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ABSTRACT

A solar effect on streamflow in the Midwestern United States is described and supported in a six-step physical connection
between total solar irradiance (TSI), tropical sea-surface temperatures (SSTs), extratropical SSTs, jet-stream vorticity,
surface-layer vorticity, precipitation, and streamflow. Variations in the correlations among the individual steps indicate
that the solar/hydroclimatic mechanism is complex and has a time element (lag) that may not be constant. Correct phasing,
supported by consistent spectral peaks between 0.092 and 0.096 cycles per year in all data sets within the mechanism
is strong evidence for its existence. A significant correlation exists between total solar irradiance and the 3-year moving
average of annual streamflow for Iowa (R = 0.67) and for the Mississippi River at St Louis, Missouri (R = 0.60), during
the period 1950–2000. Published in 2005 by John Wiley & Sons, Ltd.

KEY WORDS: solar-climate relations; total solar irradiance; Pacific sea-surface temperatures; atmospheric vorticity; precipitation;
streamflow

1. INTRODUCTION

Streamflow produced by a basin can be utilized as an excellent indicator of climate for that basin. Streamflow
is an integration of precipitation, evapotranspiration, and water storage within a watershed, parameters that are
usually measured at specific locations. Storage within a basin, both in lakes and rivers or below the surface
in groundwater, is usually a small fraction of the total volume of streamflow and remains fairly constant
during multiyear periods. Streamflow can provide a measure of climate over large areas with relatively few
data-collection sites.

The Midwestern United States (US) including Illinois, Iowa, Kansas, Minnesota, Missouri, Nebraska, South
Dakota, and Wisconsin produce much of the world’s supply of corn and soybeans, with Iowa producing the
largest percentage. The yearly variation of climate in this region and especially Iowa has an important effect
on corn and soybean production in the United States.

Most of the area of these states is drained by the Mississippi River upstream from St Louis, Missouri (U.S.
Geological Survey station 07010000), which represents a drainage area of 1 805 000 km2 (Figure 1). The
moisture source for precipitation in this river basin is predominantly the Gulf of Mexico, which ranges from
800 to more than 2600-km distance (Hammond, 1956). Specific atmospheric flow patterns are required to
move enough water vapor from the Gulf of Mexico into this area to form precipitation and create streamflow.
These patterns usually require an upper-level southwesterly flow, which helps create a southerly surface-layer
flow from the Gulf of Mexico. A visible decadal pattern exists in the 3-year moving average for streamflow
at station 07010000 since 1950 (Figure 2). The purpose of this paper is to examine the physical processes
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Figure 1. Map of United States showing location of study area and streamflow-gaging stations
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Figure 2. Graph showing 3-year moving average of the ratio of annual to long-term mean flow for Mississippi River at St Louis,
Missouri, 1950–2000

that may be responsible for the variance of streamflow in Iowa and the Midwestern US and to suggest a
mechanism for climatic variability.

2. PREVIOUS ANALYSES OF MIDWESTERN CLIMATE

2.1. Historical analyses

Over 150 years ago, the Midwestern US was being settled by easterners, anxious to make their fortunes
farming on the sparsely populated plains. The idea that ‘rain followed the plow’ was promoted by railroad
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companies and land speculators. The scientific reasoning behind the belief was that the region’s atmospheric
circulation was positively affected by increased sources of evaporation. This was accomplished by breaking
the ground with the plow, creating open bodies of water (ponds and tanks), and planting trees whose leaves
allowed the water to evaporate into the atmosphere, which ultimately returned as rain (Glantz, 1994). Only
a few decades passed until the fallacy of this idea was realized. In fact, droughts came to the Midwest
with a surprising regularity of approximately 22 years (Cleaveland and Duvick, 1992). Alternately, major
floods occurred in 1862, 1883, 1903, 1927, 1951, 1973, and 1993 as recorded by the U.S. Geological Survey
gaging station on the Mississippi River at St Louis, Missouri (station 07010000). These floods also came
at approximate 22-year intervals. The 22-year climatic cycle can be teased out of proxy climate data for
various areas in North America (Mitchell et al., 1979). Many approximate 11-year cycles in precipitation,
temperature, lake levels, river flows, and tree rings also have been observed (Hoyt and Schatten, 1997).
Recently, Kodera and Kuroda (2002) demonstrated a connection between the 11-year cycle and position and
intensity of stratospheric winds.

