-generating potential Unm. Considering only the
zonal terms of the second degree, we have

dW ¼ kU20 ð5:41Þ
where k is the Love number.
Let us express the additional potential through the terrestrial parameters. For this

purpose, we use the expression for the Earth�s gravitational potential W:

W ¼ GM
r

1� a
r

� �2
J2P20ðcosqÞ� . . .

� �
ð5:42Þ

Here, G is the gravitational constant; M is the Earth�s mass; J2¼ (I33� I11)/Ma2

is the dynamical form factor of the Earth; a is the equatorial radius. Let us
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differentiate (5.42) and use increments, addressing only the harmonic of the second
degree.

dW ¼ �GM
a2

r3
dJ2P20ðcos qÞ ð5:43Þ

Here,

dJ2 ¼ 1
Ma2

ðdI33�dI11Þ ¼ 3
2Ma2

dI33 ð5:44Þ

Thus, the increment of the potential dW on the Earth�s surface (r¼R) can be
expressed as:

dW ¼ � 3
2
G
R3

P20ðcos qÞ d I33 ð5:45Þ

Equating (5.41) and (5.45), we obtain:

dI33 ¼ � 2
3
k
R3

G
U20

P20ðcos qÞ ð5:46Þ

It is known that the tide-generating potential is described by series (5.20). Changes
in the angular velocity of the Earth�s rotation are caused only by the zonal components
of the potentialUno. Among the zonal components, the componentU20 of the second
degree is dominating. It exceeds by 62 times the magnitude of the nearest harmonic
U30. Hereafter, we only consider the effect of this harmonic:

U20 ¼ P20ðcosqÞ
X
j

cj cos aj ð5:47Þ

Substituting (5.47) into (5.46) and taking into account (5.35) gives the following
expression for the changes in the Earth�s rotation rate:

n ¼ 2
3
k

R3

GI33

X
j

cj cos aj ð5:48Þ

The phases aj of the tide-generating harmonics are expressed through indepen-
dent fundamental arguments (5.15).
At the present time, the time services use the series of the tidal harmonics

including 62 periodic components (Yoder, Williams and Parke, 1981) for the
reducing time scale UT1.
Table 5.3 lists the arguments, periods and amplitudes (amplitude coefficients of

cosines) of the harmonics to be used in calculating the tidal fluctuations in the length
of day and the angular velocity of the Earth�s rotation. The periods are in days, and the
deviations of the day duration d

Q
and the angular velocity dw¼ n�w, in 10�5 s and

10�14 rad/s, respectively.
Derived from Table 5.3, the tidal oscillations in the velocity of the Earth�s rotation

(2) during period October 1, 2006 – December 31, 2007 are depicted in Figure 3.11.
One can see that the tidal variations contribute most to the variations in the Earth�s
rotation with periods of less than onemonth. The deviation of the observed curve (1)
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Table 5.3 Zonal tides term in the length of day d
Q
, and the angular

velocity of the Earth dv (IERS Conventions, 2003).

No. Argument Period (days) d
QQ
(10�5 s) dx (10�14 rad/s)

l l0 F D N

1 1 0 2 2 2 5.64 0.26 �0.22
2 2 0 2 0 1 6.85 0.38 �0.32
3 2 0 2 0 2 6.86 0.91 �0.76
4 0 0 2 2 1 7.09 0.45 �0.38
5 0 0 2 2 2 7.10 1.09 �0.92
6 1 0 2 0 0 9.11 0.27 �0.22
7 1 0 2 0 1 9.12 2.84 �2.40
8 1 0 2 0 2 9.13 6.85 �5.78
9 3 0 0 0 0 9.18 0.12 �0.11
10 �1 0 2 2 1 9.54 0.54 �0.46
11 �1 0 2 2 2 9.56 1.30 �1.10
12 1 0 0 2 0 9.61 0.50 �0.42
13 2 0 2 �2 2 12.81 �0.11 0.09
14 0 1 2 0 2 13.17 �0.12 0.10
15 0 0 2 0 0 13.61 1.39 �1.17
16 0 0 2 0 1 13.63 14.86 �12.54
17 0 0 2 0 2 13.66 35.84 �30.25
18 2 0 0 0 �1 13.75 �0.10 0.08
19 2 0 0 0 0 13.78 1.55 �1.31
20 2 0 0 0 1 13.81 �0.08 0.07
21 0 �1 2 0 2 14.19 0.11 �0.09
22 0 0 0 2 �1 14.73 �0.20 0.17
23 0 0 0 2 0 14.77 3.14 �2.65
24 0 0 0 2 1 14.80 0.22 �0.19
25 0 �1 0 2 0 15.39 0.21 �0.17
26 1 0 2 �2 1 23.86 �0.13 0.11
27 1 0 2 �2 2 23.94 �0.26 0.22
28 1 1 0 0 0 25.62 �0.10 0.08
29 �1 0 2 0 0 26.88 �0.11 0.09
30 �1 0 2 0 1 26.98 �0.41 0.35
31 �1 0 2 0 2 27.09 �1.02 0.86
32 1 0 0 0 �1 27.44 �1.23 1.04
33 1 0 0 0 0 27.56 18.99 �16.03
34 1 0 0 0 1 27.67 �1.25 1.05
35 0 0 0 1 0 29.53 �0.11 0.09
36 1 �1 0 0 0 29.80 0.12 �0.10
37 �1 0 0 2 �1 31.66 �0.24 0.20
38 �1 0 0 2 0 31.81 3.63 �3.07
39 �1 0 0 2 1 31.96 �0.26 0.22
40 1 0 �2 2 �1 32.61 �0.04 0.03
41 �1 �1 0 2 0 34.85 0.16 �0.13
42 0 2 2 �2 2 91.31 0.04 �0.03
43 0 1 2 �2 1 119.61 �0.02 0.01
44 0 1 2 �2 2 121.75 0.98 �0.83
45 0 0 2 �2 0 173.31 �0.09 0.08
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from the calculated curve (2) are associated with hydrometeorological processes (see
Sections 6.4 and 7.6).

5.4
Precession and Nutations of the Earth�s Axis

The theory of tides is inseparably linkedwith the theory of precession and nutation of
the Earth�s rotation axis. But whereas the theory of tides employs the reference
systemOxi rotating along with the Earth, the precession and nutation theory is based
on the inertial reference system Oxi oriented on fixed celestial objects.

5.4.1
Lunisolar Moment of Forces

Theabsolute valueof themomentof forcesL affecting theEarthdue to thegravitational
attraction of theMoon is equal to themoment of forces affecting the Moon due to the
gravitational attraction of the Earth (Melchior, 1971; Melchior, 1983), that is

L ¼ �m d � qW
dqd

� �
ð5:49Þ

where m and d are the mass and declination of the Moon, respectively; d is the
geocentric radius-vector of theMoon;W is theEarth�s gravitational potential described

Table 5.3 (Continued)

No. Argument Period (days) d
QQ
(10�5 s) dx (10�14 rad/s)

l l0 F D N

46 0 0 2 �2 1 177.84 �0.42 0.35
47 0 0 2 �2 2 182.62 16.88 �14.25
48 0 2 0 0 0 182.63 0.07 �0.06
49 2 0 0 �2 �1 199.84 �0.02 0.01
50 2 0 0 �2 0 205.89 0.17 �0.14
51 2 0 0 �2 1 212.32 �0.01 0.01
52 0 �1 2 �2 1 346.60 0.01 �0.01
53 0 1 0 0 �1 346.64 �0.02 0.01
54 0 �1 2 �2 2 365.22 �0.14 0.12
55 0 1 0 0 0 365.26 2.69 �2.27
56 0 1 0 0 1 386.00 0.02 �0.02
57 1 0 0 �1 0 411.78 0.00 0.00
58 2 0 �2 0 0 1095.17 �0.01 0.01
59 �2 0 2 0 1 1305.47 �0.02 0.02
60 �1 1 0 1 0 3232.85 0.00 0.00
61 0 0 0 0 2 �3399.18 0.15 �0.13
62 0 0 0 0 1 �6798.38 �15.62 13.18
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by the following expression:

W ¼ GM
r

1�J2
a
r

� �2 3
2
sin2j� 1

2

� �
þ . . .

� �
ð5:50Þ

HereG is the gravitational constant;M is the mass of the Earth; r is the geocentric
radius; J2 ¼ C�A

Ma2 is the dynamical form factor of the Earth; a is the equatorial radius;C
and A are the polar and equatorial moments of inertia of the Earth, respectively; j is
latitude (here it is identified with d). Bearing in mind that j¼ d, and r¼ d, we
differentiate W. The result is substituted into (5.49):

L ¼ 3
2
Gm
d3

ðC�AÞsin 2d ð5:51Þ

The vector of the moment of forces L is perpendicular to the plane of the meridian
of the Moon, therefore its longitude is 90� less than the longitude of the Moon. The
vector is directly related to the tesseral part of the tide-generating potential. It can be
described as a complex combination of the projections L1 and L2 on the equatorial
coordinate axes (Moritz and Muller, 1992)

L ¼ L1 þ iL2 ¼ ðC�AÞW2
X
j

Bje
�iðwj tþbjÞ ð5:52Þ

whereW is themean angular velocity of the Earth�s rotation;wj is the angular velocity
of the jth tidal wave; bj is the initial phase; Bj is the dimensionless factor.
The lunisolar moment of forces L determines the motion of the poles and

the precession and nutation of the Earth�s rotation axis. Let us address these
phenomena.

5.4.2
Motion of the Earth�s Poles

The polar motion is due to the movement of the instantaneous axis of rotation
of the Earth. For a perfectly rigid Earth model, the motion is described by
Equation 4.17.
Let us substitute expression (5.52) into Equations 4.17 and neglect atmospheric

and oceanic effects ð~c ¼ 0Þ. So we have:

i
sr

dm
dt

þm ¼ iL

W2ðC�AÞ ¼ i
X
j

Bje
�iðwj tþ bjÞ ð5:53Þ

It is more convenient to transform this equation as follows:

dm
dt

�isrm ¼ sr

X
j

Bje
�iðwj tþbjÞ ð5:54Þ

and to assume thatm ¼ m0 for t¼ t0. First, we find the solution of the homogeneous
equation: m ¼ Ceisrt

Then, for the assumed initial condition and the arbitrary constant C ¼ CðtÞ being
varied, we find the general solution of the nonhomogeneous Equation 5.54:
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m ¼ i
X
j

sr

wj þsr
Bje

�iðwj tþ bjÞ þm0e
isrt ð5:55Þ

The solution (5.55) shows that the polar motion of the perfectly rigid Earth is
composed of a slow motion with an amplitude of m0 and a period of 2p/sr� 304
days and a number of rapid small-amplitude movements (about 1=10m0) with
periods of the diurnal lunisolar tides.
For elastic Earth, the polar motion is described by the Equation 4.29. Substituting

the expression for themoment of forces (5.52) into (4.29) and neglecting functions of
the atmospheric and oceanic angular moments gives: (c ¼ _c ¼ 0),

i
s0

dm
dt

þm ¼ ikL
W2ðC�AÞ ¼ ik

X
j

Bje
�ðwj tþbjÞ ð5:56Þ

where s0 is the Chandler frequency; k¼ 1.43 is the parameter of the Earth�s elasticity.
Let us transform (5.56) to the following form:

dm
dt

�is0m ¼ s0k
X
j

Bje
�iðwj tþbjÞ ð5:57Þ

Let m ¼ m0 at the initial moment t¼ 0. Then, solving the nonhomogeneous
differential Equation 5.57 in the same manner as (5.54) gives:

m ¼ i
X
j

ks0

wj þs0
Bje

�iðwj tþbjÞ þm0e
is0t ð5:58Þ

As is shown in Section 3.3, the Chandler frequency s0, and parameter k are
equal:

s0 ¼ WðC�A�RÞ=ðAþRÞ
k ¼ ðC�AÞ=ðC�A�RÞ

Bearing in mind that wj�W and sr¼W(C�A)/A, we have:

ks0

wj þs0
¼ C�A

C
¼ sr

wj þsr

that is, the multipliers of the amplitudes Bj in expressions (5.58) and (5.55) coincide.
Consequently, the effect of the lunisolar diurnal tides on the elastic Earth�s polar
motion is the same as the effect of the lunisolar diurnal tides on the polar motion of
the perfectly rigid Earth. In both cases, the lunisolar moment of forces causes many
low-amplitude (�0.6m) polarmovements with periods of 2p/wj as the diurnal tides�.
The right parts of expressions (5.58) and (5.55) only differ in the second terms
describing the slow polar motion with the Chandler and Eulerian frequencies,
respectively.
Along with the above-discussedmovement of the instantaneous axis of the Earth�s

rotation, the lunisolar moment of forces causes the movement of the angular
momentum vector and the axis of the Earth�s figure. Thesemovements are described
in detail in the book (Moritz and Muller, 1992).
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5.4.3
Precession and Nutations

It can be shown (Moritz and M€uller, 1987) that the right part of Poisson�s Equation
4.71 is expressed through the moment of forces L as follows:

dq
dt

þ isinq
dy
dt

¼ 1
CW

1
sinq

qU
qy

�i
qU
qq

� �
¼ � i

CW
LeiWt ð5:59Þ

Substituting the value of L from (5.52) into (5.59) gives:

dq
dt

þ isinq
dy
dt

¼ �i
C�A
C

W
X
j

Bje
�iðDwj tþbjÞ ð5:60Þ

where Dwj¼wj�W; q is the nutation angle, that is the obliquity of the ecliptic to the
equatorial plane, and y is the precession angle corresponding to the ecliptic
longitude.
The frequency spectrum of the tidal waves in the expansion of the tide-generating

potential is symmetrical with respect to the central frequency W. There are as many
waves to the left of the Earth�s rotation frequencyW as to the right. Let us number the
frequencies so as the frequency wj equal W has index j¼ 0. Then, Dw0¼ 0 and two
componentsmay be isolated in the right part of (5.60) corresponding to the cases j¼ 0
and j 6¼ 0:

dq
dt

þ isinq
dy
dt

¼ �i
C�A
C

B0W�i
C�A
C

X
j 6¼0

WBje
�iðDwj tþ bjÞ ð5:61Þ

The multiplier of sinq can be considered time-constant.
Let the nutation and precession angles be equal to q(t0) and y(t0), respectively, at

the initial moment of time t¼ t0. Then integration of Equation 5.61 gives:

Dqþ iDysinq ¼ �i
C�A
C

B0Wðt�t0Þþ C�A
C

X
j 6¼0

W
Dwj

Bje
�i½Dwjðt�t0Þþ bj �

ð5:62Þ
where Dq¼ q(t)� q(t0), Dy¼y(t)�y(t0). Let us separate the real and imaginary
parts in (5.62):

Dq ¼ C�A
C

X
j 6¼0

W
Dwj

Bjcos Dwjðt�t0Þþbj
h i

ð5:63Þ

Dysinq ¼ �C�A
C

B0Wðt�t0Þþ C�A
C

X
j 6¼0

W
Dwj

Bjsin Dwjðt�t0Þþ bj
h i

ð5:64Þ

Expression (5.63) describes the nutation angle Dq changing with time. One can see
that it has almost periodic changes that represent superposition of theoretically
infinite series of separate harmonics with frequencies of Dwj. There are no secular
changes Dq.
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Expression (5.64) describes the precession angle Dy changing with time. The first
term of the right part of (5.64) increases linearly with time. It is the precession of the
axis of the Earth�s rotation. The second termdescribes almost periodicfluctuations in
the precession angle – similar to thefluctuations in the nutation angleDq. This is why
they are combined into Dq þ iDy sinq, which is referred to as nutation. The term Dq
is nutation in the inclination, whereas Dy sinq is nutation in the longitude.
Thus, the nutation frequency is the tidal frequency minus the frequency of the

Earth�s rotation W. This can be easily understood if one bears in mind that whereas
tides are observed with respect to the reference points located on the Earth and
rotating with it at the angular velocityW, the Earth�s axis precession and nutation are
measured with respect to the fixed celestial objects, that is with respect to an inertial
reference system. Since the tidal frequencies are close to frequency W, the frequen-
cies of the nutational components are very low.
Two tidal waves, whose frequencies are equidistant from the frequencyW, generate

one nutational wave with the frequency Dw¼w�W. Besides the above representa-
tion of the nutational wave in the form (5.62) (nutation in longitude and nutation in
inclination), it can be approximated by the sum of two circular movements in
opposite directions, with identical periods and different amplitudes:

Dqþ iDysinq ¼ ApeiDwt þAre�iDwt ð5:65Þ
The counterclockwise motion of the axis (as viewed from the Celestial North Pole)

which coincides with the direction of the Earth�s rotation, is referred to as the direct
one and the clockwise motion – as the reverse one. Positive frequency Dwj

corresponds to the direct motion, whereas negative frequency �Dwj of the nuta-
tional harmonics corresponds to the opposite motion. As a result of the composition
of the two movements, the axis of the Earth�s rotation moves along an elliptic
trajectory.
The denominator in expressions (5.62)–(4.64) for nutation includes the difference

Dw; therefore the nearer the tidal frequencyw is to the angular velocityW, the greater
the amplitude of nutation. It is clearly demonstrated by Table 5.4 that contains the
basic nutational harmonics and their amplitudes (Melchior, 1968, 1975).
The lunisolar wave K1 is related to the nutation of zero frequency. This is the

lunisolar precession. As a result of the precession, the angle y decreases by 5000, 34
per year; the Moon is responsible for 2/3 of this rate, the Sun, for 1/3.
The principal harmonic of nutation is generated by the tidal waves whose

argument numbers are 165 545 and 165 565. They are so insignificant that they are
not even included in Table 5.2. The harmonic�s amplitude is �1700.2327� sin
23�.44¼�600.85 (in longitude) and þ 900.21 (in inclination). Next in amplitude is
the semiannual nutation caused by the tidal waves P1 and j1. Also, significant is the
two-week nutation caused by the lunar tidal waves O1 and OO1.
At the present time, 106 harmonics are used in calculating the nutation (IERS

Standards, 1989). The first 44 harmonics of this expansion are listed in Table 5.5.
The amplitudes of the harmonics listed in Table 5.5 differ from those in Table 5.4

because Table 5.5 is calculated in view of features of the structure of the Earth (Wahr,
Sasao and Smith, 1981).
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5.5
Introduction to the Theory of Atmospheric Tides

Atmospheric tides are forced oscillations caused by the lunisolar gravitational per-
turbationsandthethermalairmovementduetothetemperaturecontrastsbetweenthe
daylightandnighthemispheres.Certainly, theatmospherecanalsofreelyoscillate,but
then there should be a mechanism to support such free oscillations.
Newton and Laplace contributed most to the development of the theory of tides.

The latter formulated a tidal equation (Laplace�s tidal equation) that is true for both
the atmosphere and the ocean. The main contribution to the theory of the equation
was made by the English astronomer Hough (Hough,1897, 1898). The theory of
solutions to Laplace�s equation is discussed in many works. Hereafter, we will follow
Lamb (1932), Dynamicmeteorology (1937), Dikiy (1969), and Chapman and Lindzen
(1970).
The equations of tides in the atmosphere can be represented in the form of the

equations of tides in an ocean of constant depth. So, we first write the traditional
equations of the tides in the ocean of constant depth h on the rotating Earth of
constant radius a (Izekov and Kochin, 1937; Lamb, 1932):

qul
qt

þ 2wcosqnq ¼ � 1
asinq

1
r
qP
ql

þ qU
ql

� �
ð5:66Þ

Table 5.4 Correspondence between tides and nutations.

Argument
number

Tide
symbol

Nutation
argument,
frequency

Period
(days)

Amplitude,
arcs

Term and
origin

Dw Dh

135 655 Q1 3s� p¼ 1.642408 9.1 �0.00030 þ0.00013 9.1 d, Moon
195 455 —

145 555 O1 2s¼ 1.09803 13.7 �0.2276 þ0.098 Fortnightly, Moon
185 555 OO1

155 655 M1 s� p¼ 0.544375 27.6 þ0.00071 �0.0007 Lunar monthly
175 455 J1
162 556 p1 3h� pS¼ 0.123204 122 �0.0517 þ0.022 Solar terannual
168 554 —

163 555 P1 2h¼ 0.082137 183 �1.3171 þ0.573 Solar semiannual
167 555 j1

164 556 S1 h� pS¼ 0.041067 365 þ0.148 0.0074 Solar annual
166 554 c1

165 575 — 2N¼ 0.004413 3399 þ0.207 �0.0897 9.3 yr, Moon
165 545 — N¼ 0.002206 6798 �17.206 þ9.205 Principal term,

Moon
165 565 —

165 555 K1 1 — — Precession,
Moon and Sun
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Table 5.5 Themain components for nutation in longitude Dy and
obliquity De, referred to the mean equator and equinox of date,
with T measured in Julian centuries from epoch J2000.0.

Argument Period (days) Longitude (0.000100) Obliquity (0.000100)

l l0 F D O

0 0 0 0 1 �6798.38 �172 064 �174.7T 92 052 9.1T
0 0 2 �2 2 182.62 �13 171 �1.7 T 5730 �3.0 T
0 0 2 0 2 13.66 �2276 �0.2 T 978 �0.5 T
0 0 0 0 2 �3399.19 2075 0.2 T �897 0.5 T
0 1 0 0 0 365.26 1476 �3.6 T 74 �0.2 T
0 1 2 �2 2 121.75 �517 1.2 T 224 �0.7 T
1 0 0 0 0 27.55 711 0.1 T �7 0.0 T
0 0 2 0 1 13.63 �387 �0.4 T 201 0.0 T
1 0 2 0 2 9.13 �301 0.0 T 129 �0.1 T
0 �1 2 �2 2 365.22 216 �0.5 T �96 0.3 T
0 0 2 �2 1 177.84 128 0.1 T �69 0.0 T

�1 0 2 0 2 27.09 124 0.0 T �53 0.0 T
1 0 0 �2 0 31.81 �157 0.0 T �1 0.0 T
1 0 0 0 1 27.67 63 0.1 T �33 0.0 T

�1 0 0 0 1 �27.4 �58 �0.1 T 31 0.0 T
�1 0 2 2 2 9.56 �60 �0.0 T 26 �0.0 T
1 0 2 0 1 9.12 �52 �0.0 T 26 0.0 T

�2 0 2 0 1 1305.48 46 0.0 T �24 �0.0 T
0 0 0 2 0 14.77 63 0.0 T �1 0.0 T
0 0 2 2 2 7.10 �39 0.0 T 16 0.0 T
2 0 0 �2 0 205.89 �48 0.0 T 0 0.0 T
2 0 2 0 2 6.86 �31 0.0 T 13 0.0 T
1 0 2 �2 2 23.94 29 0.0 T �12 0.0 T

�1 0 2 0 1 26.98 20 0.0 T �11 0.0 T
2 0 0 0 0 13.78 29 0.0 T �1 0.0 T
0 0 2 0 0 13.61 26 0.0 T �1 0.0 T
0 0 2 �2 0 �173.31 22 0.0 T �0 0.0 T
0 �2 0 0 0 �182.63 �17 0.1 T 0 0.0 T
0 2 2 �2 2 91.31 �16 0.1 T 7 �0.0 T

�1 0 0 2 1 31.96 15 0.0 T �8 0.0 T
0 1 0 0 1 386.00 �14 �0.0 T 9 0.0 T
1 0 0 �2 1 31.66 �13 �0.0 T 7 0.0 T
0 �1 0 0 1 346.64 �13 0.0 T 6 0.0 T
2 0 �2 0 0 1095.18 �11 0.0 T 0 0.0 T

�1 0 2 2 1 9.54 �10 �0.0 T 5 0.0 T
1 0 2 2 2 5.64 �8 0.0 T 3 0.0 T
0 �1 2 0 2 14.19 �7 0.0 T 3 0.0 T
0 0 2 2 1 7.09 �7 �0.0 T 3 �0.0 T
1 1 0 �2 0 34.85 �7 0.0 T 0 0.0 T
0 1 2 0 2 13.17 8 �0.0 T �3 �0.0 T

�2 0 0 2 1 199.84 �6 �0.0 T 3 0.0 T
0 0 0 2 1 14.80 �6 �0.0 T 3 0.0 T
2 0 2 �2 2 12.81 6 0.0 T �3 0.0 T
1 0 0 2 0 9.61 6 0.0 T 0 0.0 T
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qnq
qt

�2w cosq ul ¼ � 1
a

1
r
qP
qq

þ qU
qq

� �
ð5:67Þ

0 ¼ qP
qz

�gr ð5:68Þ

Here,ul and vq are the velocity components directed fromwest to east and fromnorth
to south, respectively; q¼ 90� �j is the colatitude of latitude j, l is the east
longitude; z is the depth; P and r are the pressure and the density, respectively;
w is the angular velocity of the Earth�s rotation; U is the potential of the tide-
generating forces, the vertical component of which can be ignored, as comparedwith
the gravity g.
Let z (q, l, t) be the elevation of a point on the ocean�s surface above the average

ocean level. Let us integrate Equation 5.68 between the ocean�s perturbed surface z,
where P¼P0, and the constant level z:

P ¼ r gz�r gzþP0 ð5:69Þ
If we denote

�U
g
¼ �zðq; l; tÞ ð5:70Þ

and take (5.69) into account, we have:

qul
qt

þ 2wcosq vq ¼ � g
asinq

qðz��zÞ
ql

ð5:71Þ

qvq
dt

�2wcosq ul ¼ � g
a
qðz��zÞ

qq
ð5:72Þ

Note that the velocities ul and vq in the above-described tide-generating move-
ments do not depend on z, that is, they are horizontal movements.
The next equation to describe the tides is the equation of continuity:

qz
qt

þ h
asinq

qðnqsinqÞ
qq

þ qul
ql

� �
¼ 0 ð5:73Þ

Equations 5.71–5.73 are the equations of the theory of the oceanic tides. Here,
�zðq; l; tÞ is considered a prescribed function, and ul, vq and z, unknowns.

Let usnowderive equations for the atmospheric tides. Let the pressure, density and
temperature corresponding to equilibrium of the atmosphere be denoted by �P, �r and
�T , respectively. These variables depend only on the height z and are interrelated as
follows: �P ¼ �rR�T and q�P

qz ¼ �g�r, where R is the gas constant. The former formula is
an equation of state, and the latter is an equation of hydrostatic equilibrium. Thus,
there is one free variable, for example �TðzÞ.
We consider small fluctuations in the atmosphere around its equilibrium, so:

P ¼ �PþP0; r ¼ �rþ r0; T ¼ �T þT 0 ð5:74Þ
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whereP0,r0,T0are the small deviations of the pressure, density and temperature from
their average values �P, �r, and �T , respectively. Linearizing the traditional equations of
atmosphere dynamics (that is, rejecting products of small deviations) gives a system
of equations for the perturbations of the first order:

qul
qt

þ 2w cos q nq ¼ � 1
a sin q

1
�r
qP0

ql
þ qU

ql

� �
ð5:75Þ

qvq
qt

�2w cos q ul ¼ � 1
a

1
�r
qP0

qq
þ qU

qq

� �
ð5:76Þ

0 ¼ � qP0

qz
�gr0 ð5:77Þ

qr0

qt
þw

d�r
dz

þ �rc ¼ 0 ð5:78Þ

where w is the vertical component of the velocity, and c is the three-dimensional
divergence:

c ¼ 1
a sin q

qul
ql

þ 1
a sin q

q
qq

ðvq sin qÞþ qw
qz

ð5:79Þ

Here, (5.75) and (5.76) are linearized equations of horizontal motion; (5.77) is the
equation of hydrostatic equilibrium; (5.78), the continuity equation.
The heat inflow equation closes the system of equations (Chapman and Lindzen,

1970):

qP0

qt
þw

d�P
dz

¼ k gH
dr
dt

þðk�1Þ �r J ð5:80Þ

where k¼ cp/cv¼ 1.4; Fp¼ 0.2405 cal/(g degree), and Fv¼ 0.1719 cal/(g degree) are
the heat capacities of air at constant pressure and constant volume, respectively;
H ¼ R�T=g is the equivalent height of the homogeneous atmosphere; J is the heat
inflow caused by an external source.
The atmosphere is a thin skin of air that covers the Earth. Its thickness is negligibly

small in comparisonwith theEarth�s radius. Therefore, in thefirst approximation, the
atmospherecanbeconsidered two-dimensional,with its characteristics averagedover
its thickness.Formally,wecanderive two-dimensional equations ifweassumethat the
vertical velocity is equal to zero and other characteristics do not depend on the height:

q�ul
qt

þ 2w cos q �vq ¼ � 1
�r a sin q

qP0

ql
� 1
a sin q

qU
ql

ð5:81Þ

q�vq
qt

�2w cos q �ul ¼ � 1
�r a

qP0

qq
� 1
a
qU
qq

ð5:82Þ

1
g
q
qt
ðP0�gT 0Þ þ H

a sin q
q
qq

ð�vq sin qÞþ q �ul
ql

� �
¼ 0 ð5:83Þ
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Comparison of the derived equations with Equations 5.71–5.73 for the oceanic
tides shows that there is a perfect analogy between them. The following variables
reciprocally correspond to each other:

u $ �ul v $ �vq z��z $ 1
g
ðP0 þUÞ;

z $ 1
g
ðP0�gT 0Þ; �z $ �T 0�U

g
; h $ H

Consequently, from the point of view of the tidal theory, the atmosphere can be
regarded as an ocean of constant depth H, which is affected by the perturbing
potential�g�z ¼ Uþ gT 0 that partly consists of the lunisolar tide-generating potential
U and partly of the potential gT0 related to the nonhomogeneous heating of the
atmosphere. For an isothermal atmosphere, whose air particles� state changes
adiabatically, the depth H is equal to:

H ¼ kRT
g

¼ kH0 ¼ 1:4 � 8:0 ¼ 11:2 km

where H0 is the height of the homogeneous atmosphere. For isothermal changes,
k¼ 1 and H¼H0¼ 8 km. Calculation for the real atmosphere gives H� 10 km.
The tide-generating forces are periodic functions of time and longitude. Therefore,

we assume that changes in wind ul, vq, w, pressure P0, density r0, and gravitational
potential U are periodic functions of time and longitude:

x ¼ xðq; zÞeiðstþ slÞ ð5:84Þ

where xðq; zÞ is the complex function of latitude and height, s is the excitation
frequency, s is the wave number (s¼ 0 �1, �2, . . ..). Observed diurnal variations of
wind and pressure confirm such an approximation (Hsu and Hoskins, 1989).
Using (5.84), we derive the expressions for velocities ul and nq:

ul ¼ �s
4aw2ðf 2�cos2qÞ

cosq
f

q
qq

þ s
sinq

� �
P 0

�r
þU

� �
ð5:85Þ

vq ¼
is

4aw2ðf 2�cos2qÞ
q
qq

þ s ctgq
f

� �
P 0

�r
þU

� �
ð5:86Þ

where f¼s/2w is the dimensionless frequency.
Substituting (5.85) and (5.86) into (5.79) gives:

c� qw
qz

¼ is
4a2w2

F
P0

�r
þU

� �
ð5:87Þ

where F is the Laplace operator in the following form:

F 	 1
sinq

q
qq

sinq
f 2�cos2q

q
qq

� �
� 1
f 2�cos2q

s
f
f 2 þ cos2q
f 2�cos2q

þ s2

sin2q

� �
ð5:88Þ
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The main unknown function in the tidal theory is:

G ¼ � 1
k�P

dP
dt

ð5:89Þ

Using Equations 5.87, 5.89, 5.80, 5.78 and 5.77, we can formulate one equation to
find G:

H
q2G
qz2

þ qH
qz

�1

� �
qG
qz

¼ g
4a2w2

0

F G
qH
qz

þ g
� �

� gJ
kgH

� �
ð5:90Þ

Here, the term s/g (q2U/qz2) is omitted because of its vanishing smallness. Factor
g 	 (k� 1)/k¼ 2/7.
Themethod of separation of variables is used to solve Equation 5.90. Let us assume

that

Gðq; l; z; tÞ ¼
X
n

KnðzÞYnðqÞeiðstþ slÞ ð5:91Þ

and the system of functions Yn(q) is complete within the interval 0
 q
p if n
runs through all the values. Then, the function J can be expanded into a series in
functions Yn(q):

Jðq; l; z; tÞ ¼
X
n

JnðzÞYnðqÞeiðstþ slÞ ð5:92Þ

Substituting (5.91) and (5.92) into (5.90) gives the following system of equations to
determine functions Kn(z) and Yn(q):

FðYnðqÞÞþ 4a2w2
0

ghn
YnðqÞ ¼ 0 ð5:93Þ

H
d2Kn

dz2
þ dH

dz
�1

� �
dKn

dz
þ 1

hn

dH
dz

þ g
� �

Kn ¼ gJn
kgHhn

ð5:94Þ

where hn is the constant of separation of variables, F is the Laplace operator.
Equation 5.93 is Laplace�s tidal equation. The boundary conditions for the equation

are as follows: the functions Yn(q) are bounded at the poles, that is, for q¼ 0 and p.
Given the boundary conditions, Laplace�s equation determines a system of the
eigenfunctions and eigenvalues hn.
The boundary conditions for Equation 5.94 are as follows: w is zero on the Earth

surface, and the solutions are bounded at infinity.
The general solution of the equations is a sum of the solutions:

Gðz; q; l; tÞ ¼
X
l;s;n

Kl;s
n ðzÞYl;s

n ðqÞexp½iðsltþ slÞ� ð5:95Þ

Analogous expressions can be derived for other unknowns. Thefluctuations under
study are characterized by numbers l and s. A set of waves with wave numbers s¼ 0,
s¼�1, s¼�2 . . . corresponds to every excitation frequency sl. For given l and s, the
equation has an infinite number of solutions Yl;s

n ðqÞ, each of which is related to the
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respective depth hn. Variables hn are the eigenvalues of operator F. The eigenfunc-
tions Yl;s

n ðqÞ are the Hough functions.
Similar tos, the frequency f¼s/2w0 can be positive or negative. Since the operator

F (5.88) includes the ratio s/f, so Equation (5.93) has a solution for�s and�f provided
that it has a solution for s and f. In other words, the solutions always form pairs
exp (� i(st þ sl))Yn (u). Let s be positive and s be either positive or negative. The
real solutions can be represented as cos (st þ sl)Yn (cosq) and sin (st þ sl)Yn

(cosq). In that case, the waves propagate from east to west, if s/f> 0, and fromwest to
east, if s/f< 0.
The wave corresponding to the azimuthal number s¼ 0 is a standing wave, that is,

it is a function of universal time. The wave corresponding to s¼ 1 travels westward,
along with the Sun, and is proportional to a function of local time.
According to experimental data (Chapman and Lindzen, 1970), the amplitude of

the wave with s¼ l is maximal in spite of the fact that, for every frequency l, there is a
set of waves with respective s. Thus, for example, the main wave of the lunar
semidiurnal tide is the wave with s¼ 2. The amplitudes of the waves with numbers
s¼ 0 and s¼�2 are �1/10 of the amplitude of the main wave.
The main wave of the solar diurnal tide is the wave with s¼ 1. The global mode of

that type is caused only by the planetary distribution of water vapor. Thus, if we
consider only the basic tidal modes (that is, the diurnal tides with s¼ 1 and the
semidiurnal tides with s¼ 2), details of the water-vapor distribution may be ignored,
and we can use the zone-averaged climatic data to calculate the function of heating.
The semidiurnal tide is excited, in the first place, by ozone heating in the

stratosphere. For the diurnal motion of the Sun, the thermal excitation is not
described by a unique diurnal harmonic; it contains higher harmonics as well. The
largest is the semidiurnal harmonic.
Laplace�s tidal Equation 5.93 is studied in detail in a number of works (Siebert,

1961; Dikiy, 1969; Longuet-Higgins, 1968). Solutions of the equation are given by the
Hough functions that can be represented in the form of a series in terms of the
associated Legendre polynomials.
There are several methods to solve Equation 5.93. Here, we put Equation 5.93 in

the form of a system of two second-order equations. The method was developed by
Eckart (Eckart, 1960).
Let a new variable,m¼ cosq be introduced; nowEquation 5.93 can be formulated as

follows:

� d
dm

1
f 2�m2

�ð1�m2Þ d
dm

þ sm
f

� �� �
þ 1

f 2�m2

sm
f

d
dm

� s2

1�m2

� �� 	

YnðmÞþ 4a2w2
0

ghn
YnðmÞ ¼ 0 ð5:96Þ

Such an equation is obtained for each pair of wave numbers (s, l). Eckart (1960)
suggested that a new function xn(m), should be introduced. The definition of the
function is the expression in brackets. Then, Equation (5.96) becomes a system of
linear equations:
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1
f 2�m2

�ð1�m2Þ d
dm

þ sm
f

� �
YnðmÞ ¼ xnðmÞ

�ð1�m2Þ d
dm

þ sm
f

� �
xnðmÞ ¼

s2

f 2
�ð1�m2ÞG

� �
YnðmÞ

ð5:97Þ

where G ¼ 4a2w2
0=ghn.

AsHough showed, the eigenfunctions of the operator Fasymptotically is either the
Legendre function Ps

nðmÞ (for large values of f) or the linear combination of two
Legendre functions (for G�1 ! ¥). Naturally, solutions for other values of para-
meters, f and G, should be obtained by Galerkin�s method, that is, in the form of a
linear combination of the Legendre functions (Dikiy, 1969).
Let the operator on the left part of the Legendre equation be designated by L (the

operator defines the Legendre polynomials). Then:

L ¼ ð1�m2Þ d2

dm2
�2m

d
dm

� s2

1�m2

Equation 5.97 are represented in the following form (Dikiy, 1969):

Lþ s
f

� �
x ¼ G

s
f
þ 2

� �
m�ð1�m2Þ d

dm

� �
YnðmÞ

L� s
f
þ s2

f 2
þð f 2�1ÞG

� �
YnðmÞ ¼ ð1�m2Þ d

dm
þm

s
f
�2

� �� �
xnðmÞ

ð5:98Þ

The solutions of system (5.98) are determined in the form of a series in terms of the
normalized Legendre polynomials:

YnðmÞ ¼
X¥
n¼s

aðmÞ
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

2
n�sð Þ!
nþ sð Þ!

s
Ps
nðmÞ

xnðmÞ ¼
X¥
n¼s

aðmÞ
n G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

2
n�sð Þ!
nþ sð Þ!

s
Ps
nðmÞ

Substituting the series into system (5.98) and taking the following recurrent
relationships

mPs
nðmÞ ¼

n�sþ 1
2nþ 1

Ps
nþ 1ðmÞþ

nþ s
2nþ 1

Ps
n�1ðmÞ

ð1�m2Þ dP
s
nðmÞ
dm

¼ � nðn�sþ 1Þ
2nþ 1

Ps
nþ 1ðmÞþ

ðnþ 1Þðnþ sÞ
2nþ 1

Ps
n�1ðmÞ

LPs
nðmÞ ¼ �nðnþ 1ÞPs

nðmÞ

into account gives the difference equation for factors an:

G�1an ¼ Ln�2an�2 þMnan þ Lnanþ 2; n � s ð5:99Þ
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where

Ln ¼ 1
s
f
�ðnþ 1Þðnþ 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�sþ 1Þðnþ sþ 1Þðn�sþ 2Þðnþ sþ 2Þ

ð2nþ 1Þð2nþ 3Þð2nþ 3Þð2nþ 5Þ

s

Mn ¼ f 2�1

� s
f
þ n

� �
s
f
�n�1

� � þ
s
f
�nþ 1

� �
ðn�sÞðnþ sÞ

s
f
þ n

� �
s
f
�nðn�1Þ

� �
ð2n�1Þð2nþ 1Þ

þ
s
f
þ nþ 2

s
f
�n�1

� �
s
f
�ðnþ 1Þðnþ 2Þ

� � ðn�sþ 1Þðnþ sþ 1Þ
ð2nþ 1Þð2nþ 3Þ

It is apparent that system (5.99) falls into two parts: for one of them, n¼ s, s þ 2,
. . ., for another, n¼ s þ 1, s þ 3, . . .Nontrivial solutions of the system exist provided
that the determinant is zero. Consequently, we have the following condition for the
first of the systems (n¼ s, s þ 2, . . .):

Ms�G�1 Ls 0 0 : : : :

Ls Msþ 2�G�1 Lsþ 2 0 : : : :

0 Lsþ 2 Msþ 4�G�1 Lsþ 4 : : : :

: : : : : : : :

: : : : : : LN�2 MN�G�1

������������

������������
¼ 0

ð5:100Þ
whereas we have the following condition for the second one (n¼ s þ 1, s þ 3, . . .):

Msþ1�G�1 Lsþ1 0 0 : : : :

Lsþ1 Msþ3�G�1 Lsþ3 0 : : : :

0 Lsþ3 Msþ5�G�1 Lsþ5 : : : :

: : : : : : : :

: : : : : : LN�1 MNþ1�G�1

�����������

�����������
¼ 0

ð5:101Þ
Expressions (5.100)–(5.101) represent the characteristic equation Ax¼ lx in the

matrix form. In that case, the determination of the eigenvalues and eigenvectors is
facilitated by the symmetry and three-diagonal form of the matrix (Wilkinson and
Reinsch, 1976). To solve the Laplace equation, Zharov (1996b) defined the values of
parameter s

f by using the frequencies of the gravitational and thermal excitation. He
determined s and f, then the eigenvalues G�1, hn, the coefficients a

ðmÞ
n and, eventually,

the Hough function Yn (m).
If the eigenvalue and the coefficients aðmÞ

n are obtained from system (5.100), the
expansion contains functions Ps

s , P
s
sþ 2, P

s
sþ 4, . . .. If the coefficients are obtained

from (5.101), the expansion includes functions Ps
sþ 1, P

s
sþ 3, P

s
sþ 5, . . .. In the former

case, the functions Yn (m) are even, in the latter case, odd.
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The wave corresponding to some wave number n, is referred to as a mode. Thus,
the solution of the tidal equation falls into the symmetric and antisymmetric modes
with respect to the equator of mode.
Let us now consider the vertical structure Equation 5.94. Usually, this equation is

reduced to the canonical form, with variable z replaced by x using the formula:

x ¼
ðz

0

dz
HðzÞ

and Kn replaced with yn using the formulaKnyn exp (x/2). Then, (5.94) takes the form
(Chapman and Lindzen, 1970):

d2yn
dx2

� 1
4
� 1
hn

gHþ dH
dx

� �� �
yn ¼ g JnðxÞ

k g hn
e�x=2 ð5:102Þ

Equation 5.102 is solved for every value of hn.
Unknown parameters u, v, w, p are defined by (5.95), where Kn(x) is equal to one of

the functions un(x), vn(x), wn(x), pn(x). Then:

unðxÞ ¼ ikghnex=2

4aw2
0

dyn
dx

� 1
2
yn

� �
� 1
f 2�cos2q

cosq
f

q
qq

þ s
sinq

� �
ð5:103Þ

vnðxÞ ¼ k ghnex=2

4aw2
0

dyn
dx

� 1
2
yn

� �
� 1
f 2�cos2q

q
qq

þ s ctgq
f

� �
ð5:104Þ

wnðxÞ ¼ � isUn

g
þk hne

x=2 dyn
dx

þ H
hn

� 1
2

� �
yn

� �
ð5:105Þ

PnðxÞ ¼ P0ð0Þ
HðxÞ �Un

g
e�x þ k hn

is
e�x=2 dyn

dx
� 1
2
yn

� �� �
ð5:106Þ

Here, the expansion of the potential in the Hough functions is used:

U ¼
X
n

UnðxÞYnðqÞ

P0(0) is the pressure on the Earth surface.
Equation 5.102 is solved under the boundary conditions. The lower boundary

(x¼ z¼ 0) condition is as follows: the vertical velocity is zero, that is w¼ 0. Then, we
obtain from (5.102) at x¼ 0:

dyn
dx

þ H
hn

� 1
2

� �
yn ¼ is

kghn
Un ð5:107Þ

Thus, for the gravitational tides, Equation 5.102 turns out to be homogeneous
(Jn¼ 0), the excitation being taken into account only through the lower boundary
condition (5.107). For the gravitational tides, the excitation energy is concentrated on
the Earth surface.
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Theupper boundary conditionusually is either the boundedness condition of yn (x)
at x ! ¥ or the radiation condition (Chapman and Lindzen, 1970). If the heightH is
constant above some level xmax and Jn¼ 0, then (5.102) is of the form:

d2yn
dx2

� 1
4
� gH

hn

� �
yn ¼ 0 ð5:108Þ

If hn< 4gH, the solution of this equation is:

yn ¼ Aeiax þBe�iax

where a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gH=hn�0; 25

p
. The wave Aeiax propagates downward and the wave

Beiax�upward. If there are no sources of excitation above the level xmax, then B¼ 0.
For hn> 4gH, one of the solutions of Equation 5.108 represents a decaying

exponential and another – a growing exponential, that is yn¼C exp (�kx), where
k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:25�gH=hn
p

. We try the solutions bounded at infinity, therefore the desired
solution is as follows: yn¼C exp (�kx).
To sum up, the solutions of the vertical structure equation can be obtained

separately for the gravitational and thermal excitations.
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6
The Air-Mass Seasonal Redistribution and the Earth�s Rotation

6.1
Air-Mass Seasonal Redistribution

Sidorenkov and Stehnovskii have performed investigations of the air-mass seasonal
redistribution in the atmosphere (Sidorenkov and Stekhnovsky, 1971, 1972;
Stekhnovsky, 1962; Stekhnovsky and Sidorenkov, 1977). The initial data for them
were the climatologicaly charts and tables of the sea-level atmospheric pressure
(Stekhnovsky, 1960) and the mean monthly temperatures for January and July
(Batyayeva, 1960) and the mean height of the ground above see level, z. The surface
of the Earth was divided by the parallels separated by 4� into 46 latitudinal zones (44
four-degree zones in the belt from 88�N to 88�S and two two-degree polar caps). Each
of these zoneswas in turndivided into trapezoids by themeridians at intervals of 4� in
the belt from 40�N to 40�S, 6� in the belt from�40� to�72�, and 60� in the belt from
�72� to �88�. Each of the two-degree polar caps was taken as a single trapezoid.
In each ith trapezoid of the jth latitude zone we recorded the long-term mean

monthly pressure, reduced to the sea level and the normal gravity, Pij(0, g45� ,0), for
January and July. For those trapezoids that included dry land, we also recorded the
mean monthly temperatures Tij(0) for January and July and the mean height of the
ground above sea level, zij.
For the pressuremeasured at the basis of an air column is necessary to divide by the

acceleration of gravity (referred to the height of the center of gravity of this column) in
order to calculate the mass of a particular atmospheric column.
Since in practice we can use only the pressure reduced to the sea level and the

normal gravity P(j,l,0,g 45� ,0), we must perform the inverse operation of reducing
the pressure to the Earth�s surface and the actual gravity P(j,l,z,gj,z). Assuming that
the atmosphere is polytropic up to the land maximum height, the mass m of an
atmospheric unit column was calculated by the formula:

m j; lð Þ ¼ Pðj; l; z; gj;zÞ
gj;h

¼ Pðj; l; 0; g45� ;0Þ
g450;h

Tðj; l; zÞ
Tðj; l; 0Þ
� �g�=RBg1

ð6:1Þ

Here, j and l are the latitude and the longitude; z is the height of the Earth�s surface
above the see level; h¼ 7 km is the height of the center of gravity of the atmosphere;T
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is the absolute temperature;R¼ 0.287� 107 erg g�1 deg�1 is the gas constant; g1¼ 6/
km is the mean temperature gradient; gj,z¼ g45� ,0(1�a cos 2j)(1�bz) is the
acceleration of gravity at the given latitude j and height z; a¼ 1/298.25 is the
flattening of the Earth; b¼ 0.315� 10�3 km�1; �g ¼ 9:80618m=s2; g45� ,7 km¼
9.78455 m/s2. In expression (6.1) it has been kept in mind that as z� h, therefore

gj;z
gj;h � g45�;0 ¼

g45�;0ð1�a cos 2jÞð1�bzÞ
g45�;0ð1�a cos 2jÞð1�bhÞg45� ;0 �

1
g45� ;h

Based on the respective calculations, a map of the long-term mean seasonal
redistributionof theatmospheric air over the globehasbeenconstructed (Stekhnovsky
and Sidorenkov, 1977) (Figure 6.1). The map represents the isolines of air-mass
increments (g/cm2) from July to January.
Thismap validates the known regularities of the air-mass seasonal redistribution: a

tendency for air-mass accumulation over continents in winter and over oceans in
summer. In addition, the map demonstrates some special features of this redistri-
bution. In particular, it shows that the air-mass seasonal redistribution occurs with
the opposite sign over the largestmountains and the surrounding plains.Within vast
expanses of Eurasia and northern Africa over which the air mass increases in winter,
there aremountain areas over which the air-mass outflows (or inflows but little). Over
the Plateau of Tibet, for example, the air-mass negative increments from July to

Figure 6.1 Global redistribution of airmasses from July to January.
Isolines (g/cm2): solid– the air-mass inflow; broken– the air-mass
outflow.
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January are about �16.3 g/cm2; over the Cordilleras (of the Northern Hemisphere),
these increments are up to�7 g/cm2, while over central areas of North America the
air-mass increments are positive.
In the Southern Hemisphere (summer), the air-mass outflows over plains and

inflows over the Andes narrow ridge. The air-mass inflow is also characteristic of
central Antarctica, where it exceeds 15 g/cm2. This peculiar regime of the air-mass
seasonal redistribution over mountain areas may be due to the changes in atmo-
spheric pressure with height under the effect of air cooling/warming in the plain and
mountain areas. With cooling, the air pressure grows over plains and drops over
mountains, and vice versa: with warming, the atmospheric pressure decreases over
plains and increases over mountains.
Over the oceans of the Northern Hemisphere, the center of the seasonal largest

changes in air pressure (>15 g/cm2) is located in the region of the Aleutian Low. The
center of air-mass negative increments in the region of the Icelandic Low, which is
shown in the earlier publishedmaps, is absent in ourmap. Its absencemay be due to
the dominant effect of the air mass changes over Greenland.
In the region subjected to the influence of the Siberian High, the respective air-

mass increments are not very significant (about 15 g/cm2) and are comparable in
absolute valuewith the respective increments over theNorth PacificOcean. There are
also centers of an intense air-mass inflow over the northeastern part of China (up to
25 g/cm2) and theHindustan and Arabian peninsulas (about 20 g/cm2), both centers
being due to the monsoon circulation.
In the subtropical zone of the Southern Hemisphere, the air-mass negative

increments prevail, the centers of these changes being shifted to the continents�
eastern parts. In the moderate zone of this hemisphere, the respective isolines
present a complicated but well-defined pattern showing the alteration of the air-mass
inflow and outflow. They reflect the seasonal shifts of frontal zones, along which the
cyclones of moderate latitudes move.
Under close examination of themap one can see that in the SouthernHemisphere,

the outflow of air mass prevails over its inflow in summer. Since the air mass cannot
disappear, one may suppose that the atmospheric air outflows into the Northern
Hemisphere.
The seasonal flow of air from one hemisphere to another was first postulated by

Shaw (1936). Studying the deviations of the mean monthly fields of atmospheric
pressure from its mean yearly field over the Northern Hemisphere, Shaw concluded
that the air-mass redistribution occurs not only within one hemisphere, but also
between the hemispheres. Rough estimates of the seasonal air exchange between the
hemispheres are given in (Bonchkovskaya, 1956; Stekhnovsky, 1960, 1962). These
estimates vary between 3.87� 1015 and 5.95� 1015 kg.
According to our calculations (Sidorenkov and Stekhnovsky, 1971), in the Northern

Hemisphere the air masses in January and July are 2.5778� 1018 and 2.5740� 1018

kg, respectively; and in the Southern Hemisphere they are 2.5794� 1018 and
2.5839� 1018 kg, respectively. In the first case the difference between January and
July is þ 3.8� 1015 kg (1.5 g/cm2) and in the second case is �4.5� 1015 kg (�1.8 g/
cm2). Thus, the air mass in the Northern Hemisphere decreases by about 4� 1015 kg
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between January and July, while the mass in the Southern Hemisphere increases by
the same amount. These figures give the long-term mean seasonal exchange of air
mass between the hemispheres.
The contributions of individual latitudinal zones to this process are illustrated

by Figure 6.2, in which the abscissa is the latitudinal zones and the ordinate is the air-
mass increments between January and July in each latitudinal zone.We see that in the
subtropical zones, the air mass decreases markedly from winter to summer. This
decrease is due to a significant air inflow into the subtropical zone of the opposite
hemisphere, together with a less-marked air inflow to the high-latitude zones within
the samehemisphere. It is interesting that the change of sign of the air-mass seasonal
redistribution does not occur at the equator, but somewhat to the north (about 6�N).
The total decrease in the air mass from January to July in the belt from 6 to 48�N is
about 4.7� 1015 kg, of which about 4.0� 1015 kg (85%)flows from the zones between
32 and 12�, with a maximum at about 25�N. This decrease in the air mass is due to a
slight flow of air to the high latitudes of the Northern Hemisphere (0.4� 1015 kg, or
9%), and a very large southward flow (4.3� 1015 kg, or 91%). In the subtropical zones
of the Southern Hemisphere (8–36�S), the air-mass increment between January and
July is about 5.2� 1015 kg.
The belt of the air-mass negative increments extends from 6�N to 60�S, where the

air-mass accumulation from January to July makes about 6.5� 1015 kg. Apart from a
considerable air-mass inflow from the subtropics of the Northern Hemisphere
(4.3� 1015 kg, or 67%), a relatively large quantity of air inflows from the Antarctic
regions (2.1� 1015 kg or 33%) into this belt.
Thus, themost intense air-mass exchange between hemispheres occurs across the

6�N parallel through which about 4.3� 1015 kg of air flows southward from January
to July and northward from July to January. About 1.1� 108 kg of air flows back and

Figure 6.2 Increment of air mass from July to January as function of latitude.
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forth each year through each meter of the 6�N parallel in the active layer of the
atmosphere.We recall that as a result of themonsoon activity, about 1–1.5� 108 kg of
air is transferred (in the active layer of the atmosphere) through each meter of the
shore line from oceans to continents in winter and from continents to oceans in
summer (Bonchkovskaya, 1956).
The results of calculations of the air-mass redistribution between continents and

oceans are published in (Sidorenkov and Stekhnovsky, 1972). It is shown that over the
continents of the Northern Hemisphere, as the land cools and the anticyclonic
circulation intensifies from July to January, the air mass increases in a wide latitudinal
zone (68�–8�N) and makes 5.8� 1015 kg. At the same time, the air mass over oceans
significantly decreases, most intensely in the zone of 52�–40�N, where the air-mass
increment fromJuly to Januarymakes1.28� 1015 kg. In thezoneof 0�–8�N, thepattern
is reverse: the air-mass outflows from land to oceans, which is characteristic of the
Southern Hemisphere during this season. Since the land area in the Southern
Hemispheremakesuponly25%of the total area (that is,muchless thanin theNorthern
Hemisphere,where itmakesup50.7%) and since land areas are situated in the low and
high latitudes, the air-mass seasonal redistribution between continents and oceans is
insignificant there. It is approximately 6 times less than that in the Northern
Hemisphere.
The air mass over the entire land of the globe increases from July to January by

4.57� 1015 kg and decreases over oceans by 5.29� 1015 kg. The difference between
these values is likely to be due to the air-mass decrease from July to January (at the
expense of the decreased air humidity, for example). The atmospheric mass in
January is 5.157� 1018 kg and that in July is 5.158� 1018 kg. The mean planetary
pressure of the atmosphere on the Earth�s surface is 987.1 hPa in January and
987.3 hPa in July (Sidorenkov and Stekhnovsky, 1971).
Burlutskii (Sonechkin and Burlutskiy, 2005) has shown that changes in the hemi-

sphere-average surface pressure for two hemispheres are specularly symmetric. If air
pressure increases in the Northern Hemisphere, it decreases in the Southern hemi-
sphere by the same value (the coefficient of correlation is �0.94). He has shown that
changes in the global surface pressure are in close correlation with changes in the
amount ofwater vapor in the global atmosphere. Themass of the entiredry atmosphere
isconstant.Changesintheatmosphericmassaremainlyduetochangesintheamountof
water vapor in it.Hence, the variations in themean global value of the surface pressure
are the reliable indicators of variations in the global value of water vapor in the
atmosphere, the latter value significantly affects the temperature of the surface layer
of the atmosphere.

