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Usual explanations of spiral galaxy rotation curves assume circular orbits of stars. The conse-
quences of giving up this assumption were investigated through a couple of models in an earlier
communication. Here, further investigations of one of these models (the spinner model) shows that
it can explain the formation of the spiral arms as well. It is also shown that the behavior of the tail
of the rotation curve is related to the age of the galaxy. The spinner model conjectures the existence
of a spinning hot disk around a spherical galactic core. The disk is held together by local gravity
and electromagnetic scattering forces. However, it disintegrates at the edge producing fragments
that form stars. Once separated from the disk, the stars experience only the centrally directed grav-
itational force due to the massive core and remaining disk. A numerical simulation shows that a
high enough angular velocity of the disk produces hyperbolic stellar trajectories that agree with the
observed rotation curves. Besides the rotation curves, the simulation generates two other observable
features of spiral galaxies. First, it shows the formation of spiral arms and their nearly equal angular
separations. Second, it determines that, for large radial distances, younger galaxies have rotation
curves that dip downwards and older galaxies have a rising trend. The strength of this model lies in
the fact that it does not require the postulation of dark matter or MOND. This model also revisits
the method of estimation of star age. As the stars are formed from an already hot disk, they do not
start off as cold collections of dust and gas. Hence, their ages are expected to be significantly less
than what current models estimate. This explains why they have not escaped the galaxy in spite of
their hyperbolic trajectories.

PACS numbers: 95.10.-a, 95.35.+d

I. INTRODUCTION

Measured tangential velocities[17] of stars in the spi-
ral arms of spiral galaxies have presented a challenge for
theoretical modeling for some time[1–4]. In one class
of models dark matter is postulated to explain these
velocities[5–11]. Another class of models, called MOND
(Modified Newtonian Dynamics) postulates a modifica-
tion of Newtonian gravity for the same purpose[12–14].
Neither dark matter nor MOND has been observed di-
rectly yet. So here, a new kind of model (the spinner
model) is revisited. This model has already been found
to explain observed rotation curves without the postula-
tion of any new kind of matter or laws of gravity[15]. In
this communication it is shown that the spinner model
can produce the observed spiral arm shapes as well as
estimate the age of galaxies.

Anyone who has played with firework spinners as a
child (or an adult) must have noticed their resemblance
to spiral galaxies. Anyone who has not can always search
“firework spinner” on YouTube to see it. The trajectories
of the glowing embers in a spinner look like the stars
of the spiral arms. Quite obviously, the actual motion
of the stars cannot be observed directly. But the still
picture that we see suggests characteristically hyperbolic
trajectories (like the firework spinner) rather than the
circular trajectories as assumed by most analyses. The
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assumption of hyperbolic star trajectories opens up the
following questions.

• Do the stars of the spiral arms eventually escape
the galaxy?

• If stars eventually escape the galaxy, the observed
stars must be young enough to be seen as part of
the galaxy. Then, why are significantly older stars
still observed in the Milky Way?

• Why do the stars conspire to have almost the same
tangential speed beyond a certain distance from the
core?

The answer to the first question is “Yes”. According to
this model the “spiral” state of a galaxy is just one tran-
sient state in its time evolution. Due to their hyperbolic
trajectories, the stars of the spiral arms are expected to
escape the galaxy eventually. The answers to the other
two questions are to be found in the following detailed
discussion that includes a numerical simulation.

II. THE SPINNER MODEL

For this model, a spiral galaxy is considered to start
as a compact spherical core surrounded by a function-
ally rigid spinning disk held together by gravity as well
as electromagnetic scattering forces (see figure 1). Frag-
ments of the disk break off at the edge in the form of
stars. Here, in the simplest version of this model, we will
assume that the stars separate from the disk edge with
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initial velocities equal to that of the edge. Then we can
assume that the disk angular velocity remains constant
while its radius decreases due to loss of material in the
form of stars. Hence, we conclude that stars separating
earlier have greater initial velocities than stars that sep-
arate later. Once a star separates, it experiences no local
forces. Then, the only force on it is the much weaker long
range gravitational force due to the core and the remain-
ing disk. Hence, stars start off with significant tangen-
tial speeds due to the spinning disk and no radial speeds.
But, once separated, they develop nonzero radial speeds
and their tangential speeds decrease. The stars that sep-
arate later start with smaller tangential speeds due to the
shrinking of the disk. Hence, if the disk shrinks at a cer-
tain rate, it could make the early-separated stars move
at roughly the same speed as the later-separated ones.
Due to outward radial speeds developed after separation
from the disk, the stars are expected to have hyperbolic
trajectories.

