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a b s t r a c t

We present a physical analysis of the occasionally forwarded hypothesis that solar variability, as shown

in the various photospheric and outer solar layer activities, might be due to the Newtonian attraction

by the planets. We calculate the planetary forces exerted on the tachocline and thereby not only include

the immediate forces but we also take into account that these planetary or dynamo actions occur

during some time, which demands integration. As an improvement to earlier research on this topic we

reconsider the internal convective velocities and we examine several other effects, in particular those

due to magnetic buoyancy and to the Coriolis force. The main conclusion is that in its essence:

planetary influences are too small to be more than a small modulation of the solar cycle. We do not

exclude the possibility that the long term combined action of the planets may induce small internal

motions in the sun, which may have indirectly an effect on the solar dynamo after a long time.

& 2012 Published by Elsevier Ltd.

1. Introduction

Various authors have dealt with the problem of the possible
planetary influence on solar activity. The first, primitive proposi-
tion that such might be the case arose, down in the 19th century,
from the similarity between the 12-years orbital motion of Jupiter
and the 11-years Schwabe cycle in the sunspot numbers. It was
soon realized that this assumption was too simple and actually
incorrect (De Jager, 1959), but these ideas were refined during the
past century, also in view of the renewed interest in the problem
of the possible solar influence on terrestrial climate. One of the
often quoted papers on the suggested influence on the solar
dynamo (Jose, 1965) is related to the 178.7 years period around
the centre of mass of the solar system, due to Jupiter, Saturn,
Uranus and Neptune. More papers on the same theme (cf. e.g.
Wood and Wood, 1965; Landscheidt, 1999; Charvátová, 2007;
Callebaut et al., 2008; Fairbridge and Shirley, 1987; Milan et al.,
2007; Wolff and Patrone, 2010; Georgieva et al., 2009; Tan, 2011,
with many references to earlier work) are all aiming at finding
periodicities in planetary motions that are equal to or can be
related to the known solar periodicities.

So far the study of solar variability has identified five solar
periodicities with a sufficient degree of significance (cf. the review
by De Jager, 2005, Chapter 11). These periods are:

– The 11 years Schwabe cycle in the sunspot numbers. We note
that this period is far from constant and varies with time, e.g.
during the last century the period was closer to 10.6 years.

– The Hale cycles of solar magnetism encompasses two Schwabe
cycles and shows the same variation over the centuries.

– The 88 years Gleissberg cycle (cf. Peritykh and Damon, 2003).
Its length varies strongly over the centuries, with peaks of
about 55 and 100 years (Raspopov et al., 2004). The longer
period prevailed between 1725 and 1850.

– The De Vries (Suess) period of 203–208 years, with a fairly
sharply defined cycle length.

– The Hallstatt cycle of about 2300 years. An interesting new
development (Nussbaumer et al., 2011) is the finding that
Grand Minima of solar activity seem to occasionally cluster
together and that there is a periodicity in that clustering. An
example of such a cluster is the series of Grand Minima that
occurred in the past millennium (viz. the sequence consisting
of the Oort, Wolf, Spörer, Maunder and Dalton minima). This
kind of clustering seems to repeat itself with the Hallstatt
period.

It should be remarked in this connection that virtually none of
the papers on planetary influences on solar variability succeeded
in identifying these five periodicities in the planetary attractions.
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Another approach to this problem is the study of climate
variations in attempts to search for planetary influences. As an
example we mention a paper by Scafetta (2010), who found that
climate variations of 0.1–0.25 K with periods of 20–60 years seem
to be correlated with orbital motions of Jupiter and Saturn. This
was, however, not confirmed in another paper on a similar topic
(Humkin et al., 2011). This is another reason for a more funda-
mental look at the problem: can we identify planetary influences
by looking at the physics of the problem?

The challenge we face here is twofold: planetary influences
should be able to reproduce at least the most fundamental of the
five periodicities in solar variability, and secondly the planetary
accelerations in the level of the solar dynamo should be strong
enough to at least equalize or more desirably, to surpass the
forces related to the working of the solar dynamo. In this paper
we discuss the second aspect, realizing that the attempts to cover
the first aspect have been dealt with sufficiently in literature
while the second aspect was grossly neglected so far. A first
attempt to discuss it appeared in an earlier paper (De Jager and
Versteegh, 2005; henceforth: paper I). They calculated three
accelerations:

1) One by tidal forces from Jupiter. They found aJup¼2.8�10�10

m/s2.
2) One due to the motion of the sun around the centre of mass of

the solar system due to the sum of planetary attractions (ainert).
3) The accelerations (adyn) by convective motions in the tacho-

cline and above it.

