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Sources of Stellar Energy and the Theory of the Internal
Constitution of Stars

Nikolai Kozyrev∗

This is a presentation of research into the inductive solution to the problem on the
internal constitution of stars. The solution is given in terms of the analytic study of
regularities in observational astrophysics. Conditions under which matter exists in stars
are not the subject of a priori suppositions, they are the objects of research.

In the first part of this research we consider two main correlations derived from
observations: “mass-luminosity” and “period — average density of Cepheids”. Results
we have obtained from the analysis of the correlations are different to the standard
theoretical reasoning about the internal constitution of stars. The main results are: (1) in
any stars, including even super-giants, the radiant pressure plays no essential part — it
is negligible in comparison to the gaseous pressure; (2) inner regions of stars are filled
mainly by hydrogen (the average molecular weight is close to 1/2); (3) absorption of
light is derived from Thomson dispersion in free electrons; (4) stars have an internal
constitution close to polytropic structures of the class 3/2.

The results obtained, taken altogether, permit calculation of the physical conditions
in the internal constitution of stars, proceeding from their observational characteristics
L, M , and R. For instance, the temperature obtained for the centre of the Sun is about
6 million degrees. This is not enough for nuclear reactions.

In the second part, the Russell-Hertzsprung diagram, transformed according to
physical conditions inside stars shows: the energy output inside stars is a simple
function of the physical conditions. Instead of the transection line given by the heat
output surface and the heat radiation surface, stars fill an area in the plane of density
and temperature. The surfaces coincide, being proof of the fact that there is only
one condition — the radiation condition. Hence stars generate their energy not in any
reactions. Stars are machines, directly generating radiations. The observed diagram
of the heat radiation, the relation “mass-luminosity-radius”, cannot be explained by
standard physical laws. Stars exist in just those conditions where classical laws are
broken, and a special mechanism for the generation of energy becomes possible. Those
conditions are determined by the main direction on the diagram and the main point
located in the direction. Physical coordinates of the main point have been found using
observational data. The constants (physical coordinates) should be included in the
theory of the internal constitution of stars which pretend to adequately account for
observational data. There in detail manifests the inconsistency of the explanations of
stellar energy as given by nuclear reactions, and also calculations as to the percentage
of hydrogen and helium in stars.

Also considered are peculiarities of some sequences in the Russell-Hertzsprung
diagram, which are interesting from the theoretical viewpoint.

∗Editor’s remark: This is the doctoral thesis of Nikolai Aleksandrovich
Kozyrev (1908–1983), the famous astronomer and experimental physicist
— one of the founders of astrophysics in the 1930’s, the discoverer of lunar
volcanism (1958), and the atmosphere of Mercury (1963) (see the article
Kozyrev in the Encyclopaedia Britannica). Besides his studies in astronomy,
Kozyrev contributed many original experimental and theoretical works in
physics, where he introduced the “causal or asymmetrical mechanics” which
takes the physical properties of time into account. See his articles reporting
on his many years of experimental research into the physical properties of
time, Time in Science and Philosophy (Prague, 1971) and On the Evolu-
tion of Double Stars, Comptes rendus (Bruxelles, 1967). Throughout his
scientific career Kozyrev worked at the Pulkovo Astronomical Observatory
near St. Petersburg (except for the years 1946–1957 when he worked at the

Crimean branch of the Observatory). In 1936 he was imprisoned for 10
years without judicial interdiction, by the communist regime in the USSR.
Set free in 1946, he completed the draft of this doctoral thesis and published
it in Russian in the local bulletin of the Crimean branch of the Observatory
(Proc. Crimean Astron. Obs., 1948, v. 2, and 1951, v. 6). Throughout the
subsequent years he continued to expand upon his thesis. Although this
research was started in the 1940’s, it remains relevant today, because the
basis here is observational data on stars of regular classes. This data has
not changed substantially during the intervening decades. (Translated from
the final Russian text by D. Rabounski and S. J. Crothers.)
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Introduction

Prof. Nikolai Kozyrev, 1970’s

Energy, radiated by the Sun and
stars into space, is maintained by
special sources which should
keep stars radiating light during
at least a few billion years. The
energy sources should be depen-
dent upon the physical conditions
of matter inside stars. It follows
from this fact that stars are stable
space bodies. During the last de-
cade, nuclear physics discover-
ed thermonuclear reactions that
could be the energy source satis-
fying the above requirements.
The reactions between protons
and numerous light nuclei, which

result in transformations of hydrogen into helium, can be
initiated under temperatures close to the possible temperature
of the inner regions of stars — about 20 million degrees.
Comparing different thermonuclear reactions, Bethe con-
cluded that the energy of the Sun and other stars of the main
sequence is generated in cyclic reactions where the main
part is played by nitrogen and carbon nuclei, which capture
protons and then produce helium nuclei [1]. This theory,
developed by Bethe and widely regarded in recent years,
has had no direct astrophysical verification until now. Stars
produce various amounts of energy, e. g. stars of the giants
sequence have temperatures much lower than that which is
necessary for thermonuclear reactions, and the presence of
bulk convection in upper shells of stars, supernova explos-
ions, peculiar ultra-violet spectra lead to the conclusion that
energy is generated even in the upper shells of stars and,
sometimes, it is explosive. It is quite natural to inquire as to
a general reason for all the phenomena. Therefore we should
be more accurate in our attempts to apply the nuclear reaction
theory to stars. It is possible to say (without exaggeration),
that during the last century, beginning with Helmholtz’s
contraction hypothesis, every substantial discovery in physics
led to new attempts to explain stellar energy. Moreover,
after every attempt it was claimed that this problem was
finally solved, despite the fact that there was no verification
in astrophysical data. It is probable that there is an energy
generation mechanism of a particular kind, unknown in an
Earthly laboratory. At the same time, this circumstance can-
not be related to a hypothesis that some exclusive conditions
occur inside stars. Conditions inside many stars (e. g. the
infrared satellite of ε Aurigae) are close to those that can
be realized in the laboratory. The reason that such an energy
generation mechanism remained elusive in experiments is
due to peculiarities in the experiment statement and, possibly,
in the necessity for large-scale considerations in the experi-
ment. Considering physical theories, it is possible that their
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inconsistency in the stellar energy problem arises for the
reason that the main principles of interaction between matter
and radiant energy need to be developed further.

Much of the phenomena and empirical correlations dis-
covered by observational astrophysics are linked to the prob-
lem of the origin of stellar energy, hence the observational
data have no satisfying theoretical interpretation. First, it is
related to behaviour of a star as a whole, i. e. to problems
associated with the theory of the internal constitution of
stars. Today’s theories of the internal constitution of stars
are built upon a priori assumptions about the behaviour of
matter and energy in stars. One tests the truth or falsity
of the theories by comparing the results of the theoretical
analysis to observational data. This is one way to build
various models of stars, which is very popular nowadays.
But such an approach cannot be very productive, because
the laws of Nature are sometimes so unexpected that many
such trials, in order to guess them, cannot establish the correct
solution. Because empirical correlations, characterizing a star
as a whole, are surely obtained from observations, we have
therein a possibility of changing the whole statement of
the problem, formulating it in another way — considering
the world of stars as a giant laboratory, where matter and
radiant energy can be in enormously different scales of states,
and proceeding from our analysis of observed empirical
correlations obtained in the stellar laboratory, having made
no arbitrary assumptions, we can find conditions governing
the behaviour of matter and energy in stars as some un-
known terms in the correlations, formulated as mathematical
equations. Such a problem can seems hopelessly intractable,
owing to so many unknown terms. Naturally, we do not
know: (1) the phase state of matter — Boltzmann gas, Fermi
gas, or something else; (2) the manner of energy transfer —
radiation or convection — possible under some mechanism of
energy generation; (3) the rôle of the radiant pressure inside
stars, and other factors linked to the radiant pressure, namely
— (4) the value of the absorption coefficient; (5) chemical
composition of stars, i. e. the average numerical value of the
molecular weight inside stars, and finally, (6) the mechanism
generating stellar energy. To our good fortune is the fact
that the main correlation of observational astrophysics, that
between mass and luminosity of stars, although giving no
answer as to the origin of stellar energy, gives data about the
other unknowns. Therefore, employing the relation “period
— average density of Cepheids”, we make more precise our
conclusions about the internal constitution of stars. As a
result there is a possibility, even without knowledge of the
origin of stellar energy, to calculate the physical conditions
inside stars by proceeding from their observable charac-
teristics: luminosity L, mass M , and radius R. On this
basis we can interpret another correlation of observational
astrophysics, the Russell-Hertzsprung diagram — the cor-
relation between temperature and luminosity of stars, which
depends almost exclusively on the last unknown (the me-

chanism generating stellar energy). The formulae obtained
are completely unexpected from the viewpoint of theoretical
physics. At the same time they are so typical that we have
in them a possibility of studying the physical process which
generates stellar energy.

This gives us an inductive method for determining a sol-
ution to the problem of the origin of stellar energy. Follow-
ing this method we use some standard physical laws in
subsequent steps of this research, laws which may be violated
by phenomenology . However this circumstance cannot in-
validate this purely astrophysical method. It only leads to
the successive approximations so characteristic of the phe-
nomenological method. Consequently, the results we have
obtained in Part I can be considered as the first order of
approximation.

The problem of the internal constitution of stars has been
very much complicated by many previous theoretical studies.
Therefore, it is necessary to consider this problem from the
outset with the utmost clarity. Observations show that a star,
in its regular duration, is in a balanced or quasi-balanced
state. Hence matter inside stars should satisfy conditions of
mechanical equilibrium and heat equilibrium. From this we
obtain two main equations, by which we give a mathematical
formulation of our problem. Considering the simplest case,
we neglect the rotation of a star and suppose it spherically
symmetric.

P A R T I

Chapter 1

Deducing the Main Equations of Equilibrium in Stars

1.1 Equation of mechanical equilibrium

Let us denote by P the total pressure, i. e. the sum of the
gaseous pressure p and the radiant energy pressure B, taken
at a distance r from the centre of a star. The mechanical
equilibrium condition requires that the change of P in a unit
of distance along the star’s radius must be kept in equilibrium
by the weight of a unit of the gas volume

dP

dr
= −gρ , (1.1)

where ρ is the gas density, g is the gravity force acceleration.
If ϕ is the gravitational potential

g = − gradϕ , (1.2)

and the potential satisfies Poisson equation

∇2ϕ = −4πGρ ,

where G = 6.67×10−8 is the gravitational constant. For
spherical symmetry,

∇2ϕ = div gradϕ =
1

r2
dr2 gradϕ

dr
. (1.4)
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Comparing the equalities, we obtain the equation of me-
chanical equilibrium for a star

1

ρr2
d

dr

[
r2dP

ρdr

]

= −4πG , (1.5)

where
P = p+B . (1.6)

Radiations are almost isotropic inside stars. For this
reason B equals one third of the radiant energy density.
As we show in the next paragraph, we can put the radiant
energy density, determined by the Stephan-Boltzmann law,
in a precise form. Therefore,

B =
1

3
αT 4, (1.7)

where α = 7.59×10−15 is Stephan’s constant, T is the
absolute temperature. The pressure P depends, generally
speaking, upon the matter density and the temperature. This
correlation is given by the matter phase state. If the gas is
ideal, it is

p = nkT =
<T
μ
ρ . (1.8)

Here n is the number of particles in a unit volume of the
gas, k=1.372×10−16 is Boltzmann’s constant, <=8.313×107

is Clapeyron’s constant, μ is the average molecular weight.
For example, in a regular Fermi gas the pressure depends

only on the density

p = Kρ5/3, K = μ5/3e KH , KH = 9.89×1012, (1.9)

where μe is the number of the molecular weight units for
each free electron.

We see that the pressure distribution inside a star can
be obtained from (1.5) only if we know the temperature
distribution. The latter is determined by the heat equilibrium
condition.

1.2 Equation of heat equilibrium

Let us denote by ε the quantity of energy produced per second
by a unit mass of stellar matter. The quantity ε is dependent
upon the physical conditions of the matter in a star, so ε is a
function of the radius r of a star. To study ε is the main task
of this research. The heat equilibrium condition (known also
as the energy balance condition) can be written as follows

divF = ερ , (1.10)

where F is the total flow of energy, being the sum of the
radiant energy flow FR, the energy flow Fc dragged by
convection currents, and the heat conductivity flow FT

F = FR + Fc + FT . (1.11)

First we determine FR. Radiations, being transferred
through a layer of thickness ds, change their intensity I
through the layer of thickness ds, according to Kirchhoff’s
law

dI

ds
= −κρ

(
I − E

)
, (1.12)

where κ is the absorption coefficient per unit mass, E is the
radiant productivity of an absolute black body (calculated
per unit of solid angle ω). In polar coordinates this equation
is

cos θ
∂I

∂r
−
sin θ

r

∂I

∂θ
= −κρ

(
I − E

)
, (1.12a)

where θ is the angle between the direction of the normal to
the layer (the direction along the radius r) and the radiation
direction (the direction of the intensity I). The flow FR and
the radiant pressure B are connected to the radiation intensity
by the relations

FR =

∫
I cos θdω , Bc =

∫
I cos2 θ dω , (1.13)

where c is the velocity of light, while the integration is taken
over all solid angles. We denote

∫
Idω = J . (1.14)

Multiplying (1.12a) by cos θ and taking the integral over
all solid angles dω, we have

c
dB

dr
−
1

r
(J − 3Bc) = −κρFR .

In order to obtain FR we next apply Eddington’s approx-
imation

3Bc = J = 4πE , (1.15)

thereby taking FR to within high order terms. Then

FR = −
c

κρ

dB

dr
. (1.16)

Let us consider the convective energy flow Fc . Everyday
we see huge convection currents in the surface of the Sun (it
is possible this convection is forced by sudden production of
energy). To make the convective energy flow Fc substantial,
convection currents of matter should be rapid and cause
transfer of energy over long distances in a star. Such condit-
ions can be in regions of unstable convection of matter, where
free convection can be initiated. Schwarzschild’s pioneering
research [2], and subsequent works by other astrophysicists
(Unsöld, Cowling, Bierman and others) showed that although
a star is in the state of stable mechanical and heat equi-
librium as a whole, free convection can start in regions where
(1) stellar energy sources rapidly increase their power, or
(2) the ionization energy is of the same order as the heat
energy of the gas.
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We assume convection currents flowing along the radius
of star. We denote byQ the total energy per unit of convection
current mass. Hence, Q is the sum of the inner energy of the
gas, the heat function, the potential and kinetic energies.
We regularly assume that a convection current retains its
own energy along its path, i. e. it changes adiabatically,
and dissipation of its energy occurs only when the current
stops. Then the energy flow transferred by the convection,
according to Schmidt [3], is

Fc = −Aρ
dQ

dr
, A = v̄ λ̄ . (1.17)

The quantity A is the convection coefficient, λ̄ is the
average length travelled by the convection current, v̄ is the
average velocity of the current. If the radiant pressure is
negligible in comparison to the gaseous pressure, in an ideal
gas (according to the 1st law of thermodynamics) we have

dQ

dr
= cv

dT

dr
+ p

d 1ρ
dr
, (1.18)

or, in another form,

dQ

dr
= cp

dT

dr
−
1

ρ

dp

dr
, (1.18)

where cv is the heat capacity of the gas under constant
volume, cpis the heat capacity under constant pressure

cp = cv +
<
μ
.