2.2. External causes of climate variability

Several external causes for these cycles have been speculated, but no physical connection has been proven.
The Lunar nodal cycle of 18.6 years was an early suspect (Curie, 1981, 1984). Also, the sunspot number
cycle of 10–12 years and the Hale (magnetic) sunspot cycle of 20–24 years have been suspected for years
(Mitchell et al., 1979). Labitze and van Loon (1988) demonstrated the effect of the solar cycle and the quasi-
biennial oscillation of the tropical stratospheric winds on the stratospheric temperatures in the northern polar
atmosphere. However, other controversial results have led to much confusion over cause and effect (Hoyt and
Schatten, 1997). Previously, no physical connection between magnetic properties of the sun and terrestrial
climate has been unequivocally demonstrated.

Recently, the changing flux of cosmic rays has been suggested as another external cause. Cosmic rays
are actually low-energy galactic charged particles whose flux varies through the solar cycle by as much as
15% (Carslaw et al., 2002). Svensmark and Friis-Christensen, (1997) have argued that increased cosmic rays
(during decreased solar activity and decreased solar wind speeds) tend to increase the extent of low-level
clouds. According to this controversial theory, the climate would be cooler and wetter under increased low
cloud cover during increases in cosmic ray flux.

The most perplexing issue for an external forcing of climate is the assumption that the effects should
be observed worldwide. For example, in considering the cosmic ray theory, global cloudiness should vary
directly with cosmic ray flux. However, some areas of the world have floods, some have droughts, and some
have average climatic conditions, all simultaneously. If the forcing factor for climate is external, then it must
be operating by regional instead of global processes.

2.3. Internal causes of climate variability

The causes of the climatic fluctuations and cycles for North America have also been postulated to have
internal origins. It is well known that climate variations in certain parts of North America have close ties with
the tropical Pacific Ocean temperatures associated with the El Niño/La Niña phenomena and that climatic
predictions of regional streamflow are possible (Dettinger et al., 1999, 2002). There is a measurable effect
of El Niño/La Niña on streamflow in the upper Mississippi River Basin. Guetter and Georgakakos (1996)
found above-normal streamflow in the Iowa River during El Niño and below-normal streamflow during La
Niña on a seasonal basis. Nadan (1996)detected increases in precipitation during El Niño and decreases in
precipitation during La Niña in Texas, Kansas, and North Dakota.

The Pacific Decadal Oscillation (PDO) (Mantua et al., 1997) shows a 15–25-year fluctuation/cycle during
the twentieth century, and a phase change during the mid-1970s has been associated with a step increase
in streamflow characteristics in the United States (McCabe and Wolock, 2002) as well as many other
Pacific Ocean and American environmental changes (Ebbesmeyer et al., 1991). The Atlantic Multi-Decadal
Oscillation (AMO) is an index of detrended sea-surface temperature (SST) anomalies averaged over the North
Atlantic from 0–70 °N and has been identified as an important mode of climate variability (Enfield et al.,
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2001). Both the PDO and the AMO are thought to be important factors in regional multidecadal drought
frequency in the United States (McCabe et al., 2004).

Other indices involve atmospheric pressure such as the Pacific North American (PNA) or the North Atlantic
Oscillation (NAO). The indices are nearly as numerous as the areas whose climate has been studied. A list
and data links for over 30 indices can be found at: http://www.cdc.noaa.gov/ClimateIndices/. Interconnection
between indices of ocean temperature and the resulting atmospheric responses has been described as an
‘Atmospheric Bridge’ (Alexander et al., 2002) and has been used to explain long-distance teleconnections.

Herein lies the key to understanding North American climatic variability. North Pacific Ocean temperatures
affect the atmosphere above and downwind. A study by Bond et al. (2003) shows that colder-than-normal
SSTs throughout the eastern North Pacific Ocean and warmer SSTs northwest of Hawaii during the winters
from 1999 to 2002 have altered jet-stream-level (300 hPa) wind patterns over the North Pacific and North
America.

2.4. Climatic cause and effect correlations

In the past, most studies of climate variation are time-series comparisons of suspected causal phenomenon
with a net climatic result. For example, an El Niño index is compared with streamflow variations in the Desert
Southwest, and a certain correlation or fit is presented. However, the physical processes that are involved
between SSTs and the amount of precipitation that creates the streamflow are not explained in detail. In this
paper, the actual physical processes at each phase of the cause and effect are explained and supported by
physical evidence in a deterministic approach.