6.2
Components of the Inertia Tensor of the Atmosphere

The components of the inertia tensor of the atmosphere are the fundamental
geophysical parameters to be known when developing a high-precision theory of
the nutation of the Earth�s rotation axis. Some of these parameters are needed
for better understanding and interpreting the specific features of atmospheric
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circulation and the Earth�s gravitational field. In this connection, let us calculate the
components of the inertia tensor of the atmosphere.
We choose a coordinate system that is rigidly bound to the Earth and participates

in all itsmotions.We place the origin of this systemat theEarth�s center of inertia. The
x3 axis points to themeanpositionof theNorthPole, and thex1 andx2 axes,which lie in
the plane of the equator, are directed at theMeridian of Greenwich and 90� to the east
of it, respectively. As we know, the components of the inertia tensor of the atmosphere
nij in the Cartesian system of coordinates may be described in the same way as Nij in
matrix (4.10) in Section 4.1. Since the Earth�s atmosphere is spheroidal, it will bemore
convenient to use the spherical coordinate system for calculations. In this system, the
coordinates are: x1¼ r sin q cos l; x2¼ r sin q sin l; x3¼ r cos q; a volume element is
dV¼ r2 sin qdrdqdl. Substituting these expressions in (4.10), wemay find the inertia-
tensor component in the spherical coordinates:

n11 ¼
ððð

rr4ð1�sin2 q cos2lÞ sin q dl dqdr

n22 ¼
ððð

rr4ð1�sin2 q sin2 lÞsin q dl dq dr

n33 ¼
ððð

rr4sin3 q dl dq dr

n12 ¼ �
ððð

rr4sin3 q cos l sin l dl dq dr

n13 ¼ �
ððð

rr4 sin2 q cos q cos l dl dq dr

n23 ¼ �
ððð

rr4sin2 q cos q sin l dl dq dr

ð6:2Þ

Here, r is the air density, r is the geocentric distance, q is the colatitude, and l is the
eastern longitude;n12¼ n21;n13¼ n31;n23¼ n32.The integrationover theheight yields:

ð¥

Rþz

rr4dr ¼ ðRþhÞ4
gq;h

ðPðq;l;z;gq;zÞ

0

dp¼ ðRþhÞ4
gq;h

Pðq;l;z; gq;zÞ � ðRþhÞ4
g45�;h

Pðq;l;z; g45�;0Þ

ð6:3Þ
where R is the radius of the sea-level surface, h is the height of the center of gravity of
thegivenunit volumeof the atmosphere, gq,h is the accelerationof gravity at the givenq
and h, andP(q,l,z,gq,z) is the atmospheric pressure at the point with coordinates (q,l),
at height z above sea level, for the acceleration of gravity gq,z.
We approximate the radius of the center-of-gravity surface of the atmosphere using

the expression:

Rþ h ¼ ðaþ hÞð1�a cos2 qÞ ð6:4Þ
and the acceleration of gravity, with the expression:

gq;h ¼ g90� ;0ð1þ 0:005288 cos2q�0:59� 10�5sin2 2q�0:315� 10�3hÞ ð6:5Þ
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Taken into account (6.3)–(6.5), expression (6.2) can be written

n11 ¼ A
ðp

0

ð2p

0

ðsin q�sin3 q cos2 lÞð1�a cos2 qÞ4Pd ld q

n22 ¼ A
ðp

0

ð2p

0

ðsin q�sin3 q sin2 lÞð1�acos2 qÞ4Pd ld q

n33 ¼ A
ðp

0

ð2p

0

sin3 q ð1�a cos2 qÞ4Pd l dq

n12 ¼ � 1
2
A
ðp

0

sin3 qð1�a cos2 qÞ4
ð2p

0

Psin 2l dl dq

n13 ¼ �A
ðp

0

sin2 qcos q ð1�a cos2 qÞ4
ð2p

0

P cos l dl dq

n23 ¼ �A
ðp

0

sin2 q cos qð1�a cos2 qÞ4
ð2p

0

P sin ld ld q

ð6:6Þ

Here, A¼ 103(a þ h)4/g45� ,h; P is the pressure in hectoPascals (hPa), and a and a are
the equatorial radius and the flattening of the Earth.
The initial data for calculationswere the data on atmospheric pressure described in

Section 6.1.
The components of the inertia tensor were calculated by the numerical integration

over the following expressions:

n11 ¼ A
X46
j¼1

FjDlj
XN
i¼1

Pij�
X46
j¼1

Xj

XN
i¼1

LiPij

 !

n22 ¼ A
X46
j¼1

FjDli
XN
i¼1

Pij�
X46
j¼1

Xj

XN
i¼1

KiPij

 !

n33 ¼ A
X46
j¼1

XjDlj
XN
i¼1

Pij

n12 ¼ �A
X46
j¼1

Xj

XN
i¼1

IiPij

n13 ¼ �A
X46
j¼1

Wj

XN
i¼1

PiPij

n23 ¼ �A
X46
j¼1

Wj

XN
i¼1

OiPij

ð6:7Þ
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where N is the number of trapezoids in the jth zone, Dlj ¼ �l�l ¼ 2p=N,
A¼ 1.698795� 1028 kgm2/hPa (it was assumed that a¼ 6378.14 km, h¼ 7 km, and
g45� ,7 km¼ 9.78455m/s2), a¼ 1/298.25, and Pij is the pressure of the jth trapezoid of
the ith zone, expressed in hPa,

Fj ¼
ð�q

q

sin qð1�a cos2 qÞ4dq � �cos qþ 4a
3
cos3q

� �����
�q

q

Xj ¼
ð�q

q

sin3 qð1�a cos2 qÞ4dq � �cos qþ 1þ 4a
3

cos3 q� 4a
5
cos5 q

� �����
�q

q

Wj ¼
ð�q

q

sin2 qcos qð1�a cos2 qÞ4dq � 1�4a
3

sin3 qþ 4a
5
sin5 q

� �����
�q

q

Li ¼ 1
2
lþ 1

4
sin 2l

� �����
�l

l
; Ki ¼ 1

2
l� 1

4
sin 2l

� �����
�l

l
;

Ii ¼ 1
2
sin2 l

����
�l

l
; Pi ¼ sin l

����
�l

l
; Oi ¼ �cos l

����
�l

l
ð6:8Þ

The inertia tensor components are calculated for two �climatic� months – mean
January and mean July. Since the rheological properties of land and ocean must be
taken into account, the summations were made separately over the trapezoids
occupied by ocean and the trapezoids occupied by land or closed bodies of water. In
the latter case, calculations were carried out using the atmospheric-pressure data
specified in two variants. In the first variant, we used the sea-level pressure
Pij¼Pij(0,g45� ,0), and in the second was the pressure reduced to the average height
of the Earth�s surface in a particular trapezoid, Pij¼Pij(z,g45� ,0). The respective
expressions and the description of details can be found in (Sidorenkov, 1973).
As we know, the atmospheric pressure varies with a one-year period. These

variations are for the most part due to the variations of temperature over the year.
Thehemisphere-averagedpressure increases fromsummer towinter, and it decreases
from winter to summer. The atmospheric-pressure annual variations are most
conspicuous in themiddle latitudes. Inwinter, when the ocean surface is considerably
warmer than the land surface, the atmospheric pressure over oceans is lower than that
over continents. The thermal situation is the reverse in summer, so that a lower
pressure is registered over continents and a higher one over oceans. Since at most
localities on theEarth�s surface thepressure, like the temperature, varies harmonically
over the year, and then, aswe see from(6.6), the inertia tensor components should vary
in a similar fashion:

nijð	Þ ¼ �nij þEijcosð	�bijÞ ð6:9Þ

where �nij is the annual mean value, Eij and bij are the amplitude and phase of the
annual variations of the component under consideration, 	¼ 2pt/365.25 day is
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the longitude of the mean sun reckoned from the beginning of the year, and t is the
time in days. In most cases, the extreme values of the annual atmospheric-pressure
variation coincide approximately in time with the temperature extremes. It may be
assumed that for the Earth as a whole, they are observed in January and July.
Consequently, �nij and Eij, are in first approximation determined as the half-sum and
half-difference of their values in July and January, respectively:

�nij � 1
2

nijðIÞþ nijðVIIÞ
� �

Eij � 1
2

nijðIÞ�nijðVIIÞ
� � ð6:10Þ

and the phase b equals zero.
Table 6.1 gives the annual-average values and the ranges of the annual variations of

the atmosphere�s inertia-tensor components, as calculated in this way. It also
includes the absolute values of air mass and average atmospheric pressure, together
with the ranges of their annual variations. All these characteristics are given
separately for the regions of integration, which extend over land, ocean, and the
entire planet. For land and the planet as a whole, the above calculations aremadewith
and without account for land elevation above see level. The corrections for height are
given in a separate column. The areas of integration are given in the last line.

Table 6.1 Mean values �nij and amplitudes EIJ of annual variations
in the atmospheric inertia tensor components (in units of
1028 kgm2), atmospheric masses M (in units of 1015 kg), and
pressures hPi (in hPa).

Element Region
Ocean

Land Height
correction

Planet as a whole

Sea-level
pressure

Land-level
pressure

Sea-level
pressure

Land-level
pressure

�n11 8294 5867 5588 279 14161 13882
E11 �4.6 19.9 8.9 11.1 15.3 4.3
�n22 8935 5228 5008 219 14162 13943
E22 �9.5 13.4 5.8 7.6 3.9 �3.7
�n33 9374 4995 4753 242 14370 14128
E33 �7.4 9.0 3.7 5.4 1.6 �3.8
�n12 �164.2 164.2 179.1 �14.9 0.04 14.92
E12 �0.17 �1.80 �1.39 �0.41 �1.63 �1.22
�n13 301.0 �303.8 �301.2 �2.52 �2.76 �0.23
E13 �1.40 �0.89 �0.76 �0.14 �2.30 �2.16
�n23 320.0 �326.1 �284.7 �41.3 �6.06 35.28
E23 �1.86 �6.97 �4.54 �2.43 �8.83 �6.40
Mass �M 3271 1979 1888 91.0 5250 5159
EMa �2.64 5.23 2.28 2.95 2.59 �0.36
Pressure hPi 1011.4 994.4 948.7 45.7 1004.9 987.5
Ep �0.82 2.64 1.14 1.49 0.50 �0.07
S · 10�14m2 3.164 1.948 5.112
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The principal moments of inertia of the atmosphere are needed for estimating the
instabilities of the Earth�s rotation.We should recall that themeanmoment of inertia
of the atmosphere relative to the polar axis (the axial moment of inertia) is equal to
n33¼ 1.413� 1032 kgm2. Themean values of the inertiamoments of the atmosphere
over the Northern and Southern Hemispheres are n33¼ 0.702� 1032 kgm2, and
n33¼ 0.711� 1032 kgm2, respectively. The equatorial inertia moments are equal to
n11¼ 1.388� 1032 kgm2 and n22¼ 1.394� 1032 kgm2, respectively.
It is practically impossible to estimate (with whatever reliability) the errors of the

characteristics given in Table 6.1. It can only be assumed that the errors of their
absolute values arewithin the tenths of a per cent, while those of the amplitudesmake
a few per cent.

6.3
Estimations of Instabilities in the Earth�s Rotation

As is shown in Section 4.4, the effect of air-mass seasonal redistribution on the
Earth�s rotation is described by the equations:

1
s0

dn1
dt

þ n2 ¼ y2 ¼
~n23
C�A

1
s0

dn2
dt

�n1 ¼ �y1 ¼ � ~n13
C�A

dn3
dt

¼ dy3

dt
¼ � 1þ k0

C
d~n33
dt

ð6:11Þ

Substituting the appropriate values of ~nij from the last column of Table 6.1
into (6.11) and assuming C�A¼ 2.63� 1042 g cm2, C¼ 8.04� 1044 g cm2, and
W¼ 7.29� 10�5 s�1, we obtain, in units of 10�8,

y0
1 ¼ �8:2 cos	; y0

2 ¼ �24:3 cos	; y0
3 ¼ 0:033 cos	 ð6:12Þ

The excitation function would have these components if the entire Earth (together
with oceans) behaved as an absolutely rigid body. But actually, the Earth is deformed
due to variations in the load onto its surface that result from the air-mass redistri-
bution in the atmosphere.Here, the global ocean apparently responds to the seasonal
atmospheric-pressure variations like an inverted barometer. Where the pressure
increases, the sea level drops, and vice versa. If we consider only the effect of the air-
mass redistribution in the atmosphere, the annual pressure variations at a certain
depth in oceans, should be coordinate independent. We see from Table 6.1 that hP0i
(the pressure averaged over the surface of the World Ocean), varies over the year in
accordance with:

hP0i ¼ ð1011:4�0:82 cos	Þ hPa ð6:13Þ
Also, we calculated the components of the atmosphere inertia tensor for this case

of the pressure distribution over the World Ocean (the case of the �inverted
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barometer�). The atmospheric pressure over the entire ocean was assumed to be
1010.58 and 1012.22 hPa in January and July, respectively. The initial data on the
pressure over landwere taken as unchanged, as well as the calculation formulas (6.7).
The results are given in Table 6.2.
Substituting the values ~n13, ~n23 and ~n33 from Table 6.2 into expressions (6.11), we

find that when the ocean responds to the atmospheric-pressure variations as an
inverted barometer, the components of the excitation function have the following
values (multiplied by 10�8):

y1 ¼ �3:8 cos	; y2 ¼ �18:2 cos	; y3 ¼ 0:034 cos	 ð6:14Þ

Thefirst two components that describe themotion of the excitation pole can also be
written in the form of circular motion. Then using the formulas of transition
(4.39)–(4.48), we obtain:

y1 þ iy2 ¼ 9:2eið	þ 258�Þ þ 9:3e�ið	þ 102�Þ ð6:15Þ

In the 1980s, the calculations of the atmospheric excitation functions were
organized both in operational and in a retrospective way, known as reanalysis. They
were based on the analyses of the surface pressure and wind fields, which were
performed using the global atmospheric models developed in the world�s major
meteorological centers: the U.S. National Centers for Environmental Prediction
(NCEP), the EuropeanCenter forMedium-rangeWeather Forecasting (ECMWF), the
UK Meteorological Office (UKMO), and the Japan Meteorological Agency (JMA).
These models are widely used in the calculations and correlation analysis of the time
series of the pole�s coordinates (Barnes et al., 1983; Salstein et al., 1993; Salstein, 2000;
Nastula, Ponte, and Salstein, 2000; Wilson, 2000). We should underline that the
atmosphere excitation functions that were obtained in the above centers with the use
of the detailed and accurate atmospheric pressurefields, nevertheless, do not account
fully for the distortions due to land topography.
The excitation functions of the form of yi¼ ai cos	 þ bi sin	 describe the

forced motion of the poles and the variations of the Earth�s rotation velocity
with an annual period. As is shown in Section 4.5, they can be found by the following

Table 6.2 Mean values of �cij and amplitudes of annual variations
Dij of the components of the atmosphere inertia tensor,
1028 kgm2, with the World Ocean behaving as the �inverted
barometer�.

Region Component

�n11 E11 �n22 E22 �n33 E33 �n12 E12 �n13 E13 �n23 E23

Ocean 8301 �6.7 8942 �7.3 9359 �7.6 �164.5 0.13 300.3 �0.24 317.5 �0.26
Land 5588 8.9 5008 5.8 4753 3.7 179.1 �1.39 �301.2 �0.76 �284.7 �4.54
Entire
planet

13890 2.2 13950 �1.4 14113 �3.9 14.6 �1.26 �0.9 �1.00 32.8 �4.79
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formulas:

ni þ in2 ¼ 1
T2�1

	 �ða1 þTb2Þ�iða2�Tb1Þ½ 
cos 	 þ ðTa2�b1Þ�iðTa1 þ b2Þ½ 
sin	g

n3 ¼ y3 ¼ a3 cos 	 þ b3 sin	 ð6:16Þ
Substituting T¼ 1.2 year, and the coefficients of the excitation function compo-

nents from (6.14) (a1¼�3.8, b1¼ 0, a2¼�18.2, b2¼ 0, a3¼ 0.034 b3¼ 0) into
expressions (6.16), we obtain the final expressions for the annual motion of the
pole and the variations of the Earth�s rotation velocity that are caused by the
redistribution of air mass in the atmosphere (units of 10�8):

n1 þ in2 ¼ 8:6 cos 	�49:7 sin 	 þ ið41:4 cos 	 þ 10:4 sin	Þ ð6:17Þ

n3 ¼ 0:034 cos	 ð6:18Þ
If the trajectory of the excitation pole is given in the form of circular move-

ments (6.15), then the forced movement of the pole of rotation is:

n1 þ in2 ¼ � 1
T�1

jy þ jeið	þ lþ Þ þ 1
T þ 1

jy�je�ið	þl�Þ

¼ 46:5eið	þ 78�Þ þ 4:2e�ið	þ 102�Þ ð6:19Þ
By comparison, if the effect of the �inverted barometer� in the ocean is not

accounted for (that is, if the excitation functions (6.12) are used instead of (6.14)), then
the parameters of the poles� motion and of the Earth�s rotation irregularities would
be:

n1 þ in2 ¼ 18:6 cos 	�66:4 sin 	 þ ið55:3 cos 	 þ 22:4 sin	Þ
¼ 64:2eið	þ 71�Þ þ 5:9e�ið	þ 109�Þ ð6:20Þ

n3 ¼ 0:033 cos	 ð6:21Þ

6.4
Discussion of Results

Let us compare the above results with astronomical observations, by computing the
annual variations of the length of day. According to astronomical observations, the
Earth�s rotational velocity varies with a 1-year period in the following manner
(Sidorenkov, 1975a) (units of 10�8):

n3 ¼ �0:42 cos 	�0:19 sin	 ¼ 0:46 cos ð	�205�Þ ð6:22Þ
Comparing (6.18) and (6.22), we conclude that the redistribution of masses in the

atmosphere cannot account for the observed annual variations of the Earth�s
rotational velocity. The calculated amplitude of variations makes only 7% of the
observed value, and the calculated phase is 250� larger than the observed phase (that
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is the resultant effect is of the opposite sign). This is in good agreement with the
results of previous investigations (Munk and Mcdonald, 1960; Lambeck, 1980).
Let us now turn to the annual motion of the pole of the Earth�s rotation. The

trajectory of the annual motion of the North Pole has been determined from
astronomical observations several times. The results of most of these studies are
summarized in (Munk and McDonald, 1960; Lambeck, 1980). In part I of Table 6.3
we list the values obtained from analysis of the longest series of the pole coordinates
(Walker and Young, 1957; Rykhlova, 1971; Jeffreys, 1968; Gaposchkin, 1972; Korsun,
Mayor, and Yatskiv, 1974; Vondrak and Pejovic, 1988).
The parameters of the pole of rotation circular movements, which correspond to

the trajectories presented in Table 6.3, are given in Table 6.4. They are calculated by
the formulas of transition (4.39)–(4.48) with the use of the values of nc1; ns1; nc2 and ns2
from Table 6.3.
We should note that the initial data used in the works of A. Walker, A. Young, and

G. Jeffreys are the pole coordinates in the systemof the International Latitude Service
(ILS), which are known to be referred to several different starting epochs. L. Rykhlova
used the pole coordinates referred to the mean pole of the observation epoch (the
system of A. Orlov). E. Gaposhkin used mainly Rykhlova�s data and partly the ILS
data. That is why the trajectory of the North Pole of the Earth�s rotation calculated by

Table 6.3 Annual-motion trajectories of the Earth�s North Pole of
rotation, according to various authors (in units of 10�8 radian).

Author Period nC1 nS1 nC2 nS2 F u1, deg N u2, deg k, deg

1. Astronomical observations
Walker and Young 1899–1954 �31.0 �34.4 33.9 �22.3 46.3 228 40.6 326 132
Jeffreys 1899–1967 �23.3 �37.2 33.7 �13.6 43.9 238 36.4 338 125
Rykhlova
series 1 1891–1960 �14.5 �40.2 30.1 �12.1 42.7 250 32.4 338 116
series 2 1846–1915 �31.5 �20.8 29.6 �16.0 37.7 213 33.6 332 137
Gaposhkin 1891–1970 �20.5 �38.6 27.9 �16.5 43.7 242 32.4 330 126
Korsun et al.
series 1 1846–1889 �48.2 �14.3 21.4 �25.0 50.2 197 32.2 310 156
series 2 1890–1956 �22.0 �38.2 28.1 �16.3 44.1 240 32.5 330 128
series 3 1957–1971 �15.3 �42.8 36.7 �18.4 45.5 250 41.1 333 113

2. Air-mass redistribution
Sidorenkov 8.6 �49.7 41.4 10.4 50.4 280 42.6 14 78
Wilson and Haubrich 7.9 �28.6 23.9 9.1 29.7 285 25.5 21 72
Kikuchi 16.7 �51.6 41.1 19.3 54.2 288 45.4 25 68
Munk and Hassan 6.8 �35.6 29.9 7.2 36.3 281 33.3 14 77
Munk and McDonald 8.2 �42.3 34.4 8.2 43.1 281 35.4 13 77
Byzova 12.5 �55.7 45.2 15.0 57.1 283 47.6 18 74
Rosenhead 9.8 �67.8 56.5 12.4 68.5 278 57.8 12 80
Jeffreys �4.8 �49.9 43.4 �2.9 50.1 264 43.5 356 96

n ¼ nc1 cos 	 þ ns1 sin 	 þ iðnc2 cos 	 þ ns2 sin qÞ ¼ F cos ð	�j1Þ
þ iN cos ð	�j2Þ, l is the Eastern Longitude of the Pole at 	¼ 0�.
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Table 6.4 Parameters of circular movements of the Earth�s
rotation pole with the annual period (in units of 10�8 rad).

Author Period mþ lþ
n m� l�n mþþ m� mþ� m� em km

1. Astronomical observations
Walker and Young 1899–1954 43.3 128 4.4 177 47.7 38.9 0.18 156
Jeffreys 1899–1967 40.0 118 5.2 160 45.2 34.8 0.23 159
Rykhlova
series 1 1891–1960 37.6 111 5.2 103 42.8 32.4 0.24 184
series 2 1846–1915 34.6 134 8.9 210 43.5 25.7 0.41 142
Gaposhkin 1891–1970 38.1 119 5.7 111 43.8 32.4 0.26 184
Korsun et al.
series 1 1846–1889 40.7 154 12.1 197 52.8 28.6 0.46 158
series 2 1890–1956 38.3 120 5.8 119 44.1 32.5 0.26 180
series 3 1957–1971 43.2 113 3.4 63 46.6 39.8 0.15 205
Vondrak 1976–1985 40.7 115 2.4 94 43.1 38.3 0.11 190

2. Air-mass redistribution
Vondrak 1977–1985 39.8 78 3.4 99 43.1 36.4 0.16 170
Wilson and Haubrich 27.6 72 2.4 105 30.0 25.2 0.16 164
Sidorenkov 46.5 78 4.2 102 50.8 42.3 0.17 168
Kikuchi 49.7 69 5.4 104 55.1 44.3 0.20 162
Munk and Hassan 33.5 78 2.9 94 36.4 30.6 0.19 172
Munk and McDonald 39.2 78 3.9 90 43.1 35.3 0.18 174
Byzova 52.3 75 5.4 103 57.7 46.9 0.19 166
Rosenhead 63.1 80 5.8 103 68.9 57.3 0.17 168
Jeffreys 46.8 95 3.4 106 50.4 43.4 0.14 174

Walker and Young is in good agreement with those calculated by Jeffreys and the
trajectory calculated by Rykhlova agrees with those calculated by Gaposhkin. How-
ever, there are some distinctions between those trajectories. Rykhlova�s results,
which are obtained for the period of 1846–1915, are not very reliable, because they are
based on observations from a very sparse network of observatories that existed in the
nineteenth century and the beginning of the twentieth century. Korsun, Mayor, and
Yatskiv (1974) used the homogeneous series of the pole�s coordinates for 1846–1971,
which was obtained in the Main Astronomical Observatory of the Ukrainian
Academy of Sciences (Fedorov et al., 1972). The authors of this work averaged the
parameters of the pole�s annual motion over three time intervals, which approxi-
mately correspond to the periods when the accuracy of determination of the poles�
coordinates sharply increased. Their estimates of parameters for the 1890–1956
period are close to previous estimates. The respective estimates for other observation
periods aremarkedly different. This is likely to be indicative of a nonstationary annual
motion of the pole. J. Vondrak used the data of the Bureau International de l�Heure
(BIH) for 1976–1985 (Vondrak and Pejovic, 1988).
The comparison of the trajectories of the pole of rotation, whichwe calculated from

the meteorological data (the meteorological trajectory) and from the astronomical
observations (the astronomical trajectory) (Figure 6.3) indicates that the two are
similar, though the axes of the meteorological trajectory are approximately 1–2 times
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Figure 6.3 Trajectories of the motion of the Earth�s pole of
rotation as calculated from meteorological (1, 2) and
astronomical (3, 4) data. (1) Sidorenkov (1973); (2) Byzova
(1947); (3) Rykhlova (1971); (4) Jeffreys (1968).

longer than the axes of the trajectory observed by astronomers. In both cases, the pole
moves along an ellipse with a small eccentricity in the positive direction (fromwest to
east, or counterclockwise). The meteorological pole has a phase lag of about 45�

behind the astronomical pole. Thus, at the beginning of the year (at 	¼ 0�), the
meteorological pole is on the meridian of 78�E, and the astronomical pole at 120�E.
Let us compare all these valueswith the estimates obtained earlier by other authors

from the data on the seasonal variations in the global atmospheric pressure.
Thefirst attempt to estimate the influenceof theair-mass distributionon themotion

of the Earth�s poles was made in (Spitaler, 1901). This estimate was very rough and is
only of historical interest. The first detailed calculation of this effect was carried out by
Jeffreys (1916), who used Bartholomew�s meteorological atlas (1899). Rosenhead
(1929) performed similar study using the data fromShaw�sHandbook ofMeteorology
(1928). More detailed calculations were made in (Byzova, 1947) on the basis of the
Ocean Atlas maps (Morskoy atlas, 1953) of seasonal air-mass transport.
Munk and Hassan (1961) used for their calculations the data on the atmospheric

pressure (not reduced to the sea level) from a set of continental meteorological
stations situated mainly in the Northern Hemisphere. Wilson and Haubrich (1976)
reestimated the effect of air-mass redistribution on the poles� motion. They used the
pressure series from 1325 meteorological stations for 1901–1970. These data for
1901–1940 nearly coincide with the data used in (Munk and Hassan, 1961).
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Kikuchi (1971) investigated the effect of air-mass shifts on the Earth�s rotation by
expanding the atmospheric-pressure field in a spherical-function series. The basic
data were the climatic values of the mean monthly atmospheric pressure at sea level
that were published in 1968 by theMeteorological Research Institute of the Japanese
Meteorological Agency.
In the papers cited above, the effect of air-mass distribution was estimated in

different ways, and the results were expressed in arbitrary units. For comparison, we
reduced the available results to a unique system, namely: the values of coefficients
were converted to radians; the argument was the longitude of themean sun reckoned
from the beginning of the year; the ocean�s response to the atmospheric pressure
variationswas assumed to be of the type of an inverted barometer. The coefficients for
the expression of the trajectory of the excitation pole, which were determined in the
above way by various authors, are given in Table 6.5.

Table 6.5 Trajectories of the annualmotion of theNorth excitation
pole, according to various authors (in units of 10�8 radian).

Author Parameter

a1 b1 a2 b2 A n1, deg B n2, deg k, deg

1. Air-mass redistribution
Sidorenkov �3.8 0 �18.2 0 3.8 180 18.2 180 258
Wilson and Haubrich �3.1 0 �10.5 �0.3 3.1 180 10.5 181 254
Kikuchi �6.5 �2.4 �20.9 �0.7 6.9 200 20.9 182 253
Munk and Hassan �1.8 0.2 �12.9 �1.0 1.8 174 12.9 184 262
Munk and McDonald �1.7 �0.9 �16.3 �1.6 1.9 209 16.4 186 264
Byzova �5.5 �1.4 �21.6 0 5.7 194 21.6 180 256
Rosenhead �5.0 �0.1 �25.0 0.6 5.0 181 25.0 178 259
Jeffreys �1.4 2.2 �16.4 2.9 2.6 121 16.7 170 265

2. Correction for land elevation
Sidorenkov 0.52 0 9.24 0 0.52 0 9.24 0 87
Rosenhead 0.49 0.06 13.91 2.96 0.49 7 14.20 12 88
Munk and McDonald �0.10 �0.62 9.12 5.16 0.63 99 10.48 30 92
Jeffreys 0.67 �0.13 16.17 3.17 0.68 349 16.48 11 88

3. Astronomical observations
Walker and Young �4.3 6.3 �7.4 14.9 7.6 124 16.6 116 240
Jeffreys �6.9 3.2 �11.0 14.3 7.6 155 18.0 128 238
Rykhlova series 1 0 �4.2 �18.2 5.3 4.2 270 19.0 164 270
Rykhlova series 2 �12.3 14.6 4.6 21.8 19.1 130 22.3 78 159
Gaposhkin �0.7 �5.1 �18.4 8.1 5.2 262 20.1 156 268
Korsun et al., 1846–1889 �18.1 �11.4 �4.2 32.8 18.6 148 33.1 83 167
Korsun et al., 1890–1956 �3.4 �4.5 �17.8 10.0 17.9 242 20.4 150 262
Korsun et al., 1957–1971 6.8 1.3 �14.6 0 16.1 11 14.6 180 295

y ¼ a1 cos 	 þ b1 sin 	 þ iða2 cos 	 þ b2 sin	Þ ¼ A cos ð	�x1Þ
þ iB cos ð	�x2Þ; l is the Eastern Longitude of the Pole at 	¼ 0�.
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The parameters of the excitation pole circularmovements,which correspond to the
trajectories in Table 6.5, are given in Table 6.6. They are calculated by the formulas of
transition (4.39)–(4.48) fromSection 4.5, with the use of the values of a1, a2, b1, and b2
from Table 6.5.
Figure 6.4 illustrates the motion of the North pole of excitation, as estimated by

various authors. We see that according to all estimations the (meteorological)
excitation pole moves along the ellipses with the eccentricity close to unity. The
minor axes of these ellipses do not exceed 4� 10�8 (25 cm on the Earth�s surface).
The direction of the excitation polemotion is estimated as negative (fromeast towest)
in (Kikuchi and Byzova) and positive in (Jeffreys, Munk and Hassan). This indicates
that the minor axis of the respective ellipse is rather small to be determined from
availablemeteorological data. Themajor axis of the ellipse is determinedwith greater
confidence. Itmakes�38� 10�8 rad, or 240 cmon the Earth�s surface. The excitation
pole is the farthest from its mean position at 	 � 0� (the beginning of January) and
	 � 180� (the beginning of July), which correspond to �100�W and �80�E,
respectively. This type of motion of the meteorological excitation pole indicates that,
as we should expect, the seasonal variations of the air mass above the Eurasian
continent is the basic factor in this motion.
To estimate the excitation pole movement by astronomical observations, we used

(4.57) to calculate the trajectory of its motion from the parameters given in part 1 of

Table 6.6 Parameters of the excitation pole circular movements
with an annual period (in units of 10�8 rad).

Author Parameter

wþ lþ
c w� l�c wþþ w� wþ�w� ew kw

1. Air-mass redistribution
Sidorenkov 9.2 258 9.3 102 18.5 �0.1 1.01 78
Wilson and Haubrich 5.4 252 5.4 105 10.8 0 1.00 74
Kikuchi 9.9 249 12.0 104 21.9 �2.1 1.10 72
Munk and Hassan 6.7 258 6.4 94 13.1 0.3 0.98 82
Munk and McDonald 7.8 258 8.6 90 16.4 �0.8 1.05 84
Byzova 10.5 255 11.8 103 22.3 �1.4 1.06 76
Rosenhead 12.6 260 12.8 103 25.4 �0.2 1.01 79
Jeffreys 9.4 275 7.4 106 16.8 2.0 0.88 84

2. Astronomical observations
Walker and Young 8.7 308 9.6 177 18.3 �0.9 1.05 66
Jeffreys 8.0 297 11.3 161 19.3 �3.3 1.17 68
Rykhlova series 1 7.5 291 11.5 103 19.0 �4.0 1.21 94
Rykhlova series 2 6.9 313 19.6 210 26.5 �12.7 1.48 52
Gaposhkin 7.6 299 12.5 111 20.1 �4.9 1.24 94
Korsun et al., 1846–1889 8.1 334 26.6 197 34.7 �18.5 1.53 68
Korsun et al., 1890–1956 7.7 300 12.8 119 20.5 �5.1 1.25 90
Korsun et al., 1957–1971 8.6 293 7.5 63 16.1 1.1 0.93 115
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Table 6.3. The results are given in part 3 of Table 6.5. The parameters of circular
movements of the excitation pole, which are calculated from the data of astronomical
observations, are given in Table 6.6. By way of illustration, Figure 6.4 shows the
astronomical trajectories of the excitation pole fromRykhlova�s (series I) and Jeffreys�
(1968) data.

Figure 6.4 Trajectories of the Earth�s excitation pole as obtained
from meteorological (1–6) and astronomical (7, 8) data. (1)
Sidorenkov (1973); (2) Jeffreys (1916); (3) Rosenhead (1929); (4)
Byzova (1947); (5) Munk and Hassan (1961); (6) Kikuchi (1971);
(7) Rykhlova (1971); (8) Jeffreys (1968).
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Thus, according to both the astronomical and the meteorological data, the
excitation pole moves along an ellipse, the semiaxes of the ellipse being similar in
both cases.
In order to understand why the conclusions of astronomers on the excitation pole

motion are so conflicting, let us analyze the parameters of circular movements of the
Earth�s rotation pole (Table 6.4). It is seen that the observed radius of the positive
movement is approximately 10 times larger than that of the negativemovement.With
this, the standard errors of determination of both radii from astronomic observations
are similar. This is easily deduced with the help of formulas (4.44)–(4.45) (for
example), which are written for radii jnþ j and jn�j. Consequently, the relative error
of determination of the parameters of the positive circular movement is smaller by
ten times than that for the negative circularmovement.With this, fromEquation 4.59
at T¼ 1.2 year we have:

y þ ¼ �0:2n þ ; y� ¼ 2:2n� ð6:23Þ

Hence, the positive circular movement of the pole of rotation (more reliably
determined) is transmitted to the excitation pole, being decreased by 5 times; and
the respective negative movement (less reliably determined) is transmitted, being
increased by 2.2 times. It is clear that the trajectory of the excitation pole is less precise
than the trajectory of the pole of rotation.
In view of the above, it is more advantageous to compare the calculated and

observed effects of the air-mass redistribution in the atmosphere with the help of the
trajectories of the Earth�s pole of rotation rather than the inertial pole. We used
expressions (4.52), (4.53) and the geophysical estimates obtained by various authors
(Table 6.5 and Table 6.6) to compute the parameters of the trajectory of the Earth�s
pole of rotation. They are given in part 2 of Tables 6.3–6.4 and, in part, in Figure 6.3.
All these trajectories agree closelywith regard to the orientation of the ellipse axes and
the initial phase angles. The only difference is between the amplitudes of themotion,
which is probably due to the errors in the initial values of atmospheric pressure.
Thus, the air-mass redistribution in the atmosphere is evidently not responsible for

the observed variations in the length of day, but it does cause the annual variations
of the Earth�s excitation pole in the plane of the 80�E and 100�W meridians.
The amplitude of oscillations is 19� 10�8 radian (or 120 cm on the Earth�s surface)
and the initial phase is 180�. Seasonal variations in the air mass over Eurasia are the
controlling factor in this motion. The excitation pole annual variations cause
the motions of the Earth�s pole of rotation with the same period. The trajectory
of the pole of rotation, as calculated from meteorological data, agrees closely with
the observed trajectory in the orientation of the ellipse axes and the direction of the
motion. In both cases the ellipses major axes lie in the plane of the 10�W–170�E
meridians, and themotion has the positive direction (fromwest to east); however, the
initial phase angles and the lengths of the axes differ. According to the estimates of all
the above authors, the �meteorological� pole of the Earth�s rotation lags 30–60�

behind the astronomical pole. At the beginning of the year, they are situated at 80�E
and 115–130�E, respectively. The axes of the trajectory of the �meteorological� pole of
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rotation are slightly (by a factor of about 1.2) longer than those of the astronomical
trajectory. The calculatedmajor semiaxis is 50� 10�8 radian, or 320 cm; the observed
value is 43� 10�8 radian, or 270 cm.
The totality of these data suggests that the observed annual motion of the Earth�s

poles of rotation is due not only to the redistribution of airmasses in the atmosphere,
but also to other phenomena. These probably include the seasonal redistribution of
watermasses in theWorld Ocean, seasonal variations in the amount of groundwater
on land, and so forth.
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7
Angular Momentum of Atmospheric Winds

7.1
Functions of the Angular Momentum of the Atmosphere

Angularmomentumis the integralofmovement,which isassociatedwith the isotropy
of space. It has an important property of additivity. This means that the angular
momentum of the entire system consisting of several parts (the interaction of which
canbeneglected) is equal to the sumof angularmomentumsof all theseparts (Landau
and Lifshitz, 1965). The angular momentum of a closed system is constant; it cannot
arise or disappear but can only redistribute between individual parts of the system.
Angular momentum is one of the most important integrals of motion of the

atmosphere. The investigation of this additive integral of motion and its time-
dependent variations helps us to better understand the nature of the atmosphere
general circulation and the astronomically observed nonuniformity of the Earth�s
rotation.
Let us take (as discussed in Section 4.1) the system of the movable Cartesian

coordinates (Oxi), which is invariably linked with the Earth and rotates with it, with
the angular velocity w, with respect to the inertial system of coordinates (Oxi). Both
coordinate systems have the same origin – themass center of the EarthO. Axes (Oxi)
coincidewith themajor axes of the ellipsoid of inertia of the unperturbedEarth. Let us
choose the orthogonal basis {e1, e2, e3} of the rotating system so that the first two orts
determine the plane of the equator and the third ort is directed along the middle axis
of rotation Ox3.
The atmosphere rotates as a solid body together with the Earth and, besides,moves

with respect to the Earth�s surface. Hence, its absolute angular momentumH is the
sum of two terms:

H ¼
ð
A

r� ðw� rÞ rdV þ
ð
A

ðr� uÞrdV ð7:1Þ

Here r ¼ P3
i¼1

xiei � xiei is the radius-vector of the atmosphere�s unit volume dV

under consideration; w¼wiei is the vector of the angular velocity of the Earth�s
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rotation; u¼ uiei is the vector of wind velocity; r is the air density; andA is the volume
of the entire atmosphere. Thefirst term is the translational angularmomentumof the
atmosphereHW¼HWiei, which originates due to the rotation of the atmosphere (as a
solid body) together with the Earth with the angular velocity w. The second term,
h¼ hiei, is called the relative angular momentum of the atmosphere. It characterizes
the movement of atmospheric air with respect to the Earth�s surface, that is winds.
Therefore, this term is often called the angular momentum of winds. As is shown in
Section 4.1,

HWi ¼ wk

ð
A

ðx2l dik�xixkÞrdV ¼ nikwk ð7:2Þ

hi ¼
ð
A

eijkxjukrdV ð7:3Þ

where nik are the components of the tensor of inertia; dik is Kronecker�s symbol
(dik¼ 1 at i¼ k and dik¼ 0 at i 6¼ k); eijk is Levi-Civita�s alternator equal to: þ 1 if
subscripts are in even order: 1, 2, 3, 1, 2, 3, . . ..;�1 if subscripts are in odd order: 1, 3,
2, 1, 3, . . ..; and 0 if any two subscripts are equal: i¼ j, i¼ k, j¼ k; xi and ui are the
Cartesian coordinates and the components of the velocity of volume dV.
The absolute angular momentum of the atmosphere changes because of the

variations in the components of the tensor of inertia nik (the variations resulting from
the redistribution of air masses) and the variations in the components of the relative
angular momentum hi (that is, of the wind fluctuations). As is shown in Sections 4.3
and 4.4, the effect of these variations on the instability of the Earth�s rotation can be
assessed with the help of the effective functions ci of the angular momentum of the
atmosphere (Barnes et al., 1983):

c1 ¼ 1
WðC�AÞ ðWn13 þkh1Þ

c2 ¼ 1
WðC�AÞ ðWn23 þkh2Þ

c3 ¼ 1
CW

ðWð1þ k0Þn33 þ h3Þ

ð7:4Þ

Here, C and A are the solid Earth�s polar and equatorial moments of inertia,
respectively; W is the mean angular velocity of the Earth�s diurnal rotation; k¼ 1.43
and k0 ¼�0.3 are the parameters accounting for the rotational and loading deforma-
tions of the Earth (see Section 4.3). The ~ci and ci values are proportional to the
components of the absolute angularmomentum of the atmosphere. As distinct from
the functions of the atmosphere�s angular momentum ~ci (which are used in the case
of the absolutely solid Earth (see Section 4.2)), the ci values (in which the Earth�s
rotational and loading deformations are accounted for) are called the effective
functions of the atmospheric angular momentum. They are composed of two terms,
the first of which (that contains the nik values) describes the effect of the air-mass
redistribution and the second one (that contains the hi values) accounts for the effect
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of winds in the entire atmosphere. Therefore, functions ci are usually written as the
sumof the termof pressurecP (because thenik values are calculated by the data on the
surface atmospheric pressure) and the term of wind cW (because the angular
momentum hi is calculated by the data on winds in the entire atmosphere):

c ¼ cP þ cW ð7:5Þ
The components of the atmosphere�s tensor of inertia n13, n23, and n33, are written

in the explicit form in expression (6.2). Below, we write the expressions for the
components of the angular momentum of winds:

h1 ¼
ð
A

ðx2u3�x3u2Þ r dV

h2 ¼
ð
A

ðx3u1�x1u3Þ r dV ð7:6Þ

h3 ¼
ð
A

ðx1u2�x2u1Þ r dV

The functions of the angular momentum hi are calculated in the spherical system
of coordinates (R, l, j), in which the Cartesian geocentric coordinates xi have the
following form:

x1 ¼ R cosj cosl
x2 ¼ R cosj sinl
x3 ¼ R sinj

ð7:7Þ

Differentiating (7.7) and introducing the components of velocity in the spherical
system of coordinates uR¼ dR/dt, uj¼Rdj/dt and ul¼Rcosj dl/dt, we obtain the
expressions for velocities ui:

u1 ¼ uR cosj cos l�uj sinj cos l�ulsin l
u2 ¼ uR cosj sin l�uj sinj sin lþ ul cosl
u3 ¼ uR sinjþ ujcosj

ð7:8Þ

Here, j is the geographical latitude; l is the eastern longitude; R is the geocentric
radius; uj, ul, and uR are the components of velocity of the south, west, and vertical
wind, respectively. Substituting the xi values from (7.7) and ui values from (7.8)
into (7.6), we obtain:

h1 ¼
ð
A

Rðujsin l�ulsinj cos lÞrdV ð7:9Þ

h2 ¼ �
ð
A

Rðujcoslþ ulsinj sinlÞrdV ð7:10Þ

h3 ¼
ð
A

Rul cosj rdV ð7:11Þ
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The spherical element of volume dV¼R2 cos j d l d j d z. Using the equation
of hydrostatic equilibrium, we can write:

rdz ¼ �dp=g ð7:12Þ

where dp is the increment of pressure, and g is the gravity acceleration.
With account for expressions (7.9–7.12), the terms of wind in the effective

functions of the angular momentum can be written in the following form:

cW1 ¼ �1:43R3

WðC�AÞg
ðP

0

ðp2
�p

2

ð2p

0

ðulsinj cosj cosl�uj cosj sin lÞdl dj dp ð7:13Þ

cW2 ¼ �1:43R3

WðC�AÞg
ðP

0

ðp2
�p

2

ð2p

0

ðulsinj cosj sinlþ ujcosj cos lÞdl dj dp ð7:14Þ

cW3 ¼ R3

WCg

ðP

0

ðp2
�p

2

ð2p

0

ulcos
2 j dl dj dp ð7:15Þ

When calculating ci, we assume: C¼ 7.04� 1037 kgm2 is the polar moment of
inertia of the crust andmantle (it is assumed that the Earth�s core does not experience
the observed instabilities of rotation of the solid Earth at time scales less than two
years); C�A¼ 0.00333�C, where A is the mantle�s equatorial moment of inertia;
R¼ 6.37� 106m is the mean radius of the Earth; g¼ 9.81m s�2 is the gravity
acceleration;W¼ 7.29� 10�5 s�1 is themean angular velocity of the Earth�s rotation;
P is the atmospheric pressure at the Earth�s surface; ul and uj are the velocities of the
west and southwind, respectively;j is the latitude;l is the eastern longitude. The data
on winds are at best available up to a level of 10 hPa (�31 km).

7.2
Climatic Data

In 1976, the author thoroughly investigated the angular momentum of zonal
winds (Sidorenkov, 1976), using the most complete series of aerological data
available at the World Meteorological Centre at that time and generalized by
I.G. Guterman (Guterman, 1975, 1976, 1978). Our investigation is still of interest
now and is presented below. We have analyzed 12 meridional sections for the
long-term monthly means of zonal winds, which had been constructed by I.G.
Guterman by way of averaging (over 1957–1965) the data from the World
network of the aerological stations. These climatic sections provide the velocities
of zonal wind at the isobaric surfaces of: 850, 700, 500, 300, 200, 100, 50, and
30 hPa for the latitudes of: 0�, �10�, �15�, �20�, �30�, �35�, �40�, �50�, �60�,
�70�, and �80�.
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The zonal wind velocity at any point undergoes the seasonal variations that are
usually approximated by the expression

ul ¼ �ul þA cosð��j1ÞþB cos2ð��j2Þ ð7:16Þ
where �ul is the annual average velocity;A,B and j1, j2 are the amplitudes and initial
phases of the annual and semiannual harmonics, respectively;�¼ 2pt/365.25 is the
Sun�smean longitude, and t is the time in days.Using themethod of least squares,we
calculated the unknowns �ul,A,B,j1, andj2 for each nodal point of the section, using
average values of ul for twelve calendar months. The results were used to construct
sections of �ul, A, and B, which are shown in Figures 7.1–7.3.
It follows from Figure 7.1 that westerly winds predominate in the atmosphere on

average over the year. Easterlies blow only near the equator. The boundaries between

Figure 7.1 Meridional section of the mean annual zonal atmospheric circulation. Isotachs in m/s.

Figure 7.2 Meridional section of the annual amplitudes of the zonal wind velocity. Isolines in m/s.

7.2 Climatic Data j123



west and easterly winds (the zero isotachs) at sea level lie at latitudes�30�. With the
ascent to the 200-hPa level, the zone of easterlies narrows toward the equator, down to
the narrowest zone limited by the latitudes �6�. Above 200-hPa level the zone of
easterlies spreads out into middle latitudes and at the 30-hPa level, it extends from
40�N to 25�S. The highestwesterly wind velocities are observed at the 200-hPa level in
the subtropics, at around 35� of the northern and southern latitudes. These velocities
attain 23 and 29m/s in the Northern and the Southern Hemispheres, respectively.
These highwesterly velocities reflect the presence of the subtropical jet streams in the
upper troposphere. The strongest easterlies are encountered in the equatorial
stratosphere. The velocities range up to 12m/s at 30 hPa and latitude 10�N. The
velocities of the easterly winds do not exceed 4m/s in the troposphere around the
equator.
The amplitudes of the annual wind-velocity variations attain their maxima below

the tropopause, near the zone of the subtropical jet streams (Figure 7.2). The values
are 15 and 8m/s in the Northern and Southern Hemispheres, respectively. Higher
maxima are encountered in the stratosphere at latitudes�60�, where easterlies blow
in summer and westerlies in winter. The amplitude distributions of the semiannual
variations are given in Figure 7.3. One can see that these amplitudes are much
smaller than the annual amplitudes. Only in the latitudinal zone from 35�N to 40�S
and above the 300 hPa level do they vary within the interval of 1–3m/s.
The distribution of the long-termmeans of zonalwindsul in the atmosphere (up to

a height of	31 km) in January and July is shown in Figure 7.4. The averaging of data
is performed with the help of the NCEP/NCAR reanalyses for 1948–1998. One can
see that the subtropical jet stream in the troposphere of the Northern Hemisphere
features the velocities of about 40 and 20m/s in January and July, respectively. In the
SouthernHemisphere, the difference between the wind velocities in thesemonths is
much less: they are about 30 and 40m/s in January and July, respectively.

