Report on the Evaluation of Chapter 16
Applications: Pharmaceuticals, Specialty Molecular Functional Groups
and Molecules, Dipole Moments and Interactions in
"The Grand Unified Theory of Classical Physics" by Dr. Randell L. Mills

> Revised
> Prepared by

Randy A. Booker, Ph.D.
57 Azalea Drive
Weaverville, NC 28787
(828) 251-6269

Booker@unca.edu
May 2, 2019

Executive Summary

In my analysis, I verified calculations and equations involving molecular functional groups of $\mathrm{NaH}, \mathrm{H}_{2} \mathrm{O}$ in vapor phase, $\mathrm{H}_{2} \mathrm{O}$ and NH_{3}, Graphite, Liquid Helium, Solid Neon, Solid Argon, Solid Krypton, and Solid Xenon found in Chapter 16 of the book "The Grand Unified Theory of Classical Physics" by Dr. Randell L. Mills. I verified equations and values to a high degree of accuracy that are associated with these molecular systems. There is a remarkable agreement between the GUTCP calculated values for the energies and distances of these molecular systems and my calculations. I verified the entries found in Tables $16.13,16.14,16.15,16.16,16.20,16.21,16.22,16.23,16.24,16.25,16.26$, $16.27,16.28,16.29,16.30,16.31,16.32,16.34,16.35,16.38$, and 16.41 .

Purpose

In Chapter 16, the book uses a force balance equation to find $a, c^{\prime}, 2 c^{\prime}=$ bond length, b, and e for the Sodium Hydride NaH molecule. Also, the energies $\mathrm{V}_{\mathrm{e}}, \mathrm{V}_{\mathrm{p}}, \mathrm{T}, \mathrm{V}_{\mathrm{m}}$, and $\mathrm{E}_{\text {Total }}$ are found for the molecule.

Next, the geometrical parameters ($\mathrm{a}, \mathrm{c}^{\prime}, 2 \mathrm{c}^{\prime}, \mathrm{b}$, and e) and energies of the hydrogen bond of $\mathrm{H}_{2} \mathrm{O}$ in the vapor phase are found. Also, the energies $\mathrm{V}_{\mathrm{e}}, \mathrm{V}_{\mathrm{p}}, \mathrm{T}, \mathrm{V}_{\mathrm{m}}$, and $\mathrm{E}_{\text {Total }}$ are found for the molecule.

Next, the geometrical parameters and energies of the hydrogen bond of $\mathrm{H}_{2} \mathrm{O}$ and NH_{3} are found. Also, the energies $\mathrm{V}_{\mathrm{e}}, \mathrm{V}_{\mathrm{p}}, \mathrm{T}, \mathrm{V}_{\mathrm{m}}$, and $\mathrm{E}_{\text {Total }}$ are found for the molecules.

Then the theory is used to find the interplane van der Waals cohesive energy of graphite. Also, the energies $\mathrm{V}_{\mathrm{e}}, \mathrm{V}_{\mathrm{p}}, \mathrm{T}, \mathrm{V}_{\mathrm{m}}$, and $\mathrm{E}_{\text {Total }}$ are found for the molecule.

Next the geometrical parameters $\mathrm{a}, \mathrm{c}^{\prime}, 2 \mathrm{c}^{\prime}=$ bond length, b , and e and energies due to the interatomic van der Waals cohesive energy of Liquid Helium are found. Also, the energies V_{e}, V_{p}, T, V_{m}, and $E_{\text {Total }}$ are found for the molecule.

Next the geometrical parameters a, $c^{\prime}, 2 c^{\prime}=$ bond length, b, and e and energies due to the interatomic van der Waals cohesive energy of Solid Neon are found. Also, the energies $\mathrm{V}_{\mathrm{e}}, \mathrm{V}_{\mathrm{p}}, \mathrm{T}, \mathrm{V}_{\mathrm{m}}$, and $\mathrm{E}_{\text {Total }}$ are found for the molecule.

Next the geometrical parameters $a, c^{\prime}, 2 c^{\prime}=$ bond length, b, and e and energies due to the interatomic van der Waals cohesive energy of Solid Argon are found. Also, the energies $\mathrm{V}_{\mathrm{e}}, \mathrm{V}_{\mathrm{p}}, \mathrm{T}, \mathrm{V}_{\mathrm{m}}$, and $\mathrm{E}_{\text {Total }}$ are found for the molecule.

Next the geometrical parameters a, c', 2c'=bond length, b , and e and energies due to the interatomic van der Waals cohesive energy of Solid Krypton are found. Also, the energies V_{e}, V_{p}, T, V_{m}, and $E_{\text {Total }}$ are found for the molecule.