A sequence of physically explained events is traced from observed regional streamflow that is produced by
precipitation, which is generated by low-level atmospheric vorticity. Low-level vorticity, in turn, is forced by
the upper atmospheric vorticity that is dictated by ocean-temperature fields. Finally, evidence for an external
forcing function that explains the formation of the ocean-temperature anomalies is presented. The mechanism
allows a regional response to this external forcing function (Perry, 1994, 1995, 2000).

3. DATA

3.1. Streamflow

Streamflow from four major rivers in Iowa and from the Mississippi River is used in this analysis.
Annual mean discharges for four Iowa streamflow-gaging stations used as index stations for Iowa climate
were obtained for the period 1950–2000 from the U.S. Geological Survey’s National Water Information
System (NWIS) website at http://waterdata.usgs.gov/nwis. These stations included the Des Moines River
at Keosauqua, Iowa (station 05490500), Skunk River at Augusta, Iowa (station 05474000), Iowa River at
Wapello, Iowa (station 05465500), and Maquoketa River near Maquoketa, Iowa (station 05418500) (Figure 1).
These rivers represent streamflow from 57% of the area of the State of Iowa (145 765 km2). The long-term
mean discharge for each gaging station was used to compute a time sequence of ratios of annual means to
long-term means. These four individual time sequences were averaged, and a 3-year moving average was
computed for the composite ratios. Three-year moving averages of the flow of the Mississippi River at St
Louis, Missouri (station 07010000), were used to represent the total outflow from the Midwest corn- and
soybean-producing area.

3.2. Precipitation

Annual precipitation from 1950 to 2000 was obtained from the National Climatic Data Center for the nine
meteorological regions in Iowa. The nine regions were averaged for the state, and those values had a 3-year
moving average computed.
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3.3. Atmospheric vorticity

Monthly values of vorticity at the surface-layer level (0.9950 sigma) over Iowa and at the jet-stream level
(0.2101 sigma) over the northern hemisphere were obtained from the Climate Diagnostic Center’s National
Center for Environmental Prediction (NCEP) website at http://www.cdc.noaa.gov/cgibin/DataMenus.pl?stat=
mon.mean&dataset=NCEP. The gridded data set consists of values for January 1958 to November 2001
and extends around the world from 88.54 °N to 88.54 °S latitude. Units of vorticity are in seconds−1 and
at various sigma (pressure) levels. The monthly vorticity values at the two levels were converted to 3-year
moving averages.

3.4. Sea-surface temperatures

Monthly mean SSTs for the North Pacific Ocean available from 1947 to 2001 were obtained from the
Scripps Institute of Oceanography in La Jolla, California. The data are in a 5° grid from 130 °E to 110 °W
longitude and from 60 °N to 20 °N latitude. Annual SSTs for a specified latitude/longitude range were averaged,
and 3-year moving averages were computed.

3.5. Total solar irradiance

Monthly total solar-irradiance (TSI) values from 1945 to 1997 by a model developed by Lean et al. (1995)
updated by Lean (2000), which was developed from observed TSI since 1979. The data are in watts per
square meter computed at the mean Earth/Sun distance. Monthly values were converted into 3-year moving
averages.

Three-year moving averages of the hydrological and meteorological data were used to smooth the annual
variability. Wet and dry periods often persist longer than 12 months. The climate variability that is being
investigated is working on a timescale that is longer than annual but less than decadal.

4. ANALYSES

4.1. Streamflow from precipitation

As the indexed streamflow of Iowa varies, so does the flow of the Mississippi River at St Louis, Missouri
(Figure 3). Therefore, it can be assumed that the climatic conditions that affect streamflow in Iowa are quite
similar to climatic conditions over much of the Midwest.

The 3-year moving average of the ratio of mean annual streamflow (annual flow to long-term mean flow)
for four major rivers in Iowa, the Des Moines, Iowa, Skunk, and Maquoketa Rivers, was compared to mean
annual precipitation for Iowa from 1950 to 1999 (Figure 4(A)), and as expected, the correlation is quite good
(R = 0.91). To be significant at the 1% level with 7 degrees of freedom, the correlation coefficient must be
greater than or equal to 0.40.