It was shown in their work that the third one is larger by
several orders of magnitude than the first and second mentioned
accelerations. Soon after its publication it was realized that some
of the forces are effective for a long time, which demands an
integration of the forces over the time of action. That might
change the results. It was also realized that more forces may be
operational than the two mentioned in paper I. Therefore, in the
present paper, we improve and expand these calculations; we
investigate a few more possible effects; moreover, we study the
effect of the duration of these actions as well.

2. Planetary influences

2.1. Planetary accelerations: some numbers

We calculate the planetary effects at the tachocline level,
because it is there that the essential aspects of solar activity
originate (cf. Parker, 1955a, 1955b; Steenbeck and Krause, 1967,
and later authors). There are many reviews on the solar dynamo;
discussing its physical mechanisms (cf. reviews by Fisher et al.,
2000; Ossendrijver, 2003; De Jager and Duhau, 2011; see also
research papers by Seehafer and Pepin, 2009; Ruediger and
Kitchatinov, 2007; Kapyla, 2011; Georgieva and Kirov, 2011).
The tachocline is the layer where solar variability finds its origins.
It has a thickness of about 30,000 km and is situated at a depth of
about 200,000 km below the solar photosphere. Hence, our
problem is: what is the influence of planetary Newtonian attrac-
tions on the tachocline.

In our Table 1 we list the tidal accelerations in the tachocline
due to the planets up to Saturn. The latter is more than 20 times
smaller than aJup; hence the farther planets are irrelevant in this
respect. Note that the tidal accelerations of the Earth and of
Mercury are each nearly half the one by Jupiter, while the one of
Venus is nearly equal to that of Jupiter. If the latter were
important for the solar cycle then there should be several short
cyclic variations superposed to the solar cycle.

The combined acceleration (at the tachocline level) due to
Mercury, Venus, Earth and Jupiter can occasionally amount to
7.8�10�10 m/s2. With respect to the centre of the solar system
this may amount to �31�10�10 m/s2. Indeed, according to Jose
(1965) the distance between the centre of the sun and the centre
of mass of the solar system varies from 0.01 to 2.19 solar radii.
Jose studied this over a complete ‘‘system period’’ (178.7 years),
extending from 1834 to 2013. The maximal elongation between
both centres is therefore 1.533�106 km, which is 3 times the
distance from the centre of the sun to the tachocline (as used in
Table 1). The part of the tachocline, which is at the side of the
centre of mass, is then about 106 km away from the centre of
mass. Hence, the figures in Table 1 may then occasionally be
doubled. For the part of the tachocline on the opposite side of the
sun’s centre we have 2�106 km and the values in Table 1 may
occasionally be multiplied by �4. (For comparison: the accelera-
tion on the Earth due to the moon is 3.5�210�5 m/s2 and the
moon’s tidal acceleration at the surface of the Earth is about
1.2�10�6 m/s2.)

Periods: the sidereal period of Jupiter is 11.86 years while
during the rather active Grand Maximum of the 20th century we
obtained 10.6 years for the average solar cycle. Jupiter should be
out of phase in a few cycles. Moreover, the activity due to Jupiter
should go on all the time with barely pronounced maxima and
minima unless one particular place (orientation) of the tachocline
is more suited than the rest for generating sunspots. Then the
effect of Jupiter e.g. might reveal itself in a strong azimuthal
asymmetry of the sunspot distribution with the rotation period of
the sun (about 27 day at the tachocline). Moreover, the tidal effect
acts on both sides of the centre with about the same strength,
which means that in the considered asymmetric case the spots
should show half the period of sun’s revolution. However,
Mercury, Venus and the Earth would complicate (blur out to
some extent) this asymmetric appearance. Hence, the monthly
rotation of the sun hampers for an important part a reconciliation
of the orbital period of Jupiter and the period of the solar cycle.