Spiral arm formation is explained by having stars
ejected only from some localized regions on the disk edge.
This is discussed in some detail in a later section.

As an individual star moves away from the core, its
outward radial speed increases and could eventually be-
come measurable. However, several mitigating factors
are expected to make such measurement difficult. First,
the density of stars decreases with increasing radial dis-
tance. Second, the stars at greater radial distances are
expected to be colder and dimmer. Third, the radial ve-
locity component must have a component along the line
of sight of the observer from Earth to allow measurement
using the Doppler effect. This would require the star to
have the bright galactic core region in its background as
seen from Earth. Such a bright background might wash
out the light of the star.

III. A NUMERICAL SIMULATION OF THE
SPINNER MODEL
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FIG. 1: The spinner model for spiral galaxies.

The spinner model (see figure 1) in conjunction with
standard Newtonian gravity can now be used to simulate

a spiral galaxy. Let us assume that the disk has constant
areal density and it disintegrates at a constant rate to
produce stars of equal mass. So, the area of the disk will
reduce at some constant rate q. Hence,

A = A0 − qt, (1)

where A is the area of the disk at time t and A0 the initial
area. If R is the radius of the disk at time t and R0 the
initial radius, then

R2 = R2
0 − at, where a = q/π. (2)

Hence, the radius of the disk at time t is given by

R =
√
R2

0 − at. (3)

It is to be expected that, below a certain minimum radius
Rm, there will not be enough centrifugal force to produce
more stars.

Now, let there be a total of N stars created[18] by the
disk at equal time intervals of T . Let the ith star have
a radial coordinate ri after it is created. At the time of
creation, each star has an initial radial coordinate equal
to the current radius R of the disk given by equation 3.
The initial radial velocity is zero. The initial angular
momentum is important to record as it is expected to be
conserved under the radially directed gravitational force
from the galactic core and disk. If Ω is the constant
angular velocity of the disk, then the initial angular mo-
mentum is mR2Ω where m is the mass of the star. This
will be different for different stars as they are created at
different times with different values of R. However, for
each star this angular momentum will be conserved. As
the trajectory of a star is independent of its mass, the rel-
evant conserved quantity related to angular momentum
is

li = r2i φ̇i = R2Ω, (4)

where φi is the angular coordinate of the ith star, φ̇i =
dφi/dt and R is the initial radial coordinate. So, the non-
relativistic tangential velocity of the ith star at any time
is

v′ti = riφ̇i =
li
ri
. (5)

If v′ti is comparable or larger than c, the speed of light, it
needs a relativistic correction. The relativistic tangential
velocity is (see section VII),

vti =
v′ti√

1 + v′2ti/c
2
. (6)

The next section discusses the formation of spiral arms
with the assumption that stars are ejected only from
some localized regions called hot-spots on the disk edge.
Then, the initial angle φi0 of a star just ejected would be
given by,

φi0 = Ωt. (7)
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Here we are assuming there is only one hot-spot on the
disk and it emits stars at times t which are multiples of
the interval T . In reality, there could be multiple hot-
spots. With the above initial condition, the following
standard differential equation is used to find the angular
position of each star.

φ̇i = li/r
2
i . (8)

After creation, the ith star trajectory can be tracked
using the above equation 8 for the angular position and
the following equation 9 for the radial position. Equa-
tion 9 arises from Newtonian gravity (see section VII for
relativistic considerations).

r̈i −
l2i
r3i

+
GM

r2i
+ fc(ri, R) = 0, (9)

where G is the gravitational constant, M is the mass of
the galactic core and fc(r,R) is the gravitational accel-
eration produced at a distance r from the center by the
disk when its radius is R. It can be seen that

fc(r,R) = Gσ

∫ 2π

0

∫ R

0

ρ(r − ρ cos θ)dρ dθ

(ρ2 + r2 − 2ρr cos θ)3/2
, (10)

where σ is the areal density of the disk. The above inte-
gral needs to be computed numerically at each stage of
the computation.