Denoting
cp
cv
= Γ ,

we have

cp =
Γ

Γ− 1
<
μ
. (1.20)

After an obvious transformation we arrive at the formulae

dQ

dr
= −

1

ρ

dp

dr
u , u = 1−

Γ

4(Γ− 1)
pdB

Bdp
, (1.21)

(for a monatomic gas Γ = 5/3).
The heat conductivity flow has a formula analogous to

(1.17). Because particles move in any direction in a gas, in
the formula for A we have one third of the average velocity
of particles instead of v̄. In this case dQ/dr is equal to only
the first term of equation (1.18), and so dQ/dr has the same-
order numerical value that it has in the energy convective
flow Fc . Therefore, taking A from Fc (1.17) into account,
we see that Fc is much more that FT . In only very rare
exceptions, like a degenerate gas, can the heat conductivity
flow FT be essential for energy transfer.

Using formulae (1.10), (1.16), (1.17), (1.21), we obtain
the heat equilibrium equation

1

ρr2
1

dr

[
r2db

κρdr

]

−
1

cρr2
1

dr

[

r2Au
dp

dr

]

= −
ε

c
. (1.22)

We finally note that, because ε is tiny value in comparison
to the radiation per mass unit, even tiny changes in the state
of matter should break the equalities. Therefore even for large
regions in stars the heat equilibrium condition (1.10) can be
locally broken. The same can be said about the equation for
the convective energy flow, because huge convections in stars
can be statistically interpreted in only large surfaces like that
of a whole star. Therefore the equations we have obtained
can be supposed as the average along the whole radius of a
star, and taken over a long time. Then the equations are true.

The aforementioned limitations do not matter in our
analysis because we are interested in understanding the be-
haviour of a star as a whole.

1.3 The main system of the equations. Transformation
of the variables

In order to focus our attention on the main task of this
research, we begin by considering the equations obtained
for equilibrium in the simplest case: (1) in the mechanical
equilibrium equation we assume the radiant pressure B neg-
ligible in comparison to the gaseous pressure p, while (2) in
the heat equilibrium equation we assume the convection term
negligible. Then we obtain the main system of the equations
in the form

1

ρr2
d

dr

[
r2dp

ρdr

]

= −4πG ,

1

ρr2
d

dr

[
r2dB

κρdr

]

= −
ε

c
.

(I)

The radiant pressure depends only on the gas temperature
T , according to formula (1.7). The absorption coefficient κ
(taken per unit mass) depends p and B. This correlation is
unknown. Also unknown is the energy ε produced by a unit
mass of gas. Let us suppose the functions known. Then in
order to solve the system we need to have the state equation
of matter, connecting ρ, p, and B. In this case only two
functions remain unknown: for instance p and B, whose
dependence on the radius r is fully determined by equations
(I). These functions should satisfy the following boundary
conditions. In the surface of a star the total energy flow is
F0 = FR0 (Fc = FT = 0). According formula (1.13),

FR0 =
1

2
J0 =

3

2
cB0 ,

so, taking formula (1.16) into account, we obtain the con-
dition in the surface of a star

under p = 0 we have B = −
2

3

dB

κρdr
, (1.23)
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From equations (I) we see that the finite solution con-
dition under r = 0 is the same as

under r = 0 we have
dp

dr
= 0 ,

dB

dr
= 0 . (1.24)

The boundary conditions are absolutely necessary, they
are true at the centre of any real star. The theory of the inner
constitution of stars by Milne [4], built on solutions which do
not satisfy these boundary conditions, does not mean that the
boundary conditions are absolutely violated by the theory. In
layers located far from the centre the boundary solutions can
be realized, if derivatives of physical characteristics of matter
are not continuous functions of the radius, but have breaks.
Hence, Milne’s theory permits a break a priori in the state
equation of matter, so the theory permits stellar matter to exist
in at least two different states. Following this hypothetical
approach as to the properties of stellar matter, we can deduce
conclusions about high temerpatures and pressures in stars.
Avoiding the view that “peculiar” conditions exist in stars,
we obtain a natural way of starting our research into the
problem by considering the phase state equations of matter.

Hence we carry out very important transformations of the
variables in the system (I). Instead of r and other variables we
introduce dimensionless quantities bearing the same physical
conditions. We denote by index c the values of the functions
in the centre of a star (r=0). Instead of r we introduce a
dimensionless quantity x according to the formula

x = ar , a = ρc

√
4πG

pc
, (1.25)

and we introduce functions

ρ1 =
ρ

ρc
, p1 =

p

pc
, B1 =

B

Bc
, . . . (1.26)

Then, as it is easy to check, the system (I) transforms to
the form

1

ρ1x
2

d

dx

[
x2dp1
ρ1dx

]

= −1 ,

1

ρ1x
2

d

dx

[
x2dB1
κ1ρ1dx

]

= −λε1 ,

(Ia)

where

λ =
εcκc

4πGc γc
, γc =

Bc
pc
. (1.27)

Numerical values of all functions in the system (Ia) are
between 0 and 1. Then the conditions at in the centre of a
star (x = 0) take the form

p1 = 1 ,
dp1
dx

= 0 , B1 = 1 ,
dB1
dx

= 0 . (1.28)

In the surface of a star (x = x0), instead of (1.23), we
can use the simple conditions

B1 = 0 , p1 = 0 . (1.29)

Here we can write the main system of the equations
in terms of the new variables (Ia), taking convection into
account. Because of (1.22), we obtain

1

ρ1x
2

d

dx

[
x2dp1
ρ1dx

]

=−1 ,

1

ρ1x
2

d

dx

[
x2dB1
κ1ρ1dx

]

−
κcρc
cγc

1

ρ1x
2

[

x2Au
dp1
dx

]

=−λε1 .

(II)

For an ideal gas, equation (1.21) leads to a very simple
formula for u

u = 1−
Γ

4(Γ− 1)
p1dB1
B1 dp1

. (1.30)

Owing to (1.5) and (1.6) it follows at last that the main
system of the equations, taking the radiant pressure into
account in the absence of convection, takes the form

1

ρ1x
2

d

dx

[
x2d(p1 + γcB1)

ρ1dx

]

= −1 ,

1

ρ1x
2

d

dx

[
x2dB1
κ1ρ1dx

]

= −λε1 .

(III)

Chapter 2

Analysis of the Main Equations and
the Relation “Mass-Luminosity”

2.1 Observed characteristics of stars

Astronomical observations give the following quantities
characterizing star: radius R, massM , and luminosity L (the
total energy radiated by a star per second). We are going to
consider correlations between the quantities and parameters
of the main system of the star equilibrium equations. As
a result, the main system of the equations considered under
any phase state of stellar matter includes only two parameters
characterizing matter and radiation inside a star: Bc and pc.

Because of formula (1.25), we obtain

R =
1

ρc

√
pc
4πG

x0 , (2.1)

where x0 is the value of x at the surface of a star, where
p1=B1 =0. With this formula, and introducing a state eq-
uation of matter, we can easily obtain the correlation R =
= f (Bc, pc). It should be noted that in the general case the
value of x0 in formula (2.1) is dependent on Bc and pc.
At the same time, because the equation system consists of
functions variable between 0 and 1, the value of x0 should
be of the same order (i. e. close to 1). Therefore the first
multiplier in (2.1) plays the main rôle.
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Because of

M = 4π

∫ R

0

ρr2dr ,

we have

M =
p3/2c

G3/2
√
4π ρ2c

Mx0 , (2.2)

where

Mx0 =

∫ x0

0

ρ1x
2dx .

At last, the total luminosity of star is

L = 4π

∫ R

0

ερr2dr ,

and we obtain

L

M
= εc

Lx0
Mx0

, Lx0 =

∫ x0

0

εc ρ1x
2dx . (2.3)

Values of the quantities Mx0 and Lx0 should change a
little under changes of pc and Bc, remaining close to 1. If x0,
Mx0 , and Lx0 are the same for numerous stars, such stars are
homological, so the stars actually have the same structure.

As it is easy to see, the average density ρ̄ of star is
connected to ρc by the formula

ρ̄ = ρc
3Mx0

x30
. (2.4)

We find a formula for the total potential energy Ω of star
thus

Ω = −G
∫ R

0

Mr

r
dMr .

Multiplying the term under the integral by R, and divid-
ing by M2, we obtain

Ω = −
GM2

R
Ωx0 (2.5)

and also

Ωx0 =
x0
M2
x0

∫ x0

0

x ρ1Mxdx .

Under low radiant pressure, taking the equation of me-
chanical equilibrium into account, the system (I) gives

∫ x0

0

x ρ1Mxdx = −
∫ x0

0

x3dp1 = 3

∫ x0

0

x2p1dx , (2.5a)

from which we obtain

Ωx0 =

3x0

∫ x0

0

p1x
2dx

[ ∫ x0

0

ρ1x
2dx

]2 . (2.6)

Because all the functions included in the main system of
equations can be expressed through B1 and p1, we can find
the functions from the system of the differential equations
with respect to two parameters Bc and pc. Boundary condit-
ions (1.28) are enough to find the solutions at the centre of
a star. Hence, boundary conditions at the surface of a star
(1.29) are true under only some relations between Bc and pc.
Therefore all quantities characterizing a star are functions of
only one of two parameters, for instance Bc: R= f1 (Bc),
M = f2 (Bc), L= f3 (Bc). This circumstance, with the same
chemical composition of stars, gives the relations: (1) “mass-
luminosity” L=ϕ1(M) and (2) the Russell-Hertzsprung dia-
gram L=ϕ2(R).

From the above we see that the equilibrium of stars
has this necessary consequence: correlations between M , L,
and R. Thus the correlations discovered by observational
astrophysics can be predicted by the theory of the inner
constitution of stars.

2.2 Stars of polytropic structure

Solutions to the main system of the equations give functions
p1(x) and B1 (x). Hence, solving the system we can as well
obtain B1 (p1). If we set up a phase state, we can as well
obtain the function p1(ρ1).

Let us assume p1(ρ1) as p1(ρ
Γ
1 ), where Γ is a constant.

Such a structure for a star is known as polytropic. Having
stars of polytropic structure, we can easily find all the func-
tions of x. Therefore, in order to obtain a representation of
the solutions in the first instance, we are going to consider
stars of polytropic structure. Emden’s pioneering research on
the internal constitution of stars was done in this way.

The aforementioned polytropic correlation can be used
instead of the heat equilibrium equation, so only the first
equation remains in the system. We introduce a new variable
T1 which, in an ideal gas, equals the reduced temperature

p1
ρ1
= ρΓ−11 = T1 , (2.7)

or, in another form,

ρ1 = T
n
1 , n =

1

Γ− 1
, p1 = T

n+1
1 , (2.7a)

so that we obtain

dp1 = (n+ 1) T
n
1 dT .

Substituting the formulae into the first equation of the
main system (I), we obtain

E
[
T ′1
]
=
1

x21

1

dx1

[

x21
dT1
dx1

]

= −Tn1 , (2.8)

where a new variable x1 is introduced instead of x

x =
√
n+ 1x1 . (2.9)
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Emden’s equation (2.8) can be integrated very easily if
n=0 or n=1. Naturally, under n=0 (a star of constant
density) we obtain

p1 = T1 = 1−
x21
6
, (2.10)

so the remaining characteristics can be calculated just as
easily. Under n=1 the substitution n=T1 x1 reduces the
differential equation (2.8) to the simple form n′′=−n.
Hence, under n=1, we have

T1 =
sinx1
x1

, p1 =
sin2 x1
x21

. (2.11)

With other polytropic indices n, we obtain solutions
which are in series. All odd derivatives of the operator E
should become zero under x1=0. For even derivatives, we
have

E
(2i)
0

[
T ′1
]
=
2i+ 3

2i+ 1
T
(2i+2)
1 (0) . (2.12)

Now, differentiating equation (2.8), we obtain derivatives
in different orders of the function T1 under x1=0, so we
obtain the coefficients of the series expansion. As a result we
obtain the series

T1 = 1−
x21
3!
+
n

5!
x41 −

n(8n− 5)
3×7!

x61+

+
n(122n2 − 183n+ 70)

9×9!
x81 + . . .

(2.13)

Using (2.13), we move far away from the special point
x1=0. Subsequent solutions can be obtained by numerical
integration. As a result we construct a table containing char-
acteristics of stellar structures under different n (see Table 1).

The case of n= 3/2 corresponds to an adiabatic change of
the state of monatomic ideal gas (Γ= 5/3) and also a regular
Fermi gas (1.9). If n=3, we get a relativistic Fermi gas or an
ideal gas under B1= p1 (the latter is known as Eddington’s
solution).

In polytropic structures we can calculate exact values of
Ωx0 . Naturally, the integral of the numerator of (2.6) can be
transformed to

∫ x0

0

p1x
2dx =

∫ x0

0

T1 dMx = −
∫ x0

0

Mx
dT1
dx

dx .

Emden’s equation leads to

Mx = −(n+ 1)x
2 dT1
dx

, (2.14)

so we obtain

∫ x0

0

p1x
2dx =

1

n+ 1

∫ x0

0

M2
x

x2
dx =

= −
M2
x0

x0 (n+ 1)
+

2

n+ 1

∫ Mx0

0

Mx

x
dMx .

Table 1

n x0 Mx0

x20
3Mx0

Ωx0

0 2.45 4.90 1.0 3/5

1 4.52 9.04 3.4 3/4

3/2 5.81 11.1 5.9 6/7

2 7.65 12.7 11.4 1

2.5 10.2 14.4 24.1 6/5

3 13.8 16.1 54.4 3/2

3.25 17.0 17.5 88.2 12/7

Formula (2.5a) leads to another relation between the
integrals. As a result we obtain

[

1−
6

n+ 1

] ∫ x0

0

p1x
2dx = −

M2
x0

x0 (n+ 1)
,

and, substituting this into (2.6), we obtain Ritter’s formula

Ωx0 =
3

5− n
. (2.15)

This formula, in addition to other conclusions, leads to
the fact that a star can have a finite radius only if n< 5.

2.3 Solution to the simplest system of the equations

To begin, we consider the system (Ia), which is true in the
absence of convection and if the radiant pressure is low. The
absorption coefficient κ, the quantity of produced energy ε,
and the phase state equation of matter, can be represented
as products of different power functions p, B, ρ. Then the
functions κ1=κ/κc, ε1= ε/εc, and the phase state equation,
are dependent only on p1, B1 , ρ1; they have no parameters
pc, Bc, ρc. In this case the coefficient λ remains the sole
parameter of the system. In this simplest case we study the
system (Ia) under further limitations: we assume an ideal gas
and κ independent of physical conditions. Thus, we have the
correlations

κ=const: κ1=1, p1=B
1/4

1 ρ1 , ε1=f (p1, B1) , (2.16)

1

ρ1x
2

d

dx

[
x2dp1
ρ1dx

]

= −1 ,

1

ρ1x
2

d

dx

[
x2dB1
ρ1dx

]

= −λε1 ,

(2.17)

where

λ =
εcκc

4πGc γc
γc =

Bc
pc
. (2.18)

Taking integrals on the both parts of (2.17), we obtain

x2

ρ1

dB1
dx

= −λLx ,
x

ρ1

dp1
dx

= −Mx , (2.19)
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where we have introduced the notation

Lx =

∫ x

0

ε1ρ1x
2dx , Mx =

∫ x

0

ρ1x
2dx . (2.20)

Integrating (2.19) using boundary conditions, we obtain

λ =
l

∫ x0

0

Lx
ρ1
x2
dx

, l =

∫ x0

0

Mx
ρ1
x2
dx ,

hence

λ =

∫ x0

0

Mx
ρ1
x2
dx

∫ x0

0

Lx
ρ1
x2
dx

. (2.21)

From formulae (2.21) and (2.20) we conclude that the
more concentrated are the sources of stellar energy, the
greater is λ. If the source’s productivity ε increases towards
the centre of a star, λ> 1. If ε= const along the radius, ε1=1
and hence λ=1. If stellar energy is generated mostly in the
surface layers of a star, λ< 1. Equations (2.19) lead to

dB1
dp1

=
λLx
Mx

. (2.22)

Because of the boundary conditions p1=0, B1 =0 and
p1=1, B1 =1, the derivative dB1/dp1 always takes the
average value 1. Owing to

(
dB1
dp1

)

x=0

= λ ,

(
dB1
dp1

)

x=x0

=
λLx0
Mx0

,

we come to the following conclusions: if energy sources
are located at the centre of a star, λLx0/Mx0 < 1; if energy
sources are located on the surface, λLx0/Mx0 > 1. If energy
sources are homogeneously distributed inside a star,
λLx0/Mx0 =1 and B1 = p1, so we have polytropic class 3,
considered in the previous paragraph. This particular solution
is the basis of Eddington’s theory of the internal constitution
of stars. If n> 3, (dB1/dp1)x0→∞ so we have Lx0→∞.
Therefore we conclude that polytropic classes n> 3 char-
acterize stars where energy sources concentrate near the
surface. Polytropic classes n< 3 correspond to stars where
energy sources concentrate at the centre. Therefore the data
of Table 1 characterize the most probable structures of stars.
It should be noted that if n< 3, formulae (2.7) and (2.7a)
lead to (dB1/dp1)x0=0, and hence Lx0=0. So polytropic
structures of stars where energy sources concentrate at the
centre can exist only if there is an energy drainage in the
upper layer of a star.