4.2. Precipitation from low-level vorticity

Precipitation type varies throughout the year in the form of winter snows, spring showers, and summer
thunderstorms. Other than perhaps airmass-type thunderstorms, most precipitation in Iowa is produced in
conjunction with surface-layer low-pressure systems. A measure of surface-layer low-pressure systems is
low-level (0.9950 sigma) atmospheric vorticity. An increase in precipitation would be a result of an increase
in the 0.9950-sigma vorticity, whereas a decrease in precipitation should be a result of a decrease in surface-
layer vorticity. Surface-layer vorticity was computed and averaged along two lines. These lines were along
40.95 °N from 95.62° to 90 °W and along 91.88 °W from 40.95° to 42.86 °N. Figure 4(B) is a comparison
between the 3-year moving average of surface-layer vorticity (0.9950 sigma) and the 3-year moving average
of mean annual precipitation over Iowa from 1959 to 1999. The correlation between these data is not significant
(R = 0.37). However, the phasing between these two factors is remarkable, especially after 1970.
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Ratio of annual to long-term mean flow for Iowa streams
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Figure 3. Graph showing correlation of ratios of annual to long-term mean flow for Mississippi River at St Louis, Missouri, and annual
to long-term mean flow for Iowa streams

4.3. Low-level vorticity from jet-stream-level vorticity

Surface-layer features such as low- and high-pressure systems are controlled by the upper-level jet stream.
The upper-level jet stream meanders around ridges and troughs and forms a long-wave pattern around the
world in the temperate zone. This global long-wave pattern can be quite persistent with as few as three
complete wavelengths in the summer to as many as six in the winter. An example of the long-wave pattern
over North America is shown in Figure 5 with an average long-wave length of 75° longitude. A ridge is over
the Gulf of Alaska, a trough over the western United States, and another ridge along the eastern seaboard.
Through dynamic motion of the atmosphere, surface low-pressure systems generally form east of the troughs,
and surface high-pressure systems form east of the ridges. Therefore, if there is a ridge in the jet-stream level
over the Gulf of Alaska, there should be more surface low-pressure systems east of the upper trough over the
Midwestern States. Conversely, an upper trough in the Gulf of Alaska results in more surface high-pressure
systems. The jet-stream-level vorticity is calculated for a 10-by-10-degree box centered at 50 °N 150 °W (Area
2, Figure 6). Figure 4(C) is a comparison of the 3-year moving average of surface-layer vorticity (0.9950
sigma) over Iowa with the 3-year moving average vorticity at jet-stream level (0.2101 sigma) above Area 2
from 1959 to 1999. The correlation is significant (R = 0.49) for the entire period, with jet-stream ridging in
Area 2 matching well with low-pressure development over Iowa (Area 3) for a 3-year moving average.

4.4. Jet-stream-level vorticity from sea-surface temperatures

The height of the pressure levels in the atmosphere is a function of the density of the air below that level.
The temperature of the surface of the Earth has an effect on the density of the atmosphere above it. A warm
surface will lower the density of the air, resulting in high-pressure or ridging in the upper levels near the jet
stream. A cooler surface will result in more dense air and a low-pressure or troughing at altitude. As the air
moves through these ridges and troughs, it turns to the right or left, depending upon the pressure field, and it
speeds up or slows down. Each of these factors contributes to the vorticity field. Ridges have lower vorticity
than troughs. The SST in Area 2 is compared in Figure 4(D) with the vorticity at the jet-stream level (0.2101
sigma) within the same boundaries as Area 2, and the comparison shows a significant relation (R = 0.59) for
1959–1998. Cool SSTs are associated with high vorticity (troughing), and warm SSTs are associated with
low vorticity and ridging. (Note that vorticity increases in the negative y-direction.)
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Physical evidence (all data 3-year moving averages)
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Figure 4. Graphs showing relation between 3-year moving averages of (A) Iowa streamflow and Iowa precipitation, (B) Iowa precipitation
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Area 2 sea-surface temperature (SST), (E) Area 2 SST and Area 1 SST, (F) Area 1 SST and total solar irradiance