The numerical implementation of this simulation is
done by looping through the following steps at small
intervals of time ∆t = h for a total time duration of
NT + Ta. As stated earlier, N is the number of stars
created, T the time interval at which they are created
and Ta is the time elapsed after the last star is created.

• If current time t = iT for i = 0, 1, 2, . . ., create
a new star as long as the disk radius R is greater
than the minimum radius Rm. Find initial ri us-
ing equation 3. Set initial ṙi to be zero. Find the
constant of motion li using equation 4. Set initial
angle using equation 7.

• In a nested loop, loop through all stars created so
far computing their next values for φi, ri and ṙi
after each time interval h using equations 8 and 9.
Use a fourth order Runge-Kutta algorithm for this
purpose.

This numerical simulation has already been shown
to produce the observed rotation curves of spiral
galaxies[15]. In the following, it will be seen that the
model also demonstrates how spiral arms are formed and
how the shapes of rotation curves are related to galaxy
age.

IV. SPIRAL ARM FORMATION

Besides the rotation curves, a working model of spiral
galaxies should explain the shape of the spiral arms and
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FIG. 2: Spiral arm with one hot-spot: Hot-spot rotation time
period Th = 2π/Ω = 2.09 × 1011s and time between star
ejection bursts T = 2.00 × 1011s.
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FIG. 3: Spiral arms with one hot-spot: Hot-spot rotation
time period Th = 2π/Ω = 4.19× 1011s and time between star
ejection bursts T = 2.00 × 1011s.

their near equal angular separations. To do this, here
it is assumed that stars are ejected only from certain
localized spots on the edge of the disk. They may be
called “hot-spots”. The dynamics of hot-spots can, by
itself, be a subject of significant study. At present, we
will think of them as localized regions of thermonuclear
activity. In principle, there can be multiple hot-spots on
a disk. Each hot-spot could be at a fixed point on the



4

◦

◦

◦
◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦
◦

◦

◦

◦

◦ ◦

◦

◦

◦

◦ ◦

◦

◦

◦

◦
◦

◦

◦

◦

◦
◦

◦
◦

◦

◦

◦

◦◦

◦

◦
◦

◦◦

◦
◦

◦

◦◦
◦ ◦

◦
◦◦×

FIG. 4: Spiral arms with one hot-spot: Hot-spot rotation
time period Th = 2π/Ω = 2.51× 1011s and time between star
ejection bursts T = 2.00 × 1011s.

edge of the disk or it could be moving along the edge. The
movement could occur due to the relative availability of
local thermonuclear fuel. This would be similar to what
happens in certain kinds of firework spinners. Hence, a
hot-spot could be spinning at the same speed as the disk
or not. For now, we will assume a hot-spot to be spinning
at the same speed as the disk. So, its time period will
be,

Th = 2π/Ω, (11)

where Ω is the angular velocity of the disk as defined
earlier.

Multiple spiral arms could be created due to multi-
ple hot-spots. However, there is no reason for multiple
hot-spots to be equally spaced in angle. But actual spi-
ral galaxies seem to have close to equally spaced arms.
So, the present model uses a single hot-spot and demon-
strates how it could produce multiple equally spaced
arms. The single hot-spot may be assumed to become
active only in short bursts. These bursts are separated
by the time period T defined earlier in the description of
the model. Each burst can produce a bunch of stars even
though the simulation uses only one representative star.
If the time period of rotation of the hot-spot Th is close
to some multiple of T , that is, for some integer n,

Th ' nT, (12)

then n is the number of equally spaced spiral arms. Note
that the ratio of Th and T does not have to be exactly
n to produce the n arms. Figure 2 shows a simulation
for n = 1 and figure 3 a simulation for n = 2. How-
ever, equation 12 is not the only condition under which a
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FIG. 5: Rotation curve for Ta = 0, M = 1.0 × 1040kg, R0 =
5.0×1018m, Ω = 1.5×10−11s−1, σ = 0 and a = 2.0×1024m2/s.

small number of spiral arms are formed. A more general
condition is as follows.

n′Th ' nT, (13)

where n′ and n are both integers and n is the number
of arms. Figure 4 shows a simulation illustrating such
a case where n′ = 4 and n = 5. Note that equation 13
supports the observed equal angular separation of spiral
arms.