Figure 7.3 Meridional section of the semiannual amplitudes of
the zonal wind velocity. Isolines in m/s.
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Figure 7.4 Meridional sections of the zonal wind in January (top)
and July (bottom) from NCEP/NCAR reanalysis. Isotachs in m/s.
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The data on the distribution of wind velocities in the atmospheric layers above
35 km are only episodic. They are mostly obtained with the help of rocket
sounding and indirect methods (observations of the movement of artificial smoke
clouds, meteoric traces, and so on). In winter, strong westerly winds are observed
in the upper stratosphere. They are particularly strong in the middle latitudes at a
height of the stratopause (65 km), where the wind velocities attain 100m/s on
average. In summer, easterly winds dominate above 15–20 km, their maximum
velocity – about 70 km – being observed in the subtropics at a height of 55 km.
Thus, the annual difference in wind velocities in the upper stratosphere can attain
170m/s; in the zone of jet streams, which are observed near the tropopause
(10–13 km) and contain the bulk of the angular momentum h3, this difference is
30 and 16m/s in the Northern and Southern Hemispheres, respectively.
Over the equator, in a layer from18 to 30 km, the quasibiennial oscillation (QBO) in

wind direction is traced (see Section 9.2): during one period (about 17 months)
easterly winds blow there and during another period (about 11 months) westerly
winds. The full cycle can last from 20 to 30 months, averaging about 28 months.
Above 35 km over the equator, the semiannual oscillation is observed. In the
transitional seasons (in spring and autumn), westerly winds prevail, whereas in
winter and summer easterly winds do so.
Having the meridional sections of the zonal wind, we calculated the angular

momentum h3 of the zonal wind, converting from height to pressure as a variable,
rdR¼�dP/g. Here, P is the atmospheric pressure and g is the acceleration of gravity,
which is approximated as

gq;z ¼ g90� ;0ð1þ 0:005288 cos2qÞð1�0:315� 10�6zÞ ð7:17Þ

In (7.17) gq,z, is the acceleration of gravity at latitude j¼ 90� � q and height z,
which is reckoned from sea level inmeters. The level-surface radius was represented
in the form R¼R0 þ z, where R¼ a (1�acos2q) is the radius of the geoid, a is the
equatorial radius, and a is the flattening of the Earth. Thus,

h3 ¼ 2p� 103

g90� ;0

ðp

0

sin2q0
ð1�a cos2q0Þ3

ð1þ 0:005288 cos2q0Þ
ðP

0

ðaþ zÞ3uldP
ð1�0:315� 10�6zÞ dq

ð7:18Þ

Going from integration to summation, we have

h3 ¼ D
XN
j¼1

Fj

XQ
k¼1

ðaþ zkÞ3
ð1�0:315� 10�6zkÞ

DPkðulÞkj ð7:19Þ

where j and k are the zone and layer numbers, respectively, DPk ¼ P��P, and P
and �P are the atmospheric pressures at the lower and upper boundaries of the
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kth layer. These boundaries were placed at the 1000, 775, 600, 400, 250, 150, 75,
40 and 20 hPa levels; N and Q are the total numbers of zones and layers,
D ¼ 2p� 103=g90�;0 ¼ 0:6424321, g90�;0 ¼ 9:78031m=s2, and a¼ 6378.14 km. The
heights zk were put equal to 1, 3, 5.5, 9, 12, 16, 20, and 24 km, respectively.

Fj ¼
ðq�

q�

sin2q0
ð1�acos2q0Þ

ð1þ 0:005288cos2q0Þ dq

¼ ð0:498082Dq�0:25 sin 2qþ 0:00048 sin4 qÞ �q
q

���� ð7:20Þ

The zone boundaries were the latitudes �5, �12.5, �17.5, �25, �32.5 �37.5, �45,
�55, �65, �75, and �85�.
The results of calculations are given in Table 7.1. The mean monthly values of h3

are given separately for: (i) the entire Earth; (ii) the Northern and (iii) the Southern
Hemispheres. Values of h3 are given separately for (a) westerly and easterly winds;
(b) westerly winds only; and (c) easterly winds only. Table 7.1 gives also the harmonic-
analysis parameters for all of these quantities: the means �h3 for the year, the
amplitudes of variations with the annual A and semiannual B periods, and the
initial phases j1 and 2j2 of these variations.
It is seen that the entire-atmosphere h3 is always positive, that is, the atmosphere

rotates from west to east faster than the Earth. The angular momentum h3 is the
largest (145� 1024 kgm2 s�1) in May and December and the smallest (91� 1024 kg
m2 s�1) in August. These values of the atmosphere�s h3 would be obtained in the case
of a rigid-body rotation if it made one revolution with respect to the Earth�s surface
within 70 days inMay andDecember and 113 days in August. The variations of h3 are
small from December through May. The annual h3 variation for the entire atmo-
sphere can be approximated formally by the expression

h3 ¼ ð128þ 11:6 sin� þ 18:6 cos��8:8 sin2��8:2 cos2�Þ � 1024

¼ 128þ 22cosð��32�Þþ 12cosð2��227�Þ½ 
 � 1024 kgm2 s�1

ð7:21Þ
The angular momentum variations taken separately for the Northern and South-

ernHemispheres have amore distinct annual period. The amplitudeA of the annual
variations in the Northern Hemisphere is almost twice as large as that in the
Southern Hemisphere (46 as against 25) (Table 7.1). The initial phases j1 differ by
170� in the Northern and Southern Hemispheres, that is, the variations are out of
phase and compensate each other. The total compensation does not occur because of
differences in amplitudes A. The semiannual variations have almost equal initial
phases in both hemispheres. As a result, even though the semiannual amplitudes are
smaller than the annual amplitudes (in each hemisphere taken alone), they add for
the Earth as a whole and assume the same order of magnitude as the annual
variations. The semiannual variations manifest themselves most distinctly in the
stratosphere of lower latitudes.
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7.3
Axial Angular Momentum (Reanalysis Data)

In the 1990s, the National Center for Environmental Prediction (NCEP) and the
National Center for Atmospheric Research (NCAR) performed an important project
of the reanalyses of all past observational data bases and the global analyses of the six-
hourly atmospheric fields, gradually passing from the present time into the past
down to 1948 including (Kalnay et al., 1996). The data sets of wind and pressure fields
were created for 28 isobaric surfaces up to 10 hPa (about 31 km). On the basis of these
data, the AAM hi and EFAAM components cWi were calculated separately for the
Northern and Southern Hemispheres (Salstein et al., 1993; Salstein, 2000; Zhou,
Salstein and Chen 2006). The calculations were carried out with an interval of six
hours (00:00, 06:00; 12:00, and 18:00 UTC) for the entire period of records.
The projection h3 of the atmospheric relative angular momentum onto the Earth�s

rotation axis is called the angular momentum of atmospheric winds. It follows
from (7.11) that h3 is determined by the zonal wind velocity. For this reason, h3 is
referred to hereafter as the angular momentum of zonal winds. Since zonal motions
prevail in the atmosphere, h3 is hundreds of times higher than the equatorial
components h1 and h2 of the wind angular momentum.
The angular momentum h3 is the major integral of motion of the atmosphere. It

characterizes the intensity of the atmospheric zonal circulation (Sidorenkov, 1991a;
Sidorenkov and Svirenko, 1991; Hide et al., 1997). The higher the value of h3, the
stronger thewesterlywinds and theweaker the easterly winds in the atmosphere. The
lower the value of h3, the weaker the westerly winds and the stronger the easterly
winds. Since the atmosphere�s moment of inertia n33 relative to the Earth�s rotation
axis varies little, in the first approximation h3 determines the angular velocitya of the
atmosphere rotating as a solid body relative to the Earth�s surface:

a ¼ h3=n33 ð7:22Þ
The value of n33¼ 1.413� 1032 kgm2 (Table 6.1), which is 500 thousand times less

than the moment of inertia of the mantle. Therefore, by the angular momentum
conservation law, the variations in a must be 500 thousand times larger than the
seasonal variations in the mantle�s rotation velocity n3.
The series of h3 over 1948–2006 provides a unique opportunity to study temporal

variations of the atmospheric zonal circulation in the range from 6 hours to 50 years.
The values of h3 measured at a fixed observation time were averaged over a long

period to obtain a long-term average of h3 or a normal at this observation time.
Performing these computations for 00:00, 06:00, 12:00, and 18:00UTC, we produced
the normals characterizing the diurnal oscillations in h3. Next, the daily means �h3
were subtracted from the observed h3 and were additionally averaged over seasons to
obtain the angularmomentumdeviations h03. Figure 7.5 shows the diurnal oscillation
of h03 for winter, spring, summer, and fall. It can be seen that h3 has two maxima (at
00:00 and 12:00) and twominima (at 06:00 and 18:00). Theminimumat 18:00 isweak
and disappears in fall. The diurnal range of h3 is 1.1� 1024, that is, about 2% of the
seasonal range.
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The spectrum of observed h3 exhibits the harmonics of diurnal tides, which will be
discussed below (Section 7.5). The causes of diurnal oscillationswill be considered in
Section 8.6.Here, we only note that at 00:00 and 12:00UTC the Sun is over the Pacific
and Atlantic oceans, respectively, and at 06:00 and 18:00 UTC – over Asia and
America, respectively.
Theobservedvaluesofh3were averaged to obtaindaily,monthly, andannualmeans.

The monthly and annual means of h3 over 1948–2000 are presented in Sidorenkov
(2002a, 2002b). Figure 7.6 shows the temporal variations in the monthly means of h3.

Figure 7.5 Diurnal oscillations in zonal-wind angularmomentum
h03 in winter (1), spring (2), summer (3), and fall (4).

Figure 7.6 Temporal course of the mean monthly angular momentum of zonal winds h3.
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The power spectrum of this series (Figure 7.7) reveals the intense annual and
semiannual harmonics,whose sumyields the seasonal variations.There are also small
peaks at periods of 2.4, 3.6, and 4.8 years. It will be shown in Chapter 9 that they are
associated with the interannual oscillations in the Earth–ocean–atmosphere system.
Toextracttheseasonalvariationsfromtheseriesofmonthlymeansofh3,theirmoving

annual averageswere subtracted fromtheseries ofh3 and the resultingdeviationswere
averaged over everymonth of the year for 1961–2006. The data for preceding years are
less reliable. For this reason, theywerenot used in theaveragingprocedure.As a result,
we obtained the long-term means (or the monthly normals) of h3 (Table 7.2).
Figure 7.8 illustrates the behavior of the h3 normals for the entire atmosphere and

for the Northern and Southern Hemispheres separately. It can be seen that the
angular momentum h3 of the entire atmosphere has two maxima of 161� 1024 (in
April andDecember) and twominima: in July (108� 1024) andFebruary (154� 1024).
The minimum in July is much deeper than that in February. In the case of the solid-
body rotation, the atmosphere would have the above values of h3 if it made one
revolution relative to the Earth�s surface in time T¼ 2pn33/h3¼ 64 days in April and
December and in T¼ 95 days in July. The value of h3 varies little from December to
May. The difference between the maximum of h3 in December (or April) and its
minimum in July is 53� 1024 kgm2 s�1.
Based on the reanalysis data over 1958–2000, the seasonal variation of h3 in the

entire atmosphere can be formally approximated by the expression

h3 ¼ ð144þ 7:8 sin� þ 21:6 cos��9:2 sin 2��10:3 cos 2�Þ � 1024

¼ ½144þ 23 cosð��20
� Þ þ 14 cosð2��222

� Þ
 � 1024 kgm2 s�1

ð7:23Þ

Figure 7.7 Power spectrum of the angular momentum of zonal winds h3.
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A comparison of (7.23) with (7.21) shows their good agreement. Slight differences
in the annual mean values and phases can possibly be associated with the upper 20-
and 10-hPa levels added to the reanalysis data. Actual climate changes could also have
some effect.
Theannualmeansofh3 over theNorthernandSouthernHemispheres are56� 1024

and88� 1024 kgm2 s�1, respectively. Thismeans that theannualmean intensity of the
zonal circulation in the Northern Hemisphere is 36% less than that in the Southern
Hemisphere.However, theannualamplitudeofh3 in theNorthernHemisphere is67%
largerthanthatintheSouthernHemisphere.Specifically, it is57� 1024 kgm2 s�1 inthe
NorthernHemisphere and only 34� 1024 in the SouthernHemisphere. The cause of
thisdifferenceisthattheNorthernHemisphereembracesmanymorecontinentalareas
than the Southern Hemisphere does. The initial phases j1 in the Northern and
Southern Hemispheres differ by 178�, that is, the oscillations are opposite in phase
and appreciably compensate each other. However, the compensation is not complete
becauseof thedifferenceintheannualamplitudes.Thesemiannualoscillations inboth
hemisphereshavealmost identical initialphases.Therefore,althoughtheiramplitudes
(in eachhemispheres) aremuch smaller than the annual amplitude, they are added for
theentireglobe, tobecomeofthesameorderas theannualamplitudes.Thesemiannual
oscillations are most clearly pronounced in the low-latitude stratosphere.
A remarkable feature of h3 is that its value is not zero on average but is þ 143.9�

1024 kgm2 s�1. This means that the atmosphere as a whole rotates from west to east
faster than the Earth. Specifically, while the former makes 71 revolutions, the latter
makes 70 revolutions around its axis. This phenomenon is known as the super-
rotation of the atmosphere. Its nature is discussed in Chapter 8. Of course, different
parts of the atmosphere rotate in a different manner. The atmosphere rotates faster
than the Earth in the middle and subtropical latitudes and slower – in the equatorial
zone. The period of revolution of the atmosphere relative to the Earth�s surface is 58
and 92 days in the Southern and Northern Hemispheres, respectively. In the jet-
stream areas, the atmosphere can rotate around the Earth in less than 10 days.

Figure 7.8 Seasonal variations in the angularmomentumof zonal
winds h3. Atmosphere as a whole (1); Northern Hemisphere (2);
Southern Hemisphere (3).
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7.4
Estimations of Seasonal Variations in the Earth�s Rotation

Given the variations with time in the angular momentum of the atmosphere�s zonal
wind h3, it is easy to calculate the variations in the velocity of the Earth�s rotation.
Indeed, as it follows from (4.26) and (4.33),

dn3
dt

¼ � dc3
dt

ð7:24Þ

Upon integrating (7.24) from the point of time t0 to the point of time t we obtain:

n3ðtÞ�n3ðt0Þ ¼ �c3ðtÞþc3ðt0Þ ð7:25Þ
However, as follows from (4.12) and (7.4), n3 ¼ w3�W

W and c3 ¼ h3
CW.

On this basis, equality (7.23) can be rewritten in the form:

w3ðtÞ�w3ðt0Þ
W

¼ dw
W

� n03 ¼ � h3ðtÞ�h3ðt0Þ
CW

¼ � dh3
CW

ð7:26Þ

Since the seasonal variations in the angular momentum of zonal winds h3 are
described by expression (7.23), the Earth�s rotation seasonal variation that is caused
by these variations is expressed as:

n03 � 1010 ¼ �15:2 sin��42:1 cos� þ 17:9 sin 2� þ 20:1 cos 2�
¼ 44:8 cosð��200

� Þ þ 26:9 cosð2��42
� Þ ð7:27Þ

This is close to the approximation of the observed nontidal irregularity of the
Earth�s rotation. Also, the variations in the Earth�s rotational velocity n03 can be
calculated immediately by the h3 values presented in the first row of Table 7.2.
The seasonal course of the n03 values calculated in such a way is presented in
Figure 7.9 (curve 2), whereas curve 1 shows the seasonal variations in the angular

Figure 7.9 Seasonal variations in the velocity of the Earth�s
rotation. By astronomical observations (1); calculated by the h3
values of the angular momentum of zonal winds (2).
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velocity, which are synchronically observed by astronomical methods and are
averaged over 1962–2000. The tidal oscillations with periods �1 year are eliminated
from these data. The two curves show a good agreement. Small discrepancies
between them may be due to the errors of the obtained values, so to the effect of
other factors (such as the air and water masses redistribution).
In Figure 7.10, the series of the mean monthly values of h3 for 1948–2000 is

synchronously compared with the series of the Earth�s angular momentum taken
with the opposite sign –�CWn03, which is calculated by the seasonal variations n03 of
the Earth�s rotational velocity (see formula (7.26)). Both curves closely coincide; the
coefficient of correlation r¼ þ 0.84.
Another conclusive piece of evidence of the functional relationship between

the seasonal variations of the Earth� rotation n03 and the variations in the
angular momentum of zonal winds is the consistency of temporal variations in
the amplitudes of the annual and semiannual harmonics of these processes. We
have performed the necessary harmonic analysis, using the mean monthly values
of h3 for calculating the series of deviations of h03 from their moving mean annual
values h3 and the amplitudes and phases of the annual, semiannual, and quarterly
harmonics. For this purpose, the system of 12 conditional equations with 6
unknowns has been solved, using the fixed sequence of 12 mean monthly values
of h03:

h0n;i ¼ an sinQi þ bn cosQi þ cn sin 2Qi þ dncos 2Qi þ en sin 4Qi þ fn cos 4Qi

¼ An sinðQi�j1;nÞþBn sin 2ðQi�j2;nÞþCn sin 4ðQi�j4;nÞ
ð7:28Þ

Here, n¼ 1, 2, 3, . . .,N is the number of the sequence of 12meanmonthly values of
h03 (n¼ 1 for January–December of 1962, n¼ 2 for February 1962–January 1963, and
so on); i¼ 1, 2, 3, . . . 12 is the number of amonth in the fixed sequence;A,B,C, and
j1, j2, j4 are the unknown amplitudes and initial phases of the annual, semian-
nual, and quarterly harmonics, respectively. The solution of only one such sys-
tem (7.28) allows one to find the unknown coefficients a, b, c, d, e, f and their root-
mean-square errors; further simple calculations provide the required amplitudes
A, B,C and their errors. Thus, shifting the window frommonth tomonth along the
whole series of h03 for 1962–2000, we have found the amplitudes of the annual (A),
semiannual (B), and quarterly (C) harmonics for each month of the 50-year period
under study. Notice that the B and C values characterize the changes in amplitudes
only from year to year.
Figures 7.11 and 7.12 show the variations in the amplitudes of the annual and

semiannual harmonics of the angular momentum of zonal winds h03 for 1962–2000.
The quarterly amplitudes of harmonic Cwere small and are not considered here. As
is seen from Figure 7.11, the amplitude of the annual harmonic A varies over wide
limits (from 13� 1024 to 34� 1024 kgm2 s�1, the root-mean-square error varying
from�2� 1024 to�8� 1024). The irregular 6–7-year variations are traced. The high
A amplitudeswere observednear 1958, 1964, 1970, 1977, 1983, 1988, 1992, 1995, and
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Figure 7.10 Angular momentum of zonal wind (1) and the axial
angular momentum of the Earth (2), the latter value being taken
with opposite sign.

136j 7 Angular Momentum of Atmospheric Winds



1998; the low ones – near 1957, 1962, 1966, 1973, 1980, 1986, 1989, 1993, 1996, and
1999.
Amplitude A varies inversely to SOI – the index of the Southern Oscillation (see

Chapter 9). The coefficient of their correlation is maximum (r¼�0.52) at the one-
month lag of SOI. During the warm phases of ENSO, when SOI < 0, amplitudes A
increase; during the cold phases of ENSO, when SOI > 0, they decrease.
The amplitude B of the semiannual harmonic of the moment h03 varies from

4� 1024 to 22� 1024 kgm2 s�1, its root-mean-square error being the same as that for
amplitude A. One can trace the 2-, 3-year cyclic recurrence in B variations. As will be
clear from the following, this cyclicity reflects the quasibiennial oscillations (QBO) in
the atmospheric circulation. The B high amplitudes were observed in 1962, 1966,
1970, 1974, 1977, 1981, 1984, 1985, 1988, 1995, and 1998; the low ones – in 1963,

Figure 7.12 Synchronous course of amplitude B of the angular
momentum semiannual harmonics of zonal winds h3 (1) and the
Earth�s rotation velocity n3 (2) for 1962–1999.

Figure 7.11 Synchronous course of amplitude A of the angular
momentumof the annual harmonics of zonal winds h3 (1) and the
Earth�s rotation velocity n3 (2) for 1962–1999.
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1968, 1969, 1973, 1975, 1978, 1979, 1983, 1986, 1991, 1994, 1997, and 1999.
Amplitude A correlates inversely with amplitude B (r¼�0.4).
The correlation of amplitudeB of the semiannual harmonic of themoment h03 with

the index of SOI is in general positive (but is less close than the negative correlation of
A with SOI), being the highest (r¼ 0.4) at the three-month lag of SOI.
Unlike the amplitudes A and B, the phases of both harmonics vary without any

regularity.
The comparison of variations in amplitude A (of the annual harmonic of the

angular momentum of zonal winds h03) with the seasonal variation of the Earth�s
rotational velocity n03 (Figure 7.11, curves 1 and 2, respectively) shows a nearly total
coincidence of two curves. Their discrepancies, decreasing with time, reflect a
gradual increase in the accuracy and volume of meteorological and astronomical
observations. The variations in B amplitudes for h03 and n03 (Figure 7.12, curves 1
and 2, respectively) are also in good agreement. Their comparison indicates that
the interannual variations in the parameters of seasonal variations in the Earth�s
rotational velocity are caused by the instability of the angular momentum of zonal
wind; this instability, in its turn, is due to the interannual variability of processes
occurring in the climatic system (the El-Nino – Southern Oscillation, QBO and
semiannual wind oscillation in the stratosphere, and so on).
Thus, the seasonal variation of the Earth�s rotation is mainly due to the seasonal

variations in the angular momentum h3 of atmospheric zonal winds. When the
angular momentum h3 increases, the velocity of the Earth�s rotation decreases, and
vice versa. In other words, the angular momentum redistributes between the Earth�s
body and the atmosphere. With this, the total angular momentum of the Earth–
atmosphere system remains unchanged. This conclusion is a good example showing
that the laws of conservation can be valid not only for experiments in physical
laboratories but also for global processes.
As is already noticed in Section 7.3, the angular momentum of zonal winds h3 is

not zero (on average over a year) butmakes 144� 1031 kgm2 s�1; the superrotation of
the atmosphere is observed. The atmosphere as a whole outruns the Earth; it makes
one extra revolution over 2p n33/h3� 70 days. The angular velocity of rotation of the
Earth�s atmospherewith respect to the Earth�s surface is on averagea� 1� 10�6 s�1;
the linear velocity of its rotation at the equator is 6.5m s�1.
Certain researchers use this empirical fact as a basis for the criticismof the existing

ideas about the nature of the seasonal variation of the Earth�s rotation. The objection
is as follows. Since the atmosphere rotates faster than the Earth�s body, it must
accelerate the Earth�s rotation. Because observations do not reveal this acceleration,
the conclusion ismade that the existing estimates of the effect of winds on the Earth�s
rotation are erroneous. However, as is seen fromEquation 7.26, the constant value of
the angular momentum of zonal winds h3 cannot cause the variation in the Earth�s
rotation. The latter originates only with a change in the h3 value. As will be shown in
Chapter 8, the constant value h3 was borrowed by the atmosphere from the Earth at
the moment of formation of the zonal circulation. Then, the velocity of the Earth�s
rotation slowed down by dn3¼ 144� 1024/513� 1031¼ 28� 10�9 and remains the
same at present. In the case of the complete attenuation of zonal circulation, the
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velocity of the Earth�s rotation will take its initial value, that is, it will increase by
28� 10�9.

7.5
Equatorial Angular Momentum of Atmospheric Winds

In addition to the polar component h3, the atmosphere�s angularmomentumhas two
equatorial components h1 and h2. The component h1 characterizes the rotation of
the atmosphere about the equatorial axis Ox1 passing through the Earth�s center in
the direction of the Greenwich Meridian, while h2 characterizes the rotation of the
atmosphere about the equatorial axis Ox2 passing through the Earth�s center in the
direction of the 90�Emeridian. The values of h1 and h2 are either positive or negative
for the atmosphere rotating either counterclockwise or clockwise, respectively (when
viewed from the end of theOx1 andOx2 axes, respectively, outside the atmosphere).
The equatorial components h1 and h2 characterize the meridional motions of the
atmosphere.
To analyze temporal variations in the atmospheric equatorial angular momentum

he¼ h1e1 þ h2e2, we used the series of h1 and h2 calculated by David Salstein from
the reanalysis starting in 1948 and up to the present time (Salstein et al., 1993;
Salstein, 2000; Zhou, Salstein and Chen, 2006).
The monthly normals of the components h1 and h2 show that the amplitudes of

seasonal variations in the equatorial angular momentum components are very small
(Table 7.2). The amplitudes of the diurnal oscillations of h1 and h2 are a few tens of
times larger than the amplitudes of the seasonal variations.
First, h1 and h2 were averaged over each observation time for all days of the year.

The resulting normals of h1 and h2 are shown in Figure 7.13. It can be seen that the
diurnal oscillations of h1 and h2 are complicated and amplitude modulated (slowly
varying). They have two crests near the summer andwinter solstices and two nodes at
the beginning of March and October. Their amplitude in June is nearly twice as large
as that in December.
Second, we average h1 and h2 over each calendar month and analyze the diurnal

oscillation of h1 and h2 from month to month. It can be seen that the diurnal
oscillation of h1 and h2 varies widely during the year (Figure 7.14). The largest
amplitudes of diurnal oscillations occur in June and December. The variation phases
in thesemonths are opposite. In June, themaximum of h1 is observed at 06:00, while
in December at 18:00. The minimums of h1 in June and December occurs at 18:00
and 06:00, respectively. The maximums of h2 in June and December occur at 00:00
and 12:00, respectively. The minimum of h2 in June is observed at 12:00 and in
December at 00:00. In other months the amplitudes of the diurnal oscillations of
both, h1 and h2, are smaller than in June and December. Therefore, their curves lie
inside the envelopes for June and December. Only the even months of a year are
shown in Figure 7.14 to simplify the plot. The extreme values of the diurnal
oscillation of h2 occur six hours earlier than those of h1. This corresponds to a phase
shift equal to 90�. FromOctober toFebruary, thephasesof both components,h1 andh2,
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correspond to those in December, and from March to September – to those in June.
This means that the nodes in Figure 7.13 correspond to the changes in the phase of
diurnal oscillations. In earlyMarch and earlyOctober, the components h1 and h2 at the
nodal points have only a weak semidiurnal oscillations.
The synthesis of the plots of the diurnal oscillations of the equatorial components

h1 and h2 leads to the conclusion that the vector he¼ h1e1 þ h2e2, formed by com-
ponents h1 and h2, rotates in the equatorial plane from east to west with a nearly
diurnal period (Figure 7.15). Vector he describes a trajectory close to an ellipse, one of
the foci of which coincides with the Earth�s center. In June, vector he describes a
trajectory corresponding to the outer major ellipse and in December, trajectory
corresponding to the inner minor ellipse. The positions of the vector he at 00:00,
06:00, 12:00, and 18:00 are indicated next to the ellipses (Figure 7.15). It can be seen
that in June vector he is constantly deflected about 100� to the west of the meridian at
which the Sun is located; inDecember it is located 80� east of the respectivemeridian.
The positive direction of he indicates that the atmosphere rotates counterclockwise in

Figure 7.13 Annual course of the equatorial components h1 (a)
and h2 (b) of the atmospheric angular momentum (the long term
means at observation hours).
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the plane of the meridian perpendicular to the direction of he. That is, when viewed
from the North Pole, in June (more exactly, from March through September), the
atmosphere rotates from the daytime to thenighttime side. This rotatingwind system
continuously follows the Sun. The circulation increases at 06:00 and 18:00, when the
Sun is located at the meridians 80�E (over Asia) and 260�E (over America), and
decreases at 00:00 and 12:00, when the Sun crosses the meridians 170�E (Pacific
Ocean) and 350�E (Atlantic Ocean). Because of this the module of vector he has the
semidiurnal oscillations.
In December (more exactly, from October through February), the atmosphere

rotates in the opposite direction. Yet, the wind system still follows the Sun and the
orientation of the ellipse axes remains nearly unchanged. The angular velocity of the
atmospheric rotation in June is more than twice as high as that in December.
Therefore, the diurnal oscillations of h1 and h2 are modulated in amplitude,

frequency and phase. Recall that the parameters of modulated oscillations (ampli-
tude, frequency, and phase) are also the functions of time but vary more slowly than
the original oscillation (carrier signal). For example, the carrier frequency of a radio
transmitter is of the order of severalmillionhertz, while the frequency of the variation
in the amplitude of radio waves is equal to the frequency of sound waves (from 16 to
20 000 hertz).

Figure 7.14 Diurnal course of equatorial components h1 (a) and
h2 (b) of the atmospheric angularmomentum indifferentmonths.
Numerals of lines denote months.
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In the case of oscillations in the atmospheric angular momentum, the carrier
oscillation is the diurnal one,which is ultimately causedbyday andnight cycles due to
the Earth�s rotation. It is modulated by the annual and monthly harmonics and
superharmonics due to the solar and lunar forcing, respectively. Signals at these
frequencies can be treated as a kind of ultralow frequency sound transmitted by the
atmosphere at the diurnal frequency.
Recall that an amplitude-modulated oscillation can be described by the model

(Zernov, Karpov and Smirnov, 1972)

h ¼ A

�
1þ

XN
i¼1

mi cos ðWi tþFiÞ
�
cos ðw tþjÞ ¼ Acosðw tþjÞ

þ
XN
i¼1

Ami

2
cos ðwþWiÞ tþjþFi½ 
 þ

XN
i¼1

Ami

2
cos ðw�WiÞ tþjþFi½ 


ð7:29Þ
Here, h is the angularmomentum;A,w, and j are the amplitude, circular frequency,
and initial phase of the carrier (diurnal) oscillation;m is themodulation depth;W and
F are the frequency and phase of the amplitudemodulation of the carrier oscillation;
t is time; and i is the index of a harmonic.
Let us consider inmore detail the structure of oscillations inmodel (7.29). Thefirst

term on its right-hand side is the carrier oscillation. The second term describes the
harmonic components with frequencies w þ Wi. They are called the upper side

Figure 7.15 Diurnal rotation of the equatorial vector
he¼ h1e1 þ h2e2 of the atmospheric angular momentum in
June (outer ellipse) and December (inner ellipse).
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frequency band. The third term describes the harmonic components with frequen-
cies w�Wi. They are called the lower side frequency band. The amplitudes of the
side components are Ami/2.
In the case of frequency modulation, the oscillations can be described by the

model (Zernov, Karpov and Smirnov, 1972)

h ¼ A½1þm cosðW tþDW sin n tÞ
cosw t ¼ A½1þmJ0ðDWÞ cosW t

þm
X¥
n¼1

JnðDWÞcosðWþ nnÞ tþm
X¥
n¼1

ð�1ÞnJnðDWÞcosðW�nnÞ t
cosw t

ð7:30Þ
Here, DW and n are the amplitude and circular frequency of variations in the
modulation frequency W, m is the modulation depth, and Jn(DW) is the nth-order
Bessel function of argument DW. The rest notations are the same as in (7.29). The
spectrum of frequency-modulated oscillations (even if the modulation signal is
harmonic) consists of an infinite number of the side components arranged sym-
metrically about w at distances that are the multiples of n. The amplitudes An of the
side components are expressed in terms of the nth-order Bessel function of the first
kind: An¼Am|Jn(DW)|.
The power spectrum S of the complex series h1 þ ih2 is calculated using Ch.

Bizouard�s software program designed for computing the complex fast Fourier
transform. As data, we used 61 360 values of h1 and h2 measured at 00:06 over
1958–1999. The resulting spectrum S is shown in Figure 7.16, where the vertical axis
represents the spectral density on a logarithmic scale in decibels, and the horizontal
axis represents the frequencies in the cycles over the mean solar day.
Figure 7.16(a) reveals an intense peak at a frequency of �1 cycle per day (cpd). To

the right of it, there is a single peak at �0.9295 cpd, which corresponds to the
principal lunar wave O1 in the expansion of the tidal potential (see Section 5.2). High

Figure 7.16 The power spectrum of the equatorial components
h1 þ ih2 of the atmospheric angular momentum (a) and its
retrograde diurnal band (b).
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peaks can be seen at low (�0 cpd) and high frequencies (�2 cpd). The peak at positive
frequencies (þ 1 cpd) is many times lower than that at�1 cpd. A remarkable feature
is that S has an intense wide maximum at about �0.85 cpd. Minima of the spectral
density are observed at about 0.5 and �1.5 cpd. Interestingly, near the positive
frequency þ 1.7 cpd there is a weak maximum resembling in shape that observed at
�0.85 cpd.
Let us analyze the fine structure of the most interesting regions of S by increasing

its resolution. First, we inspect the frequency range from�0.98 to�1.02 cpd, which
is shown in Figure 7.16b). Here, the central peak of 41� 103 at the frequency�1 cpd
corresponds to the well-known thermally driven diurnal tidal wave S1 (Chapman and
Lindzen, 1970; Zharov, 1996a, 1997a). The carrier wave S1 is surrounded by three
pairs of side lines arranged symmetrically at equal distances from S1.
The first pair is composed of the line (on the left) at a frequency of �0.9973 cpd,

which is identified with the principal solar wave P1, and the line (on the right) at
�1.0027 cpd, which corresponds to the lunar-solar declination wave K1. The com-
position of S1 with P1 and K1 induces themodulation (a slow change) with an annual
period of the diurnal amplitude of components h1 and h2.
The second pair is composed by the line (on the left) at �0.9945 cpd (identified

with the solar elliptic wave p1) and the line (on the right) at �1.0055 cpd (identified
with the solar elliptic wavey1)(Table 5.2). The composition of S1 with p1 andy1 gives
an amplitude modulation, with a semiannual period, of the diurnal oscillations of
components h1 and h2.
The third pair is composed of the left line at �0.9918 cpd and the right line at

�1.0082 cpd, which is identified with the solar declination wave j1. Composition
of S1 with the thirdwave pair gives an amplitudemodulation of diurnal oscillations of
h1 and h2 with a terannual period (one-third of the year).
In the low-frequency range (�0 (day)�1), we can see a peak of 11� 103 at the annual

frequency and a hardly noticeable peak at the semiannual frequency. No peaks are
observed in the frequency range of long-period tides.
In the range of semidiurnal oscillations, there is a peak of 5� 103 at 1.9973 cpd,

which corresponds to the large solar elliptic wave T2. Another small peak at
1.9945 cpd is not identified with tidal waves.
Themost striking detail of the total spectrumof h1 and h2 (Figure 7.16a) is a blurred

maximumof the spectral density at�0.85 cpd. Its height is indicative of a high power
of h1 and h2, and the width shows considerable fluctuations of the period. What lies
behind this phenomenon and why does the atmospheric circulation produce strong
noise in this frequency range?
In papers on the atmospheric tides there is an indication on the existence of the

normal antisymmetric mode y1
1 (Yanai wave) with the azimuth wave number s¼ 1

and with a period of 28.94 hours (the frequency�0.83 cpd) (Volland, 1988;Hamilton
andGarsia, 1986; Eubanks, 1993; Brzezinski, Bizouard and Petrov, 2002). Thismode
y1

1 corresponds to the retrograde wave moving in the atmosphere from east to west.
From this point of view, the small maximum of a similar shape near the double
frequency þ 1.7 cpd (Figure 7.16a)) can be explained by the presence of the
antisymmetric mode x12 with a period of 0.6 day.
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However, weather forecasters dealing with atmospheric disturbances and waves
on an everyday basis observe only the large-scale Rossby waves and the synoptic
vortices that move eastward rather than westward. Reflecting on this contradiction
leads us to a fundamentally new explanation of the he spectrum, which is as follows.
The series h1 þ ih2 is calculated from the meteorological elements observed at
fixed times UTC (which are multiples of 6 h). Time is measured relative to fixed
stars with instruments located on the Earth�s surface. The instrument rotating
together with the Earth plays the role of a clock hand, while the stars serve as the
clock face. The star time measured is used to calculate the mean solar time UTC.
Thus, the meteorological measurements involve both the frequencies fi of the
moving atmospheric disturbances and the frequency w of the Sun�s apparent
rotation in the sky. The oscillation frequencies ni of the components of h1 þ ih2 are
the difference between fi and the Sun�s circular frequency w¼ 1 cpd: ni¼ fi �1 cpd.
A researcher, who tries to interpret the observations, locates on the Earth. He does
not perceive the diurnal rotation of the Earth and analyzes all atmospheric distur-
bances relative to the fixed objects on the Earth�s surface (using synoptic maps).
The Sun�s apparent rotation is excluded from consideration, and the disturbances
have the frequency fi¼w þ ni. If the observed frequency is n¼�0.85 cpd, the
frequency of a disturbance wave is f¼ 1 � 0.85¼ þ 0.15 cpd. Accordingly, the
disturbance period is about 7 days. These disturbances are not the Yanai waves but
rather the Rossby waves propagating eastward together with the synoptic struc-
tures. They are especially pronounced in the time–longitude sections of the
atmosphere and ocean. As an example, Figure 7.17 shows such a section for the
daily 500-hPa height anomalies at latitude 40�S in November 2004. Time (days) is
plotted on the vertical axis and the longitudes on the horizontal axis. Positive and
negative anomalies are shown by solid and dotted lines, respectively. The extended
downward inclined crests (positive anomalies) and troughs (negative anomalies)
can be clearly seen in Figure 7.17. The trajectory slope indicates that the anomalies
move eastward with time.
How can the complications introduced into the spectra of geophysical character-

istics by the Earth�s rotation be avoided? For the unknown disturbance waves to be
reliably detected in any time series, the diurnal frequencyw has to be eliminated, that
is, the oscillations of h1 þ ih2 have to be demodulated. For this purpose, we used
observationsmade strictly at daily intervals, that is, only the envelope amplitude of the
carrier frequency was analyzed. Therefore, the diurnal frequency vanished, while all
the frequencies lower than 1

2 cpd persisted. The spectra of h1 þ ih2 from1948 to 2006
were calculated for each fixed observation time separately (that is, with a resolution of
24 hours). All the spectra were found to be similar. For this reason, we present only
the spectrum of h1 þ ih2 at 12:00UTC (Figure 7.18). Unfortunately, the spectrum of
the series measured at a fixed observation time no longer contains the diurnal or
within-day component. It can be seen that the spectrum has changed considerably.
Specifically, at the negative frequencies, no O1 or Yanai y1

1 waves are present any
longer. They have transformed into the fortnightly (13.7 days) and the quasiweekly
(7.8 days) lunar waves, respectively. Let us note that if h1 and h2 were daily averaged,
we would obtain the spectrum of the white noise (Figure 7.19). In addition, the total
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Figure 7.17 Time–longitude section of the 500-hPa height
anomalies at 40�S in November 2004 (Climate Diagnostics
Bulletin, No. 04/11, CPC).

Figure 7.18 Spectrum of the series of data h1 þ ih2 obtained for
the observation hour at 12:00 UTC (a). Its yearly and intramonthly
ranges (b).
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power of spectrum in Figure 7.19 is almost ten times as small as the total power of
spectrum in Figure 7.18.
The standing disturbances in vector h1 þ ih2 canbe demodulated by analyzing the

series of its magnitudes (Sidorenkov, 2003b). The fact is that the phase of the daily
oscillations of component h1 lags behind the phase h2 by 6 hours, or 90�. This means
that in conformity with model (7.29), we have:

h1 ¼ Að1þm cosWtÞcoswt ð7:31Þ

h2 ¼ Að1þm cosWtÞsinwt ð7:32Þ
By computing the vector he magnitude, we obtain:

he ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 þ h22

q
¼ A ð1þm cosW tÞ ð7:33Þ

that is themodule he has a different spectrum from the one the components h1 and h2
have. It does not have the carrier and side frequencies, but there is the modulation
frequency W.
Having done the necessary calculations, we obtained the time series of the vector

magnitude he ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 þ h22

p
for 1958–2000 with a 6-hour step. The power spectrum of

the obtained series he is given in Figure 7.20. We can see three powerful peaks at low
frequencies: �1/365, �1/183 and �1/122 cpd. They represent the annual, semi-
annual, and terannual frequencies, respectively. They are the basic frequencies of
modulation of the diurnal thermal atmospheric tide S1.
In the total power spectrum of the equatorial components h1 and h2, the amplitude

modulation of wave S1 by the annual frequency results in the appearance of the side

Figure 7.19 Spectrum of the series of the mean daily h1 þ ih2.
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peaks at the frequencies of the gravitational tides P1 and K1, by the semiannual
frequency – at frequencies p1 and y1, and by the terannual frequency – at the
frequencies of �0.9918 cpd and �1.0083 cpd. The latter corresponds to the wave of
the gravitational tide j1.
Let us consider the modifications that take place in the near diurnal areas

(Figure 7.20b)). From comparison of spectrums in Figures 7.16(b) and 7.20(b) we
can see that peaks P1, S1 and K1 have decreased more than a hundred-fold. Their
energy has transferred into the area of subharmonics of the annual frequency. The
energy of wavesy1 and�0.9918 cpd has decreased 1.5 times, and the energy of wave
p1 has increased even by 25%.Wavej1 has completely disappeared, whereas the peak
on frequency�1/122 cpd has appeared. Themain lunar waveO1 has also completely
disappeared, whereas new peaks formed in the range of frequencies corresponding
to half the lunar month (the most powerful peak falls on the frequency of �1/14.75
cpd; this frequency corresponds to half the lunar synodical period).
In the spectrum of the vectormagnitude he, the strongmaximum at a frequency of

�0.85 cpd (Figure 7.16a)) has also disappeared, whereas a broadmaximumof about a
week�s frequency has appeared.
The spectrum of the vector magnitude he has no vast maximum at 0.85 cpd

(Figure 7.18) but shows a strong maximum in the vicinity of a 7-day frequency. It
indicates that the amplitude of the diurnal oscillations of h1 and h2 does changewith a
period varying from 5 to 9 days.
Thus, the equatorial angular momentum he rotates with the diurnal period

westward in the equatorial plane, so that it is 100� ahead of the Sun�s meridian
fromMarch to September and 80� behind it fromOctober to February. The length of
he varies with periods of 0.5, 1, 7, 14, 122, 183, and 365 days. The annual, semiannual,
and terannual harmonics result from the variation in the atmospheric circulation due
to the Sun�s annual motion between the Northern and Southern Tropics. The

Figure 7.20 Spectrumof themodulus of the equatorial projection
of the angular momentum vector he ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 þ h22

p
(a) and its near-

diurnal band (b).
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fortnightly and weekly harmonics result from the effect of lunar tides on the
atmospheric circulation. The semidiurnal harmonics are caused by both the grav-
itational tides and the diurnal variation in the solar light absorption due to the
inhomogeneity of the Earth�s surface. In the annual range, a peakwith a period of 355
rather than 365 days was detected, which definitely indicates its lunar origin, since
this is the lunar year! The question arises as to why no lunar components were
detected earlier. The answer is obvious. Meteorologists use the averaged data
(monthly and annual means), which contain no information on the tidal oscillations.
For example, if h1 and h2 were daily averaged, we would obtain nearly constants with
no amplitude or frequency modulation of the diurnal carrier frequency. The
averaging of observations destroys the natural information flow at the diurnal
frequency (Figure 7.19).

7.6
Atmospheric Excitation of Nutations

Synthesis of the time variations of the projections h3 and he of the relative atmo-
spheric angularmomentumvectorhonto the polar axis and the equatorial plane leads
to the conclusion that vector h experiences a nutation motion with a near-diurnal
period. This is shown graphically in Figure 7.21. Vector h is deflected from the polar
axis by an angle q¼ arctg(he/h3) (in June, up to �2�) and rotates from east to west,
describing a conical surface. Its vertex is the Earth�s center, and the directrix is a curve,

Figure 7.21 Diurnal nutation of the atmospheric angular
momentum vector h¼ h1e1 þ h2e2 þ h3e3.
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the projection of which onto the equatorial plane coincides with the trajectory of
he¼ h1e1 þ h2e2 (see Figure 7.15). The aperture of the cone described by vector h is
equal to the magnitude of |he|. It is clear that all the above features of the vector
he motion are valid for vector h. The amplitude of the retrograde diurnal nutation of
h reaches a maximum near the June and December solstices and is close to zero at
the beginning of March and in mid-October, when the nutation phase changes by
180�. From March to September, the meridian of vector h is constantly deflected by
about 100� to the west and from November to February by 80� to the east of the solar
meridian.
In consequence of the law of conservation of the angular momentum of the

Earth–atmosphere system, the nutation of atmospheric angular momentum vector
h should be accompanied by the reverse nutation of the Earth�s angular momentum
vector H, because in a closed system DH/Dt¼�Dh/Dt (Sidorenkov, 2003b).
The above tidal harmonics in the variations of the vector h components should

excite the oscillations of the components of vectorH, which are opposite in sign and
have the same tidal frequencies. However, to the tidal frequencies in the Earth�s
rotating reference system there correspond definite nutation frequencies in the
celestial reference system (Melchior, 1983; Moritz and Mueller, 1987). The nutation
frequency Dsj is determined as the difference between the tidal frequency sj and the
sidereal angular velocity of the Earth�s rotation wj:

Dsj ¼ sj�wj ð7:34Þ
Table 7.3 presents the nutation terms excited in the Earth�s rotation by the tidal

oscillations of the atmospheric angular momentum vector h.
As is seen from Table 7.3, the atmospheric tide P1 is the equivalent to the prograde

semiannual nutation, tide S1 – to the prograde annual nutation, tide K1 – to the
precessional movement or the offset of the Celestial Ephemeris Pole in space, tides
y1 and j1 are the retrograde annual and semiannual nutations, respectively. Less
significant are the tide p1 and the tide with a frequency of �0.9918 cpd. They cause

Table 7.3 Tidal oscillations of the atmospheric angular
momentum vector h and the respective terms of nutation of
the Earth�s rotation axis.

Tide Frequency
r, cpd

Amplitude Argument
of nutation

Period,
days

Type and genesis of
the nutation

— �0.8557 16 4s 6.8 Weekly, Moon
O1 �0.9295 29 2s 13.7 Fortnightly, Moon
— �0.9918 16 4h 91 Quarterly, Sun
p1 �0.9945 13 3h 122 Terannual, Sun
P1 �0.9973 470 2h 183 Semiannual, Sun
S1 �1 410 h 365 Annual, Sun
K1 �1.0027 430 1 Precession, Moon and Sun
c1 �1.0055 37 �h �365 Retrograde annual, Sun
j1 �1.0082 25 �2h �183 Retrograde semiannual, Sun
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the prograde terannual and quarterly nutations of the Earth�s spin axis, respectively.
The main lunar tide O1 in the atmosphere excites the prograde fortnightly nutation.
The variations in the atmospheric angular momentum in a broad band near the
�0.85 cpd frequency can cause the prograde nutation with a period of about 6.8 day.
As is known, the presence of the ellipsoidal liquid core inside the Earth generates

an almost diurnal nutationwith a frequency of 1/Tfcn¼ 1.0050663 cpd. The frequency
of tidey1 is very close to this frequency. This produces the resonance that results in a
considerable amplification of the effect of this wave on the excitation of nutation
(Brzezinski, 1994; Zharov and Gambis, 1996;Bizouard, Brzezinski and Petrov,
1998; Brzezinski, Bizouard and Petrov, 2002). In the frequency domain, this effect
is described by the expression (Brzezinski, 1994;Brzezinski, Bizouard and Petrov,
2002):

pðsÞ ¼ a
scw

sfcn�s
þ scw

scw�s

� �
cðsÞ ð7:35Þ

where scw ¼ 2pð1þ i=2QcÞ=Tc and sfcn ¼ 2pð1þ i=2Qf Þ=Tfcn are the frequencies of
the Chandler wobble and of the free core nutation, respectively; Tc¼ 433.3 days and
Tfcn¼ 0.995 day are their periods;Qc¼ 170 andQf¼ 5722 are their quality factors for
the Chandler wobble and the free core nutation, respectively; a is a dimensionless
coefficient expressing the response of the free core nutation mode to the pressure
(ap¼ 9509� 10�5) andwind (aw¼ 5489� 10�7) excitation c(s) (Brzezinski, Bizouard
and Petrov, 2002). As shown in (Gross, 1993), the effect of diurnal tides on themotion
of poles can be expressed in the frequency domain as the corrections to the nutation
terms described by a simple equation: n(s)¼�p(s).
The effect of atmospheric tides on the nutation of the Earth�s spin axis was

estimated in many papers (Zharov and Gambis, 1996;Bizouard, Brzezinski and
Petrov, 1998; Brzezinski, Bizouard and Petrov, 2002). It was found in (Bizouard,
Brzezinski and Petrov, 1998) that the total contribution of the atmospheric winds and
pressure causes the following nutations of the Earth�s spin axis: the prograde annual
nutation with an amplitude of 77 mas; the retrograde annual nutation with an
amplitude of 53 mas and the prograde semiannual nutation with an amplitude of
45 mas. The constant offset of the pole is estimated in the longitude dy sin e0¼�86
mas and in the inclination de¼ 77 mas.
The analysis of temporal variations in components h1 and h2 shows that the

atmospheric contribution to the nutation considerably varies with time. Earlier this
feature of the atmospheric effect was found (Bizouard, Brzezinski and Petrov, 1998).
Therefore, the account of the effect of the atmosphere in the nutation by way of
adding the constant atmospheric corrections to nutation terms is inefficient. Per-
manent calculations of atmospheric corrections using the operative analyses of the
atmospheric global circulationmodels are necessary. Then, these calculations can be
used for correcting the astronomical observations in real time.
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8
Nature of the Zonal Circulation of the Atmosphere

8.1
Observational Data

The air motion in the atmosphere is irregular. To make sense of this chaos, methods
of the temporal and spatial averaging arewidely applied to the observedfields ofwind,
atmospheric pressure, temperature, and other characteristics. The atmospheric
characteristics are most variable along the meridian and height; therefore, they are
generally averaged either along themeridian or by constructing themeridian–height
sections.
The distribution of the zonal (that is, the meridian-averaged) component of wind

velocity in the atmosphere is shown [in the meridian section] in Figure 7.1
(Sidorenkov, 1976). It is seen that on average over the year, the westerly winds
(positive values) prevail in the atmosphere. The easterly winds prevail only near the
equator. The boundaries between these winds (the zero isotachs) lie (at the sea level)
at the latitudes of �30�. Up to a level of 200 hPa, the zone of easterly winds narrows
toward the equator and then, higher up, it widens toward the middle latitudes. In its
most narrow place, this zone is limited by the latitudes �6�, whereas at a level of
30 hPa it extends from 40�N to 25�S. The maximum velocity of westerly winds is
observed at a level of 200 hPa in the subtropics near the latitudes of �35�. The wind
velocity reaches 20m/s in the Northern Hemisphere and 29m/s in the Southern
Hemisphere. These averaged velocity maxima of westerly winds reflect the presence
of the subtropical jet streams in the upper troposphere. The strongest easterly winds
are observed in the equatorial stratosphere: at a level of 30 hPa and10�N latitude, their
velocity reaches 12m/s. In the near-equatorial troposphere, the velocity of easterly
winds does not exceed 4m/s.
Near the Earth�s surface, the trade winds having the eastern component prevail at

low latitudes and the westerly winds in moderate and high latitudes. The zonal
component of wind velocity changes its sign at the so-called �horse latitudes� (near
the latitude of 30� in both hemispheres), where the zones of tropical calms are
located. Figure 8.1 illustrates the dependence of the mean annual velocity u of the
zonal wind at a level of 850 hPa on the geographical latitude. One can see that in
the zone of 40� < q< 140�, the velocity u changes with the latitude from its negative
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values to maximum positive values. This latitudinal dependence of velocity u is well
approximated by the zonal spherical harmonic of the second degree:

u � cð2=3� sin2qÞ ð8:1Þ
where c is a positive constant, q is the colatitude. The negative values of velocity unear
70�S are associated with the outflow of cold air from the Antarctic and are observed
only up to a height of 2 km (see Figure 7.1).
It is found that variations in the intensity of the atmosphere zonal circulation are

accompanied with changes in the velocity of the Earth�s rotation (Munk and
Mcdonald, 1960; Sidorenkov, 1976). The zonal circulation intensifies owing to the
inflow of the angular momentum from the Earth and attenuates owing to its outflow
to the Earth. It is shown that the angular momentum of zonal winds is not equal to
zero; it averages to about 13� 1025 kgm2 s�1, that is, the atmosphere as a whole
rotates around the polar axis more rapidly than the Earth rotates; thus, the super-
rotation of the atmosphere takes place (Sidorenkov, 1976, 1980b, 1982a, 1991b).
Solar radiationheatsmost intensely theEarth�s surface at low latitudes. Thus, there

is an excess of heat influx at low latitudes and its deficiency at high latitudes. It is
natural to expect that at such heat regime, the atmospheric pressure near the Earth�s

Figure 8.1 Latitudinal changes in the mean annual velocity of
zonal wind u and the angular velocity a of the rotation of the
atmosphere relative to the Earth�s surface, at a level of 850 hPa.
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surface would constantly increase along the meridian from the equator toward the
poles. However, actually, the pressure grows only as far as to the �horse latitudes�
(35�) and then rapidly drops down to its minima near the polar circles (near the
65� latitude) (Figure 8.2). Thus, the main specific feature of the distribution of the
zonal atmospheric pressure near the Earth�s surface is clearly defined subtropical
maxima (near the 35� latitude); moving away from them, the atmospheric pressure
decreases both toward the equator and the poles.
Although the zonal circulation and the field of atmospheric pressure have long

been simulated by the numerical models of the atmosphere general circulation,
(Dymnikov, Petrov and Lykosov, 1979), there was no adequate physical explanation of
the observed peculiarities of zonal circulation and air pressure latitudinal profiles
(Lorenz, 1967) until the investigations of Sidorenkov (1980b, 1982a, 1991b), in which
they were successively explained. The conception of N.S. Sidorenkov is given below.