Finally, the polarity changes of the solar cycle can hardly be
understood or even not at all, as stated in paper I, since Jupiter (like
all the planets) is practically in the equatorial plane of the sun
(31 deviation for Jupiter). Of course, the main mechanism of the solar
cycle may be one inherent to the sun (e.g. the dynamo) while Jupiter
might only be the cause of some extra effect, which adds itself to the
result of the inherent mechanism during the odd cycles and which
counteracts it during the even cycles. This would represent an
explanation of the Gnevychev–Ohl rule (1948): an even cycle is in
many cases – though not always; it is not a strict rule – a bit weaker
than the odd one following it. (Cycles 22 and 23 form a notable
exception to this rule and are an indication of the coming deep
Grand Minimum (De Jager and Duhau, 2009; Makarov et al., in
preparation; Duhau and De Jager, 2010).

Hence, the planets can hardly be an important agent in the
solar cycle. To see that they can at most contribute a small

Table 1
Tidal accelerations due to the first six planets at the tachocline and with respect to

the solar centre. At the solar surface they have to be increased by 40%. With

respect to the centre of the solar system they may increase by a factor of up to 4.

Planet Tidal accelerations at

tachocline in 10�10 m/s
2

Mercury 1.1

Venus 2.6

Earth 1.2

Mars 0.036

Jupiter 2.8

Saturn 0.13
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secondary effect we investigate various accelerations (tidal and
other) located at the tachocline. Nevertheless, we cannot fully
exclude that the tidal actions may have some very small effect on
the solar layers and thus indirectly on the meridional motion,
which may affect the generation of sunspots. Let us just mention a
possibility: all the planets circulate in the same sense around the
sun, which is the sense of the solar rotation as well. The latter is
much faster than the planetary revolutions, but the accumulated
action of all the planets may have an effect. We remind the reader
of the relations between the sunspot cycle and the poleward
motion of the surface layers on one hand and the meridional
motion on the other hand (Makarov and Makarova, 1996;
Makarov et al., 2001; Callebaut and de Jager, 2007; Georgieva
et al., 2009).

2.2. New determination of ainert

The motion of the sun around the centre of mass of the solar
system was studied by Jose (1965). His figure 1 shows the motion
of the sun’s centre around the centre of mass of the solar system
from 1833 to 2013. The average distance of the solar centre to the
mass centre is on the order of one solar radius and the maximum
distance is about two solar radii. His figure 2 gives the time
variation of various quantities, among which that of the radius of
curvature Rcurv (t) and that of the momentum of the whole solar
body, dJ/dt. The consequent acceleration for the whole solar body
is d(dJ/dt)/dr. An estimated value for it is obtained by dividing dJ/

dt by the average radius of curvature Rcurv and for obtaining ainert,
the planetary acceleration per kg of matter, that quantity must be
divided by the solar mass. Hence

ainert ¼ ðdðdJ=dtÞ=drÞÞ=Mo ¼ ðdJ=dtÞ=ðRcurvMoÞ ð1Þ

From Jose’s figure 2 we read the average value of
Rcurv¼5�10�3 AU, while that of 9dJ/dt9 is 2�10�8Mo(AU/40d)2.
By dividing this quantity by (RcurvMo) and introducing MKS values
for AU and 40 days, one obtains ainert¼5�10�8 m/s2. This value is
about 10 times larger than that in paper I. The difference is due to
a numerical error in paper I.

Calculation of centripetal acceleration: Let us deduce ainert

alternatively as the centripetal acceleration. The period of motion
of the sun around the centre of mass is 178.7 yr (Jose, 1965),
which is composed of nine Jupiter–Saturn periods, combined in
groups of three. The Jupiter–Saturn period is 19.9 yr. (This does
not differ much from a Hale period, but is not sufficiently close to
it for avoiding large phase differences in a few cycles. Moreover,
the polarity reversal is again hard to explain in this way.) The
circumference of a quasi-circle described in 19.9 yr is 2pRcurv. The
corresponding velocity is v¼2pRcurv/19.9�3.15�107 (about 7 m/s).
The centripetal acceleration is then (say up to a factor 2)

acp ¼
v2

Rcurv
¼

4p2Rcurv

ð19:9� 3:15� 107
Þ
2
ffi7� 10�8 m=s2:

This confirms our estimation ainert as being much smaller than
adyn (see further). Moreover, ainert and acp, act on the whole sun
and are thus relatively irrelevant. In fact, the sun is in free fall
around the centre of mass of the solar system (Shirley, 2006)
except for spin–orbit coupling (see e.g. para vi in Section 4) and
for tidal effects of the planets.