4.5. Transport of sea-surface temperature

Two major factors are responsible for the temperature of the ocean in Area 2, loss of energy to the
atmosphere, and transport of energy by ocean currents. In this region of the ocean, heat is nearly always
being lost to the atmosphere (Hsiung, 1985). However, the heat capacity of ocean water is many times that
of the atmosphere, and so ocean temperature is slow to change. Ocean currents slowly replenish the heat by
bringing warmer water from the southwestern Pacific by way of the Kuro Siwo current (analogous to the Gulf
Stream in the Atlantic) and the North Pacific Drift current. If this process occurs, the temperature of Area 2
should vary in a way similar to an area in the southwestern Pacific Ocean on the north side of the Pacific
Warm Pool just northeast of the Philippine Islands but with a time lag. This time lag should be the period
of time for water to travel from the southwestern Pacific Ocean to the area south of the Gulf of Alaska. The
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Figure 4. (Continued)

average speed of this transport could be approximately three years, the time lag that Favorite and McLain
(1973) observed in the movement of a warm-temperature anomaly traveling the same course. Temperature
and salinity anomalies have also been tracked over a period of several years in the Atlantic Ocean (Hansen
and Bezdek, 1996). A comparison between the SST in the area 130° –140 °E and 20° –30 °N (Area 1) with the
SST in Area 2 is significant (R = 0.43) from 1970 to 2000 when the SST for Area 1 is lagged three years
(Figure 4(E)). The 3-year lag time gage the best correlation of the range of 0–7 years. Area 1 was chosen
because it is in the northwestern part of the Pacific Warm Pool, and water from this area would most likely
be drawn into the Kuro Siwo current.

4.6. Sea-surface temperatures from total solar irradiance

The origins of the SST anomalies in the western tropical Pacific Ocean are subtle and complex. However,
the basic fact remains that the ocean acquires energy in the tropics and transports it northward. One method
of acquiring energy is through the absorption of radiant energy from the Sun.
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Although SSTs show significant coupling with atmospheric parameters (Wallace et al., 1990), it is not the
ocean’s surface that stores the majority of the solar energy. The visible spectrum contains about one-half of the
total energy available from the Sun at the Earth’s surface (Liov, 1980), and those wavelengths can penetrate
well below the ocean’s surface. Lewis et al. (1990) showed that solar radiation in visible frequencies, usually
assumed to be absorbed at the sea surface, penetrates to a substantial depth below the upper mixed layer of
the ocean that interacts directly with the atmosphere.

The transparency of the tropical oceans is dependent upon the amount of biogenic material, phytoplankton
pigments, and the degradation products that are present. In the Pacific Ocean, transparency increases from
east to west, with greatest penetration of solar energy occurring in the western tropical Pacific. The net
radiative transport of heat downward through the base of the mixed layer (which varies from 10 m in
the eastern and western Pacific to about 60 m in the central Pacific) is approximately equivalent to the
estimated climatological net surface-heat flux into the ocean over much of the western Pacific (Lewis
et al., 1990). This heat returns to the ocean’s surface months or years later to interact with the atmosphere
as the general circulation of the Pacific Gyre transports the water northward and eastward toward North
America.
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If there is a variation in the amount of radiant energy received by the ocean, then the energy stored within
the ocean should vary in a similar manner. Significant correlations exist between TSI and ocean-temperature
data (White et al., 1998). TSI flux was compared with the tropical SSTs in the western Pacific Ocean in Area
1 in Figure 4(F). If TSI flux is high, then there should be warmer SSTs as a result of increased energy. The
graph does show a connection between the TSI and SST data from 1970 to 2000 with a 0-year lag time.
Although the amplitudes of the two time series are not consistent, resulting in a less than significant agreement
(R = 0.25), the phasing is in good agreement. The comparison is noteworthy because the El Niño/La Niña
effect is quite strong in this region.

4.7. Consistent phasing of supporting time-series data

Even though the progression of physical connections between streamflow, precipitation, low-level vorticity,
jet-stream vorticity, SST in the Gulf of Alaska, SST in the north part of the Pacific Warm Pool, and TSI have a
range in correlation coefficients from a significant R = 0.90 to an insignificant R = 0.25, the phasing between
each of the data sets is consistent. A measure of the degree of phasing of the data sets is a comparison of the
spectrum analysis for each data set used in the correlations. All data sets demonstrated significant spectral
power in the range of frequency from 0.092 to 0.096 cycles per year (10.8 to 10.4 year cycles).