8.2
Translational–Rotational Motion of Geophysical Continua

Themotion of a rigid body is described either by two vectorial equations (those of the
momentumand angularmomentumbalances) or by six scalar equations (those of the
balances of three projections of the momentum and three projections of the angular
momentum of a body). The equation of the momentum balance describes the
translational motion of a body (when all the points of a body move precisely as its
center of inertia does). The equation of the angular momentum balance describes
the rotation of a body around its center of inertia. In continuum mechanics, the
motion of a continuum is described using solely the equation of the momentum
balance. In this case, a theorem of the reciprocity of tangential stresses (or the
symmetry of the stress tensor) is proved, and then it is assumed that the equation of
the angular momentum balance is identically satisfied when accounting for the
equation of themomentumbalance alone (Landau and Lifshitz, 1959;Massey, 1983).

Figure 8.2 Latitudinal changes in the mean atmospheric pressure at sea level.
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What would happen if the stress tensor is really symmetrical sij¼sji (Figure 8.3)?
In that case, the moments of forces of tangential stresses acting on the physical
particle (the microvolume) under consideration would compensate each other and
the particle would not be able to rotate (Sidorenkov, 2008a). In the isotropic space
(Figure 8.4), such as where the geophysical and astrophysical envelopes are, the
particle would move only translationally over the spherical surface of an equal
potential of the gravitational field (equipotential surface). From here on we consider
the geophysical continua. If particles move in a translational way relative to the
inertial cosmic space, they must rotate relative to the Earth�s surface. Each particle
would rotate around its individual axis that passes through the individual center of
inertia of this particle. Hence, the orientation of particles relative to each other would

Figure 8.3 Components of the stress tensor.

Figure 8.4 Homogeneous (a) and isotropic (b) spaces.

156j 8 Nature of the Zonal Circulation of the Atmosphere



constantly vary. Also, there should be friction between particles, and the results of
mixing and friction would depend on the size of particles. For example, the
atmosphere and hydrosphere contain compound molecules, clusters of water, ice
crystals, and so on. If the sizes of particles are smaller than those of the above
formations, the latterwould behave as though they parted. At the translationalmotion
along the equipotential surface, these parts of formations will rotate as autonomous
bodies (independently of one another). As a result, the order of arrangement of
moleculeswould be disturbed, and amash of atoms and fragments of formationswill
form in place of clusters and crystals.
In nature, there is neither any mixing of orientations of particles nor friction

between them. Therefore, we can state that the model of motion proposed in the
modern continuum mechanics is inadequate.
Let us consider the second contradiction. The model of translational motion

proposed in the modern continuum mechanics yields different results depending
on the choice of the particle size. Figures 8.5a and 8.6a illustrate the translational
motion of a particle in the case of its dividing into two and four parts, respectively.
As is seen from these figures, these parts rotate individually relative to the Earth�s
surface. The results of their motion differ, whereas by their nature they must be
similar at any fragmentation of the original particle. However, this takes place only in
the case of the translational–rotational motion of particles. The orientation of the
chosen parts of particles relative to the Earth�s center must remain unchanged. They
always as though �face� the Earth�s center (Figures 8.5b and 8.6b) and, hence, rotate
relative to the inertial cosmic space. In other words, each particle has its own spin,
its own angular momentum, which is equal to the product of the moment of inertia
of the particle and the angular velocity of its rotation. Note that at rest relative to the

Figure 8.5 Translational (a) and translational–rotational
(b) motions of two particle�s parts over the surfaces of the fixed
geopotential level.
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rotating Earth, all elementary particles rotate around their own axes that pass through
their centers of inertia, parallel to the axis of the Earth�s rotation. The angular velocity
of rotation is the same for all particles and coincides with the angular velocity of the
Earth�s rotation. In the case of the relative motion over the equipotential surface,
particles acquire an additional rotation with the angular velocity a¼ u/r, where u is
the linear velocity of the translational motion of the particle, and r is the radius of
curvature of the trajectory of its movement. In this case, the angular velocities of
revolution of the particle over the equipotential surface and rotation of the particle
around its center of inertia are equal.
The cause of the proper rotation of particles can be understood from the example

of themotion of a balloon executing a round-the-world voyage. The balloon�s gondola
is always situated at the bottom and the envelope with gas is at the top. Hence, the
balloon is subject to the effect of the gravity force moment, which makes the balloon
turn following the changes in the direction of the vertical. At any deviation of the
balloon axis from the local vertical, there arise a couple of gravity forces relative to the
balloon inertia center, which turns the balloon to fit the position of the local vertical.
During one round-the-world flight, the balloon will turn around its inertia center
once. In other words, the force of gravity makes the bodies moving in the horizontal
direction turn to follow the changes in the direction of the vertical. It is just in this way
that all bodies on the Earthmove, all the Earth�s continua of geospheres (atmosphere,
hydrosphere, mantle, and core).
In addition, the orbital revolutions of the major natural satellites of the planets are

in most cases synchronous with their spin rotations, so that the satellite�s angular
velocities of orbital revolution and spin rotation appear to be equal. Due to this,
the satellite always presents the same hemisphere to an attracting planet. Evidently,
the gravitational field tends to make the bodies of the system rotate in such a way as

Figure 8.6 Translational (a) and translational–rotational
(b) motions of four particle�s parts over the surfaces of the fixed
geopotential level.
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they would rotate if the system was solid. It is just in a solid body that each physical
particle revolves around the common axis of rotation and around its proper axis
that goes through the mass center of the particle, parallel to the common axis of
rotation.
Thus, all bodies and all particles of continua in the isotropic space, which the space

around the Earth and any gravitating celestial bodies is, move in a translational–
rotational way. This motion can be adequately described only under the condition
of using all equations of motion (the equations of the momentum and angular
momentum balances). The description of the continuummotion that is accepted in
the modern mechanics contains an error caused by the neglect of the fact that all the
particlesmoving in the isotropic space have their proper rotations (spins). Therefore,
it is impossible to omit the equation of the angular momentum balance. In this
chapter we demonstrate the possibility to successively solve the problems that are
unsolvable in classic hydrodynamics, using the balance equation for the atmospheric
angular momentum. New fundamental results in the theory of turbulence and
mechanics of continuumwere obtained by Nikolaevskiy (2003), who always used the
equations of the angular momentum balance.

8.3
Genesis of the Zonal Circulation

As is mentioned above, the year-averaged heat balance of the equatorial and tropical
areas is positive and that of the polar areas is negative, that is, the atmosphere is
warmed at low latitudes and is cooled at high latitudes. The density of the warm air
is lower than that of the cold air. Therefore, there is an air-density gradient between
the equator and the poles. Such nonuniform horizontal distribution of air density
initiates convective movements in the field of the gravity force. Under the effect of
theArchimedean forces, the atmospheric airmoves to eliminate the density gradient,
whereas the sources of heat and cold restore this gradient. As a result, the convective
motion in the atmosphere is constantly maintained. In the context of thermody-
namics, a heat engine is operating in the atmosphere, the equatorial zone playing the
role of a heater and the polar area – the role of a cooler.
Observations show that the convective movements in the atmosphere occur in the

form of a disordered turbulent motion of large air masses along the meridian rather
than in the form of cells enclosed between the equator and poles. Some air masses
that are formed at low latitudes break out far toward the pole, others that originated
at high latitudes penetrate to the equator. Characteristic horizontal dimensions L of
air masses – the macroturbulent formations – are thousands of kilometers. The
vertical extension (thickness) of air masses is hundreds of times smaller L than
(approximately 10–20 km).
It is clear that the macroturbulent horizontal mixing of the atmosphere levels out

the distinctions in the distributions of all the substances, whose horizontal gradient
in the meridian direction differs from zero. This may be density, temperature,
moisture, admixtures, energy, and so on. To understand the process of formation
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of the zonal circulation, it is sufficient to analyze the transport of the axial component
of the angular momentum l. Jeffreys (1926) was the first who pointed out the
importance of the law of conservation of the angular momentum l for the atmo-
spheric circulation.
Let us observe the atmospheric motion from the inertial (for example, the

heliocentric) reference frame. In the absence of heating the atmosphere is at rest
with respect to the Earth�s surface but rotates together with the Earth relative to the
axis of its diurnal rotation; the specific (per unit mass) absolute angular momentum
l in it is distributed according to the law

l ¼ WR2 sin2q ð8:2Þ
where R is the geocentric distance approximately equal to the Earth�s radius;W is the
angular velocity of the Earth�s diurnal rotation.
The l value is directed along the instant axis of the Earth�s rotation, which does not

virtually change its position (Sidorenkov, 1973). Hence, the l value is considered as
the scalar one. The absolute angular momentum steadily decreases from the equator
(where its specific value is maximum and equal to WR2) to the poles (where l¼ 0).
The mean value of �l in the atmosphere is obviously equal to the absolute angular
momentum of the entire atmosphere divided to its mass

�l ¼
ð
W

lr dV=
ð
W

r dV ¼ n33 W=M � 0:674WR2
0 ð8:3Þ

Here, W is the volume of the atmosphere, n33 and M are the moment of inertia
and the mass of the atmosphere. When estimating�l in (8.3), it is taken into account
that, according to Table 6.1, n33¼ 0.1413� 1033 kgm2; M¼ 5.159� 1018 kg; R0¼
6.371� 106m. Note that in the case of a uniform spherical shell,�l ¼ 2=3WR2. The
latitude j at which l ¼ �l is easily to be found from the condition sin2q¼ 0.674; it is
equal�35� (q1¼ 55� andq2¼ 125�). At low latitudes (|j|< 35�) l >�l; atmoderate and
high latitudes, (|j|> 35�) l < �l).
Due to the macroturbulent horizontal mixing, the distribution of the absolute

angular momentum along the latitude levels off: it decreases at low latitudes, where
the l value is high (l >�l); and increases at moderate and high latitudes, where l is
small (l < �l). This process is similar to the well-known decrease in the temperature
contrast between the heated and cooled areas due to air mixing: the air temperature
drops in warm areas and rises in cold areas. An observer from the heliocentric
reference frame will see that as the distribution of the absolute angular momentum
levels off, the differential rotation of the atmosphere starts. It is relatively slow at low
latitudes and rapid at high latitudes. As for the Earth, it rotates from west to east as a
perfectly rigid body, with the angular velocity being equal in all its points. Therefore,
the decrease in the absolute angular momentum of the adjacent air layer manifests
itself in the lag of its rotation relative to the rotation of the Earth�s surface and,
consequently, in the initiation of easterly winds. The increase in the absolute angular
momentum manifests itself in a more rapid air rotation (as compared with the
rotation of the Earth�s surface) and, consequently, in the initiation of westerly winds.
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The zonal movement of atmospheric air relative to the Earth�s surface (which, in
this case, serves as the reference frame) can be characterized either by the relative
angular velocity a or the wind velocity u. The latter is related to the a value by the
expression u¼aR sinq. As is known, the velocity of zonal winds in the Earth�s
atmosphere is of the order of magnitude of 10m/s. Consequently, a� 10�6 s�1,
or almost a hundred times smaller than the angular velocity W (see Figure 8.1).
With account for the zonal relative movements, the distribution of the specific

absolute angular momentum in the atmosphere is described by the formula

l ¼ ðWþaÞR2 sin2q ð8:4Þ
Withmixing, the l value in the zone of 35�N–35�S decreases; the a and u velocities in
this zone have negative values, that is, the easterly winds prevail there. To the north
and to the south of this zone, the l value increases; therefore, the a and u values are
positive and the westerly winds prevail there. At the latitude of 35�, the absolute
angular momentum is equal to its mean value for the entire atmosphere; therefore,
the angularmomentum does not change withmixing here and winds do not initiate.
To illustrate this qualitative reasoning, let us consider an idealized example.
Let the whole atmosphere be instantly mixed up in such a way that the specific

absolute angular momentum l in it become everywhere the same, that is, l ¼�l (the
absolute angular momentum of the whole atmosphere remained unchanged). As a
result, the zonalmovements should be observed, whose velocities can be found from
the equality l ¼�l, or (W þ a)R2 sin2q¼ 0.674 WR2. Hence, it follows

a ¼ Wð0:674� sin2qÞ=sin2q ð8:5Þ
It is easy to see that in the zone from q1¼ 55� to q2¼ 125� (|j|< 35�),a< 0, that is,

the easterly winds will be observed. The maximum velocity of easterly winds will be
observed at the equator, where a¼�0.326W. Within the zones from q< 55� and
q> 125� (|j|> 35�), a> 0, that is, the westerly winds should be observed, whose
velocity interruptedly grows with the increasing latitude. The change in the sign of
winds occurs at the 35� latitude.
Thus, the steadily existent zones of westerly winds and easterly winds near the

Earth�s surface are caused by the process of leveling off the distribution of the
absolute angular momentum in the meridian direction. This leveling results from
the macroturbulent horizontal mixing of the atmosphere, the original cause of
mixing being different heating of the troposphere in the equatorial and polar zones.
Notice that according to the concepts existing in geophysical hydrodynamics,

the macroturbulence sharpens the gradients and transfers the energy from small
scales to large scales (Lorenz, 1967; Starr, 1968). However, these effects are only
apparent. They are associated with the noninertial reference systems that are used in
the geophysical hydrodynamics. In the inertial reference frame chosen above, an
observer records not sharpening but leveling off gradients in the distributions of all
substances and characteristics, including the specific values ofmomentum q, angular
momentum l, and energy E. This can be seen in Figures 8.7 and 8.8, which represent
schematically the latitudinal changes in the angular momentum and energy in the
actual atmosphere and the atmosphere at rest. This is also easy to understand from
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the expressions for the q, l, and E values represented in the inertial reference frame
with the origin in the Earth�s center:

q ¼ ðWþaÞR sinq ¼ WR sinqþ u
l ¼ ðWþaÞR2 sin2q ¼ WR2 sin2qþ uR sinq

E ¼ 1
2
ðWþaÞ2R2sin2q � W2R2

2
sin2qþ uWr sinq

ð8:6Þ

Figure 8.8 Scheme of latitudinal changes in the specific energy E
in the real atmosphere (1) and in the atmosphere at rest relative
the Earth�s surface (2).

Figure 8.7 Scheme of latitudinal changes in the specific angular
momentum l in the real atmosphere (1) and in the atmosphere at
rest relative to the Earth�s surface (2).
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The first terms in the right-hand sides of these expressions are the momentum qr,
angular momentum lr, and energy Er in the case of the atmosphere at rest relative to
the Earth�s surface (u¼ 0). The values of these terms are greater than their mean
values at low latitudes and smaller than those at high latitudes. The last terms of the
equations describe the additions arising at the expense of the relative movements
(winds). The results showing that in the surface layer of the atmosphere, in the zone
of |j|< 35� u< 0 (the easterly winds) and in the zones of |j|> 35� u> 0 (the westerly
winds) are the observation facts (see Figure 8.1).One can see that the values of q, l, and
E in the zone of |j|< 35� are smaller and in the zones of |j|> 35� larger than the
values of qr, lr, andEr. To put it anotherway, themacroturbulence decreases the values
of qr, lr, andEr in the areaswhere these values are large (at low latitudes) and increases
wherever they are small (at moderate and high latitudes). The distributions of the
values of momentum, angular momentum, and energy of the absolute motion are
leveled off, as it occurs at the classic processes of transfer.
This brings up the question: why does themacroturbulence not quench but initiate

the relative air motion – the zonal circulation of the atmosphere (see Figure 7.1)? In
order to answer this question, let us recall that any system occurs in the equilibrium
state when all its parts either are at rest or move uniformly and rectilinearly with the
same velocity V¼const.
The atmosphere that is at rest relative to the Earth�s surface but rotates together

with the Earth with the angular velocity W¼ const is far from the equilibrium state,
(if we consider it from the above point of view). Its �equilibrium� is due to the gravity
force. If we eliminate this force, the air particles will �slide off� the Earth at a tangent
to parallels, forming nonequilibriumplane-parallelflowswith large transverse (along
the meridian) gradients of velocity. Therefore, the state at which the atmosphere
rotates as a solid body with the angular velocity W¼ const would be more properly
called the constrained equilibrium state. The latter differs substantially from the
state of the uniform rectilinear movement of the system with the velocity V¼const,
which can be called the free equilibrium state.
The macroturbulence mixing of the atmosphere makes it free (to some extent)

from the ties of the gravity force and tends to transform the atmosphere from the
constrained equilibrium state (W¼ const) into the free equilibrium state (V¼const).
The more intense is the meridian mixing of the atmosphere, the stronger is this
effect. As the meridian mixing attenuates, the atmosphere returns into the con-
strained equilibrium state with W¼ const.
The vertical extension of the atmosphere is very small. Therefore, given the vertical

mixing of the atmosphere, the distinction between the constrained (W¼ const) and
free (V¼const) equilibrium states is so slight that it is generally overlooked.
The q, l, and E become equal due to the redistribution of their quantities along

the meridian. They increase at moderate and high latitudes mainly at the expense of
the inflow of the momentum, angular momentum, and energy, respectively, from
low latitudes and, as will be shown below, from the Earth. These characteristics
(including energy) are transported by eddies, which gives an impression that all the
energy of zonal circulation is taken from eddies. Actually, the sources of energy
require special consideration. Here, we only state that with the redistribution of the
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momentum and kinetic energy their integral values remain approximately constant;
only the integral value of the angular momentum is kept strictly constant. The
redistribution of this parameter is considered below.
The way the macroturbulent formations transport the angular momentum can be

understood with the help of the following idealized example. Let us consider the
balance of the angular momentum fluxes through some fixed latitude. Let the conic
surface of the parallel of a constant colatitude q be crossed by the airmasses thatmove
chaotically southward within some segments of the latitudinal circle and northward
within other segments. Let us also assume that these air masses have formed at
a distance of DqN to the north and DqS to the south of the given parallel q. Then the
air masses moving from the south will transport the absolute angular momentum
MS�l (q þ DqS) through the parallel qnorthward, and the airmassesmoving from the
north will transport the angular momentum MN�l (q�DqN) through the parallel q
southward. The flux directed to the south is assumed to be positive and the flux
directed to thenorth is negative. In this case, the balance offluxesQwill have the form

Q ¼ MNl ðq�DqNÞ�MSl ðqþDqSÞ ð8:7Þ
Since the systematic inflow or outflow of air mass in individual parts of the

atmosphere does not occur on average over a year, then MN¼MS¼M. Expanding
the l values in Equation 8.7 into series up to the first degree of Dq, we obtain the
expression for the total flux:

Q ¼ M lðqÞ� dl
dq

DqN
� �

� lðqÞþ dl
dq

DqS
� �� �

¼ �M
dl
dq

ðDqN þDqSÞ � �MWR2 sin 2qðDqN þDqSÞ
ð8:8Þ

One can see that the value of the angular momentum flux Q is negative in the
Northern Hemisphere (0� < q< 90�) and positive in the Southern Hemisphere
(90� < q< 180�). Hence, in both hemispheres the angular momentum fluxes are
directed from the equator to the poles. The empirical investigations are in good
agreement with these conclusions (Lorenz, 1967; Starr, 1968).

8.4
Nature of the Atmosphere Superrotation

The angular momentum horizontal flux from the equator to the poles exists
constantly, because the macroturbulent mixing in the atmosphere occurs continu-
ously. As a result, the angular momentum would systematically decrease at low
latitudes and increase at high latitudes, which should manifest itself in the unin-
terruptedly increasing velocity of easterly and westerly winds. This is not actually
observed, because with the appearance of relative motions (winds), the forces of
friction of atmospheric air against the Earth�s surface originate instantly. This entails
the angularmomentum exchange with the Earth and hence, the angularmomentum
fluxes start.
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The angular momentum vertical flux is obviously proportional to the gradient of
the specific absolute angularmomentumdl/dR, which is described by the expression

dl
dR

¼ ðWþaÞ2R sin2qþ da
dR

R2 sin2q � da
dR

R2 sin2q ð8:9Þ

Here, it is taken into account that sinceW¼ 2p/1 day,a¼ 2p/30day,R�R0¼ 6371
km, da/dR�a/1 km, then the first term in the right part of expression (8.9) is almost
200 times smaller than the second term. In the zone of easterly winds, the gradients
da/dR< 0 and dl/dR< 0; therefore the angularmomentumflux is directed upward –
from the Earth to the atmosphere. In the zone of westerly winds, the gradients
da/dR> 0 and dl/dR> 0; consequently, the angular momentum flux is directed
downward, from the atmosphere to the Earth.
The vertical fluxes of the angular momentum accelerate the slowly rotating parts

of the atmosphere and slow down its rapidly rotating parts; in other words, they
attenuate the easterly andwesterly winds. On the contrary, as ismentioned above, the
horizontal fluxes of the angular momentum strengthen the zonal winds. The higher
the wind velocity, the larger is the gradient dl/dR; consequently, the more intense is
the verticalflux of the angularmomentumand themore significant is the attenuation
of winds. Thus, the zonal winds continue to strengthen until the gradient da/dR
(more precisely dl/dR) becomes so large that the slowing-down effect of the micro-
turbulent viscosity will compensate the accelerating effect of the horizontal flux of
the angular momentum. Only then is the equality of the angular momentum inflow
and outflow attained and the stationary state established (within the part of the
atmosphere under consideration). These conclusions are in good agreementwith the
empirical investigations of the angular momentum fluxes in the atmosphere
(Lorenz, 1967; Starr, 1968).
The investigations of the angularmomentum conservation in the atmosphere was

initiated by Jeffreys (1926) and resumed in the 1950s. Many studies are dedicated to
this problem, the reviews of these works being made by Lorenz (1967) and Starr
(1968). In themajority of these investigations the vertical and horizontal fluxes of the
angular momentum are assessed using the data of the wind aloft observations. It is
shown that the angular momentum is transported in the atmosphere from the
equator to the poles, mainly by the eddy fluxes (the macroturbulence); only in the
tropics an essential part of this transport is due to the mean circulation within
the Hadley cell. The meridian flux reaches its maximum intensity at 30�N, where
it equals 50� 1018 kgm2 s�1 in winter and 13� 1018 kgm2 s�1 in summer. This
angular momentum flux, which is directed northward through the 30�N parallel, is
equal to the total inflow of the angular momentum from the Earth�s surface to the
atmosphere in the zone of easterly winds of the Northern Hemisphere. The upward
flow of the angular momentum in the low latitudes is completely compensated by its
downward flow at moderate and high latitudes.
Direct calculations of the angular momentum of the atmosphere have shown

(Sidorenkov, 1976) that the zonal circulation cannot be simply explained by the
redistribution of the angular momentum between different parts of the atmosphere.
The angular momentum of the easterly winds is 4–8 times smaller than that of the
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westerly winds. Therefore, the value of the angular momentum of zonal winds in the
entire atmosphereh isnotequal tozero; its year-averagedvalue is128� 1024 kgm2 s�1.
Thus, the atmosphere as a whole rotates around the polar axis more rapidly than the
Earth, that is, the so-called superrotation of the atmosphere takes place.
To understand the causes of the angular momentum accumulation in the

atmosphere, let us consider the following circumstance. The angular momentum
inflow and outflow occur in the atmosphere under different geometric conditions.
Similar vertical flows at different latitudes are attained at dissimilar vertical gradients
of the relative angular velocity da/dR. Indeed, let us compare the values of da/dR
in the zones of the easterly and westerly winds, at which the equality of the angular
momentum vertical fluxes is achieved. Since the balance of fluxes suggests the
equality of gradients of the specific absolute angular momentum dl/dR in the zones
of easterly and westerly winds, then, with account for (8.5), we obtain

ðda=dRÞER2 sin2qE ¼ ðda=dRÞWR2 sin2qW
or
ðda=dRÞE : ðda=dRÞW ¼ sin2qW=sin2qE

ð8:10Þ

Thus, the vertical gradient of the relative angular velocity should be much greater
in the zone of westerly winds than in the zone of easterly winds. For example, to
achieve the equality of the angular momentum vertical fluxes, the gradient da/dR
at the 60� latitude should exceed 4 times the relevant gradient at the equator.
This increase in the gradient is achieved at the expense of wind velocity; therefore
the westerly winds in the atmosphere should be much stronger than the easterly
winds. In other words, the equality of the angular momentum vertical fluxes can be
achieved only when the angular momentum of westerly winds exceeds that of
easterly winds.
In order to understand from where the excess of the angular momentum of

westerly winds comes, let us trace how the zonal circulation originates and is
maintained. With the development of macroturbulent mixing, the angular momen-
tum flux from the equator to the poles originates (Figure 8.9) and gives rise to the
easterly winds at low latitudes and the westerly winds at high latitudes (at the expense
of redistribution of the angular momentum in the atmosphere between the low and
high latitudes). The microturbulent viscosity tends to weaken the wind: it gives rise
to the vertical flows of the angular momentum from the Earth to the atmosphere in
the zone of easterly winds and from the atmosphere to the Earth in the zone of
westerly winds (see Figure 8.9).
At the initial stage, the effect of macroturbulent viscosity exceeds the effect of

microturbulent friction, and the velocity of zonal winds increases. When a certain
wind velocity is achieved, the angular momentum inflow from the Earth into the
atmosphere in the tropical zone compensates completely its losses through the
meridian transport to the poles. At the same time, the angular momentum that
inflows tomoderate and high latitudes has no time to flowdown to the Earth (because
of the insufficiently high velocity of westerly winds) and accumulates. The angular
momentum is being �pumped� from the Earth into the atmosphere through the zone
of easterly winds.
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The angular momentum of the atmosphere increases, whereas the angular mo-
mentumof theEarth decreases, whichmanifests itself in its rotation that slows down.
The angularmomentum is being �pumped� into the atmosphere until the velocity of
westerly winds becomes so high that the outflow of the angular momentum from
the atmosphere to theEarth in the zone ofwesterlywinds counterbalances completely
its inflow from the Earth in the zone of easterly winds. Only then is the stationary
state established: the turbulence will pump over the angular momentum along the
meridian fromtheEarth�s surface in thezoneofeasterlywinds to theEarth�s surface in
the zone of westerly winds, without the angular momentum losses or accumulation
in the atmosphere; the intensity of zonal circulation will be maintained unchanged;
the angularmomentumof the Earth, whichwas accumulated earlier, will be confined
in the atmosphere; the velocity of theEarth�s rotationwill be constant but smaller than
it was at the initial moment when the atmosphere was at rest relative to the Earth.
When the equator–pole difference of temperatures decreases, themacroturbulence

attenuates and the meridian flow of the angular momentum weakens. The angular

Figure 8.9 Scheme of the flows of the angular momentum in the atmosphere.
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momentum vertical fluxes adapt to the altered meridian flow with different rates:
rapidly in the zone of easterly winds and slowly in the zone of westerly winds. As a
result, the outflow of the angular momentum to the Earth exceeds its inflow. The
angularmomentumaccumulated in the atmosphere begins to decrease. Itflows down
to the Earth, and the velocity of the Earth�s rotation increases. This process lasts until
the westerly winds weaken to the degree at which the angular momentum outflow to
the Earth becomes equal to its inflow in the zone of easterly winds and the stationary
state re-establishes. However, the atmosphere will hold a smaller value of the angular
momentum, which was taken from the Earth during the start of zonal circulation.
When the equator–pole temperature contrast increases, the process develops sim-

ilarly to its development at the initiation of zonal circulation, which is described above.

8.5
Theory of the Zonal Atmospheric Circulation

Now that we have a clear idea of the processes of redistribution of the angular
momentum in the atmosphere, let us deduce the differential equation for the
distribution of the mean annual angular momentum in the atmosphere and assess
the angularmomentum of the zonal circulation, which is adopted by the atmosphere
from the Earth. Let us follow the works of the author (Sidorenkov, 1982a, 1991b) and
consider an elementary latitudinal zone in the atmosphere, of length 2pR sinq, width
R dq, and thickness (height) dR; its volume is 2p R2 sinq dq dR, mass r 2p R2sinq dq
dR, and angular momentum lr 2pR2 sinq dq dR (here, r is the air density).
It is known that the turbulentmixing is responsible for the transport of substances,

theflowofanyscalarquantitybeingproportional to itsgradient. Inourcase (l is a scalar
quantity), theflowof the angularmomentumis equal tok!l,where k is the coefficient
of turbulence viscosity. Consequently, at the expense ofmacroturbulence, the angular
momentum2p R sinqe dR kq

qr le
R qq inflows into theelementary latitudinal zone through

the lateral vertical face presented to the equator and the angular momentum
2p R sinqp dR kq

qr lp
R qq outflows through the lateral face presented to the pole. As a

result, the angularmomentumwill beaccumulated (or lost) in this latitudinal zone, or,
which is the same, the moment of force (torque) will affect this zone:

� q
R qq

2pR sinq dR kq
qr l
R qq

� �
R qq

where kq is the coefficient of macroturbulence viscosity.
The microturbulence transports the angular momentum through the horizontal

faces. The angular momentum 2p R2
d sinq dq kRqr ld=dR flows through the lower

face and 2p R2
u sinq dq kR qrlu=dR through the upper face. The angular momentum

losses (accumulation) due to this transport are

q
qR

2pR2sinq dq kR
qr l
qR

� �
dR

where kR is the coefficient of microturbulence viscosity.
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The change in the angular momentum within the zone under consideration,
which is equal to q(2pR2 sinq dq dRrl)/dt, is determined from the balance of the
angular momentum accumulation and losses, or from the sum of the moments of
forces:

� q
qt
ð2pR2 sinq dq dR rlÞ ¼ � q

qq
2pR sinq dR kq

qr l
R qq

� �
dq

� q
qR

2pR2 sinq dq kR
qr l
qR

� �
dR

ð8:11Þ

The air density in the considered elementary zone can be assumed to be constant.
After canceling the similar constant values, we obtain the differential equation of the
second order in partial derivatives for the distribution of the mean annual specific
absolute angular momentum in the atmosphere. It describes themean annual zonal
circulation of the atmosphere, because the distribution of value l in the atmosphere at
rest is known:

ql
qt

¼ 1
R2 sinq

q
qq

kq sinq
ql
qq

� �
þ 1

R2

q
qR

R2 kR
ql
qR

� �
ð8:12Þ

We can derive Equation 8.12 by other means, using the hypothesis of closure from
the semiempirical theory of turbulence. Below, we demonstrate this possibility,
following (Sidorenkov, 1980b).
Let us choose the stationary Cartesian reference frame with the origin in the

Earth�s center of masses and the axes oriented relative to the �immobile stars�. Let
one axis be directed along the axis of the Earth�s rotation and two other axes located
in the equatorial plane.
Let us write the equation of motion of a unit air volume for this inertial reference

frame:

r
d Va

dt
¼ �rP� fMr

R3
RþF ð8:13Þ

where Va¼ [V�R] þ V0 is the absolute motion velocity; V0 is the wind velocity;V is
the angular velocity of the Earth�s rotation; R is the geocentric radius vector of the
considered volume; r is the air density; f is the gravitation constant;M is the Earth�s
mass; !!!!!!!!!P is the gradient of atmospheric pressure P; F is the friction force related
to the unit volume; t is the time.
Let us multiply each term of Equation 8.13 vectorially from the left by the

geocentric radius vector R and take into account that the friction force in the free
atmosphere is negligibly small. Then, we obtain the equation for the absolute angular
momentum of the unit air volume in the atmosphere:

R � r
dVa

dt
¼ r

d
dt

R � Va½ � ¼ rP� R½ � ð8:14Þ

The moment of the Earth�s gravity force is equal to zero, because this force is
directed along the radius R. Projecting the vector equation 8.14 onto the axis of the
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Earth�s rotation, we obtain:

r
dl
dt

¼ � qP
ql

ð8:15Þ

where l¼WR2 sin2q þ u R sinq¼ (W þ a)R2 sin2q is the projection of the absolute
angular momentum of the unit air mass onto the axis of the Earth�s rotation;
u¼aRsinq is the velocity of the zonal wind (the positive direction is eastward); a
is the angular velocity of the zonal air motion relative to the Earth�s surface; q is the
polar angle, or the colatitude j up to p/2; l is the longitude that is read off eastward.
Notice that the projections of the absolute angular momentum onto the axes

located in the equatorial plane are negligibly small as compared with l, because the
angle of deviation of the instant vector V from the long-term mean does not exceed
10�6 rad (Sidorenkov, 1973) and V0 	 Va.
The left part of Equation 8.15 can be written out (with the help of the equation of

continuity) in the form

r
dl
dt

¼ drl
dt

� l
dr
dt

¼ qr l
qt

þr � r lVa � l
dr
dt

þrr�Va

� �
¼ qrl

qt
þr � r lVa

ð8:16Þ
Let us write down the divergence r�rlVa of the flow of the projection of the

absolute angular momentum in the spherical reference frame and substitute (8.16)
into Equation 8.15. Then we obtain

qrl
qt

¼ � 1
R2

q
qR

ðR2rlvRÞ� 1
R sinq

q
qq

ðsinq rlvqÞ� 1
R sinq

q
ql

ðrlvlÞ�
qP
ql
ð8:17Þ

Since our interest is the zonal circulation of the atmosphere, we average Equa-
tion 8.17 over the longitude, that is, we integrate all its terms over l from 0 to 2p.
Doing so, we take into account that the integrals of two last components are equal to
zero, because the discontinuities of pressure P and velocity u on themountain ridges

can be neglected. Introducing the conventional designations �x ¼ 1
2p

Ð2p
0
xdl, we have:

q�rl
qt

¼ � 1
R2

q
qR

R2ð�rl�vR þ�r l0v0RÞ
h i

� 1
R sinq

q
qq

sinq ð�rl�vq þ�rl0v0qÞ
h i

ð8:18Þ
Thecomponentsof the formof�rl�vi and�r l0 v0i inEquation8.18 reflect the transport

of the projection of the absolute angular momentum by the ordered (streamline)
circulation and by eddies (the turbulence), respectively. The investigations on the
componentsof theangularmomentumbalance in theatmosphere, theresultsofwhich
aregeneralized inmonographs (Lorenz,1967;Starr,1968),haveshownthat theangular
momentum transport is mainly due to the turbulence. The role of the ordered
(streamline)circulationintheatmosphereisrelativelysmall.Relyingontheseempirical
data, we can neglect the terms of the form of�rl�vi (as opposed to those of�r l0 v0i ).
As is known, the intuitive phenomenological relationships that connect the flows

of different physical parameters with their gradients are widely used in physics.
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In particular, in the semiempirical theory of turbulence, the flows of themomentum,
which are described by Reynolds stresses, are considered to be proportional to the
gradient of the mean wind velocity. According to these hypotheses, the flows of
angular momentum in the vertical and meridian directions can be expressed by the
following approximate equations, respectively:

�rl0v0R � �AR
q�l
qR

and�rl0v0q � �Aq
q�l

R qq
ð8:19Þ

where AR and Aq are the interchange coefficients of the vertical and meridian
turbulent mixing, respectively.
Notice that the classic hydrodynamics, which are based on the theorem of the

symmetry of the stress tensor, does not allow approximations (8.19). However, the
criterion of truth is observations rather than attractive theorems. Numerous empir-
ical studies have shown that in the real atmosphere, there is a well-pronounced
transport of the angular momentum in the vertical (due to the microturbulence
mixing) and meridian (due to the macroturbulence mixing) directions but the
compensating transport along the horizontal and the parallel circle is absent (Lorenz,
1967; Matveev, 1965; Starr, 1968), that is, according to the data of observations, the
stress tensor is asymmetric. This observational fact and arguments in Section 8.2
provide the basis for approximations�r l0n0R � �AR

q�l
qR and�r l0n0q � �Aq

q�l
R qq.

Substituting (8.19) into (8.18), we obtain the differential equation of the second
order in partial derivatives for the absolute angular momentum projection onto the
axis of the Earth�s rotation:

q�rl
qt

¼ 1
R2 sinq

� q
qq

sinq Aq
q�l
qq

� �
þ 1

R2

q
qR

R2AR
q�l
qR

� �
ð8:20Þ

Since kq¼Aq/r, and kR¼AR/r, Equation 8.20 coincides with Equation 8.12.
Equations 8.12 and 8.20 show that the rate of changes in the projection of the

absolute angular momentum in the unit volume is determined by the sum of
convergences of the angular momentum, or, which is the same, of the torque arising
due to the angular momentum macroturbulent transport (the first term) and
microturbulent transport (the second term in the right part of formulas (8.12)
and (8.20). Equation 8.12 allows us to calculate the zonal circulation of the atmo-
sphere, because the distribution of lr value in the atmosphere at rest (but rotating
together with the Earth) is known.
Let us try to find the solution to Equation 8.12. For this purpose, let us choose

the boundary conditions andmake simplifications.An obvious boundary condition is
the condition of the �adhesion� of air to the Earth�s surface:

a ¼ 0; l ¼ WR2
0 sin

2q for R ¼ R0 ð8:21Þ
where R0 is the Earth�s radius. At the upper boundary of the atmosphere, where
R¼R1, the vertical flow of the angular momentum approaches zero; therefore, we
may assume:

ql=qR ¼ qa=qR ¼ 0 for R ¼ R1 ð8:22Þ
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The coefficients of macro- and microturbulence viscosity depend on the latitude
and height. As a first, very rough approximation, we may assume

kq ¼ const ð8:23Þ

kR ¼ kz sinq ð8:24Þ
where kz¼ const.We cannot assume the coefficient kR to be the latitude independent,
because, as is shown in the theory of the atmosphere boundary layer, this coefficient
is proportional to the wind velocity u¼ aR sinq.
Let us consider the stationary (the time-independent) zonal circulation of the

atmosphere. In this case

q
qR

kRR
2 ql
qR

� �
¼ � 1

sinq
q
qq

kq sinq
ql
qq

� �
ð8:25Þ

Substituting the coefficients kq and kR from (8.23) and (8.24) into (8.25) and taking
into account that ql/qR � R2 sin2q qa/qR and ql/qR � WR2 sin2q we obtain:

q
qR

R4 qa
qR

� �
¼ � 6W

kq
kz

� 2=3� sin2q
sin3q

R2 ð8:26Þ

Let us introduce the designations for the constant value 2Wkq/kz¼G and for
the function of latitude (2/3� sin2q)/sin3q¼F(q). Integrating Equation 8.26, we
obtain:

a ¼ �GFðqÞlnR�C1ðqÞ=3R3 þC2ðqÞ ð8:27Þ

The unknown functions of latitude, C1(q) and C2(q), are easily to find from
conditions (8.22) and (8.21), respectively:

C1ðqÞ ¼ GFðqÞR3
1 ð8:28Þ

C2ðqÞ ¼ GFðqÞðln R0 þR3
1=3R3

0Þ ð8:29Þ

Substituting these functions into expression (8.27), we obtain the final expression
for the relative angular velocity of the atmosphere rotation:

a ¼ GFðqÞf ðRÞ 
 2W
kq
kR

� 2=3� sin2q
sin3q

R3
1
3

1
R3
0

� 1
R3

� �
� ln

R
R0

� �
ð8:30Þ

Formula (8.30) shows that in both hemispheres the relative angular velocity (and,
consequently, the wind velocity) is negative at latitudes< 35� and positive at latitudes
35�, the sign changing at 35�N and 35�S. The increase in the velocity with height
follows a complicated law. Formula (8.30), which describes the velocity of zonal wind,
virtually coincideswith formula (8.1) obtained fromempirical data. This validates our
theory.
Let us assess the angularmomentumof the atmosphere zonal circulation obtained

in the above way. As a first approximation, let us consider the uniform atmosphere

172j 8 Nature of the Zonal Circulation of the Atmosphere



with constant density r¼r0¼ 1.29 kgm�3, so that its height is equal to R1�R0 �
8 km:

h ¼
ð
W

aR2sin2qrdV ¼ 2pGr0
ðR1

R0

R4f ðRÞdR
ðp

0

FðqÞsin3q dq

¼ 1
3
p2Gr0R

5
0

ðx1
0

ð1þ x4Þ ð1þ x1Þ3
3

1� 1

ð1þ xÞ3
 !

� lnð1þ xÞ
" #

dx

� 8
9
p2W

kq
kz

r0R
2
0ðR1 �R0Þ3 ¼ 17� 1021

kq
kz

kgm2 s� 1 ð8:31Þ

Here, (R�R0)/R0¼ x; (R1�R0)/R0¼ x1 and it is assumed that R0¼ 6.37� 106m;
W¼ 7.29� 10�5 s�1.
According to empirical data, the values of the coefficients of macroturbulence

viscosity are within the limits of 106–107m2 s�1 (Panchev, 1967) and those of
microturbulence viscosity are within 1–10m2 s�1 (Matveev, 1965). Thus, kq/kz �
106 and, consequently, the angular momentum h � 17� 1027 kgm2 s�1, or approx-
imately 140 times larger than its observed value. This is likely to be associatedwith the
fact that the values of the coefficient of microturbulence viscosity kz that are used
in meteorology do not coincide with its values for the entire atmosphere (because
they are usually calculated from the local rather than planetary data). Note that
I.A. Kibel andN.E. Kochin arrived at similar conclusions.When calculating the zonal
circulation from the given distribution of temperature in the atmosphere, they
obtained plausible results only at the coefficients kz of the order of magnitude of
103m2 s�1 (Izekov and Kochin, 1937).
However, we did not pose the problem to determine the precise value of h. We had

only to show that the angular momentum of zonal winds differs from zero and is
positive; hence it is adopted from theEarth. This is substantiated by expression (8.31).
Thus, the qualitative semiempirical theory developed above adequately explains

the main features of the zonal circulation observed in the troposphere. A more
plausible pattern of the atmosphere zonal circulation can be obtained by way of
significant refining the coefficients of turbulence viscosity (kq and kR) specified in the
calculations.
The theory of zonal circulation formulated above is valid for any case of mixing,

including the molecular viscosity. In the latter case, it is only sufficient to replace
the coefficients of turbulent viscosity by those of molecular viscosity. Recall that
the coefficient of molecular viscosity in the atmosphere is approximately equal to
1.5� 10�5m2 s�1 and the coefficient of horizontal macroturbulent viscosity is
106–107m2 s�1, that is, the first coefficient is by about 11 orders of magnitude
smaller than the second coefficient. Also, in the case of molecular mixing, the
horizontal and vertical coefficients of viscosity are almost equal, whereas in the
case of turbulent mixing the ratio kq/kR is 106–104. Thus, the zonal circulation
that originates due to the molecular viscosity is so small that it is rather difficult
to find.
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8.6
Nature of the Subtropical Maxima of Atmospheric Pressure

Let us take the spherical reference frame that is rigidly bound with the Earth and
rotates with it with the constant angular velocity W. The equation for the relative
motion of the unit air mass in this system has the form

dV=dt ¼ �rP=r� 2ðW� VÞþ gþF ð8:32Þ
Here, P is the atmospheric pressure; g is the acceleration of gravity; F is the friction
force.
Let us consider the zonal circulation of air in the free atmosphere, where the

friction force F can be neglected. At the zonal circulation, air moves parallel to the
latitudinal circles. Therefore, the wind velocity can be presented in the form of
V¼dr/dt¼a� r and the relative acceleration in the form

dV=dt ¼ ða� dr=dtÞ ¼ a� ða� rÞ ¼ �a2r ð8:33Þ
Here, a is the vector of the angular velocity of the air rotation relative to the Earth�s
surface, r is the radius vector, which is perpendicular to the axis of the Earth�s rotation
anddirected fromit toward theairparticleunderconsideration.Onecansee that in the
caseofzonal circulation, therelativeacceleration issimply thecentripetal acceleration.
The expression for the Coriolis force can be transformed in the same way:

2ðW� VÞ ¼ 2ðW� ða� rÞÞ ¼ �2War ð8:34Þ
It is taken into account that in expressions (8.33) and (8.34) a�r¼W�r¼ 0.

Substituting expressions (8.33) and (8.34) in (8.32), we obtain the equation for the
zonal circulation of air without friction:

�rP=rþð2Waþa2Þrþ g ¼ 0 ð8:35Þ
Let el, eq and eR be the orthogonal unit vectors, which are directed eastward at a

tangent to the latitudinal circle, northward at a tangent to themeridian, and vertically
upward. Recall that the direction of the vertical on the Earth�s surface is specified by
the summarized vector g of Newton�s gravitation forces and the centripetal force,
which acts on the unitmass rotating together with the Earth at the angular velocityW.
Let us write out Equation 8.35 in the projections onto the direction eq. For this, we

multiply the scalar value of each term by the unit vector eq:

ð�1=rRÞðqP=qqÞþ ð2Waþa2ÞR sinq cosq ¼ 0 ð8:36Þ
Here it is taken into account that g�eq¼ geR�eq¼ 0; r�eq¼R sinq cosq. Since the
angular velocity of the Earth�s rotation W is several tens of times more than the
angular velocity of the atmosphere rotation a from west to east relative to the Earth�s
surface, then the term containing a2 in Equation 8.36 can be neglected. Substituting
expression (8.30) fora into (8.36) and dividing the variables of integration, we obtain:

dP ¼ 2r WaR2 sinq cosq dq ¼ 4rW2R2 kq
kz

f ðRÞ 2=3� sin2q
sin2q

cosq dq ð8:37Þ
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Integrating Equation 8.37 under the condition that at the equator P(90�)¼Pe
we have:

P ¼ Pe þ 4rW2R2 kq
kz

f ðRÞ � 3sin2qþ 5sinq� 2
3sinq

� �
ð8:38Þ

The function of latitude (square brackets in (8.38)) is equal to zero at the equator.
When moving toward the poles, this function increases and reaches its maxima at
the colatitudes 54.7� and 125.3� in the Northern and Southern Hemispheres,
respectively; then it decreases as far as the poles. Thus, formula (8.38) shows that
the atmospheric pressure has the subtropical maximum at the 35.3� latitude and it
decreases when moving toward the equator and the poles.
The subtropical maxima originate under the effect of the Coriolis force horizontal

components, which displace the atmospheric air from the belt of westerly winds
toward the lower latitudes and from the belt of easterlywinds in the opposite direction,
toward the higher latitudes. The �horse latitude� (35�) is the latitude toward which the
air is pumped from these twowind belts. The atmospheric pressure in the subtropical
high-pressurezonegrowsunder theeffect of theCoriolis forcehorizontal components
for so long as they are counterbalanced by the horizontal pressure gradient. If we had
not cancelled the term containing a2 from (8.36), that is, if we had accounted for the
horizontal component of the centrifugal force of the relative rotation of air, then an
additional, very small, term would have been added:

4rW2R2 k
2
q
k2z

f 2ðRÞ 6 sin2q� 5 sin4qþ 9sin4q lnjsinqj � 1

9sin4q

� �
ð8:39Þ

The value of this term progressively increases from �1 at the poles to 0 at the
equator; that is, the subtropical high-pressure zone can be slightly displaced toward
the equator at the expense of this term. This is clear, because the centrifugal force of
the relative air motion initiates the displacement of air masses toward the equator;
due to this, some additional growth of the equatorial bulging of the atmosphere is
observed.

8.7
Mechanism of Seasonal Variation

It has been known even since the last century that the trade winds near the Earth�s
surface cross the equator and penetrate into the summer hemisphere as far as the
intertropical convergence zone (ITCZ). The latter migrates along the meridian,
depending on the season of the year. The mean latitude of the ITCZ location varies
from 5�S in January to 15�N in July. It was shown in the 1960s that in the upper layers
of the equatorial zone there existed the compensating air flows from the summer
hemisphere into the winter hemisphere (Kidson, Vincent and Newell, 1969; Rao,
1964). The direction of theseflows coincideswith the air circulation in theHadley cell
of the winter hemisphere. It is since considered that the Hadley cell of the winter
hemisphere extends into the summer hemisphere, following the Sun. The boundary,
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to which the Hadley cell penetrates into the summer hemisphere, is the ITCZ. The
latter separates the circulation of the winter hemisphere from the circulation of the
summer hemisphere. Therefore, it is assumed in many studies that the meridian
flows of the mass, moisture, pollutants, and other substances do not penetrate
through the ITCZ and the air masses lying to the north and to the south of the ITCZ,
respectively, are dynamically isolated from each other.
Below, it will be shown that this concept is not quite consistent with the real pattern

of atmospheric circulation. In December–February and in June–August, there exists
the global cell of atmospheric circulation between the polar areas of the Northern and
SouthernHemispheres. It affects the processes of themass,moisture, and pollutants
transport not only in the tropical zone but also in all other zones of the Earth and is
responsible for complicated seasonal variations in the angular momentum and
indices of atmospheric circulation, concentrations of gaseous and ionic admixtures,
and so on.
The initial cause of atmospheric circulation is the horizontally nonuniform

heating of the atmosphere. From the positions of hydrodynamics, the generation
of kinetic energy associated with this heating can be considered as the phenomenon
of a heating engine.
It is well known that during the whole year, the air temperature in the troposphere

decreases from the equator to the poles. This uneven heating up of the troposphere
gives rise to the heating engine of the first type, the HEFT (Shuleykin, 1968).
The main consequence of the HEFT operation is the zonal air circulation in the
troposphere (westerly winds atmoderate and high latitudes and easterly winds at low
latitudes) and the meridian circulation (the direct Hadley cell at the subtropical
latitudes and the reverse and direct Ferrel cells at moderate and polar latitudes,
respectively).
It is also known that the air is heated differently over oceans and continents, in

winter and summer. This temperature contrast gives rise to the heating engine of the
second type. The main consequence of its operation is the monsoonal circulation
and the redistribution of air masses between continents and oceans.
Apart from these two universally known heating engines, there is the interhemi-

spheric heating engine (IHHE), which was first described in Sidorenkov (1975). The
IHHE exists due to the temperature contrast between the winter and summer
hemispheres. This contrast is easily seen from the analysis of the latitudinal change
in air temperature in the lower layer of the atmosphere (the layer thickness is
>20 km) rather than in the troposphere. Let us consider, for example (following
Sidorenkov, 1988), the latitudinal changes in the zonal temperature in the layer
between the 1000 and 30 hPa levels (T¼ 9.738�H, whereH is the thickness between
the 1000 and 30 hPa in km) (Figure 8.10). The initial data are taken from the climatic
atlases (Zastavenko, 1972, 1975). It is seen from Figure 8.10 that unlike in the
troposphere, the temperature gradient in the layer between the 1000 and30 hPa levels
does not change its direction at the equator. In January, T progressively decreases
from the South Pole toward the North Pole. The temperature difference between the
poles is 21 �C. In July, on the contrary, T decreases from the North Pole toward the
South Pole, the temperature differing by 34 �C.
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Thus, if we bear in mind the mean temperature in the layer between the 1000 and
30 hPa levels, then the warmest atmosphere is not over the equator and not even over
the tropic but over the pole of the summer hemisphere; the coldest atmosphere is
over the pole of the winter hemisphere.
This latitudinal distribution of temperature should give rise to the cell of air

circulation between the polar areas of the summer and winter hemispheres. This
circulation is directed along themeridian from the summer hemisphere to thewinter
hemisphere at the top of the layer under consideration and in the opposite direction
at its bottom. In order to check this conclusion, we used the meridian components
vq of the wind velocity vector for January and July (Guterman, 1975, 1978) and
averaged them over the longitude.
As a result, we had the meridian sections of velocity v in January (Figure 8.11) and

July (Figure 8.12), which were similar to those obtained in (Guterman and
Khanevskaya, 1972). The Hadley and Ferrel cells in these sections are strongly
distorted by some other circulation superimposed on these cells.
To distinguish this circulation from the summary pattern, we averaged the

velocities v over January and over July: �v ¼ 1
2 vðIÞþ vðVIIÞf g (that is, we singled out

the Hadley and Ferrel cells); then we calculated the deviations (anomalies) v0 ¼ v��v
of the v values from the mean velocity �v for January and July, respectively (that is,
we singled out the superimposed interhemispheric circulation).