The inertial acceleration of the sun around the centre of mass of
the solar system, as estimated by Wood and Wood (1965) is on
the order of 1–3�10�7 m/s2; this is at most a factor 4 larger than
our estimation. Their value is (only) a factor 20–60 times smaller
than adyn, but much closer to it than aJup. However, in view of the
free fall of the sun this is irrelevant for our purpose.

The actually existing acceleration adyn at the tachocline level
(which is supposed to be responsible for the solar dynamo) was

derived in paper I as adyn¼6�10�6 m/s2 which is about 4 orders
of magnitude larger than aJup and still much larger than ainert as
well. De Jager and Versteegh (2005) concluded that the accelera-
tions caused by the planets are simply too small as compared
with the accelerations that occur in the tachocline. Moreover,
they stressed rightfully that the planetary actions do not give an
explanation for the polarity changes in the solar cycle, but as
explained before this may give a supplementary modulation (cf.
the Gnevyshev–Ohl, 1948 rule).

In the next section we re-estimate the convective velocities,
calculate some other effects which were not considered in paper I,
and take into account the duration of the various actions. Indeed,
a small acceleration acting during several years might amount to
a significant effect.

3. Duration and effects of tidal and convective accelerations.

3.1. Tidal acceleration

Fixing a blob in the tachocline shows that the tidal accelera-
tion varies with the solar rotation, for which we assume here a
value of 27 days (this being an average value for the sunspot belt).
Moreover, the tidal acceleration is directed alternatively towards
and away from the centre of the sun with in between a
perpendicular orientation. Hence, its final effect will still be
negligible as compared to the one due to the motion around the
centre of mass. Calculating crudely (i.e. without taking into
account friction, effect of other layers, etc.) for 6 days yields
1.5�10�4 m/s as the maximum resulting velocity which a blob
or a layer of solar matter located in the tachocline may obtain
from Jupiter in this manner. Correspondingly the distance (dis-
placement) covered during that period would be less than 100 m
(even neglecting the variation in direction), which is negligible for
an object like the sun.

3.2. Acceleration around the centre of mass of the solar system due

to the enduring combined action of planets

Actually, Jupiter moves about 301/yr and Saturn about 121/
year. (We consider Jupiter and Saturn as an example; in fact
Saturn is rather unimportant according to Table 1; however,
Saturn matters for the centre of mass.) This makes a difference
of 181/yr; hence, they combine perfectly their attraction every
19.6 years. If we count from 541 before to 541 after the opposition,
then they combine their actions roughly during 6 yr. Of course,
this varies too with the rotation of the sun (towards and away
from the centre), however with different amplitudes; hence some
net effect may result. In 18�107 s, aJup results in a velocity of
0.05 m/s and a displacement of 4500 km. This is a measurable and
not insignificant magnitude, but small as compared with the solar
radius. It may be noted that the neighbouring layers experience a
similar effect. In the next part of our paper we show that the
effect of planetary motions is negligible as compared to some
other effects.

3.3. Acceleration due to convective cell motions

At the depth of the tachocline the temperature T¼2.27 106 K
and the density r¼230 kg/m3. (This is about a quarter of that of
water.)

The convective velocities are some 10 m/s (Robinson et al.,
2004). We adhere to the usual assumption that convective
elements rise over one or two scale heights h before dissolving.
We assume also that they rise with constant acceleration a; hence
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v¼at. Then, after some algebra: a¼v2/yh where y is 2–4. With
h¼38 000 km, we obtain a¼(0.65–1.3)�10�6 m/s2.

The data obtained here confirm the statement in paper I that
the planetary attractions discussed so far are negligible as
compared to the acceleration due to convective motions, even
when we take into account the duration of their actions, although
the ratios turn out somewhat different from those in paper I.

4. Other possible effects

We may further extend the mechanisms by the following ones.