Differentiating formula (2.22) step-by-step and using the
system (2.17) gives derivatives of B1 (p1) under p1=1 and,
hence, expansion of B1 (p1) into a Taylor series. The first
terms of the expansion take the form

B1=1+λ(p1−1)+
3

10
λ

[
∂ε1
∂p1

+λ
∂ε1
∂B1

]

1

(p1−1)
2 + . . .

The surface condition B1=0, being applied to this form-
ula under p1=0, gives an equation determining λ. This
method gives a numerical value of λ which can be refined by
numerical integration of the system (2.17). This integration
can be done step-by-step.

The centre of a star, i. e. the point where x=0, is the
singular point of the differential equations (2.17). We can
move far away from the singular point using series and
then (as soon as their convergence becomes poor) we apply
numerical integration. We re-write the system (2.7) as follows

E

[
B1/4

1

p1

dp1
dx

]

= −p1B
−1/4

1 ,

E

[
B1/4

1

p1

dB1
dx

]

= −λε1p1B
−1/4

1 .

(2.23)

Formula (2.12) gives

E
(2i)
0 [u ] =

2i+ 3

2i+ 1
[u ]

(2i+1)
0 . (2.24)

Then, differentiating formula (2.23) step-by-step using
(2.24), we obtain different order derivatives of the functions
p1(x) and B1 (x) under x=0 that yields the possibility of
expanding the functions into Laurent series. Here are the first
few terms of the expansions

p1 = 1−
1

3

x2

2!
+
2

15

[
4− λ

]x4

4!
− . . .

B1 = 1−
λ

3

x2

2!
+

+
2λ

15

[

(4− λ) +
3

2

(
∂ε1
∂p1

+ λ
∂ε1
∂B1

)

0

]
x4

4!
− . . .

(2.25)

In order to carry out numerical integration we use form-
ulae which can be easily obtained from the system (2.23),
namely

p′′1 = −p
2
1B

−1/2

1 + p′1

[
p′1
p1
−
B′1
4B1

−
2

x

]

,

B′′1 = −λε1p
2
1B

−1/2

1 +B′1

[
p′1
p1
−
B′1
4B1

−
2

x

]

.

(2.23a)

In this system, we introduce the reduced temperature T1
instead of B1 , and a new variable u1= p

1/4

1 instead of p1

u′′1 = −
u51
4T 21

+ u′1

[(
u′1
u1
−
T ′1
T1

)

−
2

x

]

,

T ′′1 = −
λε1u

8
1

4T 51
+ T ′1

[

4

(
u′1
u1
−
T ′1
T1

)

−
2

x

]

.

(2.23b)

This substitution gives a great advantage, because of small
slow changes of the functions T1 and u1.
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A numerical solution can be obtained close to the surface
layer, but not in the surface itself, because the equations
(2.23) can be integrated in the upper layers without problems.
Naturally, assuming Mx=Mx0 = const and Lx=Lx0 =
= const in formula (2.19), we obtain

dp1
ρ1

= −
Mx0

x2
dx ,

dB1
ρ1

= −
λLx0
x2

dx ,

B1 =
λLx0
Mx0

p1 .

(2.26)

The ideal gas equation and the last relation of (2.26)
permit us to write down

dp1
ρ1

= B1/4

1

dp1
p1

= B−3/4

1 dB1 .

Integrating the first equation of (2.26), we obtain

4T1 =Mx0

x0 − x
x0x

, (2.27)

which gives a linear law for the temperature increase within
the uppermost layers of a star.

To obtain λ by step-by-step integration, we need to have
a criterion by which the resulting value is true. It is easy to
see from (2.26) that such a criterion can be a constant value
for the quotient B1/p1 starting from x located far away from
the centre of a star. Solutions are dependent on changes of λ,
therefore an exact numerical value of this parameter should
be found. Performing the numerical integration, values of the
functions near the surface of a star are not well determined.
Therefore, in order to calculate Lx0 and Mx0 in would be
better to use their integral formulae (2.20). If energy sources
increase their productivity towards the centre of a star, we
obtain an exact value for Lx0 even in a very rough solution
for the system. The calculation of x0 is not as good, but it
can be obtained for fixedMx0 and x far away from the centre
through formula (2.27)

x0 =
x

1− 4T1
Mx0

x
. (2.27a)

Using the above method, exact solutions to the system are
obtained. Table 2 contains the characteristics of the solutions
in comparison to the characteristics of Eddington’s model∗.

The last column contains a characteristic that is very
important for the “mass-luminosity” relation (as we will see
later).

Let us determine what changes are expected in the char-
acteristics of the internal constitution of stars if the absorption
coefficient κ is variable. If κ is dependent on the physical
conditions, equation (2.22) takes the form

dB1
dp1

=
κ1λLx
Mx

. (2.22a)

∗In his model ε1=1, so the energy sources productivity is ε= const
along the radius (see the first row in the table). — Editor’s remark.

Table 2

ε1 λ x0 Mx0 Lx0
λLx0

M3
x0

1 1 13.8 16.1 16.1 3.8×10−3

B1 1.76 10 12.4 2.01 1.8×10−3

B1 p1 2.32 9 11.5 1.57 2.2×10−3

The variability of κ can be determined by a function of
the general form

κ1 =
pα1

B
β
1

.

At first we consider the simplest case where energy
sources are homogeneously distributed inside a star. In this
case ε1=1, Lx=Mx, and equation (2.22a) can be integrated

B
1+β
1 = λ

1 + β

1 + α
p1+α1 .

Proceeding from the conditions at the centre of any star
(B1 = p1=1), we obtain

λ =
1 + α

1 + β
, B1 = p

λ
1 .

Hence the star has polytropic structure of class

n =
4

λ
− 1 .

Looking from the physical viewpoint, the most probable
effects are: decrease in the absorption coefficient of a star
with depth, and also α>−1. Because

κ1 = p
α−β
1+β

1 = B
α−β
1+α

1 ,

κ1 decreases with increase of p1 and B1 only if α<β. Then
it is evident that λ< 1 and n> 3. Hence, variability of κ
results in an increase of polytropic class. According to the
theory of photoelectric absorption,

κ1 =
ρ1
T 3.5
1

.

In this case α= 1, β= 1.125 and hence n= 3.25. Table 1
gives respective numerical values of the characteristics x0
and Mx0 . Other calculated characteristics are λ= 0.94 and
λLx0/M

3
x0 = λ/M2

x0 = 3.06×10−3. All the numerical val-
ues are close to those calculated in Table 2. This is expected,
if variability of κ leads to the same order effect for the other
classes of energy source distribution inside stars.

Looking at Table 1 and Table 2 we see that the charact-
eristics x0'Mx0 ' 10 and λLx0/M

3
x0 ' 2×10−3 have tiny
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changes under different suppositions about the internal con-
stitution of stars (the internal distribution of energy sources)∗.
There are three main cases: (1) sources of stellar energy,
homogeneously distributed inside a star, (2) energy sources
are so strongly concentrated at the centre of star that their
productivity is proportional to the 8th order of the temp-
erature, (3) polytropic structures where energy sources are
concentrated at the surface — there is a drainage in the surface
layer of a star. It should be noted that we did not consider
other possible cases of distributed energy sources in a star,
such as production of energy in only an “energetically active”
layer at a middle distance from the centre. In such distributed
energy sources, as it is easy to see from the second equation
of the main system, there should be an isothermal core inside
a star, and such a star is close to polytropic structures higher
than class 3. In this case, instead of the former ε1, we can
build ε/εmax= ε1, 06 ε16 1, which will be subsumed into
λ. However in such a case ε1, and hence all characteristics
obtained as solutions to the system, is dependent on pc and
Bc, and the possibility to solve the system everywhere inside
a star sets up as well correlations between the parameters.
At last we reach the very natural conclusion that energy is
generated inside a star only under specific relations between
B and p in that quantity which is required by the com-
patibility of the equilibrium equations. In order to continue
this research and draw conclusions, it is very important to
note the fact that the characteristic λLx0/M

3
x0 is actually the

same for any stellar structure (see the last column in Table 2).
This characteristic remains almost constant under even exotic
distributions of energy sources in stars (exotic sources of
stellar energy), because of a parallel increase/decrease of its
numerator and denominator. Following a line of successive
approximations, we have a right to accept the tables as
the first order approximation which can be compared to
observational data. All the above conclusions show that it
is not necessary to solve the main system of the equilibrium
equations (2.17) for more detailed cases of the aforement-
ioned structures of stars. Therefore we did not prove the
uniqueness of the parameter λ.

2.4 Physical conditions at the centre of stars

The average density of the Sun is ρ̄�= 1.411. Using this
numerical value in (2.4), we obtain a formula determining
the central density of stars

ρc = 0.470
x30
Mx0

M
M�
(
R
R�

)3 . (2.28)

Taking this into account, formula (2.1) permits calculat-

∗It should be noted that the tables characterize the structure of stars
only if the radiant pressure is low. In the opposite case all the characteristics
x0, Mx0 , and others are dependent on γc.

ion of the gaseous pressure at the centre of a star

pc =
G

4π

(
M�

R2�

)2
x40
M2
x0

(
M
M�

)2

(
R
R�

)4 . (2.29)

BecauseM�=1.985×1033 andR�=6.95×1010, we obtain

pc = 8.9×1014
x40
M2
x0

(
M
M�

)2

(
R
R�

)4 . (2.30)

Thus the pressure at the centre of the Sun should be about
1016 dynes/cm2 (ten billion atmospheres). It should be noted,
as we see from the deductive method, the formulae for ρc
and pc are applicable to any phase state of matter.

Let us assume stars consisting of an ideal gas. Then
taking the ratio of (2.30) to (2.28) and using the ideal gas
equation (1.8), we obtain the temperature at the centre of a
star

Tc = 2.29×107μ
x0
Mx0

M
M�

R
R�

. (2.31)

Hence, the temperature at the centre of the Sun should
be about 10 million degrees. As another example, consider
the infrared satellite of ε Aurigae. For this star we have
M = 24.6M�, log

(
L/L�

)
= 4.46, R= 2,140R� [5]. Calcul-

ating the central density and temperature by formulae (2.30)
and (2.31), we obtain Tc' 2×105 and pc' 2×105: thus the
temperature is about two hundred thousand degrees and the
pressure about one atmosphere. Because the star is finely
located in the “mass-luminosity” diagram (Fig. 1) and the
Russell-Hertzsprung diagram, we have reason to conclude:
the star has the internal constitution regular for all stars.
This conclusion can be the leading arrow pointing to the
supposition that heat energy is generated in stars under phys-
ical conditions close to those which can be produced in an
Earthly laboratory.

Let us prove that only inside white dwarfs (the stars
of the very small radii — about one hundredth of R�), the
degenerate Fermi gas equation (1.9) can be valid. Naturally,
if gas at the centre of a star satisfies the Fermi equation,
we obtain pc= 1×1013ρ5/3c μ−5/3e . Formulae (2.28) and (2.30)
show that this condition is true only if

R

R�

= 3.16×10−3
x0M

1/3
x0(

M
M�

)1/3 μ
−5/3
e . (2.32)

This formula remains true independently of the state of
matter in other parts of the star. The last circumstance can
affect only the numerical value of the factor x0M 1/3

x0 . At the
same time, table 1 shows that we can assume the numerical
value approximately equal to 10.† Formula (2.32) shows that

†For stars of absolutely different structure, including such boundary
instances as the naturally impossible case of equally dense stars, and the
cases where energy sources are located at the surface. — Editor’s remark.
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Fig. 1: The “mass-luminosity” relation. Here points are visual
binaries, circles are spectral-binaries and eclipse variable stars,
crosses are stars in Giades, squares are white dwarfs, the crossed
circle is the satellite of ε Aurigae.

for regular degeneration of gas, stars (underM =M�) should
have approximately the same radius R' 2×109, i. e. about
20,000 km (R= 0.03R�). Such dimensions are attributed
to white dwarfs. For example, the satellite of Sirius has
M = 0.94M� and R= 0.035R� [6]. If the density is more
than the above mentioned (if the radius is less than R=
= 0.03R�) and the mass of the star increases, formula (2.32)
shows that regular degeneration can become relativistic deg-
eneration

p = Kρ4/3, K = KHμ
−4/3
e , KH = 1.23×1015.

We apply these formulae to the centre of a star, and
take equations (2.28) and (2.30) into account. As a result we
see that the radius drops out of the formulae, so relativistic
degeneration can be realized in a star solely in terms of the
mass

M

M�

= 0.356Mx0 , (μe = 1). (2.32a)

Because of Table 1, we see: n=0 only if Mx0 = 16.1.
Hence, the lower boundary of the mass of a non-degenerated
gaseous star is 5.7M�. In order to study degenerated gaseous
stars in detail, we should use the phase state equation that
includes the regular state, the boundary state between the
regular and degenerated states, and the degenerated state.
Applying formulae (2.28) and (2.30) to the above ratio,
we obtain a correlation between the radius and the mass
of a star, which is unbounded for small radii. It should be
noted that introduction of a mass-radius correlation is the
essence of Chandrasekhar’s theory of white dwarfs [7]. On
the other hand, having observable sizes of white dwarfs,
equation (2.32) taken under x0M 1/3

x0 = 10 gives the same

numerical values for radii as Chandrasekhar’s table (his well-
known relation between the radius and mass of star). The
exact numerical value of the ultimate mass calculated by
him coincides with our 5.7M�. In Chandrasekhar’s formula,
as well as in our formula (2.32), radius is correlated opposite
to mass. Today we surely know masses and radii of only
three white dwarfs: the white dwarfs do not confirm the
opposite correlation mass-radius. So, save for the radius of
Sirius’ satellite coinciding with our formula (2.32), we have
no direct astrophysical confirmation about degeneration of
gas inside white dwarfs.

Considering stars built on an ideal gas, we deduce a
formula determining the mass of a star dependent on internal
physical conditions. We can use formulae (2.30) and (2.31) or
formula (2.2) directly. Applying the Boyle-Mariotte equation
(1.8) to formula (2.2), and taking the Stephan-Boltzmann law
(1.7) into account, we obtain

M=C
γ1/2c
μ2

Mx0 , C =
<2

G3/2

√
4
3πα

=2.251×1033. (2.33)

Introducing the mass of the Sun M�= 1.985×1033 into
the equation, we obtain

M = 1.134M�

γ 1/2c

μ2
Mx0 . (2.34)

As we will see below, the “mass-luminosity” correlation
shows γc is close to 1 for blue super-giants. Hence formula
(2.34) gives the observed numerical values for masses of
stars. The fact that we obtain true orders for numerical
values of the masses of stars, proceeding only from numerical
values of the fundamental constants G, <, α, is excellent
confirmation of the theory.