Figure 8.10 Latitudinal course of the zonal temperature T or
the thickness H between the 1000 and 30 hPa geopotential
levels in January (I) and July (VII). The H is measured in hPa
kilometers.
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Figure 8.13 demonstrates the distribution of v0 with latitude and height in January.
The meridian section of v0 in July is similar to that in January but the circulation has
the opposite direction. As was earlier presumed, in the lower layer of the atmosphere
(up to 450 hPa) the northerly winds are prevalent in January and the southerly

Figure 8.12 Height–latitude section of the longitude-averaged
meridian wind in July (positive direction is from the South to the
North; the isotachs are digitalized in 0.1m/s).

Figure 8.11 Height–latitude section of the longitude-averaged
meridian wind in January (positive direction is from the South to
the North; the isotachs are digitalized in 0.1m/s).
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winds – in July. In the upper layer (450–50 hPa), on the contrary, the southerly winds
are prevalent in January and the northerly winds in July. This interhemisphere
circulation is particularly distinct at low latitudes, where wind velocities reach 1.4
and 3.2m/s at the bottom and top of the atmosphere, respectively. As one would
expect, the circulation weakens when moving from the equator toward the poles.
At moderate latitudes, there are slight deviations from the interhemisphere circu-
lation, which are due to an incomplete elimination of the Hadley and (especially)
Ferrel cells when calculating v0.
InJanuary, thevelocity�v0 averagedover the latitudewith theaccount for thespherical

geometry increases from�0.45m s�1 (near the Earth�s surface) to 0.76m s�1 (at the
200 hPa level), the sign changing at the 450 hPa level. In July, the velocities �v0 have
the opposite sign: below 450 hPa the southerly winds prevail and above 450 hPa
the northerly winds prevail.
Thus, the empirical data confirm the existence of the global cell of the interhemi-

sphere circulation (IHC) between the polar areas of the summer and winter hemi-
spheres. Note that the velocity of the meridian wind drastically changes along
parallels. The most intense transport of the air and the inherent in it substances
occurs through few narrowmeridian �tubes� – the jet streams located near the upper
boundary of the planetary boundary layer of the atmosphere. In some sectors, the
direction of transport can be opposite. However, the velocity of transport averaged
over the whole perimeter of the parallel has the direction and value characteristic of
the given height and season. Note also that since the mean velocity �v0 varies within
�0.45m/s, then the mean displacement of particles along the meridian near the
Earth�s surface over half a year is a mere 4500 km, or 41� of latitude.

Figure 8.13 Height–latitude section of the longitude-averaged
anomalies of the meridian wind in January (positive direction
is from the South to the North; the isotachs are digitalized in
0.1m/s).
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The larger the difference between temperatures of the summer and winter
hemispheres, the more intense is the IHC. Consequently, the velocity v0 in the
lower layer of the atmosphere should change with time:

v0 � TN �TS � PþE cosWðt� tNÞ ð8:40Þ

Here, TN and TS are the integral temperatures of the Northern and Southern
Hemisphere, respectively, which vary with the yearly period:

TN ¼ �TN þAN cosWðt� tNÞ
TS ¼ �TS þAS cosWðt� tSÞ

ð8:41Þ

where �TN and �TS are the mean annual values of �TN and �TS. AN, AS,WtN,WtS are the
amplitudes and the initial phases of annual variations of TN and TS;W is the circular
frequency; t is the time; the constantP ¼ �TN � �TS is the mean annual superheating
(excess of heating up the Northern Hemisphere as compared with the heating up
the Southern Hemisphere); E¼AN þ AS. is the amplitude. When deriving (8.40),
it is taken into account that the annual variations in TN and TS are nearly opposite in
phase, that is, W(tN� tS) � p.
On average over a year, the Northern Hemisphere is warmer than the Southern

Hemisphere (P> 0). Therefore, the southerly (positive) wind in the lower layers of
the troposphere is observed longer (from April through November) than the
northerly (negative) wind (from December through March).
A good indicator of the atmospheric heating-engine operation and the circulation

cells initiated by it is the mass transport (Shuleykin, 1968). The existence of the
IHC suggests a deficiency of air mass in the summer hemisphere and its excess in
the winter hemisphere. Hence, some portion of air mass should overflow from
the Northern Hemisphere into the Southern Hemisphere from January through
June and return back from July through January. Indeed, careful calculations
show that from January to July, the air mass decreases by 4� 1015 kg in the
Northern Hemisphere and increases by the same value in the Southern Hemi-
sphere (Sidorenkov and Stekhnovsky, 1971). The respective increments of the
hemisphere-averaged atmospheric pressure are 1.6 hPa.
The IHC should transport pollutants from one hemisphere into another. The

direction and velocity of this transport depend on the season and the atmospheric
layer containing these pollutants. Unfortunately, there are no purposeful observa-
tions of such transport. However, there are numerous data on the transport of the
nuclear explosion products from the hemisphere where the explosions took place
in another hemisphere (Malakhov, 1971). Some of these data are given in Table 8.1.
One may see that the meridian velocity of the radioactive decay products transport is
2–5m/s. This is much higher than the velocity of diffusive mixing but is close to the
wind velocity v0.
Thus, the data on the transport of the nuclear explosion products substantiate

the existence of the IHC in the atmosphere. This is also evidenced by the pesticides
found in snow samples in the Antarctica, the pesticides being in use only in some
countries of the Northern Hemisphere in the postwar years (Wolff and Peel, 1985).
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Since about 90% of atmospheric moisture is contained in the lower 5-km layer
and the wind in this layer flows from the winter hemisphere into the summer
hemisphere, then the IHC should carry away the atmospheric moisture from the
winter hemisphere into the summer hemisphere. Due to this moisture transfer,
precipitation should be more abundant in summer (at all latitudes) than in winter.
Unfortunately, it is very difficult to verify this proposition, because the summer
increase in evaporation also contributes to atmospheric precipitation. Indirect
evidence of the atmospheric moisture transfer from the winter hemisphere into
the summer hemisphere is the seasonal course of precipitation on the mountain
slopes that are extended along the parallel and present a barrier on the route of the
moisture flow. An example is the southern slopes of the Himalayas in India. In
June–September, when the air moisture is directed from the Southern Hemisphere
into the NorthernHemisphere (toward themountain slopes), precipitation amounts
to 11 000mm; in December–March, when the air moisture is transferred in the
opposite direction, precipitation scarcely falls there, as one would expect.
The IHC intensity changes with time. The more intense the IHC, the larger

amount of air moisture is transferred from the winter hemisphere into the summer
hemisphere and the more abundant is precipitation in the summer hemisphere
(and the less abundant in the winter hemisphere). When this circulation is weak,
the distribution of precipitation anomalies is reversed: the precipitation deficiency
takes place in the summer hemisphere and the precipitation excess in the winter
hemisphere. It is clear that the latitude-averagedmoistureflux q along themeridian is
proportional to the velocity v0 below the 450 hPa surface and changes with time in the
same way as the velocity v0 does:

q � v0 � PþE cosðt� tNÞ ð8:42Þ

Table 8.1 Examples of a rapid interhemisphere transport of the nuclear explosion products.

Date and latitude
of explosion

Date and latitude of detection
of the explosion products

Velocity of meridian
transport (m/s)

13 February 1960 27 February 1960 5.0
26�N 35�S
1 April 1960 1–3 May 1960 2.9–2.6
26�N 41�S
16 October 1964 December 1964 2.3–1.4
40�N 41�S
14 May 1965 from 3 June to 3 July 1965 5.1–2.2
40�N 41�S
9 May 1966 13–20 June 1966 2.4–2.0
40�N 26�–34�N
July 1966 August 1966 2.0–1.2
23�S 23�N
July 1968 September 1968 1.5–1.1
22�S 50�N
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On this basis, we can conclude that fromNovember throughApril the airmoisture
is transferred from the NorthernHemisphere into the SouthernHemisphere (q< 0)
and from May through October from the Southern Hemisphere into the Northern
Hemisphere (q> 0). When integrating expression (8.42) over time for the annual
period P, the second component is equal to zero; then the annual amount of
moisture Q that comes from the Southern Hemisphere into the Northern
Hemisphere is

Q � P �P ð8:43Þ
Since P> 0, the positive (from the Southern Hemisphere into the Northern

Hemisphere) moisture flux exceeds the negative flux, andQ> 0. As superheatingP
grows, the moisture flux Q from the Southern Hemisphere into the Northern
Hemisphere increases. As superheating weakens, the moisture flux Q weakens too.
As will be shown below, the value of the superheating P can be determined from
the analysis of seasonal variations in the angular momentum of the atmosphere.
The deviations of the moisture amountQ from its normal value can be judged from
the anomalies of P. The characteristic time of the change in superheating P is
significant (several months). Thus, having determined the value ofP, we can assess
the anomaly of Q and the expected hemisphere-averaged anomaly of precipitation
within the next few months.
The seasonal variations in the angular momentum of zonal winds h and in the

indices of the atmosphere zonal circulation are described by a complicated curve
(see Figure 8.14b), which has two maxima (in November and April) and twominima
(in August and January). The minimum in August is much more pronounced
than that in January. These variations are due to the IHC seasonal changes. This
dependence can be demonstrated with the help of thermodynamic analysis of the
atmospheric heat engines. Let us perform this analysis in the most simplified form,
that the physical essence of the problem was not complicated by cumbersome
mathematical operations. A more rigorous demonstration can be found in the
author�s publications (Sidorenkov, 1975b, Sidorenkov, 1978).
Any atmospheric heat engine transforms the heat energy into the kinetic energy

of wind. The rate of the kinetic energy generation is called the engine capacity R.
The angularmomentum h is directly proportional to the engine capacity: h � R. The
capacity R is in its turn proportional to the amount of solar energy that comes to
the heat engine in a unit time (the solar radiation powerW):R � hW , where h is the
efficiency coefficient, which is directly proportional to the difference between the
temperatures of the heater and the cooler (h�TH�TC). Thus, the whole chain of
relationships has the form:

h � R � hW � ðTH �TCÞW ð8:44Þ
There are several heat engines in the atmosphere (Shuleykin, 1968). The heat

engines of the second type effect but on the angular momentum of the meridian
winds, that is, on the equatorial components of the vector of the atmosphere angular
momentum.As for the angularmomentum h of zonalwinds,whichwe are interested
in, it is only affected by the heat engines that have the meridian components of
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temperature gradients. These are the heat engine of the first type (FTHE) and the
interhemisphere heat engine (IHHE) (Sidorenkov, 1975b).
There are two FTHEs. One of them operates in the Northern Hemisphere and

another in the Southern Hemisphere. Their heater is the equatorial zone and the
coolers are the northern and southern polar caps, respectively. The capacities of these
engines change with time according the following laws:

RN � 1
2
ðTE �T�

NÞW; RS � 1
2
ðTE �T�

SÞW ð8:45Þ

Here, TE, T�
N and T�

S are the mean absolute air temperatures at the equator and the
northern and southern polar caps, respectively;W is the total solar radiation coming
to the entire atmosphere in a unit time.
In the case of IHHE, the heater is the atmosphere of the summer hemisphere

and the cooler is the atmosphere of the winter hemisphere. Therefore, its capacity
changes in a more complicated way:

RM � ðjTN �TSjÞW � �when � �TN > TS

ðjTS �TNjÞW � �when � �TS > TN

� �
¼ jTN �TSjW ð8:46Þ

Figure 8.14 Seasonal variations: (top) in the air temperature T of
the layer between the 1000 and 50 hPa levels at theNorth (curve 1)
and South (curve 2) poles and also (bottom) of the angular
momentum of zonal winds dh (curve 3) and the modulus of the
difference of temperatures of the layer between the 1000– and
50 hPa levels at theNorth and South polesC� |TN� TS| (curve 4).
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where TN and TS are the integral temperatures of the Northern and Southern
Hemispheres, respectively. When transforming the right side of (8.46), it is taken
into account that the expression in brackets is equivalent to the modulus of the
difference between the above temperatures.
The angular momentum h of the entire atmosphere depends on the combined

contribution of the FTHEs and IHHEs. It is known that the FTHEs redistribute
the angular momentum between the low and moderate latitudes and adopt it from
the Earth (Sidorenkov, 2002a, 2002b). The IHHEs do not adopt the angular mo-
mentum from the Earth; they only redistribute it between the winter and summer
hemispheres (the positive angular momentum is accumulated in the winter hemi-
sphere and the negative momentum in the summer hemisphere). The angular
momentum redistribution between particular parts of the atmosphere does not affect
the value of h for the entire atmosphere. Therefore, at first sight it seems that the
IHHE does not affect the value of h. However, this is not so. The point is that the part
of the atmosphere that participates in the IHHEoperation is excluded from the FTHE
operation, that is, the IHHE hinders the FTHE operation. Thus, the contribution
of the IHHE to the combined capacity and corresponding to it angular momentum h
should be negative.
Thus, having summed up the contributions of all heat engines, we obtain:

h � ½1=2ðTE �T�
NÞþ 1=2ðTE �T�

SÞ� jTN �TSj�W ð8:47Þ

Let us consider temporal changes in all the values of expression (8.47). The change
in the solar radiation power W that comes from the Sun over the year is due to the
eccentricity of the Earth�s orbit. The value of W in January is approximately by
7% larger than that in July. The change in the expression taken in square brackets is
much more significant. For example, it is smaller by about 40% in July than in
December. Therefore, hereafter we will neglect the variations inW and will consider
the variations in the quantity taken in square brackets.
It is known that the air temperature at the equator is nearly constant in the course

of the year, and the air temperatures over the polar caps and the hemispheres vary
with the yearly period. The initial phases of variations in T�

N and T�
S and also in TN

and TS differ by about 180�; the amplitudes of variations can be approximately equal,
that is:

T�
N ¼ �T

�
N þA�cosWðt� t�0Þ

T�
S ¼ �T

�
S �A�cosWðt� t�0Þ

ð8:48Þ

where T�
N and T�

S are the mean annual air temperatures over the northern and
southern polar caps, respectively; A

�
is the amplitude; Wt�0 is the initial phase of the

annual variations in the air temperature over the northern polar cap. Substitut-
ing (8.48) and (8.41) into (8.47), we obtain:

h � C� jTN �TSj ¼ C� jPþE cosWðt� t0Þj ð8:49Þ
where C ¼ TE � 1=2ð�T�

N þ �T
�
SÞ is a constant; the values P, E and Wt0, enter into

formula (8.40).
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Figure 8.14 clearly demonstrates the origin of the seasonal variations in the angular
momentum h. Here, the integral temperatures TN and TS are the mean monthly
temperatures of the layer between the 1000 and 50 hPa levels in the centers of the
circumpolar eddies, which are located close to the geographic poles. The center of
the circumpolar eddy of the Southern Hemisphere coincides in most cases with the
South Pole. Therefore, we used the data immediately from the Amundsen–Scott
station. The layer between the 1000 and 50 hPa levels temperature variations in the
Northern (TN) and Southern (TS) Hemispheres for 1965–1974 are shown in
Figure 8.14a (curves 1 and 2, respectively). One can see that these temperatures
vary with the yearly period and have the phase difference close to 180�. The
superheating of the Northern Hemisphere (as compared with the heating of the
Southern Hemisphere �TN>�TS) is also well pronounced. Figure 8.14b shows the
changes in the value of C� |TN�TS| (curve 4), which is proportional to the angular
momentum h. One can see that this curve is the graph of function C� |P þ E cos
W(t� t0)| and its form is very close to that of curve 3 showing the observed seasonal
variations in the angular momentum h of zonal winds (Sidorenkov, 1988). The time
periods of extremes in both curves coincide to an accuracy of one month. Twice in a
year, in April and November, when the air temperatures in the Northern and
Southern Hemispheres become equal, the angular momentum h attains its max-
imum values. In July and January the modules of the temperature differences
|TN�TS| are maximal, and the h value becomes minimal. The value |TN�TS| is
greater in July than in January (because of the superheating P of the Northern
Hemisphere as comparedwith the heating of the SouthernHemisphere).Hence, the
minimum of h is much more pronounced in July than in January. The greater (less)
the superheating P, the more (less) significant are these distinctions. At P¼ 0 the
minima of h in July and January would be equal.
It is seen from formula (8.49) that for the minima in July (M) and January (m) it

holds true (Figure 8.15):

M ¼ EþP; m ¼ E�P ð8:50Þ
Consequently, given the values ofM andm, one can find the relative values of the

amplitude E and the superheating P:

E ¼ 1=2ðMþmÞ; P ¼ 1=2ðM�mÞ ð8:51Þ
The value ofP is used to forecast the anomaly of the hemisphere-averaged amount of
precipitationQ by formula (8.43). Notice also that in the periods when the amplitude
E is constant, it is possible to forecast the value of the succeeding minimum by the
observed value of the current minimum:

M ¼ 2E�m; or m ¼ 2E�M: ð8:52Þ
This circumstance allows one to make prognostic conclusions on the intensity of

the zonal and meridian circulations during the coming season (summer or winter).
The operation of FTHE provides a good explanation for the diurnal variations

in the angularmomentum h of zonal winds. The diurnal course of h has twomaxima
(at 0 and 12 hUTC) and twominima (at 6 and 18 h). At 0 and 12 h the Sun occurs over
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the Pacific and Atlantic oceans, respectively; and at 6 and 18 h the Sun is over
the Asian and American continents, respectively. The water vapor content of the
atmosphere is greater over oceans than over continents. Due to this difference, the
solar radiation is more intensely absorbed by the atmosphere over oceans than over
continents. Therefore, the efficiency coefficienth of the first-type heat engine has the
diurnal course with maxima at 0 and 12 h and minima at 6 and 18 h. In accordance
with (8.44), the angularmomentum h, which is held in the atmosphere by the FTHE,
is proportional to h; therefore, it features similar diurnal course. The 18-hminimum
is slightly pronounced, because the effect of the American continent is small as
compared with that of the Asian continent.
The IHC is observed not only in the troposphere and stratosphere but also in the

thermosphere,where it significantly affects the formationof the so-called �semiannual
variations� in the concentrations of certain ions and molecules. It is not surprising
that these variations are similar to the seasonal variations shown in Figure 8.14b
and are described by formulas similar to (8.49). Themechanism of the origin of these
variations can be represented (as a first, rough approximation) as follows.
The concentration r of the ion under consideration depends on the latitude j. As a

rule, on average over a year, r increases or decreases from the equator to the poles,
having amaximumorminimum, respectively, at the equator. Themeasurements of r
are performed at this or that fixed station. At the initial moment of time t¼ 0, the
concentration r(0)¼ f(j0), wherej0 is the latitude of the station. The interhemisphere
circulation transports the atmospheric air (togetherwith the �frozen in� ions) over the
station with the velocity v0 ¼ R _j, where R is the Earth�s radius and _j is the angular
velocity. As a result, the concentration r at the timemoment twill be the same as it is at
the latitude j0 þDj:

rðtÞ ¼ f ðj0 þDjÞ; where Dj ¼ 1=R
ðt

o

v0dt

Figure 8.15 Scheme of forming two minima of the angular momentum h in an annual course.
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Let themaximumair displacement along themeridian be equal toDF. Then, at the
low latitudes, where j0<DF, the atmospheric air will first come from the inherent
hemisphere and then from another hemisphere. Since f(j) has the extreme at the
equator, then r(t) forms one extreme within the period of this unidirectional
displacement. After the sign of v0 changes, the air returns and the above changes
follow in the reverse sequence. Hence, at the latitudes j0<DF, two minima and
two maxima of r(t) are observed in the course of a year. At j0>DF, the air from
another hemisphere does not reach the station; therefore, r(t) has onemaximum and
one minimum during a year.
Thus, the IHC transforms the spatial variations in the concentration f(j) into the

temporal variations r(t) and thereby it forms the seasonal variations in the concen-
tration under consideration.
The air mass that participates in the IHC depends on the Sun�s declination d.

At d¼ 90�, the Sun would occur at the zenith over the North Pole. It would be a
continuous day in the NorthernHemisphere and a continuous night in the Southern
Hemisphere. In this case, the wholemass of the atmospherewould be involved in the
IHC. A similar situation would also arise at d¼�90�. At d¼ 0� both hemispheres
would be equally illuminated, and the IHC would be absent: the whole mass of the
atmosphere would participate in the FTHE operation.
Since the Sun�s actual declination at the moments of solstices can attain �23.5�,

then some part of the atmosphere becomes involved into the IHCand the remaining,
larger part participates in the FTHE operation. These parts can be assessed by the
data on the seasonal changes in the angular momentum h. During the transitional
seasons, when the whole atmospheric mass Ma takes part in the FTHE operation,
h¼ 145� 1024 kgm2 s�1; and in August, when some part of the atmospheric mass
is involved into the IHC, h¼ 91� 1024 kgm2 s�1 (Sidorenkov, 1978). Since h is
proportional to themassM that participates in the FTHE operation, we obtain that in
August M ¼ 91

145Ma ¼ 0:63Ma, where Ma is the whole atmospheric mass; the
remaining 37% of the atmosphere mass is involved in the IHC. Note that if we
take the daily values of h instead of the mean monthly values, then M � 0.56 Ma.
Thus, the IHC is one of the most important circulation cells in the atmosphere.

It involves up to 40% of the atmosphere mass. The IHC is responsible for the
meridian transport of atmospheric air andmoisture, products of nuclear explosions,
and pollutants (including their transport through the ITCZ). The observed compli-
cated seasonal and diurnal variations in the angular momentum of zonal winds and
the indices of atmospheric circulation, in the concentrations of ions and molecules
are also associated with the IHC. The list of processes and phenomena that are due to
the IHC will be extended with further investigations.

8.8
Conclusions

In the absence of solar radiation, the atmosphere would be at rest relative to the
Earth�s surface but it would rotate together with the Earth as a solid body from the
west to the east around the polar axis. The nonuniform heating of the atmosphere by
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solar radiation arises the macroturbulent air mixing that levels off the distribution of
the angular momentum in the atmosphere. At high and moderate latitudes, the
angular momentum increases, the air in its rotation around the polar axis begins
to outrun the Earth�s surface, and the westerly winds originate. At low latitudes, on
the contrary, the angular momentum decreases, the air lags behind the Earth�s
rotation, and the easterly winds originate.
The emergence of winds entails the appearance of friction forces, which tend to

weaken the wind. The momentum of friction forces provides the inflow of the
angular momentum from the Earth to the atmosphere in the zones of easterly
winds and its outflow from the atmosphere to the Earth in the zones of westerly
winds. The zones of westerly winds are located closer to the Earth�s rotation axis than
the zones of easterlywinds. Because of this, at the samewind velocity in the zones, the
momentumof friction forces of the easterly winds exceeds that of thewesterly winds,
that is, the inflow of the angular momentum from the Earth to the atmosphere
exceeds its outflow. Due to this, the velocity of westerly winds increases, until the
absolute values of the angular momentum inflow and outflow become equal. This
stationary state is only attained when there is some angular momentum, which is
taken from the Earth and accumulated in the atmosphere. Ultimately, the velocity of
westerly winds in the atmosphere significantly exceeds the velocity of easterly winds;
on the whole, the atmosphere rotates around the polar axis more rapidly than the
Earth does, and the superrotation of the atmosphere is observed.
The Coriolis force exerts the decisive effect on the formation of the atmospheric

pressure field. The horizontal component of the Coriolis force displaces the air from
the zone of westerly winds toward the equator and from the zone of easterly winds
toward the poles. As a result, an excess of air mass (the pressure maximum) forms
near the latitudewhere the direction of zonal winds changes the sign (at roughly 35�).
This maximum is called the subtropical high-pressure zone. The pressure in the
subtropical high-pressure zone grows until the meridian component of the force
of the pressure gradient counterbalances the horizontal component of the Coriolis
force.
The thermodynamic analysis shows that the value of the angular momentum h of

zonal winds in the atmosphere remains constant due to the operation of the
atmospheric heat engines of the first type. As for the seasonal variations in the
value of h and, as a consequence, the seasonal nonuniformity of the Earth�s rotation,
they are due to the operation of the interhemisphere heat engine. The seasonal
variations in the above characteristics are described by the expression similar to (8.51)
or by the annual harmonic taken over themodule (with the shifted zero point), rather
than by the sum of the annual and semiannual harmonics. The intensity of the
interhemisphere heat engine operation changes from year to year, entailing changes
in the parameters of seasonal variations in the angularmomentum h and the velocity
of the Earth�s rotation.
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9
Interannual Oscillations of the Earth–Ocean–Atmosphere System

Despite the centenary history of studies of the Chandler wobble (CW), its nature
remains obscure. The mechanism of its excitation is still also under discussion.
Among the causes of the Chandler wobble,meteorological and seismic processes are
indicated most frequently. However, most estimates of the atmospheric effect
suggest that it is small. Widely different views have been expressed on the influence
of earthquakes on the excitation of the Chandler wobble. The most comprehensive
overview of studies concerning this subject can be found in (Yatskiv et al., 1976;
Lambeck, 1980).
In the author�s opinion, the negative conclusion about the role of meteorological

processes in the excitation of the Chandler wobble was drawn for two reasons.
The first is that themeteorological observation network in the SouthernHemisphere
is very rare, while it is in this hemisphere that the Earth is pushed by consistent air
mass oscillations between the Pacific and Indian oceans (El Niño–Southern Oscil-
lation (ENSO)) (Sidorenkov, 1997, 2000a, 2000b, 2000e, 2001, 2002a, 2002b).
The other reason is that estimates are traditionally based on the theory of linear
oscillations, which is inadequate in this case.Moreover, the excitation of thewobble is
usually estimated near the principal resonance, that is, near the Chandler frequency
(Munk and Macdonald, 1960; Wilson and Haubrich, 1976; Vondrak and Pejovic,
1988; Wilson, 2000). However, the oscillations in the Earth–ocean–atmosphere
system are nonlinear and the Chandler wobble is excited not at the fundamental
resonance frequency but primarily at combination frequencies of thewobble (periods
of 2.4, 3.6, 4.8, and 6 years) (Sidorenkov, 1997, 2000a, 2000b, 2000e, 2001).
Below, we analyze the power spectra of oceanic and atmospheric characteristics

and series of effective excitation functions of the atmospheric angular momentum.
The results confirm the presence of Chandler superharmonics and suggest that the
data involve subharmonics of the fundamental period of the Earth�s forced nutation
(18.6 years). Slowwaves in the ocean and the atmosphere are discovered that generate
these cycles.
Based on thesefindings,we conclude that theEarth, the ocean, and the atmosphere

exhibit consistent oscillations and influence each other, that is the Earth–ocean–
atmosphere system exhibits coherent oscillations initiated by tides. These oscillations
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are manifested as the polar motion, El Niño and La Niña events in the ocean, and the
Southern Oscillation and the quasibiennial oscillation in the atmosphere. All of them
are studied as independent phenomena in different areas of Earth sciences.
In contrast, we analyze these phenomena together. First, let us describe them in
more detail.

9.1
El Niño–Southern Oscillation

Among the planetary-scale phenomena observed in the Earth–ocean–atmosphere
system, ENSO has attracted much interest over the past years. A huge number of
publications are available on this phenomenon and its effects. It was shown that the
ENSO is related to many of the most noticeable interannual oscillations in atmo-
spheric meteorological elements, oceanic hydrological characteristics, the Earth�s
rotation, and the polar wobble.
The episodes of long-lived surface-waterwarming in the central and eastern Pacific

Ocean and a variety of accompanying processes are called the El Niño phenomenon.
They have been known since the dawn of time. The term �SouthernOscillation� (SO)
was introduced by G.T. Walker in 1920 (Walker, 1924). It means air-mass oscillations
in the SouthernHemisphere subtropical zone between the Pacific and Indian oceans
with a characteristic time of several years. A rise (fall) of the atmospheric pressure in
the central and eastern tropical Pacific is accompanied by a fall (rise) of the pressure in
the tropical Indian Ocean and near Australia and Indonesia (Figure 9.1).
Inspection of Figure 9.1 shows that the correlation coefficients between 30�N and

35�S are positive in the Eastern Hemisphere and are negative in the Western
Hemisphere. The most pronounced negative correlation in pressures (with a
correlation coefficient of r � �0.8) is observed between two regions: Indonesia–
Australia and thePacificCommunity islands. In otherwords, there are two oppositely
signedSOcenters of action:Australian–Indonesian andSouthPacific, both located in
the tropical Southern Hemisphere (hence, the name �Southern Oscillation�).
Since Walker�s studies (Walker, 1924), several indices have been proposed to

characterize the SO (Ropelewski and Jones, 1987; Trenberth, 1976; Troup, 1965;
Wright, 1989; Sidorenkov, 1991c). Usually, they make use of the sea level pressure
(SLP) at a single station or a combination of several stations located in thewestern and
eastern Pacific. One of the most justified indices is based on the SLP at Tahiti and
Darwin stations, which are located near the oppositely signed SO centers of action.
Since the variances of the monthly mean SLP at Tahiti and Darwin are different, the
pressure anomalies at these stations have to be normalized so that the South Pacific
and Australian– Indonesian centers of action are equally represented.
The index can be calculated in several ways. We follow the technique used at the

Climate Analysis Center of the US National Meteorological Center (Sidorenkov,
1991c; Ropelevski, 1987). It can be described as follows. A time series of differences
dym between normalized SLP anomalies at these stations is calculated from time
series of monthly mean SLP at Tahiti and Darwin:
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dym ¼ Pym��Pm

e

� �
Ta

� Pym��Pm

e

� �
Da

ð9:1Þ

where Pym is the actual pressure; �Pm is the long-term average value (normal); e is
the standard deviation calculated from all pressure anomalies over the period
1951–1980; and y and m denote the year and the month, respectively. The normals
�Pm are calculated from themonthlymean data over 1951–1980.Next, the SOI index is
determined as

SOI ¼ dym=s ð9:2Þ
where s is the standard deviation of all the differences dym over 1951–1980.
A continuous homogeneous series of monthly mean SOI values starting in 1935

was presented in (Sidorenkov, 1991c, 2000c). Although observations at Tahiti and
Darwin weremade even earlier, they were unavailable for a long time since they were
dispersed over various archives. Due to the careful efforts undertaken by scientists,
continuous series of atmospheric pressure from 1866 to 1934were restored for these
stations (Allan et al., 1991; Ropelevski, 1987). As a result, a continuous series of
monthly mean SOI indices from 1866 to the present is now available.

Figure 9.1 Coefficients (multiplied by ten) of correlation between
the mean annual sea-level pressure at the station of Darwin,
Australia, and at other meteorological stations of the world
(according to Trenberth, 1976). Note the high negative
correlations over Tahiti – showing the basis for the choice of the
Tahiti – Darwin pressure difference as a Southern Oscillation
Index (SOI).

9.1 El Niño–Southern Oscillation j191



Wright (Wright, 1989) calculated three-month meanW indices for ENSO starting
in 1851 by using SLP at several (up to eight) stations. To eliminate the inhomoge-
neities and to fill the gaps in the pressure series used, he employed ENSO indices
based on sea surface temperature (SST), precipitation, and air temperature in the
central and eastern Pacific. Later, he replaced theW index by the DT index calculated
as the difference between the pressure anomalies at Darwin and Tahiti. TheDT index
was easy to calculate starting in 1935. By using simultaneous DT and W series over
1935–1974,Wright derived a regression equation forDTonWand then calculated the
DT indices over the period 1851–1934 from the W indices over this period. At
present, a series of DT is available for 150 years.
It has been found that higher (lower) SOI values are accompanied by lower (higher)

SST in the eastern and central Pacific (Rasmusson and Carpenter, 1982; Philander,
1990; Sidorenkov, 1991c). For this reason, two extreme phases have been distin-
guished in ENSO: a warm phase (El Niño) when SOI< 0 and a cold phase (La Niña)
when SOI> 0. In El Niño events, the sea level in the eastern Pacific is approximately
50 cm higher than in the western Pacific. An opposite situation occurs in La Niña
events (Rasmusson and Carpenter, 1982; Philander, 1990), that is interannual sea-
level oscillations with an amplitude of about 50 cm are observed between the eastern
and western tropical Pacific.
Thermal oscillations in the ocean are characterized by SST averaged over most

representative regions. Series of monthly mean SST indices over various regions,
such as Nino in the equatorial Pacific,N.Atl and S.Atl in the Atlantic, Tropics in three
oceans, and so on, are known to be regularly computed at theUSNational Centers for
Environmental Prediction (NCEP) (Climate Diagnostics Bulletin). Unfortunately,
these series are available only from1950 to the present. Data reconstructions over the
Nino3 and Nino4 regions from 1903 to the present were calculated at the UK Hadley
Center (Parker, Folland, and Jackson, 1995).
Six-hour series of excitation function components ci for the atmospheric angular

momentum (AAM) from 1958 to 2001 are available at present. They were derived
from the NCEP/NCAR reanalysis data at the Subbureau for Atmospheric Angular
Momentum (Kalnay et al., 1996; Salstein and Rosen, 1997) (see Section 7.3).
Atfirst glance, thefluctuations in long-termSOI curves look like a simple (Poisson)

process. However, a spectral analysis of long-term series of SOI (from 1866 to 1996)
and of DT (from 1851 to 1996) has shown (Sidorenkov, 1997, 2000a, 2000c, 2000e,
2001) that the SOI spectral density reaches itsmaximumvalues in the period range of
2–7 years (Figure 9.2). For periods shorter than one year, the spectral density is very
low (varies from 0 to 1). In both curves, spectral density peaks are exhibited by the
components with periods of about 6, 3.6, 2.8, and 2.4 years. The DT index also has a
peak at 11.2 years, which corresponds to a weak peak at 13.2 years in SOI. A major
feature of the dominant periods in the ENSO indices is that all of them are (to a
greater or lesser extent) multiples of the forced nutation period (18.6 years), and the
free nutation period, or the Chandler wobble period (1.2 years) (with the super-
harmonic wave numbers nk¼ 2, 3, 5).
A spectral analysis of SOI and SST and their anomalies over 1903–1998 and

1950–1998 was performed in (Sidorenkov, 2000a, 2000b, 2000e, 2001). The resulting
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spectra for Nino3, Nino4, and SOI from 1950 to 1998 are illustrated in Figure 9.3.
It can be seen that the 3.6- and 2.4-year periods still persist, but the 6-year period in
SOI is no longer observed, while a 4.8-year period appears in Nino3 and Nino4.
The periodograms and power spectra of all daily mean AAM excitation compo-

nents cPi and cWi over 41 years were calculated in (Sidorenkov, 2000a, 2000b, 2000e,
2001). Table 9.1 presents the spectral analysis results for all the series. The third
column lists the most prominent cycles in decreasing order of spectral power.
Although the series of ENSO indices we analyze cover a rather short time interval,

the cycles determined generally coincide with those derived from 114- and 145-year
series (Schneider and Schonwiese, 1989; Sidorenkov, 1997, 2000e, 2001).
The difference is that the latter series additionally exhibit a 6-year cycle, while a
4.9-year cycle is observed in the present indices.

Figure 9.3 Power spectra of the oscillations of the SOI (1),Nino4
(2),Nino3.4 (3),Nino3 (4), and Tropics (5) indices. The oscillation
periods (in months) and the spectral density S (in arbitrary units)
are plotted on the X-axis and Y-axis, respectively.

Figure 9.2 Power spectra of the SOI (1) and DT (2) indices. The
oscillation periods (in quarters of a year) and the spectral density S
(T) are plotted on the X-axis and Y-axis, respectively.
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A spectral analysis of cWi (wind component) and cPibi (atmospheric pressure
component corrected for the inverse barometer effect) suggests the presence of
forced-nutation subharmonics (4.7, 3.7, 3.1, 2.7, 2.3, 2.1, and 1.86 years). Some of
them are close to the Chandler superharmonics of periods 2.4, 3.6, 4.8, and 6 years,
that is the analysis of the AAM components does not contradict the results derived
from the ENSO indices. However, the AAM series are too short to provide reliable
results for long-term cycles.
Thus, all the studies suggest that the ENSO spectra contain components that are

not one-year multiples but rather multiples of about the Chandler period (1.2 years)
and the forced-nutation fundamental period (18.6 years). The superharmonic
periods of the latter are given in the last line of Table 9.1.

9.2
Quasibiennial Oscillation of the Atmospheric Circulation

Among the numerous nonseasonal oscillations in the atmospheric circulation, the
quasibiennial one stands out as the most stable and significant phenomenon. The
quasibiennial oscillation (QBO) of the atmosphere was discovered in the early 1960s
in the study of the equatorial stratospheric circulation. It was found that the direction
of the equatorial zonal wind reverses with a period of about 26 months in the
atmospheric layer between the altitude of 18 and 35 km.More specifically, westerlies
persist at a fixed height for about 10 months, then easterlies blow for about 16
months, and then a new cycle begins (Reed, 1964).

Table 9.1 Dominant cycles in characteristics of the ENSO, QBO, SST,
and the atmospheric angular momentum excitation components.

Index Region borders Periods of dominant cycles, years

SOI 4.9; 2.4; 3.6; 2.1
DT 5.8; 3.6; 2.8; 12; 2.4
QBO 5�N – 5�S 0� – 360� 2.4; 2.8; 2.0; 4.8; 1.2
Nino4 5�N – 5�S 160�E – 150�W 4.9; 3.6; 12; 2.4
Nino3.4 5�N – 5�S 170�W – 120�W 4.9; 3.6; 2.4; 2.1
Nino3 5�N – 5�S 150�W – 90�W 3.6; 4.9; 2.5; 2.1
Nino1þ 2 0� – 10�S 90�W – 80�W 3.6; 4.9; 2.9: 2.1
Tropics 10�N – 10�S 0� – 360� 4.9; 3.6; 2.8; 2.4; 2.1
N.Atl 5�N – 20�N 60�W – 30�W 9.3; 3.6; 2.5; 2.1; 5.2
S.Atl 0� – 20�S 30�W – 10�E 12; 5.2; 2.3; 3.5
cw1 Globe 2.7; 3.7; 1.86; 5.9; 2.4
cw2 Globe 2.7; 3.1; 2.1; 1.8
cw3 Globe 2.4; 3.7; 5.1
cPib1 Globe 2.6; 3.7; 4.6; 1.7
cPib2 Globe 2.4; 2.7; 5.9
cPib3 Globe 5.1; 4.1; 2.3; 2.7
18.6 years subharmonics 6.2; 4.7; 3.7; 3.1; 2.7; 2.3; 2.1; 1.86
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The QBO of the equatorial zonal wind is explained by the interaction of Kelvin
waves and mixed Rossby-gravity waves with the zonal wind in the equatorial
stratosphere (Lindzen and Holton, 1968; Holton and Lindzen, 1972; Holton,
1975). The nature of Kelvin and mixed Rossby-gravity waves is not clear. In the
author�s view, mixed Rossby-gravity waves are manifestations of the interaction
between diurnal and zonal tides in the atmosphere. They account for an intense wide
peak at a frequency of about 0.85 (day)�1 in the spectrum of the atmospheric angular
momentum (see Section 7.5). It is believed that Kelvin waves propagate into the
stratosphere, where they meet a westerly shear zone and are absorbed at the height
where their phase velocity coincides with the wind velocity. As a result, the westerlies
at this height strengthen, while the absorption of new waves is reduced. Since wave
absorption proceeds continuously, the westerly zone gradually descends toward
the tropopause at a velocity of about 1 km/month (Figure 9.4). When the westerly
zone stretches down to the tropopause, the Kelvin waves have low frequencies due to
the Doppler shift, while the mixed Rossby-gravity waves have high frequencies.
That is why the latter propagate upward. At the height of semiannual oscillations
(�35 km), they canmeet an easterly shear zone, where they are absorbed. As a result,
the easterly velocity increases and the easterly zone descends permanently from
35 km to the tropopause, where the cycle is completed. At the same time, Kelvin-wave
absorption begins at the height of semiannual oscillations and a new cycle starts.
In this model, the QBO period for wind depends only on the intensity of

atmospheric waves and on the distance between the equatorial tropopause and the
height of semiannual oscillations in the stratosphere.

Figure 9.4 Equatorial time–height section of anomalous zonally
averaged zonal wind (ms�1) (CDAS/Reanalysis). Contour interval
is 10m s�1. Anomalies are departures from the 1979–1995 base
period monthly means. (Climate Diagnostic Bulletin, 2008).
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A largenumber of indices (ClimateDiagnostics Bulletin) are available that quantify
theQBO in equatorial winds.Chuchkalov (1972) suggested the indexPdefined as the
mass flux through an equatorial meridional cross section with a width of 1m and a
height of 19 to 31 km (i.e. from 66.63 to 10.07 hPa). The wind at five pressure levels
(70, 50, 30, 20, and 10 hPa) is required for computing the index P:

P ¼
ðð
rV � dS ¼ 1 �

ðZ2

Z1

r udz ¼ 1
g

ðP1

P2

udp ¼ 1
g

X
i

uiDPi ð9:3Þ

where V is the wind velocity vector, u is the average zonal wind velocity at the level P
(u> 0 forwesterlies andu< 0 for easterlies), dS is the elementary area of 1m inwidth
and dz in height, r is the air density; g is the acceleration due to gravity, P is the
atmospheric pressure, DPi is the pressure increment in the ith layer, Z1¼ 19 km,
Z2¼ 31 km, P1¼ 66.63 hPa, and P2¼ 10.07 hPa.
My experience gained from dealing withP has shown that this index is difficult to

interpret. For this reason,P is recalculated to obtain the average zonal wind velocity �u
in the layer of 19 to 31 km. The P and �u indices are related by the formula

�u ¼
1
g

Ð
udP

1
g

Ð
dP

¼

1
g

X5
i¼1

uiDPi

1
g

X5
i¼1

DPi

¼ P
577:14

ð9:4Þ

where the notation is as before.
Starting in the 1960s, the QBO in the equatorial stratospheric wind was regularly

monitored by theHydrometeorologicalCenter of theUSSRvia radiosonde and rocket
measurements from research vessels at the equator (Chuchkalov, 1989). Simulta-
neous observations at different equatorial points differ little from each other, so the
wind QBO can be characterized by measurements at a single point close to the
equator. Thismeans that, in the equatorial stratosphere, the Earth is surrounded by a
jet stream in which the wind velocity varies only with height, latitude, and time.
Since the 1990s, the QBO index has been monitored using 00:00 and 12:00 UTC

daily observations from all accessible upper-air stations located near the equator (in
the�5� latitude band). At present, there is a 55-yearmonthly time series (from1954
to 2008) of the average zonal wind velocity �u in the equatorial stratosphere
(Sidorenkov, 2000c). This series is presented in Appendix D.
Time variations in the average zonal wind velocity in the equatorial stratosphere

are illustrated in Figure 9.5. Over the period 1954–2008, 24 cycles of �u occurred in the
series. The period varied from 21 months in 1972–1973 to about 36 months in
1964–1966. The length of a single cycle averaged over the entire time interval was 28.1
months. The zonal wind velocity varied from�22.5m/s in July, 1984, to þ 18m/s in
January, 1983. The mean velocity �u over 55 years was �3.8m/s, and the (standard)
rms deviation was �9.3m/s.
Figure 9.6 shows the periodogram of �u calculated from its time series over

1954–1999 (altogether 552 monthly mean values). It can be seen that the Fourier
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spectrum is dominated by the harmonic with a period of about 2.33 years
(28 months). It is this oscillation that is called QBO. The QBO amplitude varies
from8 to 13m/s. Another noticeable harmonic is that with a period of about 2.0 years
(24 months), but its power is more than 5 times lower than that of the 28-month
harmonic. Weak peaks can also be seen at periods of 1.0, 1.2, 2.8, and 4.8 years.
The addition of these harmonics explains the amplitudemodulation of �u exhibited in

Figure 9.6 Power spectra of the pole coordinate x (top) and the
QBO indices �u (bottom). To demonstrate the curves� similarity,
the pole�s curve was transformed as follows: T¼ 2T0 and
S¼ 30S0 þ 2600, where T0 and S0 are the actual values of the
periods T and spectral densities S, respectively.

Figure 9.5 Temporal courseof the zonalwind average velocity �u in
the equatorial stratosphere (layer of 19–31 km) in 1954–2008.
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Figure 9.5. Specifically, the sum of 28 and 24-month cycles is responsible for 14-year
beats in the QBO amplitude.
Next, we calculated the periodograms of the North Pole�s coordinates x and y from

their time series over the period of 1954 to 1999 (altogether 920 values at 0.05-year
intervals) (IERSAnnual Report, 2000). They turned out to be nearly identical. For this
reason, we present only the periodogram of x (Figure 9.6). The component with a
Chandler period of 1.18 years dominates the other harmonics. Additionally, a well-
pronounced annual harmonic is observed that is more than 3 times less intense than
the Chandler one.
A surprising feature is that the spectrum of �u is similar, within a factor of 2, to that

of the pole�s coordinates x and y. If the horizontal-axis scale in the spectrum of
the pole�s coordinates is doubled as shown in Figure 9.6, then all the details in the
spectrumof �u coincidewith those in the polarmotion spectrum; that is the oscillation
in the polar motion is reflected as the doubled-period QBO in the atmosphere. In the
equatorial stratosphere, the duration of all the Earth�s polarmotion cycles is doubled.
Presently, one believes that theQBO is driven bymomentum transfer from theKelvin
waves and the mixed Rossby gravitation waves to the mean zonal flow (Holton and
Lindzen, 1972;Holton, 1975).However, thesewaves are themanifestation of the tidal
movements in the atmosphere (Sidorenkov, 2002a, 2002b). They cause a powerful
wide peak near the 0.85 (day)�1 frequency in the spectrum of the NCEP/NCAR
reanalysis Atmospheric Angular Momentum (see Section 7.5). As early as in 1960,
Carl Eckart showed that the Rossby waves are tidal waves (Eckart, 1960, page 279).
These facts testify that the Chandler wobble of the poles and the QBO cyclicity of
the stratospheric winds are likely to have a common mechanism of excitation that is
due to the lunar–solar tides.

9.3
Multiyear Waves

Starting in 1979, I constructed time–longitude sections of equatorial SSTand found
that the SST anomalies move eastward at a velocity of about 0.25m/s (Sidorenkov,
1991c). It was also found that slow waves propagate along the equator in the ocean.
They travel around the Earth in about 4.8 years. Their velocities are much lower than
those of normal equatorial Kelvin waves (the latter travel through the PacificOcean in
one to three months) (Efimov et al., 1985; Gill, 1982). Analyzing the motion of SST
anomalies, I predicted their occurrence in the Pacific equatorial belt (Sidorenkov,
1991c) and realized that the Atlantic El Niño is delayed relative to the Pacific one
because several months is required for a wave to travel from the American coast to
Africa.
A time–longitude section of equatorial SSTanomalies is shown in Figure 9.7. The

longitudes from 0� to 360� run along the horizontal axis, while the vertical axis
represents months and years from 1979 to 1990. The contour interval is 0.5�. The
positive anomalies (> þ 0.5�) are shaded, while the negative ones (< �0.5�) are
shown in white. No data are available in the longitude ranges of Africa and South
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Figure 9.7 Time–longitude section of the sea surface temperature
anomalous in the zone of 5�N–5�S from1979 to 1990. The interval
between isolines is 0.5 �C.Africa and SouthAmerica are blackened.
The positive anomalies (> þ 0.5�) are shaded, the negative ones
(< �0.5�) are light. Thin lines indicate the location of ridges and
troughs of the many-year waves (Sidorenkov, 2002a, 2002b).
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America, so they are depicted in black. The centers of dominant anomalies are joined
by light straight lines. It can be clearly seen that these lines are inclined from left to
right. Therefore, the anomalies move eastward. The line joining the positive
anomalies is a wave crest, while the neighboring line connecting the negative
anomalies is a wave trough. The slope of the lines determines the wave velocity.
It can be seen that the velocity has varied. Specifically, the wave traveled around the
Earth in 4–5 years at the beginning of the time period and in 7 years at its end.
Moreover, its motion was nonuniform. For example, the crest was nearly fixed at the
150�E meridian in 1984–1985.
The US Climate Prediction Center publishes the monthly Climate Diagnostics

Bulletin, which presents time–longitude sections of some oceanic and atmospheric
characteristics. Slow equatorial waves can be seen in many of these sections. They
exist simultaneously in the ocean and the atmosphere. Specifically, they are most
pronounced in 850-hPa wind velocity anomalies in the atmosphere and in 20 �C
isotherm depth anomalies in the ocean (Climate Diagnostics Bulletin).
Figure 9.8 displays a section of 850-hPa zonal wind speed anomalies from the

Climate Diagnostics Bulletin. The evolution of a slow wave during the 1996 La Niña
and 1997–1998 El Niño events can be seen in the figure. The maximum positive
(westerly) wind anomalies were at the 100�Emeridian in October 1996 and, moving
eastward, reached the South American coast (80�W) in July 1998. The wave
traveled an extent of 180� in 1.8 years, that is its revolution period around the Earth
was roughly 3.6 years. In these years, the anomalies of atmospheric pressure,
outgoing longwave radiation, depth of the 20�C isotherm for 5�N–5�S in the

Figure 9.8 Time–longitude section of the zonal winds velocity
anomalies at the 850-hPa isobaric surface in the zone of 5�N–5�S
from January 1996 to December 1998. The interval between
isolines is 1 m/s. Broken and solid lines are the anomalies of the
east and west winds, respectively.
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Pacific Ocean, and other characteristics traveled eastward at the same velocity
(Climate Diagnostics Bulletin).
In the 1980s, waves moved more slowly, and the revolution period was 4.8 years.