With lower correlation coefficients for some of the steps in the six-step sequence of physical connections,
a correlation between TSI (cause) and streamflow (effect) would be expected to be negligible. However, the
comparison between Iowa-indexed streamflow and TSI variations is comparatively quite high (Figure 6) with
R = 0.67. This final correlation is an indication that although the intermediate areas chosen for this study may
not be the most influential areas or the location of the influential areas may be moving in time, the relation
between TSI and streamflow in Iowa is significant and can explain 45% of the Iowa streamflow variability.

As shown in Figure 3, the indexed flow of the four Iowa rivers is representative of the flow of the Mississippi
River at St Louis, Missouri. Streamflow records at this gage (station 07010000) also show a good relation
with TSI (R = 0.60). Climatic conditions and the factors that effect Iowa streamflow are similar to those of
the other Midwestern states.

5. DISCUSSION

By taking the deterministic approach of stepping through the individual physical processes involved,
TSI variations can be a plausible cause of climatic variations in the upper Mississippi River Basin. A
solar/hydroclimatic mechanism that accounts for each physical process (Figure 7) can be described.

The mechanism begins with the absorption of varying amounts of solar energy into the tropical Pacific
Ocean Warm Pool, creating ocean-temperature anomalies (step 1). The ocean-temperature anomalies then are
transported over time (approximately 3 years) by ocean currents from the southwestern Pacific Ocean to the
North Pacific Ocean (step 2) where the warmer or colder-than-normal water initiates the development of
ridges or troughs in the upper atmosphere at jet-stream levels (step 3). Upper atmospheric ridges or troughs in
the North Pacific have a distinct effect on the formation of lower atmospheric low-pressure or high-pressure
systems over North America (step 4). Low-pressure systems produce precipitation (step 5), and their intensity
and frequency determine the regional hydrologic response of streamflow (step 6).

The location, strength, and wavelength of the jet stream help determine what part of North America is wet
or dry. Even though the TSI variations are global, the solar/hydroclimatic mechanism presented here allows
for regional variability through the creation and movement of ocean-temperature anomalies.

The variability of Midwestern streamflow explained by TSI from 1950 to 2000 accounts for almost one-half
of the total (45%). The time lag is not constant during this 50-year period with the first two decades having
about a 4-year lag. The variation in time lag could be a function of ocean current velocities. Other factors
such as El Niño/La Niña (NINO3 index, 1950–2000) have some influence on streamflow in the Midwest but
can only account for less than 10% of the variability of Iowa streamflow on an annual basis and less than
1% on a 3-year moving average comparison. There also would be an effect of Atlantic Ocean SSTs on the
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Figure 7. Schematic of solar/hydroclimatic mechanism

development of upper-level vorticity over North America. However, on the basis of the results presented in
this paper, TSI effects on Pacific Ocean temperatures and vorticity patterns have a viable connection with
streamflow in the central part of North America.

6. SUMMARY

A six-step mechanism for a solar/climate connection for the Midwestern United States in central North
America was examined in this paper. A 50-year sequence of annual TSI was correlated with SSTs just
northeast of the Philippine Islands in the area 130° to 140 °E and 20° to 30 °N (Area 1). Next, the SSTs in
Area 1 were correlated with SSTs in the eastern North Pacific Ocean at 150 °W and 50 °N (Area 2). The
correlation shows a 3-year lag, long enough to allow for transport of SST anomalies by ocean currents. Then,
the SSTs in Area 2 are correlated with the vorticity above Area 2 at the jet-stream level, which provides a
measure of upper atmospheric ridging or troughing. Warmer SSTs initiate the development of ridges (lower
vorticity), and the cooler SSTs initiate the development of troughs (higher vorticity). Subsequently, upper
atmospheric ridges near Area 2 tend to form lower atmospheric low-pressure systems over Iowa and central
North America, and, conversely, troughs form high-pressure systems. The upper atmospheric vorticity over
Area 2 is correlated with the lower atmospheric vorticity over Iowa. Finally, the lower atmospheric vorticity
over Iowa is correlated with average Iowa precipitation and with a mean ratio of annual flow to long-term
mean flow for four major rivers in Iowa.

Even though the correlation coefficients are not always above the level of significance, consistent phasing
of the climate linkages to the solar forcing is strong evidence for its existence. The correlation between the
original TSI signal, lagged 3 years, and the long-term mean flow for Iowa rivers is significant (R = 0.67).
The relation between TSI and Midwest streamflow is also evident in the fact that the flow of the Mississippi
River at St Louis, Missouri, shows a significant relation with TSI (R = 0.60).
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