4.1. Acceleration due to buoyancy force on magnetic flux tube near

tachocline

The thermal buoyancy contribution seems to be the main driving
acceleration for the rising of the flux tubes. A rough estimation of
the relative density change yielded 5�10�3, which is comparable
with the situation in Bénard cells (Chandrasekhar, 1961).

Using the usual conventions we have

pinþmH2=2¼ pex, ð2Þ

as the relation between the pressure in the flux tube and the
pressure outside it (for the same gravitational potential). Clearly,
pin is smaller than pex. Using p¼nkBT inside and outside the tube
yields

nex�nin
Tin

Tex
¼

mH2

2kBTex
,

with obvious notations. As Tin/Texr1, but very close to 1, we have
to a good approximation for the difference in density (Callebaut
and de Jager, 2007)

dn¼
ðmHÞ2

2mkBTex
, ð3Þ

which yields dn¼�1.4�1024 m�3 in the tachocline when taking
H¼100,000 G (10 T). T at the tachocline is 2�106 K and the mass
density in the tachocline is 0.15 g/cm

3

(Lang, 1991) and thus the
number density n is about 0.15/0.75�1.67�10–24

¼1.3�1023 cm�3

or n¼1.3�1029 m�3, taking the molecular weight in the tachocline
to be 0.7. Hence the relative difference in density is (dn/n)m ¼�10�5

between a flux tube and a neighbouring layer without magnetic field.
This may be translated to a difference in acceleration with respect to
neighbouring material of 10�5 gsun. Now gtachocline in the tachocline is
close to 500 m/s2 (note: it may seem surprising that at this level gsun is
larger that at the solar surface (274 m/s2) but that is simply due to the
fact that virtually the whole solar mass is situated below the
tachocline level, as can be read in solar model calculations). For the
difference under consideration we find a change in acceleration
(buoyancy�magnetic) of abm�0.005 m/s2. This one is acting con-
tinuously and specifically on the flux tube and not on the neighbour-
ing material, which constitutes a great difference with the items
discussed in Sections 2 and 3. Anyway, this is 3 orders of magnitude
more than the adyn. However, now the inertia and friction with
surrounding layers will strongly reduce the rising velocity, whose
maximum is probably some 40 m/s so that the distance of
200 000 km may be covered in 5–8�106 s (a few months).

Note on the equipartition of the energies: We first determine the
equipartition value for which the magnetic energy equals the
kinetic one of the rising convective elements. With a density of
230 kg/m3 and a convective velocity of 10 m/s (as assumed above)
equipartition is reached for a field of 104 G, a value that is
generally mentioned in literature (D’Silva and Choudhuri, 1993;
Caligari et al., 1995; Ruzmaikin, 1998). For larger field strengths,

on the order of 105 G, tachocline models show that the fields are
expected to break and disintegrate into smaller filaments, causing
flux ropes to rise (Hughes, Rosner and Weiss, 2007; De Jager and
Duhau, 2011). Subsequently they show themselves at the surface
as sunspots. One may also compare with the gravitational energy
(Callebaut et al., 2002).

By way of comparison – though realizing that the physical
implications do not apply to our present problem – we next
compare the equipartition between the thermal energy (say in
one direction) and the magnetic energy: (nkBT/2)¼(mH2/2),
with kB¼1.38�10–23 J K�1, m¼m0¼4p�10�7 H/m, n¼1.3
�1029 m�3, T¼2.3�106 K. This results in B¼2000 T
(2�107 G!). The equipartition, however, is by far not yet reached
when blobs start to rise: in fact, the motion and the magnetic
energy should first roughly equalize their energies (taking a long
time!) and later (taking much more time) the magnetic energy
and the thermal energy may equalize. In the actual case even the
first step is prevented because when the field reaches about 10 T
(100 000 G), the flux tubes start to rise and most of their energy is
dissipated at the solar surface, either in heat or as fields in the
solar atmosphere.

4.2. Deceleration due to centrifugal force of a magnetic flux tube

near the tachocline

The centrifugal acceleration is given by ac ¼o2r sinW with W
the co-latitude. As we are mainly thinking of sunspots, we
approximate the sine by 0.9 or even 1. Taking 27 days for the
rotation period at the tachocline we find o¼2.7�10�6 s�1 and
ac¼3.6�10�3 m/s2. For (dn/n)m¼10�5 we find a deceleration
(centrifugal-magnetic) acm¼�3�10�8 m/s2, opposing the
motion towards the solar surface caused by the buoyancy force
as it has a centripetal effect. This acm is negligible compared to the
buoyancy contribution abm caused by the same (dn/n)m. For other
latitudes the effect is even smaller.