In 1990–1993 a wave was nearly motionless, but in 1994 it ran around the Earth in
1.2 years. Thus, the wave velocity can vary from 0 tomore than 1m/s. The revolution
period of multiyear waves is a multiple of the Chandler period, the lunar nodal
tide period, or the fundamental period of the Earth�s forced nutation. This suggests
that these waves are associated with long-period tides and the free and forced
nutations of the Earth. That is why they were called nutation waves in (Sidorenkov,
1999, 2000b).
Nutations can be forward and reverse (see Section 5.4.3). The general solution of

the wave equation also involves waves propagating in positive and negative direc-
tions. It would be natural to expect thatmultiyear waves can be forward and backward
as well, that is eastward- and westward-propagating, respectively. Indeed, they can
easily be found by close inspection of time–longitude sections. Let us analyze
Figure 9.9, which, like Figures 9.7 and 9.8, shows the time–longitude section of
the 925-hPa zonal wind speed anomalies in the equatorial belt constructed from the
1982–1994 NCEP/NCAR reanalysis. Joining the centers of the positive anomalies,
which are wave crests, gives lines inclined rightward (heavy lines) and leftward
(light lines). The slope of the heavy lines suggests that thewave crests travel eastward,
while a reverse situation occurs for the thin lines (i.e. thewave crests travel westward).
Similarly, inspecting the negative anomalies of u, that is wave troughs, we see that
they move in the same manner as the crests: in forward and backward directions.
Figures 9.7 and 9.8 present only forward SSTanomaly waves, but backward ones can
easily be found if desired.
Thus, forward wavesmoving fromwest to east and backward waves traveling from

east to west are observed in the equatorial ocean and atmosphere. To a certain degree,
they determine the long-term variability in hydrometeorological characteristics of
the ocean and the atmosphere. Large positive anomalies are formed where forward
and backward wave crests meet, and negative anomalies are formed in areas of
meeting wave troughs. The areas and times when crests or troughsmeet correspond
to the longitudes and moments of the onset of El Niño or La Niña. Therefore,
the ENSO phenomenon results from the interference of forward and backward
multiyear waves traveling simultaneously in the atmosphere and the ocean.
The multiyear waves can be described by the expression

u ¼ Ap exp iðspt�kplÞþAr exp iðsrtþ krlÞ ð9:5Þ
where A is the amplitude, s is the circular frequency, k is the wave number, l is the
east longitude, and p and r are the indices denoting forward and backward waves,
respectively. At a fixed time t, the expression u¼Aexpi(st þ kl) describes u as a
function of l. If t varies but the phase remains a constant (st þ kl¼ const.), then the
distribution of u remains unchanged. In this case dl

dt ¼ _l ¼ � s
k is the wave angular

velocity. When k is a scalar, _l is known as the phase velocity. If s< 0, then _l > 0; that
is the wave travels in the positive direction (eastward). If s> 0, then _l < 0; that is the
wave travels in the negative direction (westward).
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The first and second terms on the right-hand side of (9.5) describe a forward and a
backward wave, respectively. If their parameters are identical, they yield a standing
wave: u¼ 2Acoskl exp(ist). If the amplitudes of waves (9.5) are different, then the
standing wave is superimposed by a wave propagating in the same direction as the
larger amplitude wave. Its amplitude is equal to the difference between the ampli-
tudes of the original waves.
When the parameters of the forward and backward waves are different, sum (9.5)

gives a traveling wave. The anomaly field produced by two waves with the same

Figure 9.9 Time–longitude section of the zonal winds velocity
anomalies at the 925 hPa isobaric surface in equatorial zone from
January 1982 to December 1994. The interval between isolines is
1m/s. Broken and solid lines are the anomalies of the easterly and
westerly winds, respectively. Thick and thin lines are the
trajectories of the direct and reverse waves, respectively.
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frequency but with different amplitudes and phases is

u ¼ A1 exp iðstþ k1lÞþA2 exp iðstþ k2lÞ ¼ ðA1e
ik1l þA2e

ik2lÞeist
¼ ARe

ijReist
ð9:6Þ

It is well known that the square of the resulting amplitude AR is

A2
R ¼ ðA1e

ik1l þA2e
ik2lÞðA1e

�ik1l þA2e
�ik2lÞ

¼ A2
1 þA2

2 þA1A2ðei k1�k2ð Þl þ e�i k1�k2ð ÞlÞ
¼ A2

1 þA2
2 þ 2A1A2cosðk1�k2Þl

ð9:7Þ

Thus, the total energy is the sum of the energies of the original wavesA2
1 þA2

2 plus
the additional interference term 2A1A2cos(k1� k2)l, which can be positive or
negative. The interference effect is determined by the difference between the phases
of two waves arriving at the point under consideration.
An analysis of the sections presented suggests that the wave numbers of the

fundamentalmultiyearwaves are equal to unity, the phase velocities vary from2p/9 to
2p/1 rad/year, and the linear velocities range from 14 to 127 cm/s.
The detection of multiyear waves in time–longitude sections is difficult for two

major reasons. First, a large number of multiyear waves travel simultaneously in
different directions in the ocean and the atmosphere. They interfere to create a
complex interference pattern. Second, when moving through a medium, multiyear
waves, like any other geophysical waves, give rise to various internal processes
(circulation cells, vertical convection,mass and heat transfer, tidal rises and falls near
obstacles, etc.), whose intensity depends on local conditions. This is why the wave
pattern is always highly diverse. For example, multiyear waves are easily seen in the
Pacific, less pronounced in the Atlantic and Indian oceans, and hardly visible over
the continents (Climate Diagnostics Bulletin), (Sidorenkov, 1991c).
To the best ofmy knowledge,multiyear waves have not been previouslymentioned

in publications, although patterns and descriptions of their regional responses in the
atmosphere and the ocean can be found in many studies (White and Peterson, 1996;
Jacobs andMitchell, 1996; Trenberths, 1991; Rasmusson, 1991; Petersen andWhite,
1998). An analysis of 1980–1996 observations in (White and Peterson, 1996; Jacobs
and Mitchell, 1996) revealed the Antarctic circumpolar wave (ACW) in the fields of
SST, surface pressure, wind velocity, and sea surface height. It travels eastward
around Antarctica at a velocity of about 0.1m/s and completes a revolution in 8–10
years. Since the ACW has a wave number of 2 (its length is half the length of the
Antarctic Circle), it leads to oscillations of about 4–5 years in the atmospheric and
oceanic characteristics in this region, which are similar to ENSO cycles.
Beginning with (Bjerknes, 1969), processes leading to variability in the ENSO

range are usually called teleconnections. For example, in (Petersen andWhite, 1998)
sequences of interannual anomaly fields for SST, SLP, and precipitable water over the
Southern Hemisphere in 1982–1994 were presented, in which the evolution of
multiyear waves could be observed. However, they were interpreted as slow tele-
connections between the tropical ENSO and ACWs through anomalous vertical
convection and a regional overturning cell in the troposphere.
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When the crests of multiyear waves reach a barrier such as the coast of America or
Africa, they create a tide of warm surface water. When a wave trough arrives, a tidal
fall and upwelling are observed. The tidal rises and falls enhance anomalies in the
hydrometeorological characteristics. The longer the distance a wave travels over the
ocean, the higher the tidal rise and the larger the anomalies. This is why El Niño
events are weak in the Atlantic off the African coast and are very strong in the Pacific
off the American coast. For atmospheric multiyear waves, the continents are not
insurmountable barriers, so the coastal tidal effects of multiyear waves are less
pronounced.
Thus, the interference of forward and backward multiyear waves and their

interaction with the obstacles lead to El Niño and La Niña in the oceans, to variations
in the SO phases in the atmosphere and, ultimately, to cycles in the SOI and SST
spectra that are multiples of the Chandler period (1.2 years) and the forced lunisolar
nutation period.
The spectral-temporal diagrams of SOI constructed in (Schneider and Schonwiese,

1989; Sidorenkov 1998, 2000e, 2001) and the wavelet and waveform analyses in
(Astaf�eva and Sonechkin, 1995; Gu and Philander, 1995; Wang and Wang, 1996)
reveal the instability of SOI cycles and, hence, the periods of multiyear waves.
Generated at certain frequencies, cycles may be damped out after some time and
may be excited again at different frequencies. This is why 6-year ENSO cycles
prevailed until the mid-twentieth century (Figure 9.2), while 4.9-year ENSO
cycles were dominant later (Figure 9.3). This instability is also typical of multiyear
waves.

9.4
Modern ENSO Models

Beginning with Bjerknes� pioneering works (Bjerknes, 1966, 1969), the ENSO is
viewed as a self-sustained oscillation in which the SST anomalies in the equatorial
Pacific influence the strength of the tradewinds. The latter drive oceanicflows, which
generate SST anomalies. This concept underlies the modern studies.
The basic technique for studying the physics of the ENSO is numerical simulation.

Themodels used at present include intermediate coupled atmosphere–oceanmodels
consisting of a shallow-water ocean model and a simple atmospheric model (Zebiak
and Cane, 1987; Schopf and Suarez, 1988), hybrid coupled models consisting of an
ocean general circulationmodel and a simple atmosphericmodel (Neelin, 1990; Latif
and Villwock, 1990), and coupled general circulation models in which the ocean and
atmosphericmodels are based on the primitive equations and involve fairly complete
physical parametrizations (Philander et al., 1992; Mechoso et al., 1993).
The behavior of models is usually analyzed depending on the seasonal cycle

amplitude, the model parameters characterizing the coupling of the ocean to the
atmosphere, the degree of the interaction between thermocline variations and
SST anomalies, and so on. Most models reproduce interannual variability in the
frequency range of the ENSO.
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It was shown in (Neelin, 1990) that variations in the model temporal coupling
parameters and seasonal forcing lead to simultaneous oscillations with a period of
3–4 years arising as Hopf bifurcations at the equator. Instability is facilitated by a
decrease in upwelling, an increase in the wind stress response to SST anomalies in
the atmosphericmodel, and by an increase of the vertical temperature gradient in the
ocean surface layer. For a stronger coupling, a second bifurcation arises that gives rise
to additional 5- to 6-month oscillations, which complicate the temporal evolution of
the model.
A theoretical ENSO model, consisting of prognostic equations for SST and

thermocline variations, was derived in (Wang and Fang, 1996). The model describes
the nonlinear interaction between mixed-layer thermodynamics and upper-ocean
dynamics through wind stress and upwelling. The thermocline variationsmemorize
the effect of SST on wind and mediate the atmospheric feedback for SST in a
nonlinear form via vertical temperature advection. For an annual mean basic state,
the model exhibits a limit cycle with a period of about 34 months. The asymmetry in
its evolution leads to secondary superharmonic oscillations. When the basic state
varies annually, the limit cycle becomes a strange attractor. Due to the presence of
chaos, the major power peaks expand, spread, and shift toward low frequencies.
The annually varying basic state not only generates irregularities in the oscillation
period but also tends to lock the ENSO period to 3-, 4-, and 5 years.
Thus, all the modern models treat ENSO as self-sustained oscillations of the

coupled ocean–atmosphere systemwithout paying attention to the fact that the actual
ENSO spectrum contains components that are multiples of the Chandler period
(1.2 years) and the lunisolar nutation period (18.6 years) rather than of the annual
period. The 18.6-year period is the principal one of many zonal tidal and lunisolar
nutation periods. The Chandler period is the free nutation period or the polarmotion
period. It is determined not by the driving-force frequency but rather by the
compression and elastic properties of the Earth. The presence of cycles that are
multiples of 18.6 and 1.2 years in the atmospheric and oceanic variability suggests
that the atmosphere and the ocean exhibit free and forced nutation motion together
with the Earth (Sidorenkov, 2000b, 2000c, 2002).

9.5
The Model of Nonlinear Excitation

During an ENSO, air and water masses are redistributed between the Eastern and
Western Hemispheres. The exchange occurs most intensively between the southern
subtropical part of the Pacific Ocean and the eastern part of the Indian Ocean. The
swing in the oscillations of sea level in the eastern and western parts of the tropical
zone of the Pacific Ocean is �50 cm. Oscillations of atmospheric pressure at the
antipodal centers of the action of the Southern oscillation reach 3 hPa at the ENSO
frequency. These pressure anomalies are distributed over the globe (Figure 7.1) in
the way that is required to excite the polar wobble: the sign of the anomaly over
the southwestern part of the Pacific and central Asia is opposite to the sign over the
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Indian Ocean and North America (these anomalies are described by the tesseral
spherical harmonic P1

2ðq; lÞ).With this pressure distribution, the axis of the largest
moment of inertia of the Earth (i.e. the axis of the Earth�s figure) should deviate
toward Asia in a La Nino events and toward North America in an El Nino events.
Deviations of the axis of the Earth�s figure from the rotation axis will necessarily give
rise to free nutation of the Earth.
Let us now turn from a qualitative to a quantitative treatment of the problem.
The excitation of the polar wobbles can be estimated using the equation (Munk and

MacDonald, 1960)

i
s
dm
dt

þm ¼ Y ð9:8Þ

Here, s ¼ sþ ib, s ¼ 2p
T is the frequency of the free motion of the poles; T¼ 1.2

years is the Chandler period; b is the damping decrement; i is the square root of – 1;
m ¼ m1 þ im2 (m1 and m1 are the direction cosines of the Earth�s instantaneous
angular rotation vector); and Y ¼ c1 þ ic2 (c1 and c2 are the components of the
effective angular momentum functions) (Barnes et al., 1983; Sidorenkov, 2002).
To explain the observed wobble of the Earth�s pole with a period of one year, it is

sufficient for the atmosphere pressure oscillation to have an amplitude of 1.6 hPa;
that is P(q,l)¼ 1.6 sin 2q sin(l�l0) hPa (Munk and MacDonald, 1960). As noted
above the amplitude of pressure oscillations during an ENSO reaches 3 hPa, so that
excitation of the free nutation of the Earth is quite feasible.
The Chandler wobble of the poles induces a polar tide in the atmosphere and

ocean. For example, the static polar tide in the ocean has the form (Munk and
MacDonald, 1960)

z ¼ � 1þ k�h
g

W2R2

2
sin 2qðm1 coslþm2 sinlÞ ð9:9Þ

where k and h are Love numbers,W is the magnitude of the Earth�s angular rotation
vector, g is acceleration of Earth�s gravity, q is the colatitude, and l is the longitude. In
the atmosphere, the polar tide is described by the same expression, since

DP ¼
ðza
0

rgdz ð9:10Þ

but with a different amplitude. We should stress that the amplitude is a function of
the polar deviation m .
The typical amplitude of the static polar tide in the ocean is 0.5 cm. However,

analysis of tide records indicates a resonant spectral density peak at period T
(Munk and MacDonald, 1960). A 14-month periodicity in the Atlantic subtropical
circulation has repeatedly been noted (Lappo, Gulev, and Rozhdestvenskiy, 1990;
Shuleykin, 1965).
By analogy with Equations 9.9 and 9.10, we might expect that, in the case of linear

interactions of nutation waves, the amplitude A of the exciting function Y for the
atmosphere and the ocean must be a function of m . However, the presence of
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superharmonics of the Chandler period (�2.4, 3.6, 4.8, and 6.0 years) and sub-
harmonics of the forced nutation period (�2.3, 3.7, 4.7, and 6.2 years) in the ENSO
and atmospheric angular momentum spectra indicate the nonlinear interaction of
the forced and free nutationmotions of the Earth, ocean, and atmosphere. Therefore,
we assume that the amplitude Ak of each harmonic with number k of the exciting
function Y has a power-law dependence on the value m : Ak ¼ mkm

ak , where ak is a
power-law exponent different from unity and mk is a proportionality coefficient
(Sidorenkov, 2002a, 2002b).
Using this assumption, we can approximate the function Y by the sum of N

harmonics:

Y ¼
XN
k¼1

mkm
ak exp½wkiðt�t0kÞ� �

XN
k¼1

mkm
ak expðwkitÞ ð9:11Þ

Here, k is the number of the harmonic, wk is its frequency, and wkt0k is the initial
phase, which is set equal to zero. For superharmonics of the Chandler frequency,
wk¼s/nk, where nk¼ 2, 3, 4,. . . are superharmonics numbers.
We were not able to find a solution of Equation 9.8 with the function Y in the

form (9.11). Therefore, we simplified expression (9.11):

Y ¼ ma
XN
k¼1

mk expðwkitÞ ð9:12Þ

Then, the solution of Equation 9.8 with the function Y given by (9.12) at m(0)¼m0

takes the form

m ðtÞ ¼ m1�a
0 exp½ð1�aÞsit��isð1�aÞexp½ð1�aÞsit�

(

�
ðt

0

exp½ða�1Þsit�
XN
k¼1

mkexpðwkitÞ
 !

dt

) 1
1�a

¼ m1�a
0 exp ð1�aÞsit½ � þ

XN
k¼1

mkð1�aÞs
½ð1�aÞs�wk� expðiwktÞ½

(

�exp ð1�aÞist½ ��
) 1

1�a

ð9:13Þ

The first term in braces of (9.13) describes the free motion of the pole due to its
initial deviationm0. The second term (first sum) describes the overall forced motion
of the pole with the excitation frequencieswk. The third term (second sum) describes
the polar motion caused by the function Y with the fundamental frequency s.
Expression (9.13) describes the result in the most general form. To make this

equation easier to understand, we make the following simplifications: (a) we neglect
the initial deviation of the pole; that is we set m0 ¼ 0, and (b) we neglect damping;
that is we set s ¼ s. In this case, expression (9.13) takes the form
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m ðtÞ ¼
XN
k¼1

mkð1�aÞs
½ð1�aÞs�wk� expðiwktÞ�exp ð1�aÞi s t½ �½ �

( ) 1
1�a

¼
XN
k¼1

mk 1�að Þs
i wk� 1�að Þs½ � 2sin

½wk�ð1�aÞ s�t
2

exp
½wk þð1�aÞs�

2
it

( ) 1
1�a

ð9:14Þ
For (1�a)s¼wk, the term with number k in (9.14) is an indeterminate form of the
type 0/0. For superharmonics of the Chandler frequency, the exponent 1

1�a ¼ nk is
equal to a positive integer number (nk¼ 2, 3, 4,. . .). Let us suppose, for example, that
w1 ! (1�a)s. Then, the sine of the small angle in the first term of (9.14) can be
replaced by the angle itself and will cancel from the numerator and denominator. All
other terms (with numbers k¼ 2, 3,. . ., N) remain unchanged, and we obtain

mðtÞ ¼ �m1ð1�aÞis t expðiw1tÞþ
XN
k¼2

mkð1�aÞs
½ð1�aÞs�wk� expðiwktÞ½

(

�exp ð1�aÞis t½ ��
) 1

1�a

ð9:15Þ

The same result will be obtained if we formally evaluate the indeterminate form
in (9.14) using L�Hopital�s rule. The coefficient in the first exponential term increases
with time t.All other terms have constant coefficients. Thus, at sufficiently large t,we
can neglect all terms in braces except for the first.
In another time interval, a periodicity with frequency wk may dominate. In this

case, analysis of the behavior of m gives a result similar to (9.15). Summing the
resonant contributions from all terms, we obtain

mðtÞ �
XN
k¼1

½�mkð1�aÞis t expðiwktÞ�
( ) 1

1�a

¼
XN
k¼1

ðmkwkÞnk tnkexp i stþ 3nkp
2

� �� �
ð9:16Þ

Here, we took into account the relations (1�a)s¼wk, and 1
1�a ¼ nk.

Thus, for s¼ nkwk, that is when the frequency of free oscillations of the pole is an
integer multiple of the excitation frequency, a combinational resonance arises. The
perturbing forces act synchronously with the proper oscillations of the Earth, giving
rise to an intense swinging of the Earth about its rotation axis. The amplitude of the
polar oscillations increases with time according to a power law (i.e. proportional
to tnk ), the more rapidly, the lower the frequency of the superharmonics excitation
component. Even low-power oscillations of the exciting function Y can lead to
significant oscillations of the instantaneous angular rotation vectorm of the Earth. As
the amplitude of the polar oscillations increases, resistance leading to damping of the
oscillation grows, so that an infinite increase of the amplitude becomes impossible.
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It is well known that the intensities of QBO, ENSO, and polar motion vary with
time. D.M. Sonechkin (Vlasova, 1987) pointed out that extrema of QBO easterlies
alternate with a period of 14 years. It was noted in (Gu andPhilander, 1995;Wang and
Wang, 1996) that 4-year ENSO periods prevailed in 1872–1890, while 3-year ENSO
periods dominated in 1890–1910. After 1910, the dominant period switched to 7
years. The dominant period was 5–6 years from 1940 to 1960, 2 years in the 1960s,
and 4–5 years in 1971–1995. TheENSOamplitudeswere large in 1870–1915, small in
1915–1950, and again large after 1960. A similar pattern was observed in the CW
amplitudes.
To demonstrate the instability of CWand ENSO, we calculated (with the help of a

filter) the time series of the Chandler component of the North Pole�s coordinate y
over the entire 110-year observed series and compared it to the SOI time series
(Figure 9.10). An analysis of the plot shows that theCWamplitudes in 1890–1915 and
1947–1960 were three and five times larger than in 1925–1943. It can be clearly seen
that CW is amplitude modulated. The period between the amplitude maxima
(beat period) is 40 years. This suggests that CW is the sum of two oscillations with
very close periods. They can be calculated using the formula

2 cos
1
T1

� 1
T2

� �
pt cos

1
T1

þ 1
T2

� �
pt ¼ cos 2p

1
T1

tþ cos 2p
1
T2

t ð9:17Þ

where T1 and T2 are the periods of the first and second oscillations, 1
T1
� 1

T2
is the beat

frequency, and 1
2

1
T1

þ 1
T2

� �
is the carrier frequency. Since T1¼ 1.2 years and the beat

period is 40 years ( T1T2
T2�T1

¼ 40), it is easy to see that T2¼ 1.24 years. This side period is

associated with a peak in the power spectrum of the pole motion (Figure 9.6).
In 1921–1938, the SOI variations decreased noticeably. Simultaneously, the

polar motion was damped out as well. Specifically, the Chandler wobbles (CW)
amplitude decreased by several times, the CWperiod lengthened, and the CWphase
changed. Thesefindings demonstrate that ENSO is consistent with the polarmotion.
Likely, time variations in the ENSO intensity lead to instability in CW excitation.
The instability of ENSO is likely causedby the influence of the seasonal cycle phase on
the nutation motion of the atmosphere and the ocean.

Figure 9.10 Time series of SOI (bottom) and theChandler termof
the Earth�s pole coordinate y (top) in 1866–2000.
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The QBO period in stratospheric winds was first about 26 months (until 1964),
then increased up to 30 months, and next (starting in 1990) again decreased to 27
months (Sidorenkov, 1998). Possibly, there is an inversely proportional coupling
between the QBO period and the CWamplitude: the QBO period decreases for large
CW amplitudes and increases for small CW amplitudes. In 1921–1940, the CW
amplitudes were extremely small, and we can expect a considerable increase in the
QBOperiods.Unfortunately, this conclusion cannot be checked because of the lack of
observations in that period.
Polarmotion is amajor but not a uniquemanifestation of theChandler period. It is

well known that the lunar nodes precess westward around the ecliptic, completing a
revolution in 18.61 years. Lunar perigee moves eastward, completing a revolution in
8.85 years. Because of these oppositemotions, a nodemeets perigee in exactly 6 years:

1
18:61

þ 1
8:85

¼ 1
6:0

The Earth, moving eastward around the Sun, overtakes lunar perigee every 412
days, which is close to the Chandler period. Subtracting the node and lunar perigee
frequencies from the Earth�s annual frequency gives the exact Chandler frequency:

1
1:0

� 1
18:61

þ 1
8:85

� �
¼ 1

1:2
ð9:18Þ

All these coincidences suggest that the Earth�s daily rotation rate and even
processes occurring on the Earth have become locked to the cycles of the Earth–
Moon–Sun system over the billions years of the Solar System�s evolution. On the
basis of Equation 9.18 Avsyuk (1996) supposes that the Chandler wobble arises
because of the gravitational effect of the Moon on the inner solid core of the Earth.
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10
Mechanical Action of the Atmosphere on the Earth�s Rotation

10.1
Friction and Pressure Torques

The atmosphere is in unceasingmotion relative to the Earth�s surface. At movement
of air near a terrestrial surface the frictional stress t develops that is proportional to
the square of the wind speed and coincides in direction with the wind direction.
When westerly winds blow (the air outruns the Earth) the frictional stress produces a
positive force moment t R sin q dS accelerating the Earth�s rotation. Here R is the
radius of the Earth, q is the 90� colatitude, dS¼R2 sin q dq dl is an elementary area,
and l is the longitude. With easterly winds, that is, when the air lags behind the
motion of the Earth, the moment of the frictional force retards its rotation. As is
known, easterly winds predominate at low latitudes while westerly winds predom-
inate at temperate latitudes, so that in the equatorial zone the atmosphere slows the
Earth�s rotationwhile in the zone of temperate latitudes it accelerates it. The resultant
moment of the frictional forces, while small in comparison with the magnitude of
each of the components individually, is sufficient, as will be clear from what follows,
to produce the observed changes in the Earth�s rotation rate.
The frictional stress t, which is uniquely determined from the height distribution

of the wind in the planetary boundary layer of the atmosphere, includes both the
turbulent stress and the aerodynamic pressure of the air on the irregularities of
the underlying surface. If the irregularities were distributed uniformly enough over
the Earth (so that they could be characterized statistically by one roughness param-
eter) then no complications would arise with the calculation of the total force of the
action of the atmosphere on the Earth. The irregularities are far from uniformly
distributed over the Earth, however. Mountain ranges of the Cordillera and Andes
type stretch out for tens of thousands of kilometers in the meridional direction,
whereas they extend for only a few hundred kilometers in the latitudinal direction.
Such individual ranges are a kind of �sail� standing in the path of winds. They cannot
yet be characterized statistically by some roughness parameter. Therefore, in order to
determine the total force of mechanical action one must, in addition to the frictional
stress, also take into account the force of atmospheric pressure on each range
separately. An insuperable difficulty arises here – how to separate this pressure force
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from that part of it that is already involved in the stress of turbulent friction as the
force of aerodynamic pressure on the irregularities that are characterized statistically
by a roughness parameter?
Let us compute themoment of the pressure forces acting on amountain range. Let

the vertical elementary area ds¼Rdq dR of the Earth�s surface be oriented along
meridian, and let a pressure drop PW�PE exists between its west and east sides,
where PWand PE are the pressures on the west and east sides of the area, respectively.
Themoment of the pressure forces applied to the area is obviously equal to (PW�PE)
R sin q ds. The force moment acting on the entire range is

ÐÐ
sðPW �PEÞR sin q ds

wheres is the area of the projection of the range onto the vertical plane directed along
the meridian. When PW>PE the moment of the pressure forces accelerates the
Earth�s rotation, while when PW<PE it retards it.
Integrating the moments of frictional forces over the Earth�s entire surface and

summing the moments of the pressure forces over all separately standing mountain
ranges. We get the acceleration of the rotation rate of the absolute rigid Earth (see
Section 4.4)

W
dn3
dt

� dw
dt

¼ 1
C

ðð
S

t R sin q dsþ
XN
i¼o

ðð
si

ðPW �PEÞiR sin q ds

2
4

3
5 ð10:1Þ

where n3 � w3 �W
W is the dimensionless deviation of the angular velocity of the Earth�s

rotation;w3�w is the projection of instant angular velocity to the polar axisOX3;W is
themean value of the angular velocity, t is the time,C is the polarmoment of inertia of
the Earth. N is the number of mountain ranges, S is the area of the Earth�s surface,
and si is the surface area of the ithmountain range. Later, our problemwill consist in
calculating themoments of the frictional stress forces, and ultimately in determining
the nonuniformity of the Earth�s rotation due to the mechanical action of the
atmosphere on the Earth.

10.2
Mechanical Interaction of the Atmosphere with the Underlying Surface

The Earth�s surface greatly influences the relative movement of air. The bottom layer
of the airflow �sticks� to the Earth�s surface and partly loses its momentum, that is
decelerated due to the aerodynamic drag on surface irregularities. Because of the
turbulent viscosity, the deceleration involves a rather thick layer of the atmosphere.
According to observational data, the dynamic influence of the underlying surface
extends as high as 1.5–2 km above the Earth�s surface, depending on the surface
roughness, atmospheric stratification, wind velocity, and some other factors. The
atmosphere�s bottom layer, inwhich the forces of turbulent friction play an important
role, alongside the pressure gradient and the Coriolis force, is the planetary boundary
layer. Let the thickness of the layer be denoted by H.
Steady zonal horizontally homogeneous airmotion in the planetary boundary layer

is described by the equations (Gandin et al., 1955):
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d
dz

k
d�v
dz

þ 2w cos q�u ¼ 1
Rr

qP
qq

d
dz

k
d�u
dz

�2w cos q�v ¼ 1
rR sin q

qP
ql

ð10:2Þ

where k¼ kz is the coefficient of turbulent viscosity; z is the height; �u and �v are the
zonal and meridional components of the mean wind directed from west to east and
from north to south, respectively; P is the atmospheric pressure. Hereafter, signs of
averaging are omitted for short.Note that, in low latitudes, the inertial forces neglected
inEquations 10.2 are comparablewith theCoriolis force. Therefore, Equations 10.2 do
not describe the real air motion, at least in a latitudinal zone of 5� North to 5� South.
Estimations show that the pressure gradient andCoriolis force in the atmosphere�s

lowermost layer as thick as 0.1 H are negligibly small in comparison with the
turbulent friction. This layer is called the surface layer. Motion in the surface layer
occurs because its lower layers are entrained into the upper layers moving under the
action of the pressure gradient force. This is why the surface layer is sometimes
referred to as the nonpressure layer.
Thereby, the steady zonal horizontally homogeneous air motion in the surface

layer can be described by the following equations:

d
dz

k
du
dz

¼ 1
r
dtl
dz

¼ 0

d
dz

k
dv
dz

¼ 1
r
dtq
dz

¼ 0

ð10:3Þ

where tl and tq are the zonal and meridional components of friction stress in
the surface layer, respectively. It is convenient to introduce the complex velocity
w¼ u þ iv and the friction stress t¼ tl þ itq. Then systems (10.2) and (10.3) are
reduced to the following equations:

d
dz

k
dw
dz

þ 2iw cos qw ¼ i
Rr

qP
qq

þ 1
rR sin q

qP
ql

ð10:4Þ

d
dz

k
dw
dz

¼ 1
r
dt
dz

¼ 0 ð10:5Þ

As follows from Equation 10.5, friction stress in the surface layer is constant at a
given time point (independent of the height).
Observations show that, in the surface layer, the coefficient of turbulent viscosity

increases almost linearlywith height. Above the surface layer, the growth slowsdown.
Some researchers believe that at some height the growth of k is replaced by its
decrease. But, in general, the coefficient of turbulent viscosity changes insignificantly
above the surface layer. The above-stated can be illustrated by a profile of the turbulent
viscosity coefficient, based on observations in Leipzig (Matveev, 1965).

z, m 50 100 200 300 400 500 700 900
k, m2/s 10.4 12.8 14.1 14.1 13.1 11.8 9.3 5.5
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As the details of the wind field do not interest us, we suppose that the turbulence
factor in the surface layer increases linearly with height, remaining constant in other
parts of the planetary boundary layer, that is:

k ¼ k1z0 z0 � h
K z0 � h

�
ð10:6Þ

where k1 is the turbulence factor at a height of 1m; h is the thickness of the surface
layer; z0 ¼ z�d is the height counted off from some reference level (height) of
displacement z¼ d. We also assume that the pressure gradient and density of air in
the planetary boundary layer do not depend on the height.
Double integrating of Equation 10.5 with respect to height between the limits z0

and z0 gives the following formula for the wind velocity at the height z0 � h:

wðz0Þ ¼ w2
�

k1
ln
z0 þ z0
z0

ð10:7Þ

wherew� ¼
ffiffiffiffiffiffiffiffi
t=r

p
is the dynamic velocity or the friction speed; z0 is the parameter of

roughness or the height that is counted off from the upper boundary of the
displacement layer and at which the mean wind velocity would become zero, if the
logarithmic law is applicable up to this height.
The coefficient of turbulent viscosity k at a given height depends on many factors,

the thermal stratification and the dynamic velocity of wind being principal. Thereby,
the coefficient changes considerably with time. For example, in summer, the value of
k in afternoons can be 10–12 times greater than that at nights. In the case of the
indifferent stratification, for a given height of the surface layer and at a given time
point, the coefficient of turbulent viscosity can be supposed to depend only on the
dynamic velocity. As is generally known, that dependence is:

k ¼ kw�z0 ð10:8Þ
where k is the Karman constant. Based on numerous calculations, k¼ 0.4. In view
of (10.8), expression (10.7) becomes:

wðz0Þ ¼ k1
k2

ln
z0 þ z0
z0

¼ w*

k
ln
z0 þ z0
z0

z0 � h ð10:9Þ

If wðz0Þ is known, expression (10.9) makes it possible to easily determine the
friction stress:

t ¼ k2

ln z0 þ z0
z0

� �2 rw2ðz0Þ ð10:10Þ

Within the limits of the surface layer, the friction stress is independent of the height.
Equating the real parts of the left and right parts of expression (10.10), we find the
zonal component of friction stress:

tl ¼ k2

ln z0 þ z0
z0

� �2 ru2ðz0Þ ð10:11Þ
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Numerous experiments on direct measurement of friction stress at the surface
give the following:

tl ¼ czru2 ð10:12Þ
where cz is the coefficient of friction attributed to the height at which thewind velocity
z is measured. Comparison of relations (10.12) and (10.11) gives the following
expression for the coefficient of friction:

cz0 ¼ k2

ln z0 þ z0
z0

� �2 ð10:13Þ

Expression (10.13) shows that cz0 is independent of the wind velocity, depending
only on the height z0 at which it is measured. For a fixed height of wind velocity
measurement, the coefficient of friction depends on the underlying surface�s
roughness that is statistically characterized by the roughness parameter z0.
Table 10.1 shows the values of the roughness parameter z0 (Sutton, 1953; Matveev,

1965) and the values of the coefficient of friction for natural surfaces for the
indifferent stratification (the wind velocity is measured at the height z0). The
coefficient of friction is calculated by formula (10.13).
The coefficient of friction between the air and thewater surface is determinedby its

roughness parameter. Obviously, the roughness parameter on the water surface

Table 10.1 Roughness z0 and coefficient of friction cz0
characteristic of natural surfaces (indifferent stratification; the
velocity of wind is measured at a height of z0).

Surface z0, cm Coefficient of friction cz0

z0 ¼ 2m z0 ¼ 50m z0 ¼ 100m

Ice 0.001 0.001 0.0007
Desert 0.03 0.002 0.0011
Snow 0.08 0.002 0.0013
Meadow with grass up to 1 cm in height 0.1 0.003 0.0014
Plain with scanty grass up to 10 cm in height 0.7 0.005 0.0020
Dense grass up to 10 cm in height 2.3 0.008 0.0027
Airfield 2.5 0.008 0.0028
Wheat field 5 0.012 0.0034

Grass up to 60–70 cm in height, at the
wind velocity:

u2¼ 1.5 km/s 9.0 0.016 0.0040
u2¼ 3.5 km/s 6.1 0.013 0.0036
u2¼ 6.2 km/s 3.7 0.010 0.0031
Bush 10 0.004 0.003
Woody plain 100 0.010 0.005
Large city 400 0.024 0.015
Hilly, irregular terrain 500 0.028 0.017
Highland 1000 0.050 0.029
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depends on waves causedmainly by wind. Consequently, the coefficient of friction is
bound to depend on the wind velocity. At present, there are conflicting conclusions
concerning that dependence. It is only established that the dependence is weak
(Deacon andWebb, 1962; Garratt, 1977). In the light of this, the coefficient of friction
for the sea surface is hereafter believed to be independent of the wind velocity.
To calculate the frictional stress tl, we need to know not only the coefficient of

friction but also the velocity of the zonal wind at some height z0 � h. However, scanty
data on the wind field in the surface layer of the global atmosphere is insufficient for
the task of calculating the total moment of the friction forces that the whole
atmosphere imparts to the Earth. Therefore, in order to calculate the total moment,
it is necessary to derive wind characteristics from the atmospheric pressure field,
which can be determined more reliably than the wind field because of its weak
variability.
Following Guldberg and Mohn, in the first, very rough approximation, for solids,

the force of friction can be taken instead of the force of viscosity. In that case,
Equation 10.4 is of the form:

�mwþ 2iw cos qw ¼ i
rR

dP
dq

þ 1
rR sin q

dP
dl

ð10:14Þ

where m is the Guldberg–Mohn coefficient of friction that is determined by the
following relation:

m ¼ 2w cos q ctg g ð10:15Þ
where g is the angle between the wind direction and the atmospheric-pressure
gradient direction. Solving Equation 10.4 with respect to w in view of relation (10.15)
and separating the real and imaginary parts gives the zonal and meridional compo-
nents of the wind velocity:

ul ¼ sin2g
2rwR cos q

dP
dq

� sin 2g
2rwR sin 2q

dP
dl

ð10:16Þ

vq ¼ � sin2g
rwR sin 2q

dP
dl

� sin 2g
4rwR cos q

dP
dq

ð10:17Þ

In this way, the zonal wind velocity is determined in some works (Pariiski and
Berlyand, 1953; Sidorenkov, 1963).
The second approximation is the well-known Ekman–A

�
kerblom model.

Equation 10.4 is the input equation for this model. Let us introduce an equation
for the geostrophic wind G:

G ¼ Gl þ iGq ¼ 1
2iw cos q

dP
rR sin qdl

þ idP
rRdq

� �
ð10:18Þ

Let us assume thatG,r andK donot depend on the height. ThenEquation 10.4 can
be re-arranged as follows:

d2F
dz2

þ 2ia2F ¼ 0 ð10:19Þ
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where

F ¼ w �G; a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w cos q

K

r
; 2i ¼ ð1þ iÞ2

Solving Equation 10.19, which is a linear homogeneous second-order equation
with constant coefficients, gives:

w ¼ C1eð1�iÞaz0 þC2e�ð1�iÞaz0 ; z0 � h ð10:20Þ
whereC1 andC2 are the complexconstantsof integration.Asatz0 !1 w !G 6¼ 1;

the constant C1¼ 0. The constant of integration C2 can be determined either by
equalizing thewind velocities calculated by (10.9) and (10.20), respectively, at a level of
z0 ¼ h; or, as Ekman and A

�
kerblom did, assuming that air �sticks� to the surface

(at z¼ 0,w ¼ 0) if the turbulent viscosity coefficient constancy condition is applied to
the whole planetary boundary layer. In the former case, we have for C2:

C2 ¼ k1
k2

ln
hþ z0
z0

�G

� �
eað1�iÞh

and in the latter:

C2 ¼ �G

Substituting the values of the constantsC1 andC2 into expression (10.20) gives for
the first case:

w ðz0Þ ¼ Gð1�e�ð1�iÞaðz0�hÞÞ þ k1
k2

ln
hþ z0
z0

e�ð1�iÞaðz0�hÞ; z0 � h ð10:21Þ

and for the second case:

wðzÞ ¼ Gð1�e�að1�iÞzÞ ð10:22Þ
Equating the real parts on the left and right sides of relations (10.21) and (10.22),we

obtain the zonal wind velocity for the first case:

uðz0Þ ¼ Glf1�e�aðz0�hÞcos aðz0�hÞgþ k1
k2

ln
hþ z0
z0

e�aðz0�hÞ

�cos aðz0�hÞþGqe
�aðz0�hÞsin aðz0�hÞ ð10:23Þ

and for the second case:

uðzÞ ¼ Glð1�e�azcos azÞþGqe
�azsin az ð10:24Þ

Similarly, for the first case, the meridional wind velocity is:

vqðz0Þ ¼ Gqð1�e�aðz0�hÞcos aðz0�hÞÞþ k1
k2

ln
hþ z0
z0

e�a z0�hð Þ

�sin aðz0�hÞ�Gle
�aðz0�hÞsin aðz0�hÞ ð10:25Þ

and for the second case:

vðzÞ ¼ Gqð1�e�azcos azÞ�Gle
�azsin az ð10:26Þ
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Here:

Gl ¼ 1
2w cos qrR

dP
dq

andGq ¼ � 1
2w cos qrR sin q

dp
dl

ð10:27Þ

The wind profile described by relation (10.22) is the Ekman–A
�
kerblom profile. It is a

particular case of the wind profile described by relation (10.21). It is known that
the Ekman–A

�
kerblom wind profile has little relation to the actual situation in the

surface layer. Thus, near the Earth�s surface, the wind deviation angle is much less,
and the wind velocity is much more, than the theoretical value. However, the farther
from the Earth�s surface (higher than the surface layer), the more the profile agrees
with the theoretical values.
Note that there aremore rigorous theories of the planetary boundary layer (Monin

and Yaglom, 1965; Zilitinkevich, 1970; Haltiner and Martin, 1957). For example,
Zilitinkevich showed (Zilitinkevich, 1970) that the dynamic velocity w� should only
depend on the Rossby number and the stratification parameter. However, despite its
elegance, this theory is difficult to use because of the uncertainty of its parameters.
Therefore,wehave chosen the above-explained semiempirical theory that is less strict
but more suitable for calculations.

10.3
Implementation of Calculations

In (Sidorenkov, 1979) a 20-year series of fluctuations in the Earth�s rotation rate was
calculated using the method of the torque approach. Maps of the monthly average
atmospheric pressure at sea level, whichhave been compiled since 1956 at theBranch
ofWorldWeatherAnalysis of theHydrometeorological Center of theUSSR, served as
the initial data. The archive of data on the monthly average atmospheric pressure at
sea level for the 242months fromNovember 1956 toDecember 1976 at the nodes of a
coordinate grid formed by the intersection of meridians every 20� and parallels every
5� was compiled. The angular accelerations of the Earth�s rotation were determined
by the numerical integration of Equation 10.1.
The zonal components of the stress of turbulent friction were calculated by the

formula

t ¼ k2

ln hþ z0
z0

� �2 ru
2ðhÞ ¼ cru2ðhÞ ð10:28Þ

where z0 is the roughness parameter, r is the air density, and c is the coefficient of
surface friction, which is referred to the height z0 ¼ h of the wind speed measure-
ment. The zonal wind speed u at the upper boundary of the surface layer ðz0 ¼ hÞwas
determined from the Ekman–Akerblom equation

uðhÞ ¼
1�exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w cos q

K h
q� �

cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w cos q

K h
q

2rw cos q
dP
Rdq

ð10:29Þ
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Here, K is the coefficient of turbulent viscosity; h is the thickness of the surface
layer of the atmosphere; P is the atmospheric pressure.
The calculations of characteristics of the Earth�s rotation rate by meteorological

datawere roughly simplified. Therefore, the calculated series of theoretical deviations
vT are inexact. They are no more than appropriate indices of the atmosphere�s
mechanical effect on the Earth. Figure 10.1 presents the comparison of the results of
calculations with the data of astronomical observations. It shows that they are similar
in large detail. Probable errors may primary be associated with a rough assumption
that the coefficient of turbulent viscosity K is constant (Sidorenkov, 1979). The
multiyear variations in the theoretical deviations vTagree well with the observational
deviations vA. In particular, such features as the acceleration of the Earth�s rotation
in 1958–1961 and 1972–1975 and the retardation in 1962–1971 and in 1976, which
were observed by astronomical methods, are also well reproduced by the above
calculations.
Consequently, the multiyear variations in the Earth�s rotation rate are due to the

mechanical action of the atmosphere on the Earth. The atmosphere creates the
moments of frictional and pressure forces that are applied to the Earth�s surface and
change the Earth�s rotation rate. The theory allows one to calculate with satisfactory
accuracy the multiyear variations in the Earth�s rotation rate, using the available
global data on the pressure and wind fields. In other words, the decadal fluctuations

Figure 10.1 Variations in the mean monthly values of the Earth�s
rotation rate for the last 20 years; (0) based on astronomical data;
(1) theoretical values.
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in theEarth�s rotation rate are likely to be due to theflowof small portions (sometimes
positive and sometimes negative) of the angular momentum, which are transferred
through the surface layer of the atmosphere to the Earth.

10.4
Mechanism of the Continental Drift on Decadal-Long Time Scale

10.4.1
Hypothesis

It is well known that seasonal variations in the Earth�s rotation are determined by the
redistribution of the angular momentum between the atmosphere and the Earth.
When the moment of the atmosphere is increasing then the moment of the Earth is
decreasing and vice versa (Lambeck, 1980; Sidorenkov, 2002a, 2002b, 2005). This
regularity iswell seen onFigure 7.10where the time series of the angularmomentum
of the atmosphere is compared with the time series of the angularmomentum of the
Earth taken with the opposite sign.
Thus, the nontidal irregularities of the Earth rotation are mainly due to the

exchange between the angular momentum of the solid lithosphere and its fluid
environment – the atmosphere and the hydrosphere. This exchange occurs due to the
moments of the frictional forces and pressure forces pushing on mountain ranges.
Special Bureau for the Atmosphere carries out themonitoring of the exchange of the
angular momentum by both the momentum approach (that is, by the evaluation of
the effective functions of the atmospheric and oceanic angular momentum), and the
torque approach (that is, the evaluations of the torque resulting from the wind and
current stresses and pressures).
Calculations of the friction and pressure momentum forces are performed for the

entire Earth surface as a whole. However, the lithosphere is cracked on a set of the
lithosphere plates. The atmosphere and ocean are acting on the lithosphere plates,
and only then is this action transmitted to the Earth. What is the result of the
atmospheric action on the lithosphere plates? Let us recall that under the lithosphere,
there is a layer of the lower viscosity – the asthenosphere in which the lithosphere
plates are capable tofloat. Continents are frozen into the oceanic plates, and theymay
passively move with them (Trubitsyn and Rykov, 1998; Trubitsyn, 2000). The
lithosphere plates float in the asthenospherical substratum. On the decade time
scale, the lithosphere plates canmove in the horizontal direction under the effect the
friction and pressure (acting on mountain ranges) forces. The plates are in motion
under the action of the friction stresses and pressure, which the atmosphere and
ocean produce on the exterior surface of the plate. The viscous cohesive forcewith the
asthenosphere on the soles and faces of the plates decelerates their movement, but
the exterior forces overcome this resistance. Therefore, when calculating the torque,
it is necessary to carry out the integration not only for the entire Earth surface but also
separately for every lithosphere plate. The moment of forces affecting on an
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individual plate determines the vector of the movement of the plate (Sidorenkov,
2002a, 2002b, 2004).

10.4.2
Evidence

A good example of this is the situation in the Drake Passage (Figure 10.2). Strong
westerly winds dominate in the 40�S – 50�S. They generate the powerful Antarctic
Circumpolar Current (ACC) in the Southern Ocean. The South America, the
Antarctic Peninsula, and the underwater lithosphere present a barrier for ACC.
Westerly atmospheric winds and oceanic currents have replaced this barrier down-
stream and have shifted this lithosphere bridge to the east by 1500 km. This process
resulted in the formation of the Scotia Sea (the South-Antilles hollow). It is bordered
along the perimeter by the remains of the lithosphere bridge in the formof the South-
Antilles ridge and numerous islands, the arc of the South Sandwich Islands being the
principal of them. This ridge, at the drifting in the eastward stream, has crumpled the
oceanic lithosphere and has formed the deep South-Sandwich trench (Figure 10.2).
Let us present one more piece of evidence for the benefit of our hypothesis. The

atmospheric circulation has a remarkable feature: at the latitudes of 35�N and 35�S,
the wind direction alters to the opposite one. Easterly winds predominate in the
tropical belt between these latitudes, and westerly winds in the moderate and high
latitudes. According to this, the stresses of friction on the surface of the lithosphere is
directed to the opposite sides. Therefore, the maximum stress in the lithosphere
should concentrate near the latitudes of 35�N and 35�S. These bands should exhibit
an increased seismic and tectonic activity. Really, in theNorthernHemisphere, in this
band, continuous mountain ranges are extending through the Mediterranean Sea,
Middle East, Iran, Pamir, Tibet, Japan and USA. Here, Earthquakes and eruptions of
volcanoes occur most frequently. In the Southern Hemisphere, the band of the sign
change in wind direction is located over theWorld Ocean. Therefore, the seismic and
tectonic processes do not manifest themselves.

Figure 10.2 Westerly atmospheric winds and oceanic currents
have broken down the South America –Antarctic Peninsula
lithosphere bridge and have shifted it eastward by 1500 km. The
color map can be looked on the site: http://www.walrus.wr.usgs.
gov/infobank/gazette/html/regions/ss.html.
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10.4.3
Estimations

Now let us estimate the order of magnitudes of the atmospheric and oceanic forces
effecting on a separate plate and of the stresses of the interaction between plates.
At the common wind velocity (u¼ 10m/s) the friction stress t on the surface of the
plate is t¼ ru2¼ 0.004� 1.27 kg/m3 (10m/s)2¼ 0.5N/m2, the area of the plate
is �2� 1013m2; therefore, the total atmospheric force effecting on a separate plate,
is �1013 N. Under the effect of this force the plate interacts with the circumjacent
plates through the frontal contacts. The interaction takes place only at the sites of
adhesion of plates, and the area of contactsmay be small. The total atmospheric force
concentrates on this small area. Therefore, the stresses may reach such high
values (106–107N/m2), at which the discontinuity and displacement of plates from
each other occur. The discontinuity triggers the seismic waves. Thus, the
mechanical action of the atmosphere and ocean on the lithosphere plates controls
the relative movements of the lithosphere plates and can cause the Earthquakes and
volcanic activity.
There is a substantial body of publications in which strong correlations between

the seismicity and the variations in the atmospheric indices, as well as between
the seismicity and the fluctuations in the Earth�s rotation (Zharov, Konov, and
Smirnov, 1991; Gorkavyi et al., 1994a; Gorkaviy, Trapeznikov, and Fridman,
1994b; Barsukov, 2002) are found. Our hypothesis explains these correlations. The
atmospheric and oceanic circulation is the initial cause of both the whole class of
Earthquakes and the variations in the Earth rotation. Note that the variations in the
Earth rotation are very small (dw/w� 10�8) and do not affect the geophysical
processes (Sidorenkov, 1961, 2002a).
It was found by Sidorenkov (2002a, 2002b, 2004) that the variations observed in the

Antarctic ice sheetmass agreedwith themass�s variations required for the explanation
of the decade (5–100 year)fluctuations of theEarth�s rotation rate and the secular polar
motion. However, this agreement proved to be only the qualitative one. As to the
quantitative agreement, the variations observed in the icemassesproved tobe28 times
less than the required variations. Sidorenkov (1980a, 1991a, 2002a, 2002b) has
proposed that the lithosphere drifts over the asthenosphere. The Earth�s layers that
are deeper than the asthenosphere don�t take part in the formation of the observed
decade fluctuations. The lithosphere�s moments of inertia are 28 times less than the
moment of inertia of the whole Earth and therefore the variations in the Antarctic ice
mass exactly correspond to the mass�s variations required for the explanation of the
decade fluctuations in the lithosphere�s angular rotation rate.
The state of the ice sheets in the Antarctic and Greenland depends on the climatic

variations. Therefore, the decadal fluctuations in the Earth�s rotation may also
correlate with the fluctuations in the climatic characteristics and indices. This
relationship has been found in (Lambeck, 1980; Sidorenkov, 2002a, 2002b). There
is a close correlation between the Earth�s rotation fluctuations and the frequencies of
the atmospheric circulation forms, the anomalies of the hemisphere-averaged air
temperature, and many another climate characteristics (Sidorenkov, 2002a, 2002b;
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Sidorenkov and Shveikina, 1994, 1996; Sidorenkov and Orlov, 2008). These relation-
ships are explained given the assumption that the lithosphere drifts along the
asthenosphere.
Thedifferential rotation of the lithosphere andmantle is considered inmanypapers

devoted to the tectonics of plates (Ricard,Dogliony, andSabadini, 1991). Chuikova and
Maksimova (2005) have found the uncompensated masses and stresses at the crust
anduppermantle. They supposed the crust�smovements caused by the crust pressing
on the mantle for both the isostatic and gravity nonequilibrium.
Thus, the research results and observations confirm the hypothesis about the

movement of the lithosphere plates under the impact of the atmospheric and oceanic
circulation on the decade time scale. The total effect of the movement of all
lithosphere plates is interpreted by geophysics as the decadal fluctuations of the
Earth�s rotation.

