The Sun's role in climate change

Nir J. Shaviv Racah Inst. of Physics, Hebrew University IBM Einstein Fellow, Institute for Advanced Study Calgary, June 2015

Collaborators: HU – Shlomi Ziskin, Naftali Smith, Daniel Howard DTU – Henrik Svensmark, Martin A. B. Enghoff, Jens Olaf P. Pedersen U. Ottawa – Ján Veizer, Andreas Prokoph,

What will I talk about?

- The "standard" lore Why is solar activity shunned?
- (Some) Evidence for problems with the standard picture.
- Quantifying the solar forcing It is large!
- Solar forcing and climate change.
- Cosmic Rays, the link between solar activity and climate

It is commonly believed that...

20th century warming is Anthropogenic

Climate Sensitivity is high (increases in the CO₂ will cause a large change in T) 21st century ΔT will be large

There are no large "natural" climate drivers. In particular, **sun is unimportant**

Most of the 20th century warming is anthropogenic

Climate Sensitivity is high (increases in the CO₂ will cause a large change in T) 21st century ΔT will be large

There are no large "natural" climate drivers. In particular, **sun is unimportant**

Most of the 20th century warming is anthropogenic

Climate Sensitivity is high (increases in the CO₂ will cause a large change in T) 21st century ΔT will be large

There are no large "natural" climate drivers. In particular, sun is unimportant

Most of the 20th century warming is anthropogenic

Climate Sensitivity is high (increases in the CO₂ will cause a large change in T) 21st century ΔT will be large

Most of the 20th century

warming is

Typically 1/2-2/3 solar 1/3-1/2 anthropogenic

There are no large "natural" climate drivers. In particular, sun is The Sun is very important!

Climate sensitivity is low Climate Sensitivity is high (increases in the CO₂ will cause a large change in T) 21st century ΔT will be large

Most of the 20th century

warming is

Typically 1/2-2/3 solar 1/3-1/2 anthropogenic

There are no large "natural" climate drivers. In particular, sun is The Sun is very important!

We will meet IPCC's 2°C Climate sensitivity is low in a "business as usual" scenario Climate Sensitivity is high (increases in the CO₂ will cause a large change in T) 21st century ΔT will be large

Most of the 20th century

warming is

Typically 1/2-2/3 solar 1/3-1/2 anthropogenic

There are no large "natural" climate drivers. In particular, sun is The Sun is very important!

Sensitivity is <u>low</u>

Climate response to volcanoes is small

Model predictions: Decrease of 0.3-0.5°C. Reality: Decrease of 0.1°C on average Lindzen & Giannitis (1998): $\Delta T_{x2} \leq 1^{\circ}C$

Climate response to CO₂ is small

• Over geological time scales: Large intrinsic variations in CO₂ do not cause large temperature changes.

Based on the lack of correlation: $1^{\circ}C \leq \Delta T_{x2} \leq 1.5^{\circ}C$ (Shaviv 2005)

But what about Al Gore and his ice cores?

But what about Al Gore and his ice cores?

• *CO*₂ lags temperature!

Global Warming "hiatus"

• Heating over the past 20 years running below the low estimate of the IPCC

Sensitivity below IPCC 1.5-4.5°C range, i.e., $\Delta T_{x2} \leq 1.5^{\circ}C$

The Greenhouse effect

The Greenhouse effect

The Greenhouse effect

Different "recipes" for the cloud cover produce different sensitivities: Increase of 1.5 to 5°C per CO₂ doubling.

The Sun's role in Climate Change

• The claim that there isn't any other explanation, and therefore the warming must be primarily human, is wrong. There is another explanation: Solar Activity.

Early 1997

• The claim that there isn't any other explanation, and therefore the warming must be primarily human, is wrong. There is another explanation: Solar Activity.

The link over several millennia

The link over several millennia

The Link over the past Millennium

Link over the 11-year Cycle

Sun

Shaviv, 2008

Link over the 11-year Cycle

Link over the 11-year Cycle

IPCC 5AR forcing graph

	(Emitted compound	Resulting atmospheric drivers	Radiative forcing by emissions and drivers	Level of
Anthropogenic	Well-mixed greenhouse gases	CO ₂	CO ₂	1.68 [1.33 to 2.03]	VH
		CH_4	CO_2 $H_2O^{str} O_3 CH_4$	0.97 [0.74 to 1.20]	н
		Halo- carbons	O ₃ CFCs HCFCs	0.18 [0.01 to 0.35]	н
		N ₂ O	N ₂ O	0.17 [0.13 to 0.21]	VH
	Short lived gases and aerosols	CO	CO_2 CH_4 O_3	0.23 [0.16 to 0.30]	М
		NMVOC	CO ₂ CH ₄ O ₃	0.10 [0.05 to 0.15]	М
		NO _x	Nitrate CH_4 O_3	-0.15 [-0.34 to 0.03]	М
		erosols and precursors (Mineral dust,	Mineral dust Sulphate Nitrate Organic carbon Black carbon	-0.27 [-0.77 to 0.23]	н
		SO_2 , NH ₃ , Drganic carbon d Black carbon)	Cloud adjustments due to aerosols	-0.55 [-1.33 to -0.06]	L
	Albedo change due to land use			-0.15 [-0.25 to -0.05]	М
Natural	Changes in solar irradiance			● 0.05 [0.00 to 0.10]	М