2.5 The “mass-luminosity” relation

In deducing the “mass-luminosity” correlation, we assume:
(1) the radiant pressure is negligible in comparison to the
gaseous pressure everywhere inside a star; (2) stars consist
of an ideal gas; (3) ε and κ can be approximated by functions
like pαBβ . Then the main system of the equilibrium equa-
tions takes the form

1

ρ1x
2

d

dx

[
x2dp1
ρ1dx

]

= −1 ,

1

ρ1x
2

d

dx

[
x2dB1
κ1ρ1dx

]

= −λε1 ,

(2.35)

where

λ =
εcκc

4πGc γc
, γc =

Bc
pc
.

Solving the system, as we know, is possible under a
numerical value of λ close to 1. Hence a star can be in equi-
librium only if the energy generated inside it is determined
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by the formula

εc =
λ4πGc

κc
γc . (2.36)

If a star produces another quantity of energy, it will
contract or expand until its new shape results in production
of energy exactly by formula (2.36). Because γc determines
the mass of a star (2.34) and εc determines the luminosity of
a star, the “mass-luminosity” correlation should be contained
in formula (2.36). In other words, the “mass-luminosity”
correlation is the condition of equilibrium of stars.

Because of (2.3),

εc =
L

M

Mx0

Lx0
.

Substituting this equation into (2.36), we obtain

L =
4πGc

κc

λLx0
Mx0

Mγc .

The quantity γc can be removed with the mass of a star
by (2.33)

L =
4πG44πα

3κc<4
μ4
(
λLx0
M3
x0

)

M3. (2.37)

The luminosity of the Sun is L�= 3.78×1033. Proceeding
from formula (2.37), we obtain

L

L�

= 1.04×104
μ4

κc

(
λLx0
M3
x0

)(
M

M�

)3
. (2.38)

The formula (2.38) gives a very simple correlation: the
luminosity of a star is proportional to the third order of
its mass. In deducing this formula, we accepted that ε is
determined by a function ε∼ pαBα, so ε1 depends on p1
and B1 . It is evident that rejection of this assumption cannot
substantially change the obtained correlation (2.38). Natur-
ally, under arbitrary ε, the quantity ε1 depends on pc and Bc.
Thus the multiplier λLx0/M

3
x0 in formula (2.38) will have

different numerical values for different stellar structures. At
the same time Table 2 shows that this multiplier is approxim-
ately the same for absolutely different structures, including
boundary structures which are exotic. Therefore the “mass-
luminosity” correlation gives no information about sources
of stellar energy — the correlation is imperceptible to their
properties. However, other assumptions are very important.
As we see from the deductive path to formula (2.33), the
correlation between mass and luminosity can be deduced
only if the pressure depends on temperature, so our formula
(2.38) can be obtained only if the gas is ideal. It is also
important to make the absorption coefficient κ constant for
all stars. The rôle of the radiant pressure will be considered
in the next paragraph.

And so forth we are going to compare formula (2.38) to
observational data. Fig. 1 shows masses and luminosities of

stars, according to today’s data. The diagram has been built
on masses of stars taken from Kuiper’s data base [8], and the
monograph by Russell and Moore [9]. We excluded Trumpler
stars [10] from the Kuiper data, because their masses were
measured uncertainly. Naturally, Trumpler calculated masses
of such stars, located in stellar clusters, with the supposition
that the K-term (the term for radiant velocities with respect
to the whole cluster) is fully explained by Einstein’s red shift.
For this reason the calculated masses of Trumpler stars can
be much more than their real masses. Instead of Trumpler
stars, in order to fill the spaces of extremely bulky stars in
the diagram, we used extremely bulky eclipse variable stars
(VV Cephei, V 381 Scorpii) and data for Plasckett’s spectral-
variable star BD+6◦ 1309.

As we see in Fig. 1, our obtained correlation L∼M3 is
in good accord with the observational data in all spectra of
observed masses (having a small deviation inside 1.5m). The
dashed line L∼M 10/3 is only a little different from our line.
Parenago [11], Kuiper [8], Russell [9], and others accept this
L∼M 10/3 line as the best representation of observational
data. Some researchers found the exponent of mass more
than our’s. For instance, Braize [12] obtained L∼M 3.58.
Even if such maximal deviation from our exponential index
3 is real, the theoretical result is excellent for most stars.
The coefficient of proportionality in our formula (2.38) is
very susceptible to μ. For this reason, coincidence of our
theoretical correlation and observational data is evidence that
the chemical composition of stars is the same on the average.
The same should be said about the absorption coefficient κ:
because physical conditions inside stars can be very different
even under the same luminosity (for example, red giants and
blue stars located in the main direction), it is an unavoidable
conclusion that the absorption coefficient of stellar matter is
independent of pressure and temperature. The conclusions
justify our assumption in §1.3, when we solved the main
system of equilibrium equations.

The fact that white dwarfs lie off the main sequence
can be considered as a confirmation of degenerate gas inside
them. Because a large increase of the absorption coefficient in
white dwarfs in comparison to regular stars is not very plau-
sible, another explanation can be given only if the structural
multiplier λLx0/Mx0 in white dwarfs is ∼100 times more
than in other stars. The location of white dwarfs in the
Russell-Hertzsprung diagram can give a key to this problem.

At last, proceeding from observational data, we calculate
the coefficient μ4/κc in our theoretical formula (2.38). The
line L∼M3, which is the best representation of observ-
ational data, lies a little above the point where the Sun is
located. For this reason, under M =M�, we should have
L= 1.8L� in our formula (2.38). According to table 2, we
assume λLx0/M

3
x0 = 2×10−3. Then we obtain

μ4

κc
= 0.08 . (2.39)
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2.6 The radiant pressure inside stars

In the above we neglected the radiant pressure in comparison
to the gaseous one in the equation of mechanical equilibrium
of a star. Now we consider the main system of the equation
(III), which takes the radiant pressure into account. If the
absorption coefficient κ is constant (κ1=1), this system
takes the form

1

ρ1x
2

d

dx

[
x2dp1
ρ1dx

]

= −(1− λγc ε1) ,

1

ρ1x
2

d

dx

[
x2dB1
ρ1dx

]

= −λε1 .

(2.40)

After calculations analogous to those carried out in de-
ducing formula (2.21), we obtain

λ (1 + γc) =

∫ x0

0

Mx
ρ1
x2
dx

∫ x0

0

Lx
ρ1
x2
dx

. (2.41)

The ratio of integrals in this formula depends on the
distribution of energy sources inside a star, i. e. on the struct-
ure of a star. This ratio maintains a numerical value close to 1
under any conditions. Thus λ(1+ γc)∼ 1. If energy sources
are distributed homogeneously throughout the volume of a
star, we have ε1=1, Lx=Mx and hence the exact equality
λ(1+ γc)= 1. If energy sources are concentrated at the
centre of a star, λ(1+ γc)> 1. In this case, if the radiant
pressure takes high values (γc> 1), the internal constitution
of a star becomes very interesting, because in this case
λγc> 1 and the right side term in the first equation of
(2.40) is positive at the centre of a star, our formula (2.41)
leads to p′′1 > 0, and hence at the centre of such a star the
gaseous pressure and the density have a minimum, while
their maximum is located at a distance from the centre∗.

From this we conclude that extremely bulky stars having
high γc can be in equilibrium only if λ(1+ γc)∼ 1, or, in
other words, if the next condition is true

εc ∼
4πGc

κ
. (2.42)

Thus, starting from an extremely bulky stellar mass
wherein γc> 1, the quantity of energy generated by a unit
of the mass should be constant for all such extremely bulky
stars. The luminosity of such stars, following formulae (2.3)
and (2.2), should be directly proportional to their mass:
L∼M . This correlation is given by the straight line drawn
in the upper right corner of Fig. 1. Original data due to

∗This amazing conclusion about the internal constitution of a star is true
under only high values of the radiant pressure. In regular stars the radiant
pressure is so low that we neglect it in comparison to the gaseous pressure
(see previous paragraphs). — Editor’s remark.

Eddington [13] and others showed an inclination of the
“mass-luminosity” line to this direction in the region of bulky
stars (the upper right corner of the diagram). But further more
exact data, as it was especially shown by Russell [9] and
Baize [12], do not show the inclination for even extremely
bulky stars (see our Fig. 2). Therefore we can conclude that
there are no internal structures of stars for γc> 1; the ultimate
case of possible masses of stars is the case where γc=1.
Having no suppositions about the origin of energy sources
in stars†, it is very difficult to give an explanation of this
fact proceeding from only the equilibrium of stars. The very
exotic internal constitution of stars under γc> 1 suggests
that if such stars really exist in nature, they are very rare
exceptions.

In order to ascertain what influence γc has on the structure
of a star, we consider the simplest (abstract) case where
energy sources are distributed homogeneously throughout a
star (ε1=1). In this case, as we know,

λ =
1

1 + γc
, (2.43)

and the system (2.40) takes the form

1

ρ1x
2

d

dx

[
x2dp1
ρ1dx

]

= −
1

1 + γc
,

1

ρ1x
2

d

dx

[
x2dB1
ρ1dx

]

= −
1

1 + γc
.

(2.44)

Introducing a new variable xγc=0 instead of x

x =
√
1 + γc xγc=0 , (2.45)

we obtain the main system in the same form as that in the
absence of the radiant pressure. So, in this case the main
characteristics of the internal constitution of star are

x0 = x0(γc=0)
(
1 + γc

)1/2
,

Mx0 =Mx0(γc=0)

(
1 + γc

)3/2
,

Lx0 = Lx0(γc=0)
(
1 + γc

)3/2
, λ =

λγc=0
1 + γc

.

(2.46)

Characteristics indexed by γc=0 are attributed to the
structures of stars where γc� 1; their numerical values can
be taken from our Table 2. Because Table 2 shows very
small changes in Mx0 for very different structures of stars,
formulae (2.46) should as well give an approximate picture
for other structures of stars. Under high γc, the mass of a star
(2.34) becomes

M ' 1.134M�

γ 1/2c

μ2
(
1 + γc

)3/2
Mx0(γc=0) . (2.47)

†That is the corner-stone of Kozyrev’s research. — Editor’s remark.
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Astronomical observations show that maximum masses
of stars reach ∼120M� — see Fig. 1, showing an inclination
of the “mass-luminosity” correlation near log (M/M�)= 2.
Assuming this mass in (2.47), and assuming γc=1 and
Mx0 = 10 for it, we obtain the average molecular weight
μ= 0.51.

Then in such stars, by formula (2.39), we obtain κ= 0.8.
On the other hand, because the “mass-luminosity” correlation
has a tendency to the line L∼M for extremely bulky masses
(see Fig. 1), we obtain the ultimate value ε̄= 5×104. For
homogeneously distributed energy sources, formula (2.42)
leads to κ= 0.5. If they are concentrated at the centre,
εc> ε̄= εc(Lx0/Mx0). Even in this case formula (2.42) leads
to εc> ε̄. There is some compensation, so the calculated
numerical value of the absorption coefficient κ is true. An
exact formula for ε̄ can be easily obtained as

L

M
= ε̄ =

4πGc

κ

Lx0
Mx0

∫ x0

0

Mx
ρ1
x2
dx

∫ x0

0

Lx
ρ1
x2
dx

γc
1 + γc

. (2.48)

So, having considered the “mass-luminosity” correlation,
we draw the following important conclusions:

1. All stars (except possibly for white dwarfs) are built
on an ideal gas;

2. In their inner regions, where stellar energy is generated,
all stars have the same chemical composition, μ=
= const= 1/2, so they are built on a mix of protons
and electrons without substantial percentage of other
nuclei;

3. The absorption coefficient per unit of mass κ is inde-
pendent of the physical conditions inside stars, it is a
little less than 1.

Thomson dispersion of light in free electrons has the
same properties. Naturally, the Thomson dispersion coeffi-
cient per electron is

σ0 =
8π

3

(
e2

mec2

)2
= 6.66×10−25, (2.49)

where e and me are the charge and the mass of the electron.
In the mix of protons and electrons we obtain

κT =
σ0
mH

=
6.66×10−25

1.66×10−24
= 0.40 . (2.50)

The fact that our calculated approximate value of κ is
close to κT= 0.40 shows that the interaction between light
and matter inside stars is determined mainly by the Thomson
process — acceleration of free electrons by the electric field
of light waves.

Because μ stays in the “mass-luminosity” correlation
(2.38) in fourth degree, the obtained theoretical value of μ is

quite exact with respect to the real one. If κ=κT, as a result
of (2.39) we have μ= 0.43. Because μ cannot be less than
1/2, the obtained ultimate value of κ= 0.8 is twice κT= 0.40.
This fact can be explained by the circumstance that, in this
case of extremely bulky masses, the structural coefficient in
formula (2.38) should be twice as small. It is evident that
we can accept μ= 1/2 to within 0.05. If all heavy nuclei are
ionized, their average molecular weight is 2. If we assume
the average molecular weight in a star to be 0.55 instead of
1/2, the percentage of ionized atoms of hydrogen χH becomes

2χH +
1

2
(1− χH) =

1

0.55
, χ

H ' 90% .

Thus the maximum admissible composition of heavy
nuclei inside stars, permitted by the “mass-luminosity” cor-
relation, is only a few percent. Under μ= 1/2 the mass of
a star, where γc=1, is obtained as 130M�. This value is
indicated by the vertical line in Fig. 1.

At last we calculate the radiant pressure at the centre
of the Sun. Formula (2.34) leads to γc�' 10−3. In this
case the radiant pressure term in the equation of mechanical
equilibrium can be neglected.

2.7 Comparing the obtained results to results obtained
by other researchers

To deduce the “mass-luminosity” correlation by the explana-
tion according to the regular theory of the internal constitut-
ion of stars, becomes very complicated because the theore-
ticians take a priori the absorption coefficient as dependent
on the physical conditions. They supposed the absorption
of light inside stars due to free-connected transitions of
electrons (absorption outside spectral series) or transitions
of electrons from one hyperbolic orbit to another in the field
of positive charged nuclei. The theory of such absorption was
first developed by Kramers, and subsequently by Gaunt, and
especially, by Chandrasekhar [14]. According to Chandra-
sekhar, the absorption coefficient depends on physical cond-
itions as

κCh = 3.9×1025
ρ

T 3.5
(
1− χ2H

)
, (2.51)

where χ2H is the percentage of hydrogen, the numerical factor
is obtained for Russell’s composition of elements. In order
to clarify the possible rôle of such absorption in the “mass-
luminosity” correlation, we assume (for simplicity)

κCh =
κ0
γ
. (2.52)

In this case, having small γc, formulae (2.38) and (2.33)
show L∼M5. This exponent is large, so we cannot neglect
γc in comparison to 1. If γc is large, the formulae show
L∼M 3/2. Thus, in order to coordinate theory and observa-
tions, we are forced to consider “middle” numerical values of
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γc and reject the linear correlation between logL and logM .
Formulae (2.47) and (2.48) show

M2 ∼
γc
(
1 + γc

)2

μ4
, M2 ∼

1− β
μ4β4

,

L ∼M
γ2c

1 + γc
, L ∼M 3/2

(
1− β

)3/2
μ .

(2.53)

Here are formulae where γc has been replaced with the
constant β, one regularly uses in the theory of the internal
constitution of stars

β =
pc
p0
=

1

1 + γc
. (2.54)

Thus the “mass-luminosity” correlation, described by the
two formulae (2.53), becomes very complicated. The form-
ulae are in approximate agreement with Eddington’s form-
ulae [15] and others. The exact formula for (2.51) introduces
the central temperature Tc into them. Under large γc, as we
see from formulae (2.46), the formula for Tc (2.31) includes
the multiplier β

Tc = 2.29×107μβ

(
x0
Mx0

)

γc=0

M
M�

R
R�

. (2.55)

Then, through Tc, the radius and the reduced temperature
of a star can be introduced into the “mass-luminosity” cor-
relation. This is the way to obtain the well-known Eddington
temperature correction.