V. AGE OF GALAXIES

The simulation shows that in early stages of the for-
mation of a spiral galaxy, the rotation curve dips down-
wards at large distances after rising to a peak value at
some critical distance (see figure 5). In this figure, the
time elapsed after last star creation Ta = 0. After some
time elapsed (Ta = 1.0 × 1013s), the curve becomes flat
at large distances (see figure 6). After some more time
elapsed (Ta = 4.0 × 1013s), the curve has a rising trend
even for the farthest stars (see figure 7). This time pro-
gression can be used to estimate the age of galaxies.

VI. AGE OF STARS

One criticism of the spinner model is due to the hy-
perbolic nature of star trajectories. Clearly, such stars
are not going to remain in the galaxy for long. So, the
stars that are still a part of the galaxy are expected to be
relatively young. The ages of some observed stars in the
Milky Way (a spiral galaxy) are estimated to be too large
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FIG. 6: Rotation curve for Ta = 1.0×1013s, M = 1.0×1040kg,
R0 = 5.0 × 1018m, Ω = 1.5 × 10−11s−1, σ = 0 and a =
2.0 × 1024m2/s.
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FIG. 7: Rotation curve for Ta = 4.0×1013s, M = 1.0×1040kg,
R0 = 5.0 × 1018m, Ω = 1.5 × 10−11s−1, σ = 0 and a =
2.0 × 1024m2/s.

to satisfy this condition[16]. The problem is resolved by
reexamining the method of star age estimation. Standard
methods assume that a star begins formation as a cold
collection of dust and gas and then, over time, collapses
to a hot light emitting object. In the spinner model a star
is born already as a hot light emitting object from the
hot-spot of the disk. So, the standard method will sig-
nificantly overestimate the age of a star for the purpose
of the spinner model.

VII. RELATIVISTIC CONSIDERATIONS

The simulation uses the two differential equations 8
and 9 that arise from Newtonian gravity. Hence, it is
important to consider if they are adequate or relativis-
tic effects need to be included. Relativistic effects can
be due to high space-time curvature or high velocities.
High space-time curvature is of consequence if the dis-
tance of a star from the center is close to or less than the
Schwarzschild radius of the spherical core which contains
most of the mass. Then there are additional terms in
equation 9. For the core mass of M , the Schwarzschild
radius is

rs = 2GM/c2, (14)

where c is the speed of light. For all situations consid-
ered here, the distances of stars from the center are much
larger than this. Hence, relativistic effects due to high
space-time curvature can be ignored. The relativistic ver-
sion of equation 9 also has an additional radial velocity
(ṙ) term. This can also be ignored as ṙ � c.

Equation 8 remains unchanged by relativity. However,
measured tangential velocity of a star is no longer given
by the simple relation

v′t = l/r = rφ̇, (15)

where l is the angular momentum per unit mass, r the
radial distance and φ̇ the angular velocity. Note that
for large enough r and φ̇ this can be greater than the
speed of light! The measured tangential velocity must be
corrected for length contraction[19]. It is given by

vt = v′t

√
1− v2t /c2. (16)

Hence,

vt =
v′t√

1 + v′2t /c
2
. (17)

This can be seen to be always less than c. This correction
is used in the simulation. However, in most cases, even
this is not necessary.

VIII. CONCLUSION

The spinner model for spiral galaxies has been pre-
viously used to explain observed rotation curves without
introducing new kinds of matter like dark matter or forces
like in MOND. Here, the same model is used to explain
spiral arm shapes and to relate rotation curve shapes to
ages of galaxies.

Using a single hot-spot on the spinning disk, the model
explains the equal angular separation of multiple arms.
The number of arms produced depends on the ratio of
the time period of the disk and the time period of star
ejection.
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The slope of the tail end of the rotation curve is found
to be related to the age of the galaxy. For younger galax-

ies, the slope is negative and as galaxies age, the slope
increases and becomes positive for the oldest galaxies.
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