4.3. Coriolis force

The Coriolis force acts on matter moving in a rotating system.
There are two places where it can be of importance in the context of
the present paper: (a) the ascending (convective) motions in the
rotating solar body and (b) the motion of the sun around the centre of
gravity of the solar system. We calculate the corresponding accelera-
tions for both cases, to begin with the effect on convective elements.

(a) The Coriolis acceleration (Feynman et al., 1966) is given as
acor¼2oSvrise with the angular frequency of the rotating sun
oS¼2p/(27�86 400) s�1 and vrise¼20 m/s (say). This yields
acor¼10�4 m/s2. This would result in a maximum velocity of
500 m/s in 2 months and a displacement of 1.2�109 m,
which is nearly a solar diameter! However, the Coriolis force
is perpendicular to the rising velocity; hence it produces some
rotational motion, not an ascending one. Moreover, the
neighbouring regions may strongly damp this motion. How-
ever, this motion may be relevant for the solar dynamo, but
its relation to the (individual) planets will be blurred out.

(b) Effect of Coriolis force due to the motion around the centre of
gravity. Here the angular frequency oC is about 2 orders of
magnitude smaller than oS as now the period is about 20 yr
(essentially the period for Jupiter and Saturn, which seems
more reasonable than 178.7 yr) instead of a month. However,
our situation is more complicated than the one considered by
Feynman (1966). Our sun is rotating with oS and revolving
around the centre of mass with oC. If we suppose that matter
is moving with velocity v, then the associated Coriolis accel-
eration (perpendicular to v) due to the revolution is
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aCor¼2voC, neglecting the solar rotation for a moment. With
v¼20 m/s and oC¼10�8 s�1 we obtain aCor¼4�10�7 m/s2,
an order of magnitude less than ainert or acp given above, but
comparable to the acceleration given by Wood and Wood
(1965). However, v changes its orientation due to oS, say
v¼ v0 cosoSt: This goes much faster than the revolution due
to oC. Hence, after one rotation of the sun, the corresponding
velocity is about

R
2v0oC cosðoStÞdt, and it practically

vanishes.

5. Conclusions

We calculated various accelerations near or in the tachocline
area and compared them with those due to the attraction by the
planets. We found that the former are larger than the latter by
four orders of magnitude. Moreover, the duration of the various
causes may change a bit the ratio of their effects, but they are still
very small as compared to accelerations occurring at the tacho-
cline. Hence, planetary influences should be ruled out as a
possible cause of solar variability. Specifically, we improved the
calculation of ainert in paper I and gave an alternative estimation. If
the tidal acceleration of Jupiter were important for the solar cycle
then the tidal accelerations of Mercury, Venus and the Earth
would be important too. The time evolution of the sunspots
would then be totally different and the difference between the
solar maximum and its minimum would be much less
pronounced.

Taking into account the duration of the acceleration aJup does
not really change the conclusions of paper I: the planetary effects
are too small by several orders of magnitude to be a main cause of
the solar cycle (they can be at most a small modulation); more-
over, they fail to give an explanation for the polarity changes in
the solar cycle. In addition, the periods of revolution of the planets
(in particular Jupiter) do not seem compatible with the solar cycle
over long times. In fact, a planetary explanation of the solar cycle
is hardly possible.

Besides, we estimated various other effects, including the ones
due to the magnetic field (buoyancy effect and centripetal con-
sequence) and those due to the Coriolis force; their relation to the
tidal effects can be indirect at its utmost best (by influencing
motions which might affect the solar dynamo).

As all planets rotate in the same sense around the sun their
combined action over times of years may induce a small motion
e.g. at the solar surface. This may have an influence on the
meridional motion or on the poleward motions of the solar
surface (Makarov et al., 2000), having in turn an influence on
the solar dynamo (maybe leading to an effect like the Gnevyshev–
Ohl rule). Again, this will be very indirect and the effect of one
planet or one orbital period will be masked.
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