

Journal of Geophysical Research: Space Physics

Supporting Information for

The signal of solar storms embedded in cosmogenic radionuclides: Detectability and uncertainties

F. Mekhaldi¹, F. Adolphi² K. Herbst³ and R. Muscheler¹

¹Dept. of Geology – Quaternary sciences, Lund University, Sölvegatan 12, 22663 Lund, Sweden

²Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

³Christian-Albrechts-Universität zu Kiel, Institut für Experimental und Angewandte Physik, Kiel, Germany

Contents of this file

Figures S1 to S2 Tables S1

Figure S1. Cut-off energies for vertically incident protons according to Equation 4.

Figure S2. Top-left: Differential fluence spectra for protons for GLE no. 05 in magenta (derived from Raukunen et al. 2018) and extrapolated He-particle differential spectrum in green using a H/He abundance ratio of 19.2 (see text). Top-right: Cutoff-energy as a function of latitude for protons (magenta) and He-partucles (green) for today's dipole moment. Bottom: Potential contribution (in percentage increase) of He-particles to the global production rate increase in ¹⁰Be (red) and ³⁶Cl (blue) caused by the 59 GLEs studied here.

Ice core	σ	A _{peak}	∫peak	A/ʃ
NEEM	0.17	1.71	2.53	0.68
NGRIP	0.2	1.65	3.30	0.50
Tunu	0.25	1.23	2.01	0.61
WAIS	0.17	1.46	3.22	0.45
Dome F	0.24	0.89	2.01	0.44
Average	0.2	1.4	2.6 (3*)	0.54

Table S1. Summary of the standard deviation (σ), peak amplitude (A_{peak}) and time-integrated peak factor (\int_{peak}) of the five ¹⁰Be records plotted in Fig. 6. The data are found in Sigl et al. (2015) and Miyake et al. (2015).