Next the geometrical parameters a, c', 2c'=bond length, b, and e and energies due to the interatomic van der Waals cohesive energy of Solid Xenon are found. Also, the energies $\mathrm{V}_{\mathrm{e}}, \mathrm{V}_{\mathrm{p}}, \mathrm{T}, \mathrm{V}_{\mathrm{m}}$, and $\mathrm{E}_{\text {Total }}$ are found for the molecule.

Calculation

I have verified that Equations 16.6-16.12 are true.
I have verified that Equations 16.13-16.14 and their values are also correct.
I have verified that all entries in Table 16.13 are correct.
I have verified that every entry in Table 16.14 is correct.
Also every entry in Table 16.15 is correct and has been verified by myself.
Every entry from V_{e} down have been verified by me to be correct in Table 16.16.
I have verified that every entry in Table 16.20 are correct.
I have verified that Equation 16.58 and Equation 16.59 plus its value are indeed correct.
I have verified that Equations 16.60 and 16.61 plus their values are correct. These compare very well to the experimental H bond distance.

I have verified that Equations 16.64-16.66 and their values are correct as listed. There is very good agreement with experimental nearest neighbor separation from Eqn. 16.66.

I have verified that all entries in Table 16.21 are correct.
I have verified that Equations 16.68-16.69 are also valid and correct.
I have verified that all calculated entries in Table 16.22 are correct.

I have verified that Equations 16.70-16.72 are correct as listed. The value from Eqn. 16.72 compares well with the experimental H -bond distance in the gas phase.

I have verified that Equations 16.74-16.76 are correct as listed. The value from Eqn. 16.76 compares well with the experimental nearest neighbor separation $2 \mathrm{c}^{\prime}$ ' -но.

I have verified that Equation 16.78 and its value is correct.
In Table 16.23, I have verified that all entries are correct.
I have verified as correct all entries in Table 16.24.
I have verified as correct the Equations 16.80-16.82.
I have verified as correct all calculated entries in Table 16.25.

I have also verified as correct the Equations 16.83-16.86 and their values. There is very good agreement between the value from Eqn. 16.86 and the experimental graphite interplane distance.

I have also verified as correct the Equations 16.88-16.92 and their values. There is very good agreement between the value from Eqn. 16.92 and the experimental van der Waals energy per carbon atom.

I have verified that all values in Table 16.26 are correct.
I have verified that Equations 16.94-16.98 and their values are correct.
I have verified that all entries in Table 16.27 are correct.
I have shown that all calculated entries in Table 16.28 are correct.
I have demonstrated that Equations 16.99-16.102 and their values are correct. There is very good agreement between the value from Eqn. 16.102 and the experimental helium interatomic distance.

I have demonstrated that Equations 16.105-16.106 and their values are correct. There is very good agreement between the value from Eqn. 16.106 and the experimental van der Waals energy and roton energy.

I have verified that all the values in Table 16.29 are correct.
I have shown that Equations 16.109-16.113 and their values are indeed correct.
And I have shown that all values in Table 16.30 are correct.
I have shown that all calculated entries in Table 16.31 are correct.
I have verified that Equations 16.114-117 and their values are correct.
I have shown that Equations 16.119-16.120 and their values are correct.

I have verified that all the entries in Table 16.32 are correct.
I have verified that Equations 16.124-16.127 are correct.
And I have shown that all the calculated entries are correct in Table 16.34.
I have verified that Equations 16.130-16.133, 16.135-16.136, and 16.138 and their values are indeed correct.

I have verified that all entries in Table 16.35 are correct.
I have shown that Equations 16. 149-16.143 and 16.145 and their values are correct.
I have shown that Equations 16.147-149 and 16.151-16.152 and their values are correct.
I have verified that all entries in Table 16.38 are correct.
I have verified that Equations 16.156-16.159 and their values are correct.
I have also verified that Equations 16.161-16.165 and 16.167-16.168 and their values are correct.

I have verified that all the entries in Table 16.41 are indeed correct.

Conclusion

I was able to verify the GUTCP results of Chapter 16 in excellent agreement with my own calculations. I successfully reproduced almost all of the equations and their corresponding values found in Chapter 16. I verified that all entries in Tables 16.13, $16.14,16.15,16.16,16.20,16.21,16.22,16.23,16.24,16.25,16.26,16.27,16.28,16.29$, $16.30,16.31,16.32,16.34,16.35,16.38$, and 16.41 are indeed correct.
This chapter demonstrates that the GUTCP theory is successful at describing $\mathrm{NaH}, \mathrm{H}_{2} \mathrm{O}$ in vapor phase, $\mathrm{H}_{2} \mathrm{O}$ and NH_{3}, Graphite, Liquid Helium, Solid Neon, Solid Argon, Solid Krypton, and Solid Xenon, to a high degree of accuracy.

I find my results and calculations to be confirmation that the calculations and equations of Chapter 16 are indeed accurate, valid, and reproducible.