10.4.4
Model

Our hypothesis can be mathematically described similarly to the Trubitsyn model of
the mantle convection with floating continents (Trubitsyn, 2000).
It is known that the motion of a rigid body is defined by the motion of its center of

mass and by the rotationwith respect to the center ofmass. To deduce the differential
equations of the plate motion, we use the theorem of the movement of the center of
mass of the plate:

m
dV 0i

dt
¼ Fi ð10:30Þ

and the theorem of the angular momentum:

dHi

dt
¼ Li ð10:31Þ

wherem is the mass of the plate; V0i is the instantaneous velocity vector of the center
ofmass;Hi is the angularmomentumof the plate; Fi is the external force; and Li is the
total force moment (torque), which is the sum of the moments qi of forces sj applied
to separate elements of the plate surface

qk ¼ eijkðxi�xi0Þsj ð10:32Þ
The angular momentum of the plate may be determined as

Hi ¼ Iijwj ð10:33Þ
Here, Iij is the moment of inertia tensor of the plate,

Iik ¼
ð
r½ðxl�xl0Þ2dik�ðxi�x0iÞðxk�x0kÞ	dW ð10:34Þ

Let us consider only the horizontalmovement of the center ofmass of the plate and
its rotation around of the vertical axis. In this case, Equations 10.30–10.31 are reduced

10.4 Mechanism of the Continental Drift on Decadal-Long Time Scale j223



to the system of three equations:

m
du1
dt

¼
ðð
ð�pd1j þ t1j þ f1jÞnjds ð10:35Þ

m
du2
dt

¼
ðð
ð�pd2j þ t2j þ f2jÞnjds ð10:36Þ

I33
dw3

dt
¼

ðð
eij3ðxi�x0iÞð�pdjk þ tjk þ fjkÞnkds ð10:37Þ

where, xi are the coordinates of an arbitrary point of the continent; x0i are the
coordinates of the instantaneous center of mass of the plate; dij is the Kronecker
symbol (equal to 1 at i¼ j and 0 at i 6¼ j); eijk is the Levy–Civita symbol that is equal to 0
(if any two indexes coincide) or 1 (at an even transposition of indexes with respect to
(1,2,3)) and �1 (if this transposition is uneven); p is the pressure; tjk are the friction
stresses of the atmosphere and ocean on the exterior surface of the plate; fjk are the
viscous stresses of the asthenosphere on the submerged surface of the plate; nj is the
unit vector of the outward normal to the surface of the plate; ds is the absolute value of
an elementary surface area of the solid continent.
Taking into account that:

dx1
dt

¼ u1;
dx2
dt

¼ u2;
dj
dt

¼ w3 ð10:38Þ

we can, using the given coordinates of the center of mass of the plate x1(t), x2(t), j(t)
and values p(t), tjk(t) and fjk(t) calculate the linear velocities u1(t), u2(t) of the
translational motion and the angular velocity w3(t) of the rotation of the plate.
Equations of motion (10.36)–(10.38) are necessary to write out for each plate.
The model allows us to calculate the linear velocities u1(t1) and u2(t1) of the

translational horizontal motion of the plate�s center of mass and the angular velocity
w3(t1) of the rotation of the plate around the vertical axis. The calculations are
performed for moment t1, using the values of the frictional stress tjk(t1) and the
pressure p(t1) forces of the atmosphere and the ocean and the force fjk(t1) of the
interaction between the plate and the viscous asthenosphere. The force fjk(t1) is
applied to the submerged surface of the plate. Knowing these velocities and the initial
coordinates of the plate x1(t1), x2(t1), j(t1), it is possible to find its position in the
subsequent instant t2¼ t1 þ Dt: x1(t2)¼ x1(t1) þ u1(t1)Dt, x2(t2)¼ x2(t1) þ u2(t1)Dt,
j(t2)¼j(t1) þ w3(t1)Dt. Then, using new values tjk(t2), p(t2) and fjk(t2), we calculate
u1(t2), u2(t2) and w3(t2) and determine the position of the plate for the following
instant t3. The calculations are performed up to the final moment of time. The time
step depends on the discretization of calculations of the friction and pressure forces
of the atmosphere and the ocean.
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11
Decadal Fluctuations in Geophysical Processes

11.1
Discussion on Conceivable Hypotheses

The conclusion about the decadal fluctuations in the Earth�s rotation rate being due
to the mechanical effect of the Earth�s atmosphere (see Section 10.3) allows one to
considerably reduce the number of geophysical processes that could be responsible
for the above fluctuations. There are evidently three hypotheses for explaining the
decadal fluctuations in the Earth�s rotation:

(a) the redistribution of the angular momentum in the Earth–atmosphere system;
(b) the inflow of the angular momentum to the atmosphere from above (the

magnetosphere or cosmic space);
(c) the redistribution of water between low and high latitudes.

If we suppose that in the case of the decadal fluctuations, as well as in the case of
seasonal variations, the angular momentum redistributes between the Earth and the
atmosphere, then drastic variations should take place in the angular momentum of
the zonal winds.
For example, in 1870–1903, the Earth�s rotation slowed down by 820� 10�10 (in

the dimensionless units of n), which is equivalent of the Earth�s angular momentum
loss by 48� 1025 kgm2/s. If the same redistribution occurred only in the Earth–
atmosphere system (as it occurs in the case of seasonal variations), then the relative
angular momentum of the atmosphere should have grown by 48� 1025 kgm2/s.
This means that the velocities of westerly winds should gradually have strengthened
and the easterly winds weakened by about 20m/s on average. However, significant
decadal variations in the intensity of zonal circulation have not been detected yet. It is
unlikely that they have simply remained unnoticed.
Having the data on the atmospheric pressure for 1956–1976, we have attempted to

determine how the atmospheric pressure field changes with the changes in themode
of the Earth�s rotation; in particular, we have studied the difference in the pressure
fields during the periods of the Earth�s rotation acceleration (1958–1961 and
1972–1975) and retardation (1962–1971). Using the same pressure data at the nodes

j225



of the coordinate grid, which are used in Section 10.3, we have calculated the
arithmetic means of the atmospheric pressure P(q,l) for the eight years of accel-
eration P1(q,l) and the ten years of retardation in the Earth�s rotation rate P2(q,l) and
have found the difference DP(q,l)¼P1(q,l)�P2(q,l). It has turned out that the field
of these differences has a clear sectorial structure with two maxima (at meridians
140� and 0�E longitude) and two minima (at meridians of 80� and 260�E longitude),
the differences being small (they varywithin the limits of plus orminus several tenths
of hectoPascal.) This fact, being of interest in itself, is uninformative for our case. The
changes in the Earth�s rotation rate are mainly determined from the zonal pressure
anomalies averaged over the latitudes. In this connection, the pressure differences
used in (Sidorenkov, 1979) are averaged over the latitudinal circles, and the zonal
differences DP(q) have been calculated. It has been found that the differences DP(q)
are positive in the 15�–40�Nand0�–10�S latitudinal zones. Their values donot exceed
þ 0.2 hPa. In the zones of high and temperate latitudes, DP(q) are negative and
reach� 0.7 hPa.
Thus, the acceleration periods differ from the retardation ones by a small positive

pressure anomaly at the low latitudes. This corresponds to a slight weakening of
the easterly surface winds, which retards the rotation, and a slight strengthening
of the westerly winds, which accelerates the Earth�s rotation. The small values of
differences DP(q) and of the increments of velocity are indicative of the absence of
significant changes in the atmospheric circulation that are required for satisfying
the balance in the angular momentum. At the same time, they satisfactorily reflect
the changes in the flow of the angular momentum through the surface layer of the
atmosphere, which cause the variations in the mode of the Earth�s rotation.
Thus, the facts are indicative of the existence of the angular momentum transfer

through the surface layer of the atmosphere, which leads to the multiyear variations
in the Earth�s rotation rate. But the corresponding changes in the angular momen-
tum of the atmosphere that are required to satisfy the balance are not observed.
Therefore, the hypothesis (a) can safely be rejected.
The hypotheses (b) and (c) are based on the supposition that the atmosphere

receives the portions of either the positive or the negative angularmomentum, either
from above (from the circumterrestrial space) or from the Earth (in the process of
water redistribution). Let us first dwell on hypothesis (b).
The angular momentum can be transported to the Earth at the anisotropic flow of

the solar wind, as well as at the expense of the electromagnetic interaction between
the geomagnetic and the interplanetarymagnetic fields. The assessment of the order
of magnitude of these effects presents no special problem.
It is known that the Earth is constantly blown off by the solar wind – the flow of

charged particles emitted by the Sun. At steady winds, there are 1–10 particles in
1 cm3 at the Earth�s orbit, the velocity of their movement being 300–400 km/s. At
gusty winds, the concentration of particles increases up to several tens of particles in
1 cm3 and their velocity –up to 800 km/s. The intensity of the interplanetarymagnetic
field near the Earth�s orbit does not usually exceed 10g .
In order to assess the upper limit of the torque produced by the solar wind with

respect to the Earth�s rotation axis, let us assume that the flow of the solar wind
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particles is anisotropic to the extent that it falls only on one hemisphere, for example –
on the Eastern Hemisphere. Let the concentration of particles in the flow be
d¼ 100 particles/cm3 and the velocity v ¼ 1000 km=s. Then

N ¼ 1
2
pR2

0dv < 6� 1027 particles=s ð11:1Þ

falls onto this hemisphere. Here, R0¼ 6.37� 106m is the Earth�s radius. Taking into
account that themeanmass of one particle is approximately equal to 2� 10�27 kg, it is
easy to find the value of the inflowing momentum: J¼N2� 10�27�v< 1.2� 107 kg
m s�2. The torque M produced by this flow of momentum will be not greater than

M3 ¼ JR0 < 8� 1013 kgm2 s�2 ð11:2Þ
As follows from the third equation of system (4.25), this torque is capable to accelerate
the Earth�s rotation by the value of

dw3

dt
¼ W

dn3
dt

¼ M3

C
¼ 10�24 s�2 ð11:3Þ

where C¼ 8.11� 1044 kgm2 is the moment of the Earth�s inertia.
As is mentioned in Section 2.5, the accelerations observed have the order of

magnitude of 10�19–10�20 s�2. Thus, under the most favorable conditions the solar
wind can cause the angular accelerations that are by 4–5 orders ofmagnitude smaller
than the observed ones. More precise estimations of the effect of the solar wind,
which are obtained with account for its interaction with the Earth�s magnetosphere
(Coleman, 1971; Hirshberg, 1972), have led to similar conclusions. Hence, the
decadal fluctuations in the Earth�s rotation rate cannot be explained by the solar-wind
effect.
In principle, the electromagnetic interaction between the geomagnetic and

interplanetary magnetic fields can also produce the torque with respect to the axis
of rotation (Livshits, Sidorenkov and Starkova, 1979). Indeed, at the external field F,
the Earth will be subjected to the torque

M ¼ ½L� F� ð11:4Þ
Here, L¼ 8.1� 1025 g1/2 cm3/2 is themagneticmoment of the Earth. Under themost
favorable conditions, when F ¼ 10g (1 g ¼ 10�5 g1/2 cm1/2 s�2) and F? L, the torque
affecting the Earth will not exceed 8� 1014 kgm2 s�2, or will be smaller by 3–4 orders
of magnitude than the torques required for creating the fluctuations observed in the
Earth�s rotation.
Thus, neither the solar wind nor the interplanetary magnetic field can be

responsible for the angular momentum flow through the surface layer of the
atmosphere and, as a consequence, for the decadal fluctuations in the Earth�s
rotation rate. Hence, the hypothesis (b) is doubtful.
Now, let us consider hypothesis (c) for the effect of the redistribution of water

between the low and high latitudes. In this case, the mechanism of the angular
momentum exchange between the atmosphere and the Earth may be represented as
follows. The angular momentum meR

2cos2jew enters the atmosphere through
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evaporation, the angular momentum mpR
2cos2jpw abandons it through precipita-

tion. Here me and mp are the masses of evaporated and precipitated water, respec-
tively; whileje andjp are theirmean latitudes.Water is not stored in the atmosphere;
therefore, me¼mp¼m. The water cycle ultimately leads to the fact that the angular
momentum Dh3 equal to the difference

Dh3 ¼ meR
2 cos2je w�mpR

2 cos2jp w ¼ mR2wðcos2je�cos2jpÞ ð11:5Þ

remains in the atmosphere. When je<jp, the atmosphere receives a positive
portion of the angular momentum, whereas at je>jp it receives a negative portion
of the angular momentum.
Let us assess the order of magnitude of the Earth�s rotation acceleration due to the

redistribution of water. The global flow of water vapor from the Earth�s surface into
the atmosphere at the expense of evaporation is about 1.2� 1015 kg/day (Kulikov and
Sidorenkov, 1977), or dm

dt ¼ 1:4� 1010 kg s�1. Let us assume that water evaporates at
the equator and precipitates at the poles, that is, cos2je� cos2jp¼ 1. Accounting that
R¼ 6.37� 106m and w¼ 7.29� 10�5 s�1, we obtain from (11.5):

dh3
dt

¼ dm
dt

R2w � 4� 1019 kgm2 s�2 ð11:6Þ

As follows from the third equation of system (4.25), this flow of the angular
momentum accelerates the Earth�s rotation by the value of:

dw3

dt
¼ W

dn3
dt

¼ � 1
C
dh3
dt

¼ �5� 10�19 s�2 ð11:7Þ

Hence, the redistribution of water may be responsible for the flows of the angular
momentum through the surface layer of the atmosphere and thus, for the decadal
fluctuations in the Earth�s rotation rate.
The angular momentum cannot be stored in the atmosphere because the atmo-

sphere is capable of holding only that amount L of the angular momentum that
corresponds to the power M of the atmospheric thermal engines (L�M¼hW),
where the efficiency h and the solar radiation powerWare almost constant from year
to year. Consequently, the angularmomentumreceivedby the atmosphere in oneway
or another must flow down through the surface layer of the atmosphere to the Earth.
The Earth accumulates this portion of the angular momentum, which leads to
changes in the angular velocity of the Earth�s rotation. When the positive angular
momentum flows to the Earth, its rotation accelerates; when the negative angular
momentum flows to the Earth, its rotation decelerates. When calculating the
moments of the friction and pressure forces, we make allowance for the above flows
of the angular momentum and detect the effects of these flows.
We would underline that in the process of water redistribution over the Earth, the

angular momentum of the Earth–atmosphere system is conserved, and the redis-
tribution of water provides only a gradual change in the Earth�s angular momentum
and a multiyear variation in the Earth�s rotation rate. At the exchange of the angular
momentum with the outer space, the balance of the angular momentum in the
Earth–atmosphere system is not conserved because this system is unclosed.
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11.2
Theory of Estimations of the Global Water Exchange Effect on the Earth�s Rotation

The effect of water redistribution has been discussed in the literature formore than a
century. The variations in the World Ocean level and the accumulation of ice in
Antarctica and Greenland were among the first phenomena used to explain the
abrupt fluctuations in the Earth�s rotation rate, the ideas of which arose in the end of
the nineteenth century (Thomson, 1882;Munk andMacDonald, 1960). The effects of
the above two factors were most appropriately studied in (Sidorenkov, 1980a, 1982b;
Sidorenkov and Svirenko, 1988; Sidorenkov et al., 2005).
The redistribution of water over the Earth�s surface causes changes in the com-

ponents of the inertia tensor of the lithosphere and, as a consequence, variations in
the vector�s components of instantaneous angular velocity. This relationship is
described by the following system of equations (Munk and MacDonald, 1960)

� 1
s
dv2
dt

þ v1 ¼ n13
C�A

¼ � R2

2ðC�AÞ
ð ð
S

zðq; l; tÞsin 2q cosl ds ð11:8Þ

1
s
dv1
dt

þ v2 ¼ n23
C�A

¼ � R2

2 C�Að Þ
ð ð
S

zðq; l; tÞsin 2q sin l ds ð11:9Þ

dv3 ¼ �ð1þ k0Þ dn33
C

¼ �ð1þ k0ÞR
2

C

ð ð
S

zðq; l; tÞsin2q ds ð11:10Þ

Here, we use the Cartesian coordinate system Oxi rigidly fixed to the Earth. Its
centre O lies at the centre of the Earth�s mass, and the axes have the following
direction: x1 is directed along the prime meridian, x2 is aligned with the 90�E
meridian, and x3 is directed along the Earth�s spin axis. Dimensionless values
n1¼w1/W, n2¼w2/W and 1 þ n3¼w3/W are the direction cosines of the instanta-
neous Earth�s rotation axis; w1, w2 and w3 are the components of the vector of
instantaneous angular velocity; W is the mean angular velocity of the Earth equal to
7.29� 10�5 radians per sidereal second; s¼ 2p/1.18 is the Chandler frequency; t is
the time; C and A are the polar and equatorial planetary moments of inertia of the
Earth which are referred to the principal axes; n13, n23 and n33 are the variable parts of
the components of the Earth�s inertia tensor; k0 ¼�0.3 is the load deformation
coefficient; z(q,l,t) is the deviation of the specific (that is, per unit area) amount of
water or ice at point {q,l} at moment t (z(q,l,t)¼ 0 when n1¼ n2¼ n3¼ 0); q is the
colatitude; l is the east longitude; R is the mean radius of the Earth; ds¼R2sinq dq
dl; S is the area of the entire Earth; d is the sign of the increment.
It is convenient to combine Equations 11.8 and 11.9 into one

d
dt
ðn1 þ in2Þ�isðn1 þ in2Þ ¼ �is

C�A
ðn13 þ in23Þ ¼ _y ð11:11Þ

Let the mass of the Antarctic and Greenland ice vary by the linear law

_y ¼ ðz1 þ iz2Þt and let n1 þ in2¼ 0 at t¼ 0. Then, according to (Sidorenkov,
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2002a, p. 334), the solution of Equation 11.11 will be

n1 þ in2 ¼ ðz1 þ iz2Þtþ z1 þ iz2
is

ð1�eistÞ ð11:12Þ

This means that the pole makes the circular motion with the Chandler frequency
and a linear motion toward the meridian l¼ arctg(z2/z1) with the velocity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 þ z22

p
.

When expression (11.12) is averaged over the time interval multiple of the
Chandler period (1.2 years), the periodic term disappears and only linear terms of
the pole drift remain.
Since we are interested in the time scales larger than several years, we will use only

average coordinates of the so-called �secular� polar motion that no longer contain
periodic terms. Averaging the Equations 11.8–11.10 substantially weakens the
restrictions imposed on the choice of a model for the Earth.
Let us dwell upon the computation of the integrals on the right side of the

Equations 11.8–11.10.Wedivide the integration domainS (the entire Earth�s surface)
into four natural parts SN: theWorldOcean – SO, Antarctica – SA, Greenland – SG and
the rest of land – SC: (that is S ¼ SO þSA þ SG þ SC ¼ P4

N¼1 SN , where SN are any of
the areas mentioned above).
The experience of estimating the atmospheric effects on the instability of the

Earth�s rotation has shown that the World Ocean levels off the surface load as an
inverted barometer (Munk andMacDonald, 1960, p.100). Similarly, themass ofwater
running down the ice sheets of Antarctica andGreenland is evenly distributed on the
entire surface of the World Ocean over the characteristic time 2pRðgHÞ�1

2 � 56 h,
where R is radius of the Earth; g is the acceleration due to gravity;H� 4000m is the
mean depth of the ocean; ðgHÞ12 � 200m s�1 is the velocity of propagation of Kelvin�s
wave. Note that the tsunami waves also have the same velocity.
Thus, theWorldOcean levels off the spatial inhomogeneity of the increment of the

specific water mass over large time intervals (>3 day). Therefore,C, over the ocean at
a given time tmay be assumed constant everywhere (z(q,l)¼ zO¼ constant) and can
be put outside the integral. The dimensions of Antarctica SA and Greenland SG are
small compared with the total area S. Thus, in a first approximation, the dependence
of the specific ice mass z(q,l) on the latitude q and longitude l can be neglected and
the mean value for Antarctica and Greenland can be used

zN tð Þ ¼ 1
SN

ð ð
SN

zðq; l; tÞ ds

On the rest of land SC, the water is dominantly in liquid phase and rapidly flows
down to the World Ocean (T< 1 year). The mass of glaciers on the rest of land is a
mere 2% of ice on the Earth. Consequently, a similar assumption can be formally
accepted for the rest of land SC.
Thus, any integral on the right side of equation system (11.8–11.10) can be

represented as the sum of four integrals
ð ð
S

zðq; l; tÞFðq; lÞ ds ¼
X4
N¼1

zNðtÞ
ð ð
SN

Fðq; lÞ ds ð11:13Þ
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The integrals of the form
Ð Ð

SN
Fðq; lÞ ds are taken with respect to the given

boundaries (theWorldOcean, Antarctica, Greenland, and rest of land). They are time
independent and can be computed by numerical integration (Sidorenkov, 1982,
2002).
In the case of a long-term irregularity of the Earth�s rotation and the secular

motion of the pole, it is possible to use Equations 11.8–11.10 averaged over the
time interval larger than the Chandler period. In this case, we may ignore the

terms dni/dt, because 1
s
dn
dt 	 n. Finally, the system of averaged Equations 11.8–

11.10 with the account for (11.13) becomes reduced to the system of three
algebraic equations:

n1 � 1011 ¼ 24149zO þ 1337zA�2102zG�23387zC
n2 � 1011 ¼ 37714zO þ 3820zA þ 1909zG�43443zC
n3 � 1012 ¼ �26746zO�87zA�28zG�9268zC
0 ¼ 71436zO þ 2820zA þ 414zG þ 25330zC

ð11:14Þ

Here, zO, zA, zG, and zC are the area-averaged (in accordance with (11.13) increments
of the specific watermasses (g cm�2) in theWorldOcean, Antarctica, Greenland, and
rest of land, respectively. The last equation in (11.14) is the equation of the global
water balance. Its coefficients are equal to the areas of the Earth�s surface occupied by
Oceans, Antarctica,Greenland, and rest of land. The entire surface area of the Earth is
taken to be 100 000 conventional units.
The system of four algebraic Equations (10.14) provides the opportunity to solve

both (a) the direct problem of determining the secular polarmotion and variations in
the Earth�s rotation from the given time series of zO, zA, zG, zC and (b) the inverse
problem of finding the unknown parameters of the global water exchange zO, zA, zG
and zC from the given pole coordinates n1(t), n2(t), and the Earth�s rotation velocity
n3(t). The solutions of the combined problems are also possible: by the well-known
parameters zN of the global water exchange and the n3(t) value to improve the less-
known parameters of the global water exchange and the coordinates (n1 and n2) of the
pole�s secular motion.

11.3
Secular and Decadal Variations

11.3.1
Assessments and Computations

The data on the irregularity of the Earth�s rotation have been available since the
eighteenth century and those on the secular motion (by which the progressive and
long-term variations are meant) of the North pole since the late nineteenth century
(Fedorov et al., 1972; Vondrak, 1999).Unfortunately, themeasurements of the secular
motion of the pole are unreliable (Yatskiv et al., 1976). The observational data prior to
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1980 are very contradictory, which casts doubt on the trajectory of the pole�s secular
motion and even on the possibility of this motion. We do not share this doubt
(Sidorenkov, 1983).
First, if the secular motion did not exist (that is, n1¼ n2¼ 0), then the value n3

would not feature the respective variations (in fact, the n1, n2 and n3 values
characterize variations in the same vector w. The existence of the secular variations
in n3 is beyond doubt; hence, we may logically expect the existence of the pole�s
secular motion. This is also evidenced by changes in the acceleration of the Earth�s
rotation in 1903, 1927, 1931, 1935, 1950, 1958, and 1962, which were followed by
changes in the direction of the observed secular motion of the North pole. The
absence of a closer correlation between the n1, n2 and n3 values can be explained by
both theunreliable determination of the pole�s secularmotion and the specific factors
that cause this motion.
Second, there is correlation between the variations in the Earth�s rotation and in

the masses of ice sheets in Antarctica and Greenland (Sidorenkov, 1980a, 1982b,
1987). If the rate of ice accumulation or melting in Antarctica and Greenland is
constant, the components of the excitation function should change by the linear law,
so that y1 þ iy2¼ (A1 þ iA2)t, where A1 and A2 are some constants and t is the
time. Substituting this excitation function in Equation 11.11 and assuming that
n1 þ in2¼ 0 at t¼ 0, we find the same solution as (11.12), that is, in the case of the
monotonous ice accumulation or melting, the pole will execute, apart from the
circular motion with Chandler�s period, the linear drift in the direction of meridian
l ¼ arctg A2

A1
with velocity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
1 þA2

2

p
.

We have assumed that the available values of n1(t), n2(t) and n3(t) are exact ones and
have calculated the time series of zO(t), zA(t), zG(t), and zC(t) from 1891 to 2005
(Sidorenkov, 1982b; Sidorenkov, 1987; Sidorenkov and Svirenko, 1988; Sidorenkov
et al., 2005). The ni and zi summary series are given in Appendix D (Table D.1).
The values of the angular velocity components n1, n2, and n3 for the year under

consideration were substituted into the system of Equation 11.18, after which the
unknown parameters zO, zA, zG, and zC for the given year were calculated. Since the
values of ni are averaged over six years, the calculated parameters zN are also averaged.
The above calculations for each year within the 1891–2005 period resulted in the
�theoretical� series of deviations of the specific water masses (in oceans zO,
Antarctica zA, Greenland zG, and on rest of land zC) from their values at a certain
initial moment (Appendix D). This moment was assumed to be that when values n1,
n2, and n3 were equal to zero. The beginning of records of n1 and n2 in astronomy is
1902 and that of n3 is approximately 1890; thus, the date of the initial moment is not
exact.
We should notice that the available astronomical observations do not clearly define

the secularmotion of the pole. In addition, one of the forcing factors of the long-term
variations in the Earth�s rotation rate is the tidal deceleration that is irrelevant to the
secular variations in the global water exchange. This term should be eliminated from
the n3 values, but the exact rate of the tidal deceleration of the Earth�s rotation is
unknown. Hence, the theoretical data do not reliably describe the secular trend of
variations in the parameters of the global water exchange.
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11.3.2
Comparison of the Theoretical and Empirical Values

Let us compare the theoretical values with the empirical data. As is well known, the
incrementZ of the icemass of any ice sheet is determined as the sumof the resultant
water balances B over the previous years:

Z ¼
X
i

Bi

where i is the number of the year. The balance is B¼P� L, that is, it is calculated as
the difference between the precipitationP falling on the entire surface of the ice sheet
and the total discharge L of its water resources. The discharge L is composed of the
iceberg discharge, snowmelt discharge, discharge due to liquid precipitation, losses
through evaporation, bottommelting, wind-blown snow, and other factors. It is clear
that it is virtually impossible to determine the magnitude of L and its long-term
changes.
The long-term variations in precipitation over Antarctica as a whole can be

investigated either from precipitation measurements or the annual layers of snow
accumulation determined from ice cores. The field material on the input part of the
budget, the accumulation of snow on the ice sheet of Antarctica, was collected by
Petrov (1975), who analyzed the annual values of snow accumulation, using the ice
cores for nine stations. Three of them (Amundsen Scott, Little America, andWilkes)
have series since 1880; other stations have shorter series. Petrov calculated the values
ofPwith annual discreteness – a characteristic of snowaccumulation on theAntarctic
ice sheet – from 1885 to 1957. No estimates of changes in L were made.
Calculations using the system of Equation 11.14 resulted in a time series of the

specific mass zA(t). Examination of the ice cores or annual precipitation gives the
accumulation rate of P. To obtain the values equivalent to the zA(t) series, the
cumulative sums

Pk
j¼1 Pj have to be calculated. Because P> 0, a linear trend appears

that hampers the comparison of calculated zA(t) and observed z0AðtÞ values. In reality,
the inflow of the icemass is substantially compensated by its outflow and the trend is
small. It is impossible to accurately calculate the mass balance that forms this trend.
Therefore, it was assumed that the calculated and observed trends were equal. Under
this assumption, it was found that the discharge of ice L exceeds the mean value of
snow accumulation �P (averaged over the entire period of observations, 1885–2000) by
3%; hence, B ¼ P�L ¼ P�1:03 � �P, where �P ¼ 15 g=ðcm2 yearÞ. Then, having de-
termined the annual values of B, it is easy to calculate the integral (cumulative) curve
of the increment of the specific ice mass z0AðtÞ in Antarctica:

z0AðnÞ ¼
ZA

SA
¼ 1

SA

Xn
j¼1

Bj ð11:15Þ

where n is the year number.
In (Sidorenkov, 2002), the curve of the specific icemass calculated by Petrov (1975)

was used, and a good qualitative agreement between the theoretical zA and empirical
z0A was obtained for 1891–1957.However, at the endof the 1940s and the beginningof
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the 1950s, the ice mass decrease calculated by empirical data was much more rapid
than that obtained theoretically. In this study, we calculated the empirical z0A curve for
1891–1957 from the data of three stations: Amundsen Scott, Little America, and
Wilkes. The time series for the other six stations from (Petrov, 1975) were too short
and only deteriorated the results. The theoretical zA and empirical z0A curves for
1891–1957 agree well (Figure 11.1).
Unfortunately, we have not found the data on snow accumulation in Antarctica for

the last few decades (from 1954 until present time). Bryazgin (1990) calculated the
time series of annual precipitation PB from the data for 11 Antarctic meteorological
stations from 1958 to the present. It is known that the amount of precipitation at
coastal stations is hundreds of times larger than that in the interior parts of the
continent. Therefore, to reduce the data PB to Petrov�s data series, we calculated the
normalized effective anomalies of the accumulation of the annual precipitation and
multiplied this new series by dispersionDP of the precipitation series for Amundsen
Scott, Little America, and Wilkes stations from (Petrov, 1975):

Z0 ¼ PB�1:03�PB

DB
DP

where �PB and DB are the norm and dispersion of the Bryazgin time series. Thus, we
have calculated the series of the mean specific snowmass over the area of Antarctica
z0AðtÞ for the period from 1958 to 2000. This empirical z0AðtÞ curve is shown in
Figure 11.1 (curve 3). It also agrees well with the theoretical zA(t) curve. The
coefficient of correlation between the zA(t) and z0AðtÞ series is 0.91
 0.08.
It should be noted that in this study the series of themean specificmasses z0AðtÞ for

1958–2000 is calculated differently from in (Sidorenkov, 2002a, 2002b) and the
quantitative rather than qualitative agreement with the theoretical series zA(t) is
obtained.

Figure 11.1 Temporal variations in the theoretical specific ice
masses zA(t) for Antarctica (1); the integral curves z0AðtÞ obtained
from Petrov�s data for the stations of Amundsen Scott, Little
America, and Wilkes (2); the average sums of precipitation from
Bryazgin�s data (3).
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The empirical data on the variations in the icemass inGreenland are contradictory.
Figure 11.2 demonstrates two curves of z0G obtained in different variants of calcula-
tionsmade by Klige (1980, 1985). The degree of disagreement between the empirical
and theoretical curves is of the same order. However, the main features of the
theoretical curve are found in both empirical curves.
It follows from Table D.1 in Appendix D that on rest of land, the deviations of

the ice specific mass zC from its average value for the period under study varied
only little: from the minimum (�49 g/cm2) in 1903 to the maximum (þ 3 g/cm2)
in 1935. This is explained by a rapid flow of water from the rest of land into the
World Ocean.
Figure 11.3 presents the temporal courses of zO obtained by theoretical and

observational data. According to the theoretical data, the amount of water in the
World Ocean rapidly increased till 1903, and then it markedly decreased till 1935,
increased till 1972, and since 1973 up to the present time it continues to rapidly
decrease. This theoretical temporal course of deviations zO does not agree with the
observed variations in the level of the World Ocean H (Klige, 1985). This disagree-
ment may probably be due to the fact that the variations in the level of the World

Figure 11.2 Temporal variations in the specific mass of ice zG in
Greenland. (1) theoretical values; (2) and (3) empirical data (Klige,
1980, 1985).
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Ocean reflect not only the variations in the water mass but also the variations in the
water temperature (the effect of volumetric expansion), the verticalmovements of the
oceanic floor and coastline, and so on.

11.3.3
Discussion of Results

The respective theoretical and empirical data for Antarctica show a good qualitative
agreement, forGreenland – a satisfactory agreement, and aworse one – for theWorld
Ocean. The latter is probably explained by an inadequate assessment of the World
Oceanwatermass.However, in all cases the calculated values of z exceed the observed
ones by approximately 28 times.
These contradictory results indicate that the observed decades-long fluctuations in

the Earth�s rotation rate are not due to the rotation and polar motion of the whole
Earth but rather to changes in the speed of drift of the lithosphere over the
asthenosphere. Indeed, the moments of the like-sign forces arising in the process
of fluctuations in the global water exchange operate for decades. It is possible that,
with such long-term impacts, the matter of the asthenosphere underlying the

Figure 11.3 Deviations of theWorldOcean specificmass of water
zO (theoretical values) and level H (Klige, 1985).
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lithosphere does not behave like a solid body but rather flows like a viscous fluid.
Then, the decades-long global water exchange can result in the lithosphere�s sliding
over the asthenosphere without having a noticeable effect on the Earth�s deeper
layers. In astronomical observations, changes in the lithosphere�s drift rate are
recorded as �the irregularities in the Earth�s rotation� and �polar motion.� However,
such apparent �irregularities� and �motions� require the redistribution of water
masses that are 28 times lower than in the case of rotation of the whole Earth.
The sliding of the lithosphere over the asthenosphere is possible in the case

when the action duration T is many times longer than the characteristic relaxation
time twithin the asthenosphere. It is known that the relaxation time t is determined
from the relationship t¼m/h, where m is the viscous coefficient and h is the rigidity.
For the asthenosphere, m� 1018� 1023 Poise and h� 1012 dyn cm�2. As a result,
t¼m/h¼ 106� 1011 s or 0.03–3000 years. Clearly, the above-mentioned hypothesis
could be accepted if we take a lower limit to the permissible values of m. At the upper
limit of viscosity, the drift of the lithosphere is hardly probable.
The hypothesis on the drift of the lithosphere over the asthenosphere is based not

only on the analysis of the effect of redistribution of water between the ocean and
the ice sheets in Antarctica and Greenland but also on a review of the mechanism
of the angular momentum interchange between the atmosphere and the Earth
(Section 9.4). The frictional forces and the pressures of the atmosphere and oceans on
the lithosphere plates cause their drift over the asthenosphere. This hypothesis also
agrees with the fact that there is a significant correlation between the seismic activity
and the irregularities of the Earth�s rotation.
We understand that the model of the Earth assumed in the system of

Equations 11.8–11.11 is not adequate to the real Earth. Therefore, the system of
Equation 11.14 does not allow us to obtain the absolute values of the water exchange
parameters (zA, zG, and zO); they allow us to study only temporal variations of these
parameters. The configuration of the temporal variations of zi does not depend on the
model of the Earth (that is, on the parameters C, A, and k0). It is completely
determined by the configuration of temporal changes in the Earth�s rotation para-
meters n1, n2, and n3. Themodel parametersC,A, and k0 are independent of time and
do not influence the configuration of changes in the water exchange parameters zA,
zG, zO. They serve as the scale factors and influence the amplitude of variations in zA,
zG, and zO. The larger the C and A values and the less the k0 value, the larger the
amplitude of variations in zA, zG, and zO. To verify this statement, calculations were
carried out with three models: the absolutely solid Earth (k0 ¼ 0), the elastic Earth
(k0 ¼�0.3), and the Earth�s model that consisted only of the lithosphere (Sidorenkov
et al., 2005). In all cases, the configurationwas the same for the temporal variations in
zA, zG, and zO (for zA, theminima always fell on 1903 and 1972 and themaxima – on
1891, 1934, and 2000). The amplitude of variations in zA, zG, and zO depends
significantly on the choice of a model. For the elastic Earth model, the amplitude of
the calculated values of zA is 28 times as large as the amplitude of observed
glaciological variations; for the absolutely solid Earth, it is 20 times larger (Sidor-
enkov, 2002a, 2002b). The best agreement between the calculated and observed
amplitudes of zA was obtained in using the inertia moments of the lithosphere
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(Sidorenkov et al., 2005). Note that the elastic Earthmodel has been used in this study
(Equations 11.8–11.11). Therefore, when comparing the curves in Figures 11.1–11.3,
the amplitudes of variations in the calculated values z(t) were decreased by a factor
of 28.
Some researchers believe that the fluctuations in the Earth�s rotation affect the

terrestrial processes, in particular, the World Ocean level, being responsible for its
variations. However, the quantitative estimations show that this reverse effect is
negligibly small (Sidorenkov, 1961).

11.4
Effect of Ice Sheets

As is seen from the system of Equation 11.18, the decadal fluctuations in the Earth�s
rotational rate depend mainly on the state of the Antarctic ice sheet (the zA value),
whereas the secular motion of the North pole depends on the increment of the ice
mass in Greenland (the zG value). Let us assess the order of magnitudes of the
probable secularmotion of the pole and the irregularity of the Earth�s rotation. Recall
that the atmospheric precipitation falling on the ice sheets of Greenland and
Antarctica can remain there for centuries. The decrease in the ice masses occurs
mostly due to the ice discharge into the surrounding seas. The velocity of the ice
discharge is very low; therefore, its variability is also insignificant. At the same time,
the annual sums of precipitation can deviate from its long-term value by twofold and
even more. The annual sums of precipitation falling on the ice sheets of Antarctica
and Greenland are 16 g/cm2 and 30 g/cm2, respectively.
If the specificmass of ice in Greenland zG increases by 30 g/cm2 per year, whereas

zA¼ 0 and zC¼ 0, then it is easily calculated that the North pole will displace along
meridian 141�E with the velocity equal to 18 cm yr�1; the velocity of the Earth�s
rotation will increase by 1.26� 10�10 per year. At the rate of ice accumulation in
Antarctica equal to 16 g/cm2 per year, the North pole will move in the direction of
meridian 81�E with the velocity of 8 cmyr�1, and the velocity of the Earth�s rotation
will increase by 5.12� 10�10 per year. These estimates show that the variations in the
annual sums of precipitation can cause the pole�s displacements equal to 10–20 cm
per year.
The position of the meridians, along which the mean North pole of the Earth�s

rotation must move, is presented in Figure 11.4, in which the arrows show the
directions of the pole�s displacement at the ice accumulation in Antarctica (A),
Greenland (G), Antarctica andGreenland simultaneously (A þ G), and on the rest of
land (C). At the ice melting and decrease, the pole moves in the opposite direction.
The polygonal curve depicts the observed interannual displacement of themean pole
according to the data in Table 8 from (Fedorov et al., 1972). In the literature on
astronomy, this pole�s motion is called the secular motion.
The coordinates of the mean pole after 1968 are taken from the reports of

the Central Bureau of the International Polar Motion Service and from (Vondrak,
1999).
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According to the International Latitude Service (ILS), the pole moves along
meridian 285�E,which is close to the trajectory of the pole in the case of simultaneous
ice melting in Antarctica and Greenland (Figure 11.4). This fact deserves special
attention, because many glaciologists believe that the ice sheets of Greenland and
Antarctica have indeed decreased during the recent decades (Lliboutry, 1965;
Kotlyakov, 1968).
The polygonal formof the curve canbe explained by the fact that the secularmotion

of the pole is the result of summation of the variable contributions of various land
areas, these contributions being a priori random.
As is known (see Section 3.1.3), since 1890 the pole is shifting in the direction of

meridian 290�Ewith a velocity of about 10 cm yr�1. Such shift, if it is real, testifies to a
decrease in the ice mass. It could be caused, for example, by melting the ice in
Greenland during this period, the rate ofmelting being near 16 g cm�2 yr�1. Are such
changes in the ice mass real?
At present, the total ice mass is about 28.4� 1018 kg, out of which 25.7� 1018 kg

(90%) falls on the ice sheet of Antarctica, 2.5� 1018 kg (9%) – on the ice sheet of
Greenland, and only 0.22� 1018 kg (less than 1%) is the ice mass of all other
(mountain) glaciers. The areas of ice sheets in Antarctica and Greenland are
13.9� 1012 and 1.8� 1012m2, respectively. On each square centimeter of Antarctica

Figure 11.4 Directions of displacement of themeanNorth pole of
the Earth�s rotation due to the ice accumulation in Antarctica (A),
Greenland (G), Antarctica and Greenland (A þ G), and on rest of
land (C).
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there falls 185 kg of ice on average, in Greenland 139 kg. Using the values of zA and
zG, it is easy to calculate the limiting shifts of the pole. If the ice sheet of Greenland
melts completely, the North pole will displace by 830m along meridian 321�E; the
velocity of the Earth�s rotation will decrease by 0.58� 10�6, (the length of a day will
increase by 50ms. In the case of disappearance of the ice sheet of Antarctica, the pole
will shift by 920m along meridian 261�E, and the velocity of the Earth�s rotation will
decrease by 0.59� 10�6 (the length of day will increase by 512ms). What are the
probable characteristic periods of such shifts?
According to the paleogeographic data, glaciers can exist over tens thousands of

years. For example, 25 thousand years ago, vast ice sheets still covered almost the
entire East European Plain and considerable areas of West Europe and North
America; and 12 thousand years ago they no longer existed. After the end of the
last glacial period, there was the period of accelerating climate warming, which in
the 50–20 centuries BC peaked at the period of the �Climate Optimum�. Later, the
climate grew worse, and during the �sub-Atlantic period� (the tenth century BC – the
third century A.D.) the climate was relatively cold. The climate warming observed
later resulted in the �Medieval Climate Optimum� or the �Little Climatic Optimum,�
at the beginning of theMiddle Ages (roughly between 750 and 1200AD). During that
period, the climate in Europe was so warm that Vikings floated without hindrance to
Greenland, rendered it habitable, and were engaged in the pasture sheep raising.
From this follows the name of the island – Greenland, that is, the green land.
During the Medieval Climate Optimum, the mass of the ice sheet in Greenland

was much smaller than it is at present. If we suppose that the ice mass in Greenland
was smaller by 20% at that time than at present, then during the last thousand years
the pole had to shift along meridian 141�E with a velocity of about 17 cm yr�1.
After the Medieval Climate Optimum, the climate experienced the following

changes: cooling in the thirteenth and fourteenth centuries, slight warming in the
fifteenth and sixteenth centuries, and a new cooling in the seventeenth to nineteenth
centuries. The latter coolingwas given the name of the �Little Ice Age�, because it was
accompanied by advancing the glaciers in Europe andAmerica. Since the second half
of the nineteenth century, the climate warming began and ever since, it has been
lasting off and on in the twentieth century and at present. It is likely that since that
time the ice mass in Greenland is decreasing, due to which the pole is shifting in the
opposite direction.
All the estimates presented above are performed using Equation 11.14, that is, for

the elastic Earth. If the lithosphere drifts over the astenosphere, then the results of
estimations should be greater by approximately 28 times.

11.5
Effect of Climate Changes

The state of the ice sheets in Antarctica and Greenland depends on the climate
changes. Therefore, the decadal fluctuations in the Earth�s rotation rate can correlate
with the variations in the climatic characteristics and indices. And such correlation
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has been found (Lambeck, 1980; Sidorenkov and Svirenko, 1983; Sidorenkov and
Orlov, 2008). Let us dwell on the relationship between the velocity of the Earth�s
rotation and the frequency of the types of atmospheric circulation proposed by
Vangengeim (Catalogue, 1964).
The entire diversity of the forms of atmospheric circulation over the region

extending from Greenland to the Yenisei River and to the north of 30�N was divided
by Vangengeim (1935) into three forms: western W, eastern E, and meridional C.
FormW is characterized by a slightly disturbed western–eastern air transfer. Form E
is characterized by the ridge of high pressure located over the European part of the
former USSR and the trough of low pressure over West Europe andWest Siberia. At
form C the pattern of the pressure field is opposite: the ridges are located over West
Europe andWest Siberia and the trough over the European part of the former USSR.
The data on the frequency of the above forms of atmospheric circulation are

available from 1891 (Girs, 1971) to the present time. The method of the integral
curves of the anomalies of frequencies of the circulation forms is convenient for
revealing the long-term variations in the atmospheric circulation. These integral
curves are constructed byway of calculating the anomalies of frequencies of the above
circulation forms and the cumulative sums of the anomalies; the graphs of these
sums are the integral curves. The ascending branch of the integral curve corresponds
to the periods of prevalence of positive anomalies, and the descending branch to the
periods of prevalence of negative anomalies. These periods are called epochs.
Sidorenkov and Svirenko (1983) have found that at a low frequency of form C, the

Earth�s rotation accelerates (Figure 11.5), and vice versa; the coefficient of correlation
between the integral anomalies of form

P
C0 and the deviations of the length of day

dP is 0.80. This close correlation counts in favor of the effect of the global water
exchange on the interannual irregularity of the Earth�s rotation and the polarmotion,
and finally in favor of the hypothesis of the drift of the lithosphere over the
astenosphere.
There is close correlation between the decadal fluctuations in the Earth�s rotation

rate and those in the global air temperature (Jean-Pierre and Jolanta, 1992;
Sidorenkov and Shveikina, 1994), the regional characteristics of precipitation and
cloudiness (Sidorenkov and Shveikina, 1996), and even in the catches of food fish in
the Pacific Ocean (Klyashtorin and Sidorenkov, 1996). Figure 11.5 demonstrates the
temporal variations in the length of the terrestrial day and the air temperature in the
Northern Hemisphere for 1891–1998. The comparison of two curves shows their
strong correlation.
The relationship between the velocity of the Earth�s rotation and the climate was

noticed byNewton (1972), who has found that the prolonged fluctuation in the rate of
the secular deceleration of the Earth�s rotation coincided with the Medieval Climate
Optimum.Note also that themost drastic disturbances in theEarth�s rotation over the
recent 300 years, whichwere observed near 1870 and 1935 (see Figure 3.9), coincided
with the end of the Little Ice Age and the Arctic warming, respectively.
The climatic variations have characteristic periods that cover decades or much

longer time intervals. The irregular changes in the length of day are also likely to have
characteristic time periods of an order of decades and millenniums. Therefore, the
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estimations of the rate of the secular deceleration of the Earth�s rotation, which are
usually performed for the time intervals less than 2000 years, are unlikely to be
associated only with the tidal deceleration. For example, a tendency for decelerating
the Earth�s rotation, which is observed during two recent centuries, can be explained
by the process of melting the ice sheets in Greenland and Antarctica. The mean
direction of the secular motion of the pole corresponds to the above process.
The redistribution of water between the World Ocean and the ice sheets in

Antarctica and Greenland causes changes in the Earth�s gravitational field. If the
irregularities in the Earth�s rotation are also due to variations in the global water
exchange, then the changes in the length of day and the pole�s shifts should correlate
with the changes in the Earth�s gravitationalfield. The drift of the lithosphere over the
astenosphere, if it exists, should be followed by the regular vertical movements of the
Earth�s crust and the seismic phenomena. It is necessary to have purposeful geodesic
observations that could substantiate or demolish these suppositions. Further prog-
ress in studying the nature of the decadal fluctuations in the Earth�s rotation depends
on the improvement (increase in volume and accuracy) of hydrometeorological and
geophysical observations.
The long-term variations in dP can now be determined very accurately. Though

their nature is not quite clear, our many-year experience shows that the long-term

Figure 11.5 Synchronous changes in the length of day, dP (curve
1), the cumulative sums of anomalies of the circulation form C
(curve 2), and of the ten-year running anomalies of the Northern
Hemisphere�s air temperatureDT (after elimination of a trend and
a 1000-fold magnification) (curve 3).
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variations in dP present a unique nature-born integral index of the global climate
changes.
The periods of the Earth�s rotation acceleration (of the decrease in the length of

day dP) coincide with the epochs of the negative anomalies of form C of the
atmospheric circulation and of the positive anomalies of (W þ E). During these
periods, the ice mass in Antarctica increases, the intensity of the zonal circulation
weakens, the temperature growth in the Northern Hemisphere accelerates, the
positive anomalies of the global cloudiness prevail, and the catches of food fish in
the Pacific Ocean augment. During the periods of deceleration of the Earth�s
rotation (of the increase in dP), form C is observed more frequently and (W þ E)
more seldom than on average, the ice mass in Antarctica decreases, the air
temperature in the Northern Hemisphere increases slower, the observed negative
anomalies of the global cloudiness, the catches of food fish in the Pacific Ocean are
decreasing from year to year.
Thus, aswasmentioned above, there are close relationships between the long-term

fluctuations in the Earth�s rotation, on the one hand, and the variations in the ice
sheet in Antarctica, epochs of atmospheric circulation, global air temperature,
regional precipitation and cloudiness, and even in the catches of food fish in the
Pacific Ocean, on the other hand.
This close correlation can be used for the extrapolation of

P
C0,

PðW þEÞ0, and
DT into the past or future, that is, for diagnosis or prognosis of the anomalies of the
atmospheric circulation forms or epochs and of the variations in the air temperature
anomalies. The point is that the irregular long-period oscillations inherent in the
Earth�s rotational rate have a representative time period of about 70 years. The
acceleration that had started in 1973 came to an end in 2003, and theEarth�s rotational
rate began to decelerate (the length of day began to increase). According to the
experience of the past decades, this deceleration has to continue until 2039
(
3 years). As the periods of deceleration of the Earth�s rotational rate coincide
with the ascending branch of the integral curve

P
C0 and the descending one of the

curve
PðW þEÞ0, the frequency of the form C during the period of 2004–2039

(
3 years) is to be above the norm, and that of the form (W þ E) – below the norm.