In order to coordinate the considered case of “middle” γc,
we should accept γc=1 starting from masses M ' 10M�.
So, for the Sun we obtain γc�= 0.08. As we see from form-
ula (2.47), it is possible if μ' 2. Then formula (2.39), using
the numerical value λLx0/M

3
x0 = 3.8×10−3 given by Eddin-

gton’s model, gives κc�= 170 and κ0= 14. The theoretical
value of κ0 can be obtained by comparing (2.52) and (2.51);
it is

κ0 =
αμ

3<
√
Tc�

3.9×1025
(
1− χ2H

)
. (2.56)

According to (2.55) we obtain Tc�= 4×107. Then, by
(2.56), we have κ0= 0.4. So, according to Eddington’s
model, the theoretically obtained value of the absorption
coefficient κ0= 14 is 30 times less than the κ0= 0.4 re-
quired, consistent with the observational data∗. This diver-
gence is the well-known “difficulty” associated with Edding-
ton’s theory, already noted by Eddington himself. According
to Strömgren [16], this difficulty can be removed if we accept
the hypothesis that stars change their chemical composition
with luminosity. Supposing the maximum hydrogen content,
μ can vary within the boundaries 1/26μ6 2. Then, as we

∗As it was shown in the previous paragraph, Kozyrev’s theory
gives κ0= 0.5–0.8 for stars having different internal constitutions, which
corresponds well to observations. — Editor’s remark.

see from (2.56), the theoretical value of κ0 decreases slightly.
On the other hand, the previous paragraph showed that the
value of κ0, obtained from observations, decreases much
more. As a result, the theoretical and observational values of
κ can be matched (which is in accordance with Strömgren’s
conclusion). All theoretical studies by Strömgren’s followers,
who argued for evolutionary changes of relative amounts of
hydrogen in stars, were born from the above hypothesis.
The hypothesis became very popular, because it provided
an explanation of stellar energy by means of thermonuclear
reactions, as suggested by Bethe.

It is evident that the above theories are very strained. On
the other hand, the simplicity of our theory and the general
way it was obtained are evidence of its truth. It should be
noted that our two main conclusions

(1) μ = 1/2 , χ2H = 1 ; (2) κ = κT ,

obtained independently of each other, are physically con-
nected. Naturally, if χ2H= 1, Chandrasekhar’s formula (2.51)
becomes inapplicable. Kramers absorption (free-connected
transitions) becomes a few orders less; it scarcely reaches
the Thomson process. At the same time, our main result is
that γc< 1 for all stars, and this led to all the results of our
theory. Therefore this result is so important that we mean
to verify it by other astrophysical data. We will do it in the
next chapter, analysing the correlation “period — average
density of Cepheids”. In addition, according to our theory,
the central regions of stars, where stellar energy is generated,
consist almost entirely of hydrogen. This conclusion, despite
its seemingly paradoxical nature, must be considered as an
empirically established fact. We will see further that study of
the problem of the origin of stellar energy will reconcile this
result with spectroscopic data about the presence of heavy
elements in the surface layers of stars.

2.8 The rôle of convection inside stars

In §1.3 we gave the equations of equilibrium of stars (II),
which take convective transfer of energy into account. As-
suming the convection coefficient A= const, the second eq-
uation of the system (the heat equilibrium equation) can be
written as

1

ρ1x
2

d

dx

[
x2dB1
ρ1dx

]

−
κcρcA

c γc

1

ρ1x
2

[

x2u
dp1
dx

]

=−λε1 , (2.57)

where

u = 1−
Γ

4(Γ− 1)
p1
B1

dB1
dp1

. (2.58)

The convection term in (2.57) plays a substantial rôle
only if

κcρcA

c γc
> 1 , A >

c γc
κcρc

. (2.59)
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Table 3

κ x1 Mx1 λLx0 x0 Mx0

x30
3Mx0

λLx0

M3
x0

const 2.4913 3.570 3.018 8.9 11.46 20.5 1.97×10−3

κCh 1.88 1.25 1.25 11.2 12.4 37.0 0.65×10−3

Hence the convection coefficient for the Sun should sat-
isfy A�>5×107. In super-giants, convection would be sub-
stantial only under A>1016. The convection coefficient A,
as we see from formula (1.17), equals the product of the
convective current velocity v̄ and the average length λ̄ tra-
velled by the current. Thus convection can influence energy
transfer inside super-giants if convection currents are about
the size of the star (which seems improbable). At the same
time, if a convection instability occurs in a star, the average
length of travel of the current becomes the size of the whole
convection zone. Then the coefficient A increases so much
that it can reach values satisfying (2.59). If A is much more
than the right side of (2.59), taking into account the fact that
all terms of the equilibrium equation (2.57) are about 1, the
term in square brackets is close to 0. Then, if A is large,

u = 0 , hence B1 = p
4(Γ−1)

Γ
1 , (2.60)

which is the equation of adiabatic changes of state. For a
monatomic gas, Γ= 5/3 (n= 3/2) and hence

B1 = p
8/5

1 . (2.61)

Because, according our conclusions, stars are built up
almost entirely of hydrogen, Γ can be different from 5/3 in
only the upper layers of stars, which is insufficient in our
consideration of a star as a whole. Therefore zones of free
convection can appear because of an exotic distribution of
energy sources.

Free convection can also start in another case, as soon
as the temperature gradient of radiant equilibrium exceeds
the temperature gradient of convective equilibrium. This is
Schwarzschild’s condition, and it can be written as

(
d logB1
d log p1

)

Rad

>

(
d logB1
d log p1

)

Con

,

which, taking (2.22) and (2.61) into account, leads to

λLx
Mx

> 1.6
B1
p1
. (2.62)

From this formula we see that free convection is im-
possible in the surface layers of stars. In central regions we
obtain the next condition for free convection

λ > 1.6.

Table 2 shows that even when ε1=B1 , any star should
contain a convective core. If ε1 depends only on temperature
and can be approximated by function ε1=T

m, the calc-
ulations show that λ reaches its critical value of 1.6 when
m= 3.5. Thus a star has a convective core if m> 3.5. The
radius x1 of the convective core is determined by equality
between the temperature gradients (see above). Writing
(2.62) as an equality, we obtain

λLx1 = 1.6Mx1

(
B1
p1

)

x1

= 1.6Mx1ρx1 . (2.63)

It is evident that the size of the convective core increases
if the energy sources become more concentrated at the centre
of a star. In the case of a strong concentration, all energy
sources become concentrated inside the convective core.
Then inside the region of radiant equilibrium we have
λLx=λLx1 = const. Because the border of the convective
core is determined by equality of the physical characteristics’
gradients in regions of radiant equilibrium and convective
equilibrium, not only are p1 and T1 continuous inside such
stars but so are their derivatives. Therefore such a structure
for a star can be finely calculated by solving the main system
of the equilibrium equations under ε1=0 and boundary
conditions: (1) under some values of x=x1, quantities p1,B1
and their derivatives should have numerical values satisfying
the solution to Emden’s equation under n= 3/2; (2) under
some value x=x0 we should have p1=B1 =0. The four
boundary conditions fully determine the solution. We can
find x1 by step-by-step calculations as done in §2.3 for λ.

The formulated problem, known as the problem of the
internal constitution of a star having a point-source of energy
and low radiant pressure, was first set up by Cowling [17].
In his calculations the absorption coefficient was taken as
variable according to Chandrasekhar’s formula (2.51):
κ=κCh. However in §2.6 we showed that κ=κT inside
all stars. Only in the surface layers of a star should κ
increase to κT. But, because of very slow changes of physical
conditions along the radius of a star, κ remains κT in the
greater part of the volume of a star. Therefore it is very
interesting to calculate the internal structure of a star under
given values of κ= const. We did this, differing thereby
from Cowling’s model, so that there are two alternatives:
our model (κ= const) and Cowling’s model (κT). All the
calculations were carried out by numerical integration of
(2.23b) assuming there that ε1=0.
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Table 4

x T1 p1 ρ1

0.00 1.000 1.000 1.000

0.50 0.983 0.958 0.975

1.00 0.935 0.845 0.904

1.50 0.856 0.677 0.791

2.00 0.762 0.507 0.665

2.50 0.652 0.346 0.530

3.00 0.544 0.211 0.388

3.50 0.451 0.117 0.259

4.00 0.370 0.598×10−1 0.161

4.50 0.328 0.284×10−1 0.936×10−1

5.00 0.245 0.125×10−1 0.510×10−1

5.50 0.195 0.52×10−2 0.266×10−1

6.00 0.154 0.20×10−2 0.129×10−1

6.50 0.118 0.67×10−3 0.57×10−2

7.00 0.087 0.20×10−3 0.23×10−2

7.50 0.060 0.49×10−4 0.82×10−3

8.00 0.036 0.64×10−5 0.18×10−3

8.50 0.015 0.19×10−6 0.79×10−4

8.90 0.000 0.000 0.000

Table 3 gives the main characteristics of the “convective”
model of a star under κ= const and κ=κCh. The κCh are
taken from Cowling’s calculations. Values of λLx0 were
found by formula (2.62). In this model, distribution of energy
sources inside the convective core does not matter. For this
reason, the quantities λ and Lx0 are inseparable. If we would
like to calculate them separately, we should set up the dis-
tribution function for them inside the convective core.

We see that the main characteristics of the structure of a
star, the quantities x0, Mx0 , and λLx0 , are only a little dif-
ferent from those calculated in Table 2. The main difference
between structures of stars under the two values κ= const
and κ=κCh is that under our κ= const the convective core is
larger, so such stars are close to polytropic structures of class
3/2, and there we obtain a lower concentration of matter at the
centre: ρc= 20.5 ρ̄. Table 4 gives the full list of calculations
for our convective model (κ= const).

Chapter 3

The Internal Constitution of Stars, Obtained from the
Analysis of the Relation “Period — Average Density of

Cepheids” and Other Observational Data

In the previous chapter we deduced numerous theoretical
correlations, which give a possibility of calculating the phys-

ical characteristics of matter inside stars if their structural
characteristics are known. In order to be sure of the calc-
ulations, besides our general theoretical considerations, it
would be very important to obtain the structural character-
istics proceeding from observational data, related at least to
some classes of stars.

Properties of the internal structure of a star should mani-
fest in its dynamical properties. Therefore we expect that
the observed properties of variable stars would permit us to
learn of their structures. For instance, the pulsation period
of Cepheids should be dependent on both their physical
characteristics and the distribution of the characteristics in-
side the stars. Theoretical deduction of this correlation can
be done very strictly. Therefore we have a basis for this
deduction in all its details.

Radiation of energy by an oscillating star must result in
a dispersion of mechanical energy of its oscillations. It is
most probable that the oscillation energy of variable stars is
generated and supported by energy sources connected to the
oscillation and radiation processes. In other words, such stars
are self-inducing oscillating systems. Observable arcs of the
oscillating luminosity and speed reveal a nonlinear nature for
the oscillations, which is specific to self-inducing oscillating
systems. The key point of a self-inducing oscillating system
is a harmonic frequency equal to the natural frequency of
the whole oscillating system. Therefore, making no attempt
to understand the nature of the oscillations, we can deduce
the oscillation period as the natural period of weak linear
oscillations.

3.1 The main equation of pulsation

Typical Cepheids have masses less than 10 solar masses. For
instance, δ Cephei hasM ' 9M�. In this case equation (2.34)
leads to γc< 0.1, so Cepheids should satisfy L∼M3, i. e. the
“mass-luminosity” relation. Therefore the radiant pressure
plays no rôle in such stars, so considering their internal
constitutions we should take into account only the gaseous
pressure. In solving this problem we will consider linear
oscillations, neglecting higher order terms. This problem
becomes much simpler because temperature changes in such
a star satisfy adiabatic oscillations in almost its whole volume,
except only for the surface layer. Naturally, in order to
obtain the ratio between observed temperature variations
and adiabatic temperature variations close to 1, the average
change of energy inside 1 gram in one second should be
about ε̄, i. e. ∼102. This is 108 per half period. On the other
hand, the heat energy of a unit of mass should be about
Ω/M (according to the virial theorem), that is ∼1015 ergs
by formula (2.5). Thus during the pulsation the relative
change of the energy is only 107, so pulsations of stars are
adiabatic, with high precision. We assume that the pulsation
of a star can be determined by a simple standing wave with
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a frequency n/2π

V (r, t)=V (r) sinnt, a=
∂2V

∂t2
=−n2V (r) sinnt, (3.1)

where V (r) is the relative amplitude of the pulsation

V (r) =
δr

r
.

By making the above assumptions, Eddington had solved
the problem of pulsation of a star.

Linking the coordinate r to the same particle inside a
star, we have the continuity equation as follows

Mr = const , r2ρdr = const . (3.2)

Using the condition of adiabatic changes δp
p =Γ

δρ
ρ and

taking variation from the second equality, we obtain

δp

p
= −Γ

[

3V + r
dV

dr

]

. (3.3)

It is evident that the equations of motion

dp

ρdr
= −(g + a) , g =

GMr

r2

give, neglecting higher order terms,

dδp

dr
= −aρ+ 4V

dp

dr
.

Substituting formula (3.3) into this equation, we obtain
Eddington’s equation of pulsation

d2V

dr2
+
1

r

dV

dr

[

4 +
r

p

dp

dr

]

+

+
V

rΓ

1

p

dp

dr

[

(3Γ− 4)−
n2r

g

]

= 0 .

(3.4)

We introduce a dimensionless variable x instead of r (we
used this variable in our studies of the internal constitution
of stars). As it is easy to see

g

r
= 4πG

ρ̄r
3
= 4πGρc

Mx

x3
. (3.5)

Substituting (3.5) into formula (3.4), we transform the
pulsation equation to the form

d2V

dr2
+
1

x

dV

dr

[

4 +
x

p1

dp1
dr

]

−

−
V

xΓ

1

p1

dp1
dr

[

(4− 3Γ) +
n2

4πGρc

x3

3Mx

]

= 0 .

(3.6)

We transform this equation to self-conjugated form. Mul-
tiplying it by x4p1, we obtain

d

dx

[

x4p1
dV

dx

]

−V x3
dp1
dx

(4−3Γ)
Γ

[

1−λ
x3

3Mx

]

=0, (3.7)

where

λ =
n2

4πGρc
(
Γ− 4

3

) . (3.8)

So the problem of finding the pulsation period has been
reduced to a search for those numerical values of λ by which
the differential equation (3.7) has a solution satisfying the
“natural” boundary conditions

x4p1
dV

dx

∣
∣
∣
∣

x0

0

= 0. (3.9)

Formula (3.8) gives the correlation “period — average
density of Cepheids” and, hence, the general correlation
“period — average density of a star”. It is evident that λ
depends on the internal structure of a star. Its expected
numerical value should be about 1. For a homogeneously
dense star, x3/(3Mx)= 1 everywhere inside it. In this case
the differential equation (3.7) has the solution: V = const,
λ=1. This solution determines the main oscillation of such
a star. In order to find the main oscillations of differently
structured stars, we proceed from the solution by applying
the method of perturbations.

