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Executive Summary 
 
In my analysis, I verified calculations and equations involving the calculation and 
generation of the BECVF and OCVF current vector fields (CVFs) found in Appendix IV 
of the book “The Grand Unified Theory of Classical Physics” (January 2020 edition) by 
Dr. Randell L. Mills.  
 
There is a remarkable agreement between the equations found in the chapter and the 
equations I get from my calculations. I verified that all the equations found in the chapter 
from Equation (1) through Equation (32) were in fact true, and reproducible. 
 
 
Purpose 
  
In Appendix IV, putting the electron current in the counter-clockwise direction, the 
Larmor precession of the angular momentum vector of the free electron is seen to be 
about two axes simultaneously: the (ix,0iy,iz)-axis and the lab-frame z-axis (which is 
defined by the direction of an applied magnetic field). The motion generates CVFs 
(current vector fields), with the first motion sweeping out a BECVF and the rotation 
about the z-axis sweeping out an OCVF. The combined motion is a convolution of the 
BECVF with the OCVF.  
 
One motion is a 2π rotation about the (ix,0iy,iz)-axis whereby the angular momentum 
vector of the free electron sweeps out a cone about the (ix,0iy,iz)-axis. The rotational 
matrix about the (ix,0iy,iz)-axis is given in this appendix, then evaluated based on the 
rotational matrices in Equations (1.81-1.82). Next, the BECVF convolution is given. 
From this, the integral form of the convolution is given, along with the infinite sum of 
great circles that make up the BECVF. Figure IV.1 shows the current pattern generated. 
 
The rotation of the free-electron disc formed by the variation of ρ in a continuous manner 
forms two conical surfaces that join at the origin and face in opposite directions along the  
(ix,0iy,iz)-axis, as shown in Figure IV.2. 
 
Next is considered the Larmor precession of the free electron about the z-axis by a 
rotation of 2π about the (-ix,0iy,iz)-axis. The rotational matrix about the (-ix,0iy,iz)-axis is 
given in this appendix, then is evaluated based on the rotational matrices in Equations 
(1.81-1.82). Next the BECVF convolution is given. And from this, the integral form of 
the convolution is given, along with the infinite sum of great circles that make up the 
BECVF. Figure IV.3 shows the current pattern thus generated. 
 
The rotation of the free-electron disc formed by the variation of ρ in a continuous manner 
forms two conical surfaces that join at the origin and face in opposite directions along the  
(-ix,0iy,iz)-axis, as shown in Figure IV.4. 



Next, the momentum-density function Yoo(θ,ϕ) is obtained by convolving the BECVF 
with the OCVF for the first case of the (ix,0iy,iz)-axis. This operation is the same as 
incrementally rotating the BECVF about the z-axis by 2π.  
 
Similarly we can also repeat this same procedure for the (-ix,0iy,iz)-axis we considered  - 
that is, the second case we considered above. 
 
Next are considered matrices to visualize the momentum-density Yoo(θ,ϕ) for the 
combined precession motion of the free electron about the (ix,0iy,iz)-axis and the z-axis. 
The coordinates of the great circle basis element to generate the OCVF are given in this 
appendix. The OCVF is generated by rotating this basis element great circle about the z-
axis using Rz(θ) over the range of 2π. The OCVF matrices are included in this appendix. 
And using them, the infinite sum of great circles representation of the OCVF is given. 
Figure IV.5 shows the current pattern generated. 
 
The great-circle distribution Yoo(θ,ϕ) is then generated by the convolution of either 
BECVF we generated with its corresponding OCVF over the range of 2π. The 
corresponding BECVF replaces the great circle basis element now to form Yoo(θ,ϕ). The 
result is a Yoo(θ,ϕ)  that is azimuthally symmetric about the z-axis. This azimuthally 
symmetric property is proven explicitly in the next-to-last section of this appendix – the 
section on the Azimuthal Uniformity Proof of Yoo(θ,ϕ). 
 
The Yoo(θ,ϕ) is formed by convolving the OCVF with the BECVF. The matrix 
representation of the convolution (involving a series of delta functions) is given next in 
this appendix. Then the integral form of the same convolution is given. Lastly, the 
integration results in the infinite double sum of great circles that yields Yoo(θ,ϕ). This 
produces a continuous distribution.  
 
Next a discrete representation of Yoo(θ,ϕ) can be generated. This representation is shown 
in Equation (18) and the corresponding momentum density Yoo(θ,ϕ) is shown in Figures 
IV.6 and IV.7. Computer modeling to generate the free electron CVFs and the 
azimuthally-symmetric Yoo(θ,ϕ) are available at the Brilliantlightpower.com website 
[Reference 3 for this Appendix.] 
 
Next are considered matrices to visualize the momentum-density Yoo(θ,ϕ) for the 
combined precession motion of the free electron about the (-ix,0iy,iz)-axis and the z-axis. 
The coordinates of the great circle basis element to generate the OCVF are given in this 
appendix. The OCVF is generated by rotating this basis element great circle about the z-
axis using Rz(θ) over the range of 2π. The OCVF matrices are included in this appendix. 
And using them, the infinite Yoo(θ,ϕ) sum of great circles representation of the OCVF is 
given. Figure IV.8 shows the current pattern generated. 
 
The great-circle distribution Yoo(θ,ϕ) is then generated by the convolution of the BECVF 
we generated with its corresponding OCVF over the range of 2π. The corresponding 
BECVF replaces the great circle basis element now to form Yoo(θ,ϕ) that is azimuthally 
symmetric about the z-axis. This azimuthally symmetric property is proven explicitly in 



the next-to-last section of this appendix – the section on the Azimuthal Uniformity Proof 
of Yoo(θ,ϕ). 
 
The Yoo(θ,ϕ) is formed by convolving the OCVF with the BECVF. The result is the 
infinite double sum of great circles that yields Yoo(θ,ϕ). This produces a continuous 
distribution.  
 
Next a discrete representation of Yoo(θ,ϕ) can be generated. This representation is shown 
in Equation (23) and the corresponding momentum density Yoo(θ,ϕ) are equivalent to 
those shown in Figures IV.6 and IV.7.  
 
Next this appendix includes a section on a proof of the azimuthal symmetry of Yoo(θ,ϕ). 
 
This appendix ends with a discussion of spin-flip transitions. The electron can flip 
between two spin states – one having the magnetic moment parallel to the z-axis and the 
other having the magnetic moment antiparallel to the z-axis. The BECVFs, OCVF, and 
Yoo(θ,ϕ) developed earlier in this appendix apply to both states. The transition 
corresponds to a ±π rotation of the Yoo(θ,ϕ) distribution about the x-axis using Rx(θ) 
given by Equation (1.80). The infinite double sum of great circles for this process is 
found in this appendix, based on the methods developed earlier in this appendix. The first 
representation describes a continuous distribution. However, a discrete representation can 
also be found, and is included at the end of this appendix. The representation of the 
current pattern generated are equivalent to Figures IV.6 and IV.7, but with the current 
direction reversed. 
 
 
Calculations 
 
I have verified that Equations (1)-(32) are in fact correct as listed in the GUTCP book. 
 
Conclusion 
 
I was able to verify the results of Appendix IV in excellent agreement with my own 
calculations and derivations of equations. I successfully reproduced all of the equations 
and derivations found in Appendix IV, up through Equation (32). 
 
This appendix concerned itself with the calculation and generation of the BECVF and 
OCVF current vector fields (CVFs). I find my results and calculations to be confirmation 
that the derivations and equations of Appendix IV are indeed valid, reproducible, and 
accurate.  