11.6
Effect of the Earth�s Core

The Earth�s mantle and liquid core can exchange the angular momentum. The
moment of inertia of the core CC is equal to 9� 1036 kgm2, and the absolute angular
momentum ~NC V ¼ 66� � 1031 kgm2 s�1. The decadal fluctuations of the Earth�s
rotation rate have the order ofmagnitude of 10�8. If they are due to the redistribution
of the angular momentum between the mantle and the core, then it holds:

CMwM þCCwC ¼ const ð11:16Þ
where CM and CC are the axial moments of inertia for the mantle and the core,
respectively; wM and wC are the angular velocities of the mantle and core rotations,
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respectively. Differentiating (11.16) and passing to increments, we find:

DwC ¼ �CM

CC
DwM � �8DwM ð11:17Þ

This means that the fluctuations in the angular velocity of the core must have
the opposite sign and exceed by 8 times the observed amplitudes of the decadal
fluctuations in the Earth�s rotation rate. The decadal fluctuations in the Earth�s
rotation rate have the order of magnitude of 1� 10�8. Hence, the fluctuations in the
core must be 8� 10�8, that is over the year the core can be behind or ahead of the
mantle by 0.07�. Indirect evidence of the circulation of substance in the liquid core is
thewestward drift of the nondipole part of the Earth�smagneticfield. This drift shows
that the external parts of the liquid core rotate slower than the Earth�smantle. Even in
1950 (Bullard et al., 1950) the drift rate was found to be�0.18� per year. If we accept
this value, then the fluctuations in the rate of the westward drift would be less than
0.07/0.18, or about 38%. The observations confirm the existence of fluctuations of
this order of magnitude.
In (Vestine andKahle, 1968; Cain, Schmitz andKluth, 1985) a close correlationwas

obtained between the fluctuations in the angular velocities of the Earth�s rotation and
of the rate of westward drift of the eccentric geomagnetic dipole, with the charac-
teristic time period of about 60 years (Figure 11.6). With this, the onset of extrema of
the eccentric dipole drift rate lags by�7 years. It is likely that during this period the
magnetic signal passes through the mantle and reaches the Earth�s surface.
Braginsky (1970, 1972) has shown that in the Earth�s core, the magnetohydrody-

namic oscillations of the torsional type occur; they cause the fluctuations in the rates
of westward drift of the eccentric geomagnetic dipole and of the Earth�s rotation. The
frequency of these fluctuations is described by the formula for the Alfven waves,

Figure 11.6 Eccentric geomagnetic dipole motion _F (solid lines)
and change in the length of day expressed as the angular
deviations of rotation Dw (deg/year) (dashed line) (Cain, Schmitz
and Kluth, 1985).
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which is known in the magnetic hydrodynamics:

w � BS

L

ffiffiffiffiffiffiffiffi
4pr

p

where BS is the radial component of the magnetic field in the cylindrical coordinate,
L is the characteristic scale, and r is the density. Assuming in the core BS� 3
Gauss, L� 106m, r� 104 kg/m3, we obtain T� 60 years.
The correlation is found between the decadal fluctuations in the Earth�s rotation

rate n3 and the derivative of the geomagnetic moment _M (Pushkov and Chernova,
1972; Jin andThomas, 1977). Thefluctuations in n3 are ahead of thefluctuations in _M
by 10 years.
Thus, on the one hand, the decadal fluctuations in the Earth�s rotation rate could

be produced by the exchange of the angular momentum between the mantle and
the liquid core of the Earth. On the other hand, there is a close relationship between
the decadal fluctuations of the Earth�s rotation and the changes in the climatic and
glaciological characteristics. Yet, processes in the Earth�s core cannot produce
changes in the epochs of atmospheric circulation, air-temperature fluctuations,
atmospheric precipitation, the state of glaciers, and other climatic processes and
characteristics.
These contradictions could be eliminated by assuming that there is a third reason

that simultaneously affects the processes in both the Earth�s core and in the climatic
system. This reason is the gravitational interaction of the Earth with the Moon, the
Sun and other planets.
The Sun revolves around the barycenter (the centre of mass) of the Solar System

along the compound curves of the fourth order (conchoids of a circle), the so-called
�Pascal�s limacons� (Figure 11.7). The curvature of the Sun�s trajectory constantly
changes, and the Sunmoves with a varying acceleration. Being a satellite of the Sun,
the Earth revolves around it and also moves with the Sun around the Solar System�s
barycenter. Like the Sun, the Earth undergoes all varying accelerations. Similar to the
lunisolar tides, the accelerations disturb the Earth�s orbital revolution and processes
in the Earth�s shells, producing the decadal fluctuations in the latter.
Landscheidt (2003) and Wilson et al. (2008) present much evidence to show that

the changes in the Sun�s equatorial rotation rate are synchronized with the changes
in the Sun�s orbital motion around the barycenter of the Solar System. Ian Wilson
(Sidorenkov andWilson, 2009) showed that the recentmaximumasymmetries in the
solarmotion around the barycenter have occurred in the years 1865, 1900, 1934, 1970
and 2007. These years of maximum asymmetry in the solar motion closely corre-
spond to the points of inflection in the Earth�s length of the day (Figure 3.9).
Figure 11.8 constructed by Ian Wilson, shows that, from 1700 to 2000 AD, on every
occasion where the Sun has experienced amaximum in the asymmetry of its motion
around the centre-of-mass of the Solar System, the Earth has also experienced a
significant deviation in its rotation rate (that is, the length of day) from that expected
from the long-term trends. This fact indicates that the changes in the Earth�s rotation
rate are synchronized with a phenomenon that is linked to the changes in the solar
motion around the barycenter of the Solar System.
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From the empirical data, IanWilson proposes (Sidorenkov andWilson, 2009) that
there is compelling evidence to support the contention that there is a spin-orbit
coupling between the Earth�s rotation rate and itsmotion (that it shares with the Sun)
around the barycenter of the Solar System.
Furthermore, the gravity of the nonspherical nonuniform shells of the Earth (that

occupy the eccentric positions) due to the Moon, the Sun and planets leads to the
shifts andfluctuations in the centers ofmass of the shells relative to eachother, aswell
as to their forced transitions (Barkin, 1996, 2000).
In Barkin�s and Wilson�s cases, the set of phenomena that arise in the Earth�s

shells may be called �the generalized tides�. On the one hand, the generalized tides
evoke changes in the Earth�s core and are related to the perennial variations in the
geomagneticfield.On the other hand, they are responsible for changes in the climatic
system and fluctuations in the Earth�s rotation. In these cases, evidently, the decades-
long variations in the rotation will correlate with all the above-mentioned geophysical
and hydrometeorlogical processes.

Figure 11.7 Motion of the barycenter of the Solar System in the
heliocentric coordinate system for 1945–1995. The Sun�s limb is
marked by a thick circle. The position of the barycenter relative to
the Sun�s centre (a cross) is indicated by small circles
(Landscheidt, 2003).
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11.7
Summary

We have shown that there are strong correlations between the decadal variations in
the length of day, variations in the rate of the westward drift of the geomagnetic
eccentric dipole, and variations in certain climate characteristics (the increments of
the Antarctic and Greenland ice sheet masses, anomalies of the atmospheric
circulation regimes, the hemisphere-averaged air temperature, the Pacific Decadal
Oscillation, etc.).
From the empirical data, we argue that these correlations are due to the generalized

tides that occur in Earth�s shells due to the gravitational interaction of the Earth with
the Moon, the Sun, and other planets.

Figure 11.8 On every occasion where the Sun has experienced a
maximum in the asymmetry of its motion around the centre-of-
mass of the Solar System, the Earth has also experienced a
significant deviation in its rotation rate (that is, the length of day)
from the long-term trends.
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12
Geodynamics and Weather Predictions

12.1
Predictions of Hydrometeorological Characteristics

12.1.1
Synoptic Processes in the Atmosphere

About 100 years ago Mul�tanovskii (1933) noted that synoptic processes evolve in
jumps rather than continuously. Analyzing kinematic continuity charts, he observed
that the locations of pressure fields persisted for several days and then transformed
rapidly (during 12–36 hours). The resulting pattern again persisted for several days
until the next transformation. Studying the First Natural Synoptic Region, which
extends north of 30�N from Greenland to the Yenisei River, he found that a certain
type of evolution persisted for several days. In 1915, Mul�tanovskii called that period
the natural synoptic period (NSP). In other words, an NSP is a period of time, during
which a particular synoptic process persists over a given natural synoptic region.
After upper-level pressure charts were begun to be constructed in the 1940s, it was

found that an upper-air pressure and temperature pattern persists in the troposphere
during anNSP. Thepressure and temperaturefields cause displacements of pressure
systems near the Earth�s surface and lead to preserved geographical locations of their
centers within a natural synoptic region. At the end of an NSP, the tropospheric
pressure and temperature fields are rapidly rebuilt, which leads to new locations of
pressure centers and to variations in pressure system trajectories near the Earth�s
surface. On a continuity chart, the current NSP is transformed into another one in
one or two days, that is, in a �jump� as compared with the NSP length, which ranges
from 5 to about 8 days (Pagava et al., 1966). The nature of NSPs remained unknown
until the studies in (Sidorenkov, 2002a, 2000b, 2005).

12.1.2
Conductors of Synoptic Processes

As was mentioned above, the tidal oscillations of the Earth�s angular velocity have
been reliably recorded since the 1980s.
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Since then theauthorhas carriedout thesimultaneousmonitoringof tide-generated
variations in the Earth�s angular velocity, the evolution of synoptic processes in the
atmosphere, atmospheric circulation regimes, and time variations in hydrometeoro-
logical characteristics. It was found that most types of transitions between synoptic
processes in the atmosphere occur simultaneously with variations in the Earth�s
angular velocityw. It iswell known that theeffectof terrestrial zonal tideswithina lunar
month (27.3 days) leads to four modes with different period lengths in the Earth�s
rotation: twoaccelerationperiods of lengthsm1 andm3 and twodecelerationperiods of
lengths m2 and m4 (Figure 12.1). The modes alternate with an average period of
mi� 27.3/4¼ 6.8 days. However, since the lunar perigee and nodesmove, this period
varies from 5 to 8 days. In 2006, for example, deceleration was observed from
September 29 to October 6; acceleration, from October 6 to 12; deceleration, from
October 12 to 19; and acceleration, from October 19 to 27. Thus, the lunar month
consisted of four intervals with a total duration of 7 þ 6 þ 7 þ 8 days (Figure 12.1).
Any combinations and any real values ofmi in the range of 5 to 8 days are possible. The
only unchanged characteristic is a monthly period of 27.3 days.
Based on historical data, the author examined how frequently the extrema of w

concurred with transitions between synoptic processes. The characteristics of
synoptic processes of different types were taken from the Catalogue of Elementary
Synoptic Processes (ESPs) by G.Ya. Vangengeim (Catalogue, 1964). Catalogues of
ESP transitions and extrema (maxima and minima) of tidal oscillations in w were
prepared and analyzed over an 8-year period (fromOctober 1, 1987, to September 30,
1995; a total of 2922 days). A statistical analysis showed that the extrema of w
coincided with ESP transitions up to�1 day in 76% of the cases. In 24% of the cases,
the difference between an extremum of w and the nearest ESP transition was two or
more days (Sidorenkov, 2000d). Variations in the vertical component of the total tidal
force (Figure 12.2) clearly reveal that dominant diurnal harmonics alternate with
dominant semidiurnal harmonics at quasiweekly intervals. For diurnal tides, the
amplitude is maximal when the Moon is at the largest distance from the equator

Figure 12.1 Tidal oscillations in the Earth�s angular rotation velocity in 2006.
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(when the Moon�s declination is close to its maximum in absolute value). For
semidiurnal tides, the amplitude is maximal when the Moon is at the smallest
distance from the equator (when the Moon�s declination is close to 0�).
Two trains of large-amplitude diurnal oscillations and two trains of small-

amplitude semidiurnal oscillations are observed during a lunar month. Their
duration also varies from 5 to 8 days, but the average value is always 6.8 days. The
extrema of the lower envelope of diurnal and semidiurnal tides coincide with the
extrema of zonal tides. This suggests that NSPs in the atmosphere form under the
influence of not only long-period zonal tides but also diurnal and semidiurnal
lunisolar tides.
Each quasiweekly mode of the Earth�s rotation is associated with an NSP. Since

the Earth�s rotation modes are caused by lunisolar tides, NSPs possibly have the
same cause.
This conclusion was checked by calculating the spectra of the equatorial compo-

nents of the atmospheric angular momentum. The spectra revealed that lunisolar
tidal harmonics are completely dominant in the variability of the atmospheric
circulation (see Section 7.5). Specifically, it was found that the evolution of synoptic
processes in the atmosphere is caused not only by internal dynamics but is also
affected by an external �conductor� – lunisolar tides. NSPs are caused by oscillations
in tidal forces, and variations inNSPs are associatedwith changes in the signs of tidal
forces. Variations in the NSP length are caused by the frequency modulation of tidal
forces due to the motion of the lunar perigee.
There is a statistically significant simultaneous correlation between the tidal

oscillations of the Earth�s angular velocity and transitions between synoptic processes
occurring in the atmosphere.Close relations have been foundbetween lunisolar tides
and variations inmeteorological characteristics. For illustrative purposes, Figure 12.3
shows the periodogram of daily air temperature anomalies in Moscow over
1960–2003.

Figure 12.2 Variations in gravity due to the tides in September and
October, 2006. The vertical axis represents gravity values in
0.1 microgal.
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Inspection of the plot reveals peaks near the periods of 27, 87, 205, and 355 days,
which correspond to the lunar sidereal (27.3 days) and synodic (29.5 days) periods.
The 206-day cycle generates due to the revolution of themajor axis of theMoon�s orbit
relative to the major axis of the Earth�s orbit. The perigee of the lunar orbit executes
one revolution within 8.85 years and the perihelion of the Earth�s orbit – within one
year. The perigeemeetswith the perihelion every 412 days. But the axes of theMoon�s
and the Earth�s orbits became collinear every 206 days. It is just this cyclicity of the
reciprocal configurations of two orbits that has effects on the terrestrial processes. A
period of 355 days corresponds to 13 sidereal and 12 synodic months. This is a lunar
year! Therefore, temperature anomalies are formednot only by the internal stochastic
dynamics of the atmosphere but also by lunisolar tides, which recur to some extent
with a lunar-year period of 355 days (Figure 12.4). This dependence is well seen in the
autocorrelation function (ACF) of tidal oscillations.

Figure 12.4 Autocorrelation function of the time series of tidal
oscillations in the Earth�s rotation velocity from 1962 to 2003 for a
shift of 0 to 600 days.

Figure 12.3 Periodogram of air-temperature anomalies in Moscow.
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Solar tides give amaximum correlation at a shift of 365 days, while lunar tides give
a maximum correlation every sidereal month. Therefore, a maximum ACF is
observed at a shift of 355 days (13 sidereal months). A large ACF maximum also
occurs at a shift of 382 days (14 sidereal months). In addition to the lunar year, there
are longer cycles: saros (223 synodic months), Metonic cycle (235 synodic months),
inex (358 synodic months), and so forth, which also affect temperature anomalies.
Tides affect the meridional air circulation and atmospheric-pressure variations.

Higher pressure values caused by lunar tides lead to positive temperature anomalies
in summer and to negative temperature anomalies in winter. The temperature
anomalies over a monthly cycle depend on the season. In the analysis and prediction
of temperature, this dependence can be taken into account either by fixing a calendar
time interval or by choosing a time interval multiple of a year.
Based on the empirical facts described above, the followingmethod was developed

for the prediction of hydrometeorological characteristics (Sidorenkov, 2002a, 2002b).
Based on the theory, oscillations inw canbe reliably calculated forward in timewith

any discretization for any period (Figure 12.1). An analogous period in the past with
approximately the same Earth rotation mode is determined by applying correlation
analysis to the values of w predicted for the nearest year. It is assumed that the
synoptic processes and the variations in temperature anomalies over the predicted
time interval correlate with those over the analogous period. The temperature
anomalies observed at its boundaries are taken as expected values. They are added
to the corresponding normals to obtain a predicted air temperature.
This technique can produce day-to-day air-temperature predictions for a period of

up to one year at any site where there are sufficiently long series of observations.
The skill score of the predicted monthly mean temperature anomalies in

Moscow over 2000–2007 was found to be about 70%. The forecast errors arise
mainly due to several-day long shifts in the oscillation phase. For this reason,
superlong-term day-to-day temperature forecasts are not suitable for consumers
interested in the exact times when temperature variations take place, but would be
satisfactoryfor thoseinterestedinthefactofoccurrenceofsuchvariationsratherthanin
theirexact time.Thebestskill scoreswereobtainedfor theVolgaregion,CentralRussia,
and the North Caucasus. The results based on high-latitude and sea-station data were
noticeably worse.

12.2
Long-Period Variability in Tidal Oscillations and Atmospheric Processes

12.2.1
Variability in Lunar Tidal Forces

The lunar tidal force varies with timewith a period of 13.65 days. It is a function of the
Moon�s declination and the geocentric distance, which vary with time in a complex
manner. The amplitude ofmonthly oscillations in theMoon�s declination varies from
29� to 18� with a period of 18.61 years due to the regression of the lunar nodes. The
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lunar perigee moves with a period of 8.85 years, which leads to variations in the
quasiweekly oscillation period of tidal forces in the range of 5 to 8 days. As a result, the
oscillation amplitude of tidal forces varies with time with periods of 18.61 years,
8.85 years, 6.0 years, 1 year, 0.5 year, 1 month, 0.5 month, 1 week, 1 day, 0.5 day, and
many other less significant periods. The variability of tidal forces ismost pronounced
in the Earth�s rotation oscillations (Sidorenkov, 2006). Figure 12.5 shows day-to-day
tidal oscillations of the Earth�s rotation velocity from 1901 to 2011. It can be seen that
the amplitude of fortnightly oscillations varies in a complex manner. The upper and
lower envelopes describe waves with a period of 18.6 and 4.4 years, respectively. For
comparison, Figure 12.6 displays the tidal oscillations in the Earth�s rotation velocity
calculated for the periods of minimal (1997) and maximal (2007) tidal variability. It
can be seen that the amplitude of tidal oscillations in the angular velocity in 2007 is
nearly twice as large as in 1997.
The temporal variability of a geophysical quantity can be conveniently character-

ized by its variance calculated over a sliding time window. Specifically, the varianceD
of a time series of tidal oscillations in the Earth�s rotation velocity is calculated over a
one-year sliding window as

D ¼ 1
N

XN
i¼1

ðni��nÞ2 ð12:1Þ

where ni are the daily velocities, n ¼ 1
N

XN
i¼1

ni are the annual mean velocities, and

N¼ 365. This formula was used to compute D over one year with a sliding step of

Figure 12.5 Tidal oscillations in the Earth�s rotation velocity n
from 1901 to 2011. The vertical axis represents the relative
deviations of n in 10�10.
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1 day. The results are shown in Figure 12.7. It can be seen thatD undergoes threefold
variations from its minimum values in 1903, 1923, 1942, 1960, 1978, and 1997 to its
maximum values in 1914, 1932, 1950, 1969, 1988, and 2007. A minimum of D is
observedwhen theMoon�s descending node coincideswith the spring equinox, and a
maximum of D is observed when the Moon�s ascending node coincides with the
spring equinox (Sidorenkov, 2006).

12.2.2
Rate of Extreme Natural Processes

Due to the variability of tidal forces, the amplitude of oscillations inweather elements
and marine hydrological characteristics also varies with time with the same period.
However, the larger the amplitude of oscillations in hydrometeorological character-
istics, the more frequent the extreme events (heat or cold waves, droughts or floods,
hurricane-force winds, strong thunderstorms, hailstorms) and the greater the
economic damage they cause. In other words, the rate of extreme natural processes
varies according to the various oscillations of tidal forces. Industrial and social
processes are also affected by varying tidal forces.

To statistically prove the existence of variability in hydrometeorological character-
istics with a period of 18.6 years, one needs the time series of high-frequency
hydrometeorological observations covering several dozens of 18.6-year cycles (longer
than 300 years). Unfortunately, meteorologists use (monthly and annual) mean data,
which do not contain any information on tidal oscillations. For example, the

Figure 12.6 Tidal oscillations in the Earth�s rotation velocity n in
1997 (dashed) and 2007 (bold). The vertical axis represents the
relative deviations of n in 10�10.
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averaging of h1 and h2 even on a daily basis yields nearly constant values with no
amplitude or frequencymodulation of the daily carrier frequency. The spectra of such
series contain only noise components (see Section 7.5).
Starting in 1966, weather observations are made every 3 hours. However, these

series cover only two 18.6-year cycles and are not suited for a rigorous statistical
analysis of the problem in question. Meteorological observations over earlier years
are difficult to find. However, the author has managed to obtain the first preliminary
evidence of the 18.6-year variability by analyzing time series of atmospheric angular
momentum components. Specifically, the series of h1 and h2 from 1948 to 2006
derived by Salstein (2000) were used to calculate the variance over a three-year sliding
window. Both components gave similar results. For this reason, Figure 12.8 shows
only the variance of h1. It can be seen that the maxima of the variance are consistent
with those of tidal-force variability in 1951, 1969, 1987, and 2007. Only in the 1980s is
the maximum of h1 slightly ahead of the tidal-force maximum. Thus, the long-time
variability of the atmospheric angular momentum is caused, to a certain degree, by
the 18.6-year variations in tidal forces.
The statistics of hydrometeorological hazards (recorded by a) the Hydrometeo-

rological Center of Russia and b) the Federal Service for Hydrometeorology and
Environmental Monitoring of Russia) clearly indicate an increased rate of hazards in
1998–2007 (Figure 12.9).
Increased (decreased) tidal amplitude leads to a higher (lower) rate of extreme

natural processes. Amaximumof the 18.6-year variability of tidal forceswas observed
in 2007 (Figure 12.7). Therefore, an increased rate of extreme natural processes
observed over recent years is caused not only by global warming but also by the
currently observed maximum of tidal force variability. Since this variability will

Figure 12.7 Variance of tidal oscillations in the Earth�s rotation
velocity calculated with a one-year sliding window for 1900–2010.
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Figure 12.8 Variance of the equatorial component h1 of the
atmospheric relative angular momentum calculated with a three-
year sliding window.

Figure 12.9 Variations in the annual number of weather hazards
over the last 16 years from www.meteorf.ru:Doklad_climate_
2008.pdf. The black straight line corresponds to the annual mean
value over 16 years.
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decrease in 2008–2016, we can expect a reduction in the rate of extreme natural
processes in this period due to the influence of tidal forces.

12.3
Hydrodynamic Equations of Motion

Thus, the zonal tides significantly affect atmosphere dynamics.
This conclusion is confirmed by the author�s many years� successful experience in

the super-long-term forecast of temperatures, synoptic and natural processes, based
on the behavior of lunisolar tides. Chapter 7 shows the spectra of the components of
the atmospheric angular momentum, which also indicate that the tides play a
dominating role in the variability of the global atmospheric circulation. These
arguments suggest that the equations of hydrodynamics that are currently employed
in global atmospheric and oceanic models are inadequate as far as the real processes
are concerned because the tide-generating forces are not taken into account.
Probably, that is why the predictability of atmospheric processes, based on the
current global hydrodynamical models, is no more than two weeks.
As is generally known, a terrestrial reference system is used in meteorology and

oceanology. The equations of relative movement are:

dV
dt

¼ � 1
r
rp� 2W� Vþ gþ F ð12:2Þ

where V is the vector of the velocity of wind or current, r and p are the density and
the pressure, respectively, W is the angular velocity of the Earth�s rotation, F is the
friction force, g is the gravity, which is a sum of the Earth�s gravitational attraction
and the centrifugal force. The tide-generating forces of the Moon and the Sun
should be taken into account to more accurately describe atmospheric and oceanic
circulation (Sidorenkov, 2002a, 2002b). These forces can be found by calculating the
gradient !U of the tide-generating potential U. In this case, instead of (12.2) we
have:

dV
dt

¼ �rU � 1
r
rp�2W� Vþ gþ F ð12:3Þ

Let us choose a spherical coordinate system whose coordinate lines are the
geocentric radiuses R, meridians j and parallels l. Let the unit vectors eR, ej, el
at an observation point be directed vertically upward, northward and eastward,
respectively. Then:

rU ¼ TReR þTjej þTlel ¼ qU
qR

eR þ qU
Rqj

ej þ qU
R cos jql

el ð12:4Þ

where Tare the projections of the tide-generating forces, and R is the Earth�s radius.
Let us now find each of the projections by differentiating the expression forU(5.14).
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Bearing in mind that a change in the hour angle H is equivalent to a change in
longitude l, we have:

TR ¼ C cos2jcos2dcos2Hþsin2jsin2dcosHþ3 sin2j�1
3

� �
sin2d�1

3

� �� �

Tj ¼ C �1
2
sin2jcos2dcos2Hþcos2jsin2dcosHþ3

2
sin2j sin2d�1

3

� �� �

Tl ¼ C½�cosjcos2dsin2H�sinjsin2dsinH�
¼ C½cosjcos2dcosð2Hþ90�Þþsinjsin2dcosðHþ90�Þ� ð12:5Þ

Here,C is themultiplier related to the geocentric distance of a perturbing body, the
elastic properties and structure of the Earth. For a perfectly rigid Earth,C ¼ G 2R

a2
c
d

� �3
,

where G is the Doodson constant. It is clear from the expressions (12.4) that the
projectionsTR andTjcontain the same functions of coordinates d,Hand the distance
c/d of a perturbing body as the potentialU. Consequently, they are related to the same
tidal waves as the potentialU. The projection Tl (along parallel) has only the diurnal
and semidiurnal waves whose phases are 90� greater than the phases of the potential
U; and it has no long-period terms. Coefficients C of all the projections and the
functions of latitude that are in the projections Tj and Tl are different from those of
the potential U.
Also, an expansion of every projection T of the tide-generating forces can be

obtained by direct calculation of the components of the gradient of the series (5.20):

T ¼ r
X¥
n¼2

Xn
m¼0

Pnmðsin jÞ
X
j

Cnmj cos wnmjtþbnmj þmlþðn�mÞ p
2

h i( )

ð12:6Þ
Wehope that the account for the lunisolar tidal forces in the equations ofmotion of

the global atmosphere and oceans models will allow us to radically extend the time
limits of predictability of atmospheric processes. It will be possible to do successful
multimonth weather forecasts.
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13
Conclusion

We are living in a time of rapid scientific progress. Undoubtedly, the problems solved
in the book, as well as the developed models will soon be unable to satisfy the
observation accuracy requirements that are becoming increasingly stringent and a
new clarification will be required. Note that over the last twenty years new methods
of space geodesy and astronomy have increased the accuracy of determination of the
universal time, the coordinates of the Earth�s pole and nutation corrections 100-fold.
Nowadays the accuracy is 000.0001 of arc for the pole coordinates and nutation and
0.000005 s for corrections to theUT1 scale, which corresponds to severalmillimeters
on the Earth surface.
Besides these fantastic successes in monitoring the Earth�s rotation rate instabil-

ities, a grandiose multiyear project of the National Center for Environmental
Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) is
completed, and allmeteorological and aerologic observation from1948 to the present
time reanalyzed. Based on NCEP/NCAR reanalyses, David Salstein calculated the
values of the components of the atmospheric angular momentum and effective
functions of the atmospheric angular momentum with a 6-hour step for a period
from 1948 to the present time. Recently, effective functions of the angular momen-
tum of the ocean have been calculated as well.
These innovations give an ample opportunity to study instabilities of the Earth�s

rotation rate, atmospheric and ocean processes, first, within the diurnal periods.
Using these data, the author has already discovered diurnal nutation of the vector
of the angular momentum of the atmosphere with a wide spectrum of the lunisolar
tidal oscillations transformed by the atmosphere.
Comparison between the time series of the Earth�s rotation rate, which were

obtained using modern methods, and semiempirical models of ocean tides shows
that oceans play a dominating role in excitation of diurnal and semidiurnal oscilla-
tions of the Earth�s rotation rate and monthly variations in polar motion. However,
large high-frequency variations in the Earth�s rotation still remain unexplained.
Fundamental discoveries are potentially possible in researches into decadal

fluctuations. The point is that the decadal fluctuations in the Earth�s rotation
are closely connected with epoch changes in atmospheric circulation, climatic
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characteristics, the condition of ice sheets in Antarctica and Greenland, and so on.
However, no significant angular momentum exchange between the Earth and the
atmosphere has been revealed. The angular momentum is believed to be redis-
tributed between the mantle and the liquid core. If so, the core controls the
atmospheric processes, climate changes and glaciers, which is rather improbable.
These contradictions are eliminated if it is assumed that there is a third reason,
�generalized tides�, which simultaneously affects processes in both the Earth�s core
and the climatic system. Resolving these inconsistencies promises revolutionary
discoveries and a breakthrough in understanding geophysical processes.
The problem of the interannual variations is waiting to be solved as well. It is

still unclear why the spectrum of variations in the polar motion is similar to that of
the quasibiennial oscillation in equatorial stratospheric wind; why the cycle of the
El Niño–Southern Oscillation (ENSO), and that of the quasibiennial oscillation
(QBO), is a multiple of Chandler�s period, and how those oscillations are connected
with free and forced nutation of the Earth and the lunisolar tides.
Some instabilities in the Earth�s rotation are caused by the tidal forces, some,

by processes in geospheres. Reflecting these processes, the instabilities can serve as
their indicators. Based on variations in the Earth�s rotation, we can track variations
in zonal tides, changes in the angular momentum of winds, changes in global and
hemisphere temperature of air, epoch change in atmospheric circulation, evolution
of ice sheets and other climatic characteristics. The nature has created this integrated
index of natural processes and we should take advantage of it. The reader has found
some ways in this book, others he/she can obtain by studying how some particular
data are correlated with the series of parameters of the Earth�s rotation given in the
Appendices and at http://www.hpiers.obspm.fr/eop-pc/.
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Appendix A

A.1
Spherical Analysis

We use spherical analysis, that is, expansion into a series in terms of spherical
functions, to solvemany problems we consider here. It is known that the continuous
function of the colatitude q and east longitude l can be uniquely expanded into a
series by surface spherical harmonics:

f ðq; lÞ ¼
X¥
n¼0

Xn
m¼0

ðanm cosmlþ bnm sinmlÞPnmðqÞ

¼ a00 þ a10 cos qþða11 cos lþ b11 sin lÞ sin qþ a20
3
2
cos2 q� 1

2

� �

þða21 cos lþ b21 sin lÞ � 3
2
sin 2qþða22 cos 2lþ b22 sin 2lÞ3 sin 2qþ . . .

ðA:1Þ

Here, anm and bnm are the coefficients of the spherical harmonic of degree n and order
m, and Pnm(q) are the associated Legendre functions calculated by the formula:

PnmðqÞ ¼ sin mq
2n � n!

dnþmð cos2q�1Þn
ðd cos qÞnþm ðA:2Þ

Note that somewhat different definition of the Legendre function is accepted in a
number of works (Jeffreys and Swirles, 1966; Munk and Macdonald, 1960):

ðn�mÞ!
n!

Pnm ðA:3Þ

The surface spherical functions are the eigenfunctions for a sphere. They look like
waves (Figure A.1). The spherical functions are referred to as either the zonal
functions (if they depend only on the latitude) or the sectoral functions (if they
depend only on the longitude) or the tesseral functions (if they depend on both the
latitude and longitude). The greater the degree of the function, the smaller the area of
the sphere occupied by each wave and the finer the details described by the function.
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Figure A.1 Types of surface spherical functions.

The spherical functions are orthogonal, that is, the surface integral of the product
of two spherical functions of different degrees over the spherical surface is equal to
zero. Whereas the integral of the squared spherical functions is:

1
4p

ðp

0

ð2p

0

P2
nm

cos 2ml
sin 2ml

� �
dS ¼ ðnþmÞ!

ð2nþ 1Þðn�mÞ!ð2�domÞ ðA:4Þ

where dom¼ 1, ifm¼ 0, and dom¼ 0, ifm 6¼ 0. It is clear that the value of this integral
quickly increases with the increasing index m. This results in some difficulties in
calculating the coefficients anm and bnm. The normalized Legendre functions �Pnm are
frequently used to avoid the difficulties:

�Pnm ¼ NnmPnm ðA:5Þ
where

N2
nm ¼ ð2nþ 1Þðn�mÞ!ð2�domÞ

ðnþmÞ! ðA:6Þ

In this case, we have for any indexes n and m:

1
4p

ðp

0

ð2p

0

�P2
nm

cos 2ml
sin 2ml

� �
dS ¼ 1 ðA:7Þ

Using the orthogonality condition and Equation A.7 for the normalized Legendre
functions, we obtain the expressions to determine the normalized coefficients of the
expansion, �anm and �bnm:
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�ano ¼ 1
4p

ðp

0

ð2p

0

f ðq; lÞ�PnodS; bno ¼ 0

�anm
�bnm

� �
¼ 1

4p

ðp

0

ð2p

0

f ðq; lÞ�Pnm
cosml
sinml

� �
dS

ðA:8Þ

Obviously, if we used the non-normalized Legendre functions like (A.2) or (A.3) we
would have different values of the coefficients anm and bnm. This should be borne in
mind when comparing the results of the calculation. The coefficients �anm and �bnm of
the expansion of the function f(q,l) into a series in terms of the normalized spherical
functions are related to the coefficients anm, bnm of the expansion of the same function
into a series (A.1) in terms of the general (non-normalized) spherical functions
like (A.2); this relation is as follows:

anm ¼ Nnm�anm; bnm ¼ Nnm
�bnm ðA:9Þ

As expansions into a series in terms of the spherical functions are frequently used
hereafter, Table A.1 lists the values of the following factors: (Nnm)

2, Legendre
functions Pnm and the polynomials resulted from the multiplication of Pnm by either
rncosml or rnsinml, for various n and m from 0 to 4.

Table A.1 Values of normalizing factors N2
nm , Legendre functions

Pnm(cos q) and polynomials for various indexes n and m.

n m N2
nm Pnm Polynomials

0 0 1 1 1
1 0 3 cos y z
1 1 3 sin y x; y

2 0 5
3
2
cos2q� 1

2
1
2
ð2z2�x2�y2Þ

2 1
5
3

3
2
sin 2q 3zx; 3zy

2 2
5
12

3sin2y 3(x2 � y2); 6xy

3 0 7
5
2
cos3q� 3

2
cos q

1
2
zð2z2�3x2�3y2Þ

3 1
7
6

3
2
sin qð5 cos2q�1Þ 3

2
xð4z2�x2�y2Þ; 3

2
yð4z2�x2�y2Þ;

3 2
7
60

15sin2y cos y 15z(x2 � y2); 30 xyz

3 3
7
360

15sin3y 15(x3 � 3xy2); 15(3x2y � y3)

4 0 9
1
8
ð35 cos4q�30 cos2qþ 3Þ 1

8

�
8z4�24z2ðx2 þ y2Þþ 3ðx2 þ y2Þ2�

4 1
9
10

5
2
sin qð7 cos3q�3 cos qÞ 5

2
x 4z3�3zðx2 þ y2Þ� �

;
5
2y

4z3�3zðx2 þ y2Þ� �

4 2
1
20

15
2

sin2qð7 cos2q�1Þ 15
2
ðx2�y2Þð6z2�x2�y2Þ; 15xy(6z2 � x2 � y2)

4 3
1
280

105 sin3y cos y 105z(x3 � 3xy2); 105z(3x2y � y3)

4 4
1

2240
105sin4y 105(x4 � 6x2y2 þ y4); 420 xy (x2 � y2)
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Expansion into a series in terms of the spherical functions allows themain features
of the field under study to be compactly described. It is easy to see from (A.8), for
example, that the coefficients in expression (A.1) have the following physical
interpretation. a00 is the average value of the function f on the globe; a10 is the
difference in the function f between the Northern and Southern Hemispheres; a20
is the difference in the function f between the low and high latitudes; a11, b11 and a22,
b22 are the sectoral perturbations with wavelengths of 360� and 180�, respectively; a21
and b21 are the differences in the distribution of the function f in comparisonwith the
rotationally symmetric distribution, and so forth.
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Appendix B

B.1
The Figure of the Earth

If the Earth were a liquid rotating planet, its figure would have a gravitational
equipotential surface, with geopotential U0 consisting of gravitational potential and
potential of centrifugal forces at the surface. It is clear that in that case the Earth�s
figure would depend on the distribution of density inside the planet and its angular
rotation velocity. Therefore, though the real Earth is not strictly in hydrostatic
equilibrium, its figure is determined on the basis of the condition:

W þF ¼ U0 ¼ const ðB:1Þ

The gravitational external potential of the Earth is determined (Zharkov et al., 1996;
Zharkov and Trubitsyn, 1980)

W ¼ gM
r

1þ
X1
n¼2

Xn
m¼0

Re

r

� �n

ðanm cos ml þ bnm sinmlÞPnm

" #
ðB:2Þ

Where g is the gravitational constant; r is distance; M and Re are the mass and
equatorial radius of the Earth; anm and bnm are the Stokes coefficients.
The potential of centrifugal forces is equal to

F ¼ w2R2

3
�w2R2

3
P20ð cos qÞ ðB:3Þ

This figure (Figure B.1) is called the geoid.
Let us define the geoid oblateness. If expressions (B.2) and (B.3) are taken into

consideration, expression (B.1) gives the following formulae for U0 at the equator
(R¼Re, q¼ 90�) and at the poles (R¼RP, q¼ 0), respectively, with an accuracy up to
the expansion terms with n> 2:

U0 ¼ gM
Re

� gM
2Re

a20 þ W2R2
e

2
; and U0 ¼ gM

RP
þ gMR2

e

R3
P

a20
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Subtracting the latter equation from the former and bearing in mind that Re�RP,
we have the following expression for the geoid oblateness, with an accuracy up to the
terms of the first order with respect to a:

a ¼ Re�RP

Re
¼ � 3

2
a20 þ q

2
þ 0ða2Þ ðB:4Þ

Here, a20 is the potential expansion coefficient; q ¼ W2R3
e

gM is the parameter equal to
the ratio of the centrifugal acceleration to the gravitational acceleration at the equator.
Bearing inmind that for the liquid planetwith the density distribution similar the real
Earth�s

a20 ¼ � kfW2R3
e

3gM

we obtain, from (B.4), the following formula for the Earth oblateness:

a ¼ ð1þ kf Þ 12
W2R3

e

gM
¼ hf

1
2
W2R3

e

gM
ðB:5Þ

Here, kf and hf are the Love numbers of the second order for the liquid Earth. The
same formula for the oblateness can be also derived if the following considerations
are taken into account. Under the action of the centrifugal potential,j the surface of a
liquid planet changes with respect to its center by as much as:

hf
j
g
¼ �hf

W2R2

3g
P20 ðB:6Þ

where g is the gravitational acceleration. On the other hand, it is known (Zharkov and
Trubitsyn, 1980; Jeffreys, 1959) that the equation of the surface of a liquid rotating

Figure B.1 Photograph of the Earth and the Moon from space.

270j Appendix B



planet in hydrostatic equilibrium is as follows:

R ¼ Re 1�a
3
� 2
3
aP20

� �
þ 0ða2

f Þ ðB:7Þ

Here,Re 1� a
3

� �
is themean radius of the planet; 23aReP20 is the radial displacement of

the planet surface. Equating the radial displacements in formulae (B.6) and (B.7), we
obtain the desired formula (B.5).
Let us compare the values of the parameters of the Earth�s figure obtained from

observation and theoretical data. Analysis of satellite observations gives the estimate
of the real Earth�s surface oblateness (Zharkov and Trubitsyn, 1980):

a ¼ 1
298:257

The corresponding �secular� Love numbers are as follows:

hS ¼ 2a
q

¼ 1:934; kS ¼ hS�1 ¼ 0:934 ðB:8Þ

If we knew a law of the density distribution inside the Earth, we could calculate the
oblateness af, which the Earth would have if it were in hydrostatic equilibrium
(Zharkov and Trubitsyn, 1980). To illustrate this, let us estimate the hydrostatic
oblateness af for two extrememodels of the Earth�s structure: a homogeneous Earth
and an Earth whose total mass is concentrated in its center. In the former case, we
have a20 ¼ � 2

5a and substitute it into (B.4), which gives af ¼ 5
4 q ¼ 1

231 and, accord-
ingly, hf ¼ 5

2. In the latter case (the total mass is concentrated in the center of the
Earth), a20¼ 0, af ¼ q

2 ¼ 1
577 and, accordingly, hf¼ 1. Obviously, the true values of the

hydrostatic oblateness and the Love numbers are between these limits. In accordance
with the hydrostatic theory, the oblateness of a hydrostatically equilibrated planet,
with a accuracy up to the terms of the first order of smallness by a, is related to the
polar moment of inertia as follows (Jeffreys, 1959):

af ¼ 5
2
q 1þ 25

4
1� 3

2
N33

MR2
e

� �2
" #�1

ðB:9Þ

Formula (B.9) gives the approximate value of af that should be refined. Jeffreys
(1963) calculated the necessary correction by using the numerical method based on
the Earth�s density distribution. As a result, he obtained the following value of
hydrostatic oblateness:

af ¼ 1
299:67

ðB:10Þ

The corresponding Love numbers are:

hf ¼ 1:925; kf ¼ 0:925 ðB:11Þ

Comparison of the parameters of the liquid rotating planet in hydrostatic
equilibrium (B.10) and (B.11) with the parameters of the real Earth kS¼ 0.936
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and (B.8) reveals some differences. In particular, the actual oblateness is 0.5%more
than the hydrostatic one. The Love numbers kS and hS are greater than the Love
numbers kf and hf of the liquid Earth. Some researches (Zharkov andTrubitsyn, 1980;
Mac Donald, 1963;McKenzie, 1966)makemuch of these differences. They relate the
differences to the delay in changing the oblateness of the Earth�s in response to the
Earth�s rotation slowing down.
It is known that tidal friction regularly slows down the Earth�s rotation at a rate of

_W ¼ �55� 10�23 s�2 (the length of a day increases as much as 0.002 s per century).
From Equation (B.5), it is easy to obtain an expression for the delay t in changing the
Earth�s oblateness in response to changes in the angular velocity:

t ¼ a�af

a
� W
2 _W

ðB:12Þ

Substituting the values ofa andaf of (B.8) and (B.10) gives t¼ 107 years, that is, the
current oblateness of the Earth is the hydrostatic oblateness of the planet with
the angular velocity equal to the angular velocity of the Earth 107 years ago. Based on
the delay t, we can estimate viscosity h of the lower mantle because the time of
relaxation t of the nonequilibrium part of the equatorial swell is proportional to
viscosity h and inversely proportional to the shear modulus m� 1011 Pa:

h � tm � 1025 Pa s ¼ 1026 Poise ðB:13Þ
If the Earth was strictly in hydrostatic equilibrium, all the coefficients anm and bnm

in the expansion of gravitational potentialW(B.2) would be zero except for the zonal
coefficients an0 with even orders n, that is:

Wf ¼ gM
r

1þ R2
e

r2
a20P20 þ R4

e

r4
a40P40 þ R6

e

r6
a60P60 þ . . .

� �
ðB:14Þ

And, as follows from the theory (Zharkov and Trubitsyn, 1980; Jeffreys, 1959), the
values of the even zonal coefficients should be proportional to an=2:

a20 � a; a40 � a2; a60 � a3; . . . ; ano � an=2

Satellite observations do not confirm this law. All the zonal coefficients, beginning
with a30, andmany of the tesseral coefficients are approximately of the same order of
magnitude, being equal to something between 1 and 9 multiplied by 10�6, that is,
they are of the same order of magnitude as a2. An exception is a20�a. Thus, the
gravitational field of the Earth deviates from the gravitational field of a hydrostatically
balanced planet by a value comparable with the squared oblateness. These deviations
indicate that the Earth�s figure deviates by the value of the same order of magnitude
(a2R� 70 m) from the equilibrium figure of a rotating liquid planet.
As is generally known, the deviations of theEarth�sfigure and gravitationalfield are

caused by anomalies of mass distribution at the surface of and inside the Earth. The
difference in the Earth�s figure that is related to the difference between the actual
oblateness andhydrostatic onemakes d(Re�RP)¼ (a�af)Re¼ 100m, that is, it is of
the same order of magnitude as the nonequilibria described by other terms of the
expansion. It is clear that abnormalmass distribution (for example, the thawingof the
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ice sheets covering Antarctica and Greenland) may cause the difference as well.
Therefore, there is no sufficient reason for believing that the differences a�af,
h� hf, k� kf are caused by the delay in changes in the oblateness of the Earth�s as a
result of the secular slowing down of the Earth�s rotation.
Thus, with a relative accuracy up to the order of the squared oblateness, the real

Earth�s formdoes not differ from the equivalentmodel of a liquid rotating planet, and
the secular Love numbers are equal to the Love numbers for the liquid Earth.
Based on the differences in the terms of the expansions of the gravitational

potential between the real Earth and a hydrostatically equilibrium planet, we can
estimate the gravitational energy caused by the Earth�s nonequilibrium. It turns out
to be equal 1024 J (Zharkov and Trubitsyn, 1980). Note that the gravitational energy
caused by the Earth nonequilibrium to support the irregularity in the speed of the
Earth�s rotation would only last 100 years because the power of observed fluctuations
of the angular velocity is 1015W.
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Appendix C

Acronyms

n The Earth�s rotation dimensionless velocity (see Equation 2.1)
l.o.d. The length of the terrestrial day
cpd cycle per day
dB decibel
G gauss
hPa hectopascal
hr hour
J joule
K kelvin
ms millisecond(s)
ms microsecond(s)
N newton
P poise
Pa pascal
rad radian
s second
St stokes
W watt
yr year
AAM Atmospheric Angular Momentum
CIO Conventional International Origin
CPC Climate Prediction Cente
CW Chandler Wobble
DORIS Doppler Orbit determination and Radiopositioning Integrated on

Satellite
ECMWF European Centre for Medium-Range Weather Forecasts
ENSO El Niño-Southern Oscillation
EOP Earth Orientation Parameters
ESP Elementary Synoptic Process
FCN Free Core Nutation
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FTHE Heat engine of the first type
GLONASS Global Orbiting Navigation Satellite System, Russia
GPS Global Positioning System
IAU International Astronomical Union
IERS International Earth Rotation and Reference Systems Service (formerly:

International Earth Rotation Service)
IHHE Inter-hemispheric heating engine
ILS International Latitude Service
IPMS International Polar Motion Service
ITCZ Intertropical Convergence Zone
IUGG International Union of Geodesy and Geophysics
JPL Jet Propulsion Laboratory
LLR Lunar Laser Ranging
LOD Length of Day
MJD Modified Julian Day
NCAR U.S. National Center for Atmospheric Research
NCEP U.S. National Centers for Environmental Prediction
NMC National Meteorological Center (replaced by NCEP)
NSP natural synoptic period
OAM oceanic angular momentum
QBO Quasi-Biennial Oscillation
SI Syst�eme International (International System of Units)
SLR Satellite Laser Ranging
TAI Temps Atomique International (International Atomic Time)
TCB Temps-coordonn�ee barycentrique (Barycentric Coordinate Time)
TCG Temps-coordonn�ee g�eocentrique (Geocentric Coordinate Time)
TDB Barycentric Dynamical Time
TDT Terrestrial Dynamical Time
TGB Tide Generating Potential
UKMO U.K. Meteorological Office
UT, UT0,
UT1, UT2 Universal Time
UTC Coordinated Universal Time
VLBI Very Long Baseline Interferometry
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Appendix D

Table D.1 Series of the observed mean pole coordinates n1 and n2, the Earth�s rotation velocity n3,
and the calculated increments of specific watermass inOcean (zO), Antarctica (zA), Greenland (zG),
and rest of land (zC), g/cm

2.

Year m1 · 109 (rad) m2 · 109 (rad) m3 · 1010 fO fA fG fC

1891 �102 165 73 �11 232 �49 7
1892 �78 131 33 �5 104 �15 3
1893 �87 126 �17 2 �56 31 �2
1894 �78 112 �67 10 �217 76 �7
1895 �78 82 �118 18 �381 122 �12
1896 �73 73 �168 26 �541 168 �17
1897 �73 63 �219 34 �705 215 �22
1898 �68 63 �269 42 �866 261 �28
1899 �39 78 �319 50 �1026 306 �33
1900 �19 53 �370 58 �1190 350 �38
1901 �5 34 �431 68 �1386 405 �45
1902 0 15 �471 74 �1514 441 �49
1903 5 0 �478 75 �1536 446 �49
1904 0 �48 �468 74 �1504 434 �48
1905 �39 �97 �455 71 �1462 423 �46
1906 �29 �87 �451 71 �1450 419 �46
1907 �19 �102 �452 71 �1453 418 �46
1908 �10 �145 �457 72 �1468 420 �47
1909 �29 �204 �458 72 �1471 419 �46
1910 �39 �233 �444 70 �1426 405 �45
1911 �5 �242 �416 65 �1336 375 �42
1912 �14 �291 �379 59 �1217 339 �38
1913 �24 �335 �349 54 �1120 310 �35
1914 �15 �378 �327 51 �1049 286 �32
1915 5 �378 �311 48 �997 269 �30
1916 34 �398 �288 45 �923 243 �28
1917 29 �427 �264 41 �845 220 �25
1918 82 �388 �239 37 �764 193 �23
1919 141 �301 �232 36 �742 186 �23
1920 208 �252 �231 36 �738 181 �23

(continued)

j277

The Interaction Between Earth's Rotation and Geophysical Processes. Nikolay S. Sidorenkov
Copyright � 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40875-7



Table D.1 (Continued).

Year m1 · 109 (rad) m2 · 109 (rad) m3 · 1010 fO fA fG fC

1921 276 �281 �226 35 �721 168 �23
1922 310 �305 �204 32 �649 143 �20
1923 330 �301 �174 27 �553 113 �17
1924 271 �344 �143 22 �453 87 �14
1925 262 �368 �110 17 �347 56 �10
1926 208 �398 �74 11 �232 26 �6
1927 194 �378 �41 6 �126 �1 �3
1928 204 �398 �21 3 �62 �22 �1
1929 204 �499 �16 2 �45 �32 �0
1930 204 �567 �20 2 �58 �32 �0
1931 155 �635 �18 2 �51 �33 0
1932 150 �669 �9 0 �22 �43 1
1933 121 �713 3 �1 15 �54 2
1934 87 �727 9 �2 34 �57 3
1935 73 �732 7 �2 28 �54 3
1936 87 �669 �8 0 �20 �37 1
1937 145 �688 �30 4 �90 �24 �0
1938 165 �679 �60 8 �186 2 �4
1939 189 �688 �92 13 �288 29 �7
1940 199 �679 �125 19 �394 59 �10
1941 228 �654 �151 23 �478 82 �13
1942 267 �601 �164 25 �519 93 �15
1943 271 �572 �166 25 �526 96 �15
1944 305 �596 �160 24 �506 86 �15
1945 310 �616 �159 24 �503 84 �14
1946 339 �591 �161 25 �509 84 �15
1947 373 �572 �166 25 �525 86 �15
1948 412 �591 �163 25 �514 79 �15
1949 451 �621 �153 23 �482 64 �14
1950 465 �654 �138 21 �433 47 �12
1951 427 �664 �128 19 �401 41 �11
1952 359 �668 �122 18 �383 40 �10
1953 296 �693 �120 18 �377 44 �10
1954 276 �708 �115 17 �361 41 �9
1955 267 �762 �116 17 �364 40 �9
1956 281 �800 �86 12 �267 8 �6
1957 325 �834 �135 20 �424 48 �11
1958 349 �887 �165 25 �520 71 �14
1959 344 �945 �146 22 �458 50 �12
1960 305 �994 �140 21 �439 46 �11
1961 276 �984 �128 19 �401 38 �10
1962 252 �979 �148 22 �466 59 �12
1963 208 �1028 �173 26 �547 84 �14
1964 184 �1067 �223 34 �707 131 �19
1965 165 �1082 �255 39 �810 162 �22
1966 131 �1115 �281 43 �894 188 �25
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Table D.1 (Continued).

Year m1 · 109 (rad) m2 · 109 (rad) m3 · 1010 fO fA fG fC

1967 102 �1159 �273 41 �869 181 �24
1968 8 �1139 �289 44 �921 206 �25
1969 �39 �1086 �308 47 �984 231 �27
1970 �34 �1110 �315 48 �1006 236 �28
1971 �5 �1125 �335 51 �1070 251 �30
1972 39 �1139 �362 55 �1156 271 �33
1973 68 �1154 �353 54 �1126 259 �32
1974 82 �1183 �314 48 �1001 220 �28
1975 78 �1236 �311 47 �991 214 �27
1976 82 �1290 �336 51 �1071 234 �30
1977 87 �1319 �321 49 �1022 218 �28
1978 97 �1324 �334 51 �1064 229 �29
1979 112 �1357 �301 46 �957 195 �26
1980 131 �1416 �267 40 �847 158 �22
1981 150 �1440 �249 37 �789 138 �20
1982 165 �1440 �250 37 �792 138 �20
1983 179 �1450 �263 39 �834 148 �22
1984 199 �1450 �175 26 �550 64 �13
1985 218 �1454 �168 24 �528 55 �12
1986 228 �1464 �142 20 �444 29 �9
1987 213 �1503 �157 23 �492 43 �10
1988 208 �1532 �152 22 �476 37 �10
1989 223 �1551 �177 26 �556 58 �12
1990 233 �1595 �226 33 �713 100 �17
1991 228 �1619 �235 35 �742 108 �18
1992 204 �1614 �257 38 �813 131 �20
1993 179 �1668 �274 41 �868 146 �22
1994 160 �1682 �254 38 �803 129 �20
1995 170 �1677 �267 40 �845 140 �21
1996 179 �1619 �211 31 �665 90 �16
1997 160 �1605 �213 31 �672 94 �16
1998 160 �1605 �159 23 �498 44 �11
1999 160 �1605 �114 16 �353 �4 �6
2000 216 �1644 �84 11 �257 �33 �3
2001 217 �1644 �66 8 �199 �50 �1
2002 227 �1648 �55 7 �160 �63 0
2003 245 �1668 �32 3 �89 �86 3
2004 240 �1673 �37 4 �105 �81 2
2005 256 �1687 �50 6 �147 �72 1
2006 280 �1696 �95 13 �291 �32 �4
2007 280 �1696 �99 14 �304 �28 �4
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