IPCC 5AR forcing graph

		Emitted compound	Resulting atmospheric drivers	Radiative forcing by emissions and drivers	Level of confidence
Anthropogenic	Well-mixed greenhouse gases	CO ₂	CO ₂	1.68 [1.33 to 2.03]	VH
		CH_4	CO_2 $H_2O^{str} O_3$ CH_4	0.97 [0.74 to 1.20]	н
		Halo- carbons	O ₃ CFCs HCFCs	0.18 [0.01 to 0.35]	н
		N ₂ O	N ₂ O	0.17 [0.13 to 0.21]	VH
	Short lived gases and aerosols	CO	CO_2 CH_4 O_3	0.23 [0.16 to 0.30]	М
		NMVOC	CO_2 CH_4 O_3	0.10 [0.05 to 0.15]	М
		NO _x	Nitrate CH ₄ O ₃	-0.15 [-0.34 to 0.03]	М
		Aerosols and precursors (Mineral dust,	Mineral dust Sulphate Nitrate Organic carbon Black carbon	-0.27 [-0.77 to 0.23]	н
		SO ₂ , NH ₃ , Organic carbon nd Black carbon)	Cloud adjustments due to aerosols	-0.55 [-1.33 to -0.06]	L
			Albedo change due to land use	-0.15 [-0.25 to -0.05]	М
Natural			Changes in solar irradiance	0.05 [0.00 to 0.10]	М

Since Maunder Minimum

Cosmic Rays: Linking Solar Activity to Climate

Clouds over the 11-yr cycle

Svensmark 1998, Marsh & Svensmark 2000, ...

Clouds over the 11-yr cycle

Svensmark 1998, Marsh & Svensmark 2000, ...

Forbush decreases

Forbush decreases of the cosmic ray flux induce a large apparent effect on clouds

Evidence over Geological Time Scales

Shaviv 2002, Shaviv & Veizer (2003)

Full Motion in the Milky Way

Secondary Oscillation

Standard Explanation to 20th century

And if there is another explanation?

Basíc Clímate Model

20th century warming

Best fit (i.e., after parameter optimization)

1880 1900 1920 1940 1960 2000 1980 a 0.6 Temperature anomaly (°C) 0.4 ∆T Global (°K) 0.2 0 -0.2 -0.4 0.2 2 0.1 -0.1 -0.2 1960 2000 1900 1920 1980 1880 1940

Comparison: IPCC-AR4

Residual more than <u>twice smaller</u> than with GCMs (without solar amplification)

Ziskin & Shaviv, 2012

21st century temperature increase (from fitting the 20th century)

21st century temperature increase (from fitting the 20th century)

There are no large "natural" climate drivers. In particular, **sun is unimportant**

Most of the 20th century warming is anthropogenic

And thanks to my collaborators! HU – Shlomi Ziskin, Naftali Smith, Daniel Howard DTU – Henrik Svensmark, Martin A. B. Enghoff, Jens Olaf P. Pedersen U. Ottawa – Ján Veizer, Andreas Prokoph,

Climate Sensitivity is low (increases in the CO₂ will cause a small change in T) 21st century ΔT will be small

There are large "natural" climate drivers. In particular, **sun is very important**

Some of the 20th century warming is anthropogenic, some is Natural

And thanks to my collaborators! HU – Shlomi Ziskin, Naftali Smith, Daniel Howard DTU – Henrik Svensmark, Martin A. B. Enghoff, Jens Olaf P. Pedersen U. Ottawa – Ján Veizer, Andreas Prokoph,

Climate Sensitivity is low (increases in the CO₂ will cause a small change in T) 21st century ΔT will be small

There are large "natural" climate drivers. In particular, **sun is very important**

The link is through cosmic rays!

Some of the 20th century warming is anthropogenic, some is Natural

And thanks to my collaborators! HU – Shlomi Ziskin, Naftali Smith, Daniel Howard DTU – Henrik Svensmark, Martin A. B. Enghoff, Jens Olaf P. Pedersen U. Ottawa – Ján Veizer, Andreas Prokoph,

Thanks for your attention!