3.2 Calculation of the mean values in the pulsation
equation by the perturbation method

We write the pulsation equation in general form

(
py ′
)
′ + qy

(
1− λρ

)
= 0 . (3.10)

If we know a solution to this equation under another
function ρ= ρ0

(
py ′0
)
′ + qy0

(
1− λ0ρ0

)
= 0 , (3.11)

hence we know the function y0 and the parameter λ0. After
multiplying (3.10) by y0 and (3.11) by y, we subtract one
from the other. Then we integrate the result, taking the limits
0 and x0. So, we obtain

∫ x0

0

qyy0 [λ0ρ0 − λρ] dx = 0 ,

hence

λ = λ0

∫ x0

0

qyy0ρ0dx

∫ x0

0

qyy0ρdx

. (3.12)

If the oscillations are small, equation (3.10) is the same
as (3.11) with only an infinitely small correction

ρ = ρ0 + δρ , y = y0 + δy , λ = λ0 + δλ .
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Then the exact formula for δλ

δλ = −λ0

∫ x0

0

qyy0 δρ dx

∫ x0

0

qyy0ρdx

can be replaced by

δλ = −λ0

∫ x0

0

qy20 δρ dx

∫ x0

0

qy20ρdx

,

and thus we have

λ = λ0

∫ x0

0

qy20ρ0dx

∫ x0

0

qy20ρdx

. (3.13)

In our case y0=1 and λ0=1. Comparing formulae
(3.10) and (3.7), using (3.13), we obtain

λ = λ0

3

∫ x0

0

xρ1Mxdx

∫ x0

0

x4ρ1dx

. (3.14)

We re-write this equation, according to (2.5a), as follows

λ = λ0

9

∫ x0

0

p1x
2dx

∫ x0

0

ρ1x
4dx

. (3.15)

If we introduce the average density ρ̄ into formula (3.8)
instead of the central one ρc, then according to (2.4),

λ̄ =
n2

4πGρ̄
(
Γ− 4

3

) , (3.16)

λ̄ = λ
ρc
ρ̄
=

x30
3Mx0

λ . (3.17)

Using formulae (2.6) and (3.17) we re-write (3.15) as

λ̄ =
x20Ωx0Mx0

Ix0
, (3.18)

where Ix0 is the dimensionless moment of inertia

Ix0 =

∫ x0

0

ρ1x
4dx . (3.19)

Formulae (3.16) and (3.18) determine the oscillation per-
iod of a star, P =2π/n, independently of its average density

ρ̄. This result was obtained by Ledoux [18] by a completely
different method. It is interesting that our equations (3.16)
and (3.18) coincide with Ledoux’s formulae.

We next calculate λ for stars of polytropic structures. In
such cases Ix0 is

Ix0 = x
2
0Mx0 − 6(n+ 1)

∫ x0

0

T1 x
2dx , (3.20)

where n is the polytropic exponent. Thus

1

λ̄
=
5− n
3





1− 6 (n+ 1)

∫ x0

0

T1 x
2dx

Mx0x
2
0





 . (3.21)

Calculations of the numerical values of λ̄ for cases of
different polytropic exponents are given in Table 5.

Table 5

n λ̄

0 1.00

1 1.91

3/2 2.52

2 3.85

2.5 7.00

3 13.1

Under large λ̄, much different from 1,
the calculations for Table 5 are less
precise. Therefore, in order to check
the calculated results, it is interesting
to compare the results for n=3 to
those obtained by Eddington via his
exact solution of his adiabatic oscil-
lation equation for his stellar model.
For the stars we consider, he obtained,
n2

πGρcΓ
= 3
10
(3 − 4/Γ). Hence, com-

paring his result to our formula (3.8),
we obtain λ= 9/40 and λ̄= 9

40
ρc
ρ̄
=

= 12.23. This is in good agreement with our result λ̄= 13.1
given in Table 5.

3.3 Comparing the theoretical results to observational
data

We represent the “period — average density” correlation in
the next form

P
√
ρ̄0 = c1 , (3.22)

where P is the period (days), ρ̄0 is the average density
expressed in the multiples of the average density of the Sun

n =
2π

86,400P
, ρ̄ = 1.411 ρ̄0 .

Employing formula (3.16), it is easy to obtain a correla-
tion between the coefficients λ̄ and c1

λ̄

(

Γ−
4

3

)

= 0.447
(
10c1

)−2
. (3.23)

By analysis of the “mass-luminosity” relation we have
previously shown that the radiant pressure is much less than
the gaseous pressure in a star. Therefore, because the inner
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regions of a star are primarily composed of hydrogen, the
heat energy there is much more than the energy of ionization.
So we have all grounds to assume Γ= 5/3, the ratio of the
heat capacities for a monatomic gas. Hence

λ̄ = 1.34
(
10c1

)−2
. (3.24)

In order to express c1 in terms of the observed char-
acteristics of a star, we replace ρ̄0 in formula (3.22) with
the reduced temperature and the luminosity, via the “mass-
luminosity” formula. The “mass-luminosity” correlation has
a general form L∼Mα for any star. We denote by T̄ the
reduced temperature of a star (with respect to the temperature
of the Sun), and by Mb its reduced stellar magnitude. Then,
by formula (3.22), we obtain
(

0.30−
1

5α

)
(
Mb−M�

)
+logP+3 log T̄ = log c1 . (3.25)

From this formula we see that, in order to find c1, it is
unnecessary to know the exact value of α (if, of course, α
has a large numerical value). Eddington’s formula for the
“mass-luminosity” relation, taken for huge masses, gives
α∼ 2 (compare with 2.53). Therefore, Eddington’s value
of c1= 0.100 is overstated. Applying another correlation,
L∼M 10/3, Parenago [19] obtained c1= 0.071. Becker [20]
carried out a precise analysis of observational data using
Kuiper’s empirical “mass-luminosity” arc. He obtained the
average value of c1= 0.076 for Cepheids. Formula (2.4)
gives λ̄= 2.7 or λ̄= 2.3, so that Table 5 leads us to conclude
that Cepheids have structures close to the polytropic class 3/2,
like all other stars. Hence Cepheids have a low concentration
of matter at the centre: ρc= 6ρ̄.

This result is in qualitative agreement with the “natural
viewpoint” that sources of stellar energy increase their prod-
uctivity towards the centre of a star. However (as we saw
in §2.8) the model for a point-source of energy and for
a constant absorption coefficient, giving stars of minimal
average densities, leads to a strong concentration at the
centre, ρc/ρ̄= 20.5. Thus λ̄ for such a model should be more

than an observable one. Really, having
∫ x0

0

p1x
2dx= 6.06

and Ix0 = 140.0 calculated by Table 4, formulae (3.15) and
(3.17) give λ̄= 8.0 for models with the ultimate concentra-
tion of energy sources. So, such stars are of the polytropic
class n= 2.5. If the absorption coefficient is variable
(Cowling’s model), calculations give even more: λ̄= 8.4.

Eddington and others, in their theoretical studies of the
pulsation period within the framework of Eddington’s model,
explain the deviation between the theoretical and observed
values of λ̄ by an effect of the radiant pressure. Studies of
pulsations under γc close to 1 show that the obtained formula
for the period under low γc is true even if Γ is the reduced
ratio of the heat capacities (which is, depending on the rôle
of the radiant pressure, 4/36Γ6 5/3).

Equation (3.23) shows that when λ̄= 12.23 and the ob-
servable c1= 0.075 we have Γeff = 1.40. At the same time Γeff
should undergo changes independently of γc, i. e. depending
upon the rôle of the radiant pressure. For a monatomic gas,
Eddington [21] and others obtained this correlation as

Γeff −
4

3
=
1

3

1 + 4γc
(1 + γc)(1 + 8γc)

. (3.26)

Under Γeff = 1.40 we obtain γc= 1.5. We accept this
numerical value in accordance with the average period of
Cepheids, P = 10d. Then, by the “mass-luminosity” relation,
M = 12M�. It is possible to think that this result is in good
agreement with the conventional viewpoint on the rôle of the
radiant pressure inside stars (see §2.7). However, because λc
depends on the mass of a star, other periods give different
Γeff (by formula 3.26) and hence other numerical values
of c1. Using formulae (3.26) and (3,23), we can calculate
c1 for variable stars having longer pulsations, with periods
20d<P < 30d. Instead of the average value log c1=−1.12
found by Becker for the stars, there should be log c1=−1.00.
Despite the small change, observations show no such increase
of c1 [20]. Therefore, our conclusion about the negligible
rôle of the radiant pressure in stars, even inside super-giants,
finds a new verification. This result verifies as well our results
μ= 1/2 and κ=κT, obtained in chapter 3.

3.4 Additional data about the internal constitution of
stars

Some indications of the internal structure of stars can be
obtained from analysis of the elliptic effect in the luminosity
arcs of eclipse variable stars. Observations of such binaries
gives the ratio of diameters at the equator of a star, which
becomes elliptic because of the flow-deforming effect in
such binary systems. For synchronous rotations of the whole
system and each star in it, the compressed polar diameter of
each star should be different (in the first order approximation)
from the average equatorial one with a multiplier dependent
on their masses. Thus, proceeding from the observed com-
pression we can calculate the meridian compression ε. Ac-
cording to Clairaut’s theory ε is proportional to ϕ, the ratio
of the centrifugal force at the equator to the force of gravity

ε = αϕ , ϕ =
ω2

3πGρ̄
,

where α is a constant dependent on the structure of the star.
This constant was calculated for stars of polytropic structures
by numerous researchers: Russell, Chandrasekhar and others.
If n=0 (homogeneous star), α= 1.25. If n=1, we have
α= 15/(2π2)= 0.755. If n= 5 (the ultimate concentration,
Roche’s model), α= 0.50. We see that the constant α is
sensitive to changes in the structure of a star. Therefore
determination of the numerical values of n in this way
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requires extremely precise observations. The values of n
so obtained are very uncertain, despite the simplicity of
the theory. Shapley first concluded that stars are almost
homogeneous. This was verified by Luiten [22] who found
the average value α= 0.57 for a large number of stars like β
Lyrae, and α= 0.71 for stars like Algol. His results corres-
pond to the polytropic structures n= 3/2 and n=1 respect-
ively.

The observed motion of the line of apsides in numerous
eclipse binaries can be explained, in numerous cases, by their
elliptic form. Because matter is more strongly concentrated in
a binary system than in regular stars, the binary components
interact like two point-masses, so there should be no motion
of the line of apsides. Therefore the velocity of the line of
apsides should be proportional (in the first order approxi-
mation) to α− 1/2, where α is sensitive to changes in the
structure of a star (as we showed above). Many theoretical
studies on this theme give contradictory formulae for the
velocity, depending on hypotheses about the properties of
rotation in the pair. Russell, in his initial studies of this
problem, supposed the rotating components solid bodies.
This theory, being applied to the system Y Cygni by Russell
and Dugan [23], gave α− 1/2= 0.034, which is the polytropic
structure 1/2<n<2. Other researchers, having made other
suppositions, obtained larger n: n' 3. It is probable that
we can be most sure only that, because we observe motion
of the line of apsides in binaries, the stars have no strong
concentration of matter at the centre.

Blackett supposed a law according to which the ratio
between the magnetic momentum PH and angular moment-
um U is constant for all rotating space bodies. If this law
is correct, we could have a possibility of determining the
structures of stars in an independent way. We denote by k
the ratio between the moments of the inertia of an arbitrary
structured star rotating with the angular velocity ω and of the
same star if it would be homogeneous throughout. Then

U =
2

5
kωMR2, k =

5

3

Ix0
x2Mx0

,

where Ix0 is the dimensionless moment of inertia. Using
Blanchett’s formula [24]

PH
U
= β

G1/2

2c
(3.27)

(β is a dimensionless multiplier, equal to about 1), and having
the magnetic magnitude at the pole H =2PH/R3, we can
calculate k. For the Earth (k= 0.88), we obtain β= 0.3.
Supposing k= 0.16 for stars, Blackett has found: β= 1.14
for the Sun and β= 1.16 for 78 Virginis (its magnetic field
has been measured by Babcock).

If Blackett’s law (3.27) is valid throughout the Universe
and β= 0.3 for all space bodies, not just for the Earth, then
k= 0.60 should be accepted for stars. Comparing k= 0.60

Table 6

n k

0 1.00

1 0.65

3/2 0.52

2 0.40

2.5 0.28

3 0.20

with Table 6, we come to the same
conclusion that we have obtained by
completely different methods: that
stars have polytropic structures of
class n= 3/2.

For the convective model of a star
(calculated in §2.8) we obtain k=0.26.
This is much less than required. The
same convective model with a vari-
able absorption coefficient (Cowling’s
model) gives even less: k= 0.19.

The agreement of our value n= 3/2
with other data, obtained by very dif-

ferent methods, verifies Blackett’s law. It is possible his
formula (3.27) should be written without β, but with the
denominator 2πc.

3.5 Conclusions about the internal constitution of stars

The most certain conclusions about the structure of stars
are derived from the theory of pulsation of Cepheids. We
have concluded that Cepheids have structures close to the
polytropic one of class n= 3/2, for which ρc=6 ρ̄. This
conclusion is verified by other data, whereas each of them
could be doubtful when being considered in isolation. At
the same time all the data, characterizing stars of different
classes, lead to the same result. It is probable that stars are
really close to being homogeneous, having a low concentr-
ation of matter at the centre like the bulky planets, Jupiter
and Saturn. Such a distribution of matter, as we saw in the
ultimate case of the convective model, cannot be explained
by a strong concentration of an energy source at the centre,
or by a special kind of absorption coefficient. The real reason
is that the radiant pressure B is included in the mechanical
equilibrium equation through the gaseous pressure in the
exponent 1/4. Therefore the structural characteristics Mx0

and X0, determined by the function ρ1, have small changes
even in very different models. Hence, in order to obtain the
observable low concentration of matter at the centre of stars,
we can search for the reason only in the heat equilibrium
equation. The polytropic model n= 3/2 differs from other
polytropic models by a smaller value of x0. In order to
make x0 smaller, the gaseous pressure should decrease more
strongly in the upper layers of a star. Such a rapid decrease in
the pressure is possible only if the surface layers are heavy.
In other words, in the case of the strong increase of the
molecular weight in the surface layers of a star. Such an
explanation is in complete agreement with our conclusion
about the high concentration of hydrogen in the internal
regions of stars. If the average molecular weight changes
from μ= 1/2 at the centre to μ= 2 at the surface of a star,
such a change of the molecular weight can be sufficient.

What is the goal of introducing the variable μ? Let us
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assume that μ depends on the temperature as

μ1 =
1

T s1
, (3.28)

where s is a positive determined exponent. Increase of the
molecular weight at the surface should result in an increase
of the absorption coefficient κ (transition from κ=κT to
κ=κCh). At the same time, under energy sources concentr-
ated at the centre, the quantity κ1Lx/Mx can remain almost
the same. If κ1Lx/Mx= const=1, equation (2.22a) leads to

p1 = B1 = T
4
1 , λ = 1 . (3.29)

Instead of T1 we introduce the characteristics

u1 =
T1
μ1

= T 1+s1 = μ
− 1+s

s
1 , (3.30)

which keeps the ideal gas equation in the regular form
p1=u1ρ1. According to (3.29), we have

p1 = u
4

1+s

1 . (3.31)

where we should equate the exponent 4/(1+ s) to n+1
according to formula (2.7a).

Thus we have

ρ1 = u
n
1 , n =

3− s
1 + s

, (3.32)

so the function u1 is determined by Emden’s equation of
class n. Hence, in order to obtain the structure n= 3/2, there
should be s= 3/5 — the very low increase of the molecular
weight: for instance, under such s the molecular weight μ
increases 4 times at the distance x1 where

μ1 =

(
1

4

)8
3

= 0.025 , T1 =

(
1

4

)5
3

= 0.10 . (3.33)

At x>x1 the molecular weight remains unchanged, the
equilibrium of a star is determined by the regular system of
the equilibrium equations. However at the numerical values
(3.33) almost the whole mass of a star is accounted for (see
Table 4, for instance), so we obtain small corrections to
the polytropic structure n= 3/2. Naturally, tables of Emden’s
function taken under n= 3/2 show that x1= 5.6 and Mx1 =
= 11.0. Applying formula (2.27a), we obtain x0= 7.0 instead
of x0= 6, as expected for such a polytropic structure. These
calculations show that the observed structures of stars∗ verify
our result about the high content of hydrogen in the internal
regions of a star, obtained from the “mass-luminosity” rel-
ation. At the same time, it should be taken into account that
the hydrogen content in the surface layers of stars is also

∗The fact that the molecular weight is variable does not change the
formulas, determining the pulsation period of Cepheids. The variability of
μ can include a goal only if the whole structure of star has been changed.

substantial. Therefore on the average we have μ< 2 inside
a star, so the problem about homogeneity of the molecular
weight of stars is not completely solved with the above.

We saw that the dimensionless mass Mx0 is almost the
same in completely different models of stars. For polytropic
structures of the classes n= 3/2 and n= 2, convective mo-
dels, and models described in Table 2, we obtained approxi-
mately the same numerical values of Mx0 . Therefore we can
surely acceptMx0 = 11. What about x0? According to obser-
ved structures of stars, we accept x0= 6. Hence ρ̄c= 6.5 ρ̄. In
order to obtain κ=κ1 from the observed “mass-luminosity”
relation, we should have λLx0/M

3
x0 = 1.0×10−3. Thus we

obtain λLx0 = 1.5. As a result, using these numerical values
in formulae (2.28), (2.30), and (2.31), we have a way of cal-
culating the physical conditions at the centre of any star. We
now make this calculation for the Sun. Assuming μc�= 1/2,
we obtain

ρc� = 9.2 , pc� = 9.5×1015 dynes/cm2,

γc� = 0.4×10−3, Bc� = 3.8×1012 dynes/cm2,

Tc� = 6.3×106 degrees.

(3.34)

Of the data the most soundly calculated is γc�, because
it is dependent only on Mx0 . Thus a low temperature at
the centre of the Sun, about 6 million degrees, is obtained
because of low numerical values of μc� and x0. Having such
low temperatures, it is scarcely possible to explain the origin
of stellar energy by thermonuclear reactions.

The results indicate possible ways to continue our research
into the internal constitution of stars. They open a way for a
physical interpretation of the Russell-Hertzsprung diagram,
which is directly linked to the origin of stellar energy.

P A R T II

Chapter 1

The Russell-Hertzsprung Diagram and the Origin
of Stellar Energy

1.1 An explanation of the Russell-Hertzsprung diagram
by the theory of the internal constitution of stars

The Russell-Hertzsprung diagram connects the luminosity L
of a star to its spectral class or, in other words, the reduced
temperature Teff . The theory of the internal constitution of
stars uses the radius R of a star instead of the effective
temperature Teff . It follows from the Stephan-Boltzmann law

L = 4πR2σT 4eff , σ =
1

4
αc ,

where c is the velocity of light, α is the radiant energy
density constant. Thus, the Russell-Hertzsprung diagram is
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the same for the correlation L(R) or M (R), if we use the
“mass-luminosity” relation. Due to the existence of numerous
sequences in the Russell-Hertzsprung diagram (the main
sequence, the sequences of giants, dwarfs, etc.) the cor-
relations L(R) and M (R) are not sufficiently clear. In this
paragraph we show that for most stars the correlations L(R)
and M (R) are directly connected to the mechanism gener-
ating stellar energy. The essence of the correlation L(R)
becomes clear, as soon as we replace the observable charact-
eristics of stars (the masses M , the luminosities L, and the
radii R) with the parameters which determine the physical
conditions inside stars. The method of such calculations and
the precision of the obtained results were discussed in detail
in Part I of this research.

First we calculate the average density of a star

ρ =
3M

4πR3
. (1.1)

Then, having the mechanical equilibrium of a star, we
calculate the average pressure within. This internal pressure
is in equilibrium with the weight of the column whose
aperture is one square centimeter and whose length is the
radius of the star. The pressure is p= gρR. Because of
g=GM/R2,

p =
3G

4π

M2

R4
. (1.2)

What can be said about the temperature of a star? It
should be naturally calculated by the energy flow of excess
radiation FR

FR =
L

4πR2
, (1.3)

because the flow is connected to the gradient of the temper-
atures. If we know what mechanism transfers energy inside a
star, we can calculate the temperature T by formula
(1.1) or (1.2)

T = f (L,M,R) . (1.4)

For instance, if energy is dragged by radiations, according
to §1.2, we have

FR = −
c

κρ

dB

dr
, (1.5)

where κ is the absorption coefficient per unit mass, B is the
radiant pressure

B =
1

3
αT 4. (1.6)

We often use the radiant pressure B instead of the temp-
erature. By formula (1.3) we can write

B '
κFR
c
ρR ,

which, by using (1.1) and (1.3), gives

B '
3LM

(4π)2cR4
κ . (1.4a)

If we know how κ depends on B and ρ, formula (1.4a)
leads to equation (1.4). So formulae (1.1), (1.2), and (1.4a)
permit calculation of the average numerical values of the
density, the pressure, and the temperature for any star. Exact
numerical values of the physical parameters at a given point
inside a star (at the centre, for instance) can be obtained,
if we multiply the formulae by dimensionless “structural”
coefficients. We studied the structural coefficients in detail in
Part I of this research. We studied them by both mathematical
methods (solving the system of the dimensionless differential
equations and mechanical equilibrium and heat equilibrium
of a star) and empirical methods (the analysis of observable
properties of stars).

Values of ρ, p, and T , calculated by formulae (1.1),
(1.2), and (1.4), should be connected by the equation of the
phase state of matter. Hence, we obtain the first theoretical
correlation

F1 (L,M,R) = 0 , (1.7)

which almost does not depend on the kind of energy gener-
ation in stars.

For instance, a star built on an ideal gas has

p =
<T
μ
ρ .

Dividing (1.2) by (1.1), we obtain

T '
G

<
μ
M

R
, B '

αG4

3<4
μ
M4

R4
, (1.8)

γ =
B

p
'M2μ4. (1.9)

Comparing (1.8) to formula (1.4a), obtained for the en-
ergy transfer by radiation, we obtain the correlation (1.7) in
clear form

L 'M3 μ
4

κ
. (1.7a)

Another instance — a star built on a degenerate gas

p ' ρ
5
3 ,

then formulae (1.1) and (1.2) lead to

RM 1/3 = const , (7.b)

so in this case we just obtain the correlation like (1.7), where
there is no L.

Formula (1.7a), which is true for an ideal gas, can include
R only through κ. Therefore this formula is actually the
“mass-luminosity” relation, which is in good agreement with
observational data L∼M3, if μ4/κ= const= 0.08. The calc-
ulations are valid under the low radiant pressure γ < 1. As
we see from formula (1.9), inside extremely bulky stars the
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value of γ can be more than 1. In such cases formula (1.2)
will determine the radiant pressure

B '
M2

R4
,

not the gaseous one. Comparing to formula (1.4a), we have

L '
M

κ
. (1.7b)

Astronomical observations show that super-giants do not
have the huge variations of M which are predicted by this
formula. Therefore, in Part I, we came to the conclusion that
γ6 1 for stars of regular masses M 6 100M�, so formula
(1.9) gives for them: μ= 1/2. Hence, κ= 0.8, which is ap-
proximately equal to Thomson’s absorption coefficient. This
is very interesting, for we have obtained that the radiant
pressure places a barrier to the existence of extremely large
masses for stars, although there is no such barrier in the
theory based on the equilibrium equations of stars.

Until now, we hardly used the heat equilibrium equation,
which requires that the energy produced inside a star should
be equal to its radiation into space. According to the heat
equilibrium equation, the average productivity of energy by
one gram of stellar matter can be calculated by the formula

ε =
L

M
. (1.10)

On the other hand, if the productivity of energy is de-
termined by some other reactions, ε would be a function of ρ
and T . This function would also be dependent on the kinetics
of the supposed reaction. Thus formulae (1.10), (1.1), (1.4),
and the equation of the reaction demand the existence of the
second correlation

F2 (L,M,R) = 0 , (1.11)

which is fully determined by the mechanism that generates
energy in the reaction. For an ideal gas, R disappears from
the first correlation F1 =0 (1.7). For this reason formula
(1.11) transforms into the relation L(R) or M (R), which
become directly dependent on the kind of energy sources
in stars. For a degenerate gas we obtain another picture: as
we saw above, in this case M (R) is independent of energy
sources, and thenM and L are connected by equation (1.11).

1.2 Transforming the Russell-Hertzsprung diagram to
the physical characteristics specific to the central
regions of stars

Our task is to find those processes which generate energy in
stars. In order to solve this problem, we must know physical
conditions inside stars. In other words, we should proceed
from the observed characteristics L, M , R to physical para-
meters.

We denote by a bar all the quantities expressed in terms
of their numerical values in the Sun. Assuming, according to
our conclusion in Part I, that stars have the same structure,
we can, by formulae (1.1), (1.2), and (1.10), strictly calculate
the central characteristics of stars

p̄c =
M̄2

R̄4
, ρ̄c =

M̄

R̄3
, ε̄c =

L̄

M̄
. (1.12)

Even for very different structures of stars, it is impossible
to obtain distorted results by the formulae. As we saw in
the previous paragraph, we can calculate the temperature
(or, which is equivalent, the radiant pressure) in two ways,
either way being connected to suppositions. First, the radiant
pressure can be obtained through the flow of energy, i. e.
through ε by formula (1.4a). The exact formula of that
relation, by equations (1.27) in §1.3 (Part I), is

Bc =
εcκc
4πGcλ

pc , (1.13)

where λ is the structural parameter of the main system of the
dimensionless equations of equilibrium: its numerical value
is about 1. Second, for an ideal gas, the radiant pressure can
be calculated directly from formulae (1.12)

B̄c
μ̄4

=

(
p̄c
ρ̄c

)4
=
M̄4

R̄4
. (1.14)

Formulae (1.13) and (1.14) must lead to the same result.
This requirement leads to the “mass-luminosity” relation.
Our conclusion that all stars (except for while dwarfs) are
built on an ideal gas is so well grounded that it is fair to use
formula (1.14) in order to calculate the temperature or the
radiant pressure in stars. Naturally, Eddington [21] showed:
under temperatures of about a few million degrees, because
of the ionization of matter, the atoms of even heavy elements
take up so little space (about one millionth of their normal
sizes) that van der Waals’ corrections are negligible if the
density is even much more than 1. However, because of
plasma, there could be substantial electrostatic interactions
between particles, making the pressure negative, and the gas
approaches properties of a super-ideal one. The approximate
theory of such phenomena in strong electrolytes has been
developed by Debye and Hückell. Eddington and Rosseland
applied the theory to a gas inside stars. They came to the
conclusion that the electric pressure cannot substantially
change the internal constitution of stars. Giving no details of
that theory, we can show directly that the electric pressure is
negligible in stars built on hydrogen. We compare the kinetic
energy of particles to the energy of Coulomb interaction

kT >
z2e2

r
.

As soon as the formula becomes true in a gas, the gas
becomes ideal. Cubing the equation we obtain

(kT )3

n
=
(kT )4

p
> z6e6,
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where n is the number of particles in a unit volume. Because
the radiant pressure is given by the formula

B =
π2

45
(kT )4

(~c)3
, (1.6a)

a gas becomes ideal as soon as the ratio between the radiant
pressure and the gaseous pressure becomes

γ >
π2z6

45

(
e2

~c

)3
.

Because of formula (1.9), this ratio is determined by the
mass of a star. Because γ=1 under M̄ = 100, we obtain

γ
1
2 ≈ M̄/100. So, for an ideal gas, we obtain the condition

100M� > M >
100π
√

45
z3
(
e2

~c

)3/2
M� . (1.15)

which is dependent only on the mass of a star.
For hydrogen or singly ionized elements, we have z=1.

Hence, for hydrogen contents of stars, the electric pressure
can play a substantial rôle only in stars with masses less than
0.01–0.02 of the mass of the Sun.

It is amazing that of all possible states of matter in stars
there are realized those states which are the most simple from
the theoretical point of view.

Now, if we know M̄ and R̄ for a star, assuming the
same molecular weight μ̄=1 for all stars (by our previous
conclusions), we can calculate its central characteristics ρ̄c
and T̄c by formulae (1.12) and (1.14). The range, within
which the calculated physical parameters are located, is so
large (10−8< ρ̄c<106, 10−2< T̄c<102, 10−3< ε̄c<104),
that we use logarithmic scales. We use the abscissa for
log ρ̄c, while the ordinate is used for log B̄c (or equivalently,
4 log T̄c). If an energy generation law like εc= f (ρc, Tc) ex-
ists in Nature, the points log ε̄c plotted along the z-coordinate
axis will build a surface. On the other hand, the equilibrium
condition requires formula (1.13), so the equilibrium states of
stars should be possible only at the transection of the above
surfaces∗. Hence, stars should be located in the plane (log ρ̄c,
log B̄c) along a line which is actually the relation M (R)
transformed to the physical characteristics inside stars. There
in the diagram, we draw the numerical values of log ε̄c in
order to picture the whole volume.

1.3 The arc of nuclear reactions

The equation for the generation of energy by thermonuclear
reactions is

ε = Aρτ 2ε−τ , τ =
a

T 1/3
m

, (1.16)

∗The energy generation surface, drawn from the energy generation
law εc= f (ρc, Tc), and the energy drainage surface, drawn from for-
mula (1.13).

where Tm is temperature expressed in millions of degrees.
For instance, for the proton-proton reaction, the constants a
and A take the values

a = 33.8, A = 4×103. (1.17)

In order to find the arc of the relation between ρc and Bc,
on which stars should be located if nuclear reactions are the
sources of their energy, we eliminate εc from formula (1.16)
by formula (1.13)

λ4πGcBc = Aκc pc ρcτ
2
c e

−τc . (1.18)

As the exponent indicates (see formula (1.16)), ε is very
sensitive to temperature. Therefore, inside such stars, a core
of free convection should exist, as was shown in detail in
Part I, §2.8. We showed there that λ cannot be calculated
separately for stars within which there is a convective core:
the equilibrium equations determine only λLx0 , where Lx0
is the dimensionless luminosity

Lx0 =

∫ x0

0

ε1ρ1x
2dx . (1.19)

In this formula x0 is the dimensionless radius (see Part I).
The subscript 1 on ε and ρmeans that the quantities are taken
in terms of their numerical values at the centre of a star. In the
case under consideration (stars inside which thermonuclear
reactions occur).

Lx0 =

∫ x0

0

ρ21 τ
2
1 e

−(τ1−τc)x2dx .

Because this integral includes the convective core (where
ρ1=T

3/2

1 ),

Lx0(τc) =

∫ x0

0

T 1/3

1 x2e
−τc
(
T
−1/3
1 −1

)

dx . (1.20)

The integral Lx0(τc) can be easily taken by numerical
methods, if we use Emden’s solution T1 (x) for stars of the
polytropic structure 3/2. The calculations show that numerical
values of the integral taken under very different τc are very
little different from 1. For instance,

Lx0 (33.8) = 0.67, Lx0 (7.3) = 1.15.

For the proton-proton reactions formula (1.17), the first
value of Lx0 is 1 million degrees at the centre of a star,
the second value is one hundred million degrees. Assuming
Lx0≈1 (according to our conclusions in Part I), Table 3 gives
λ≈ 3 in stars where the absorption coefficient is constant.

In Part I of this research we found the average molecular
weight 1/2 for all stars. We also found that all stars have
structures very close to the polytropic structure of the class
3/2. Under these conditions, the central temperature of the Sun
should be 6×106 degrees. Therefore Bethe’s carbon-nitrogen
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cycle is improbable as the source of stellar energy. As an
example, we consider proton-proton reactions. Because of
the numerical values obtained for the constants a and A
(1.17), formula (1.18) gives

log ρc = 0.217τc − 5.5 log τc + 5.26−
1

2
log

κc
μ
. (1.21)

Taking κc/μ constant in this formula, we see that ρc has
the very slanting minimum (independent of the temperature)
at τc= 11 that is Tc= 30×106 degrees. In a hydrogen star
where the absorption coefficient is Thomson, the last term
of (1.21) is zero and the minimal value of ρc is 100. Hence,
stars undergoing proton-proton reactions internally should be
located along the line ρc≈100 in the diagram for (ρc, Bc).
It appears that stars of the main sequence satisfy the require-
ment (in a rude approximation). Therefore, it also appears
that the energy produced by thermonuclear reactions could
explain the luminosity of most of stars. But this is only an
illusion. This illusion disappears completely as soon as we
construct the diagram for ( log ρ̄c, log B̄c) using the data of
observational astronomy.

1.4 Distribution of stars on the physical conditions dia-
gram

Currently we know all three parameters (the mass, the bolo-
metric absolute stellar magnitude, and the spectral class) for
approximately two hundred stars. In our research we should
use only independent measurements of the quantities. For
this reason, we cannot use the stellar magnitudes obtained
by the spectroscopic parallax method, because the basis of
this method is the “mass-luminosity” relation.

For stars of the main sequence we used the observational
data collection published in 1948 by Lohmann [26], who
generalized data by Parenago and Kuiper. For eclipse variable
stars we used data collections mainly by Martynov [27],
Gaposchkin [28], and others. Finally, we took particularly
interesting data about super-giants from collections by Pare-
nago [29], Kuiper [7], and Struve [30]. Some important data
about the masses of sub-dwarfs were given to the writer
by Prof. Parenago in person, and I’m very grateful to him
for his help, and critical discussion of the whole research.
Consequently, we used the complete data of about 150 stars.

The stellar magnitudes were obtained by the above ment-
ioned astronomers by the trigonometric parallaxes method
and the empirically obtained bolometric corrections (Petit,
Nickolson, Kuiper). In order to go from the spectral class
to the effective temperature, we used Kuiper’s temperature
scale. Then we calculated the radius of a star by the formula

5 log R̄ = 4.62−mb − 10 log T̄eff , (1.22)

where mb is the bolometric stellar magnitude of the star.
Then, by formulae (1.12) and (1.14), we calculated log ρ̄c,

log B̄c, log ε̄c. We calculated the characteristics for every star
on our list. The results are given in Fig. 2∗. There the abscissa
takes the logarithm of the matter density, log ρ̄c, while the
ordinate takes the logarithm of the radiant energy density,
log B̄c, where both values are taken at the centre of a star†.
Each star is plotted as a point in the numerical value of log ε̄c
— the energy productivity per second from one gramme of
matter at the centre of a star with respect to the energy
productivity per second at the centre of the Sun. In order to
make exploration of the diagram easier, we have drawn the
net values of the fixed masses and radii. Bold lines at the left
side and the right side are the boundaries of that area where
the ideal gas law is true (stars land in exactly this area).
The left bold line is the boundary of the ultimately large
radiant pressure (γ=1). The bold line in the lower part of
the diagram is the boundary of the ultimately large electric
pressure, drawn for hydrogen by formula (1.15). This line
leads to the right side bold lines, which are the boundaries
of the degeneration of gas calculated for hydrogen (the first
line) and heavy elements (the second line).

We built the right boundary lines in the following way.
We denote by ne the number of free electrons inside one
cubic centimetre, and μe the molecular weight per electron.
Then

ρ = μemHne ,

so Sommerfeld’s condition of degeneration

ne~3

2

1

(2πmekT )
3/2
> 1 (1.23)

can be re-written as

ρ > 10−8μe T
3/2. (1.24)

For the variables p and ρ, we obtain the degeneration
boundary equation‡

p = kμ5/3e ρ5/3,

p̄ = k
ρ5/3
�

p�
ρ̄ 5/3μ5/3e ,

(1.25)

which coincides with the Fermi gas state equation p=Kρ5/3=
=KHμ

5/3
e ρ5/3 (formula 1.9 in Part I), if

K ≈ KH = 9.89×1012.

∗Of course not all the stars are shown in the diagram, because that
would produce a very dense concentration of points. At the same time,
the plotted points show real concentrations of stars in its different parts. —
Editor’s remark.

†The bar means that both values are expressed in multiples of the
corresponding values at the centre of the Sun. — Editor’s remark.

‡The degeneration boundary equation is represented here in two forms:
expressed in absolute values of p and in multiples of the pressure in
the Sun. — Editor’s remark.

N. Kozyrev. Sources of Stellar Energy and the Theory of the Internal Constitution of Stars 87



Volume 3 PROGRESS IN PHYSICS October, 2005

At the centre of the Sun, as obtained in Part I of this
research (see formula 3.34),

ρc� = 9.2 , pc� = 9.5×1015,

γc� = 0.4×10−3, Bc� = 3.8×1012,

Tc� = 6.3×106,

(1.26)

then we obtain

p̄ = 4×10−2 ρ̄ 5/3μ5/3e .

The right side boundaries drawn in the diagram are con-
structed for μe=1 and μe=2. At the same time these are
lines along which stars built on a degenerate gas (the lines of
Chandrasekhar’s “mass-radius” relation) should be located.
In this case the ordinate axis has the meaning log (p̄/ρ̄)4 that
becomes the logarithm of the radiant energy density log B̄
for ideal gases only. In this sense we have drawn white
dwarfs and Jupiter on the diagram. Under low pressure, near
the boundary of strong electric interactions, the degeneration
lines bend. Then the lines become constant density lines,
because of the lowering of the ionization level and the
appearance of normal atoms. The lines were constructed
according to Kothari’s “pressure-ionization” theory [31].
Here we see a wonderful consequence of Kothari’s theory:
the maximum radius which can be attained by a cold body
is about the radius of Jupiter.

Finally, this diagram contains the arc along which should
be located stars whose energy is generated by proton-proton
reactions. The arc is built by formula (1.21), where we used
the central characteristics of the Sun (1.26) obtained in Part I.

The values log ε̄c plotted for every star builds the system
of isoergs — the lines of the same productivity of energy.
The lines were drawn through the interval of ten changes of
ε̄c. If a “mass-luminosity” relation for stars does not contain
their radii, ε̄c should be a function of only the masses of
stars. Hence, the isoergs should be parallel to the constant
mass lines. In general, we can suppose the “mass-luminosity”
relation as the function

L ∼Mα, (1.27)

then the interval between the neighbouring isoergs should
decrease with increasing α according to the picture drawn
in the upper left part of the diagram. We see that the real
picture does not correspond to formula (1.27) absolutely.
Only for giants, and the central region of the main sequence
(at the centre of the diagram) do the isoergs trace a path ap-
proximately parallel to the constant mass lines at the interval
α= 3.8. In all other regions of the diagram the isoergs ε̄c
are wonderfully curved, especially in the regions of super-
giants (the lower left part of the diagram) and hot sub-
dwarfs (the upper right part). As we will soon see, the
curvilinearity can be explained. In the central concentration

of stars we see two opposite tendencies of the isoergs to be
curved. We have a large dataset here, so the isoergs were
drawn very accurately. The twists are in exact agreement
with the breaks, discovered by Lohmann [26], in the “mass-
luminosity” relation for stars of the main sequence. It is
wonderful that this tendency, intensifying at the bottom,
gives the anomalously large luminosities for sub-giants (the
satellites of Algol) — the circumstance, considered by Struve
[30]. For instance, the luminosity of the satellite of XZ
Sagittarii, according to Struve, is ten thousand times more
than that calculated by the regular “mass-luminosity” rel-
ation. There we obtain also the anomalously large luminosity,
discovered by Parenago [29], for sub-dwarfs of small masses.
The increase of the opposite tendency at the top verifies the
low luminosity of extremely hot stars, an increase which
leads to Trumpler stars. It is very doubtful that masses of
Trumpler stars measured through their Einstein red shift are
valid. For this reason, the diagram contains only Trumpler
stars of “intermediate” masses. Looking at the region of sub-
giants and sub-dwarfs (of large masses and of small ones)
we see that ε is almost constant there, and independent of the
masses of the stars. Only by considering altogether the stars
located in the diagram we can arrive at the result obtained in
Part I of this research: L∼M3.

So, the first conclusion that can be drawn from our
consideration of the diagram is: deviations from the “mass-
luminosity” relation are real, they cannot be related to sys-
tematic errors in the observational data. The possibility of
drawing the exact lines of constant ε̄c itself is wonderful: it
shows that ε is a simple function of ρ and B. Hence, the
luminosity L is a simple function of M and R. Some doubts
can arise from the region located below and a little left of
the central region of the diagram, where the isoergs do not
coincide with L for sub-dwarfs of spectral class F–G and L
of normal dwarfs of class M. It is most probable that the
inconsistency is only a visual effect, derived from errors in
experimental measurements of the masses and radii of the
sub-dwarfs.

As a whole our diagram shows the plane image of the
surface ε (ρ,B). We obtained much more than expected:
we should obtain only one section of the surface, but we
obtained the whole surface, beautifully seen in the central
region of the diagram. Actually, we see no tendency for stars
to be distributed along a sequence ε= const. Thus, of the two
equations determining ε, there remains only one: the energy
productivity in stars is determined by the energy drainage
(radiation) only. This conclusion is very important. Thus the
mechanism that generates energy in stars is not of any kid of
reactions, but is like the generation of energy in the process
of its drainage. The crude example is the energy production
when a star, radiating energy into space, is cooling down:
the star compresses, so the energy of its gravitational field
becomes free, cooling the star (the well-known Helmholtz-
Kelvin mechanism). Naturally, in a cooling down (compress-
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Fig. 2: The diagram of physical conditions inside stars (the stellar energy diagram): the productivity of stellar energy sources independence
of the physical conditions in the central regions of stars. The abscissa is the logarithm of the density of matter, the ordinate is the logarithm
of the radiant energy density (both are taken at the centre of stars in multiples of the corresponding values at the centre of the Sun). The
small diagram at the upper left depicts the intervals between the neighbouring isoergs.
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ing) star the quantity of energy generated is determined by
the speed of this process. At the same time the speed is
regulated by the heat drainage. Of course, the Helmholtz-
Kelvin mechanism is only a crude example, because of the
inapplicable short period of the cooling (a few million years).
At the same time the mechanism that really generates energy
in stars should also be self-regulating by the radiation. In
contrast to reaction, such a mechanism should be called a
machine.

It should be noted that despite many classes of stars in
the diagram, the filling of the diagram has some limitations.

First there is the main direction along which stars are
concentrated under a huge range of physical conditions —
from the sequence of giants, then the central concentration in
our diagram (the so-called main sequence of the Hertzsprung-
Russel diagram), to sub-dwarfs of class A and white dwarfs.
In order to amplify the importance of this direction, we
indicated the main location of normal giants by a hatched
strip. The main direction wonderfully traces an angle of
exactly 45◦. Hence, all stars are concentrated along the line,
determined by the equation∗

B ∼ ρμ4. (1.28)

Because stars built on a degenerate gas satisfy this dir-
ection, a more accurate formula is

p ∼ ρ5/5 (1.28a)

Second, there is in the main direction (1.28) a special
point — the centre of the main sequence†, around which stars
are distributed at greater distances, and in especially large
numbers.

Thus, there must exist two fundamental constants which
determine the generation of energy in stars:

1. The coefficient of proportionality of equation (1.28);

2. One of the coordinates of the “main point”, because
its second coordinate is determined by the eq. (1.28).

The above mentioned symmetry of the surface ε (ρ,B) is
connected to the same two constants.

Concluding the general description of the diagram, we
note: this diagram can also give a practical profit in calculat-
ions of the mass of a star by its luminosity and the spectral
class. Naturally, having the radius calculated, we follow the
line R= const to that point where log ε̄+ log M̄ gives the
observed value of log L̄.

1.5 Inconsistency of the explanation of stellar energy by
Bethe’s thermonuclear reactions

It is seemingly possible that the existence of the uncovered
main direction along which stars are concentrated in our

∗See formula (1.14). — Editor’s remark.
†The main sequence in the sense of the Russell-Hertzsprung diagram,

is here the central concentration of stars. — Editor’s remark.

diagram support a stellar energy mechanism like reactions.
In the real situation the equation of the main direction (1.28)
contradicts the kinetics of any reaction. Naturally, equation
(1.28) can be derived from the condition of energy drainage
(1.13) only if

ε ∼
1

T
, under ρ ∼ T 4, (1.29)

i. e. only if the energy productivity increases with decrease
in temperature and hence the density. The directions of all
the isoergs in the diagram, and also the numerical values
ε= 103–104 in giants and super-giants under the low temp-
eratures inside them (about a hundred thousands degrees)
cannot be explained by nuclear reactions. It is evident there-
fore, that the possibility for nuclear reactions is just limited
by the main sequence of the Russell-Hertzsprung diagram
(the central concentration of stars in our diagram).

The proton-proton reaction arc is outside the main seq-
uence of stars. If we move the arc to the left, into the region
of the main sequence stars, we should change the constant
A in the reaction equation (1.16) or change the physical
characteristics at the centre of the Sun (1.26) as we found
in Part I. Equation (1.18) shows that the shift of the proton-
proton reaction arc along the density axis is proportional to
the square of the change of the reaction constant A. Hence, in
order to build the proton-proton reaction arc through the main
concentration of stars we should take at least A= 105–106

instead of the well-known value A= 4×103. This seems very
improbable, for then we should ignore the central charact-
eristics of the Sun that we have obtained, and hence all
conclusions in Part I of this research which are in fine
agreement with observational data. Only in a such case could
we arrive at a temperature of about 20 million degrees at the
centre of the Sun; enough for proton-proton reactions and
also Bethe’s carbon-nitrogen cycle.

All theoretical studies to date on the internal constitution
of stars follow this approach. The sole reason adduced as
proof of the high concentration of matter in stars, is the slow
motion of the lines of apsides in compact binaries. However
the collection published by Luyten, Struve, and Morgan [32]
shows no relation between the velocity of such motion and
the ratio of the star radius to the orbit semi-axis. At the same
time, such a relation would be necessary if the motion of
the lines of apsides in a binary system is connected to the
deformations of the stars. Therefore we completely agree
with the conclusion of those astronomers, that no theory
correctly explains the observed motions of apsides. Even if
we accept that the arc of nuclear reactions could intersect
the central concentration of stars in our diagram (the stars of
the main sequence in the Russell-Hertzsprung diagram), we
should explain why the stars are distributed not along this
arc, but fill some region around it. One could explain this
circumstance by a “dispersion” of the parameters included in
the main equations. For instance, one relates this dispersion
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to possible differences in the chemical composition of stars,
their structure etc. Here we consider the probability of such
explanations.

The idea that stars can have different chemical com-
positions had been introduced into the theory in 1932 by
Strömgren [16], before Bethe’s hypothesis about nuclear
sources for stellar energy. He used only the heat drainage
condition (1.13), which leads to the “mass-luminosity” relat-
ion (1.7a) for ideal gases. In chapter 2 of Part I we showed in
detail that the theoretical relation (1.7a) is in good agreement
(to within the accuracy of Strömgren’s data) with the observ-
ed correlation for hydrogen stars (where we have Thomson’s
absorption coefficient, which is independent of physical con-
ditions). Introducing some a priori suppositions (see §2.7,
Part I), Eddington, Strömgren and other researchers followed
another path; they attempted to explain non-transparency of
stellar matter by high content of heavy elements, which build
the so-called Russell mix. At the same time the absorption
theory gives such a correlation κ(ρ,B) for this mix which,
being substituted into formula (1.7a), leads to incompatibility
with observational data. Strömgren showed that such a “dif-
ficulty” can be removed if we suppose different percentages
of heavy elements in stars, which substantially changes the
resulting absorption coefficient κ. Light element percentages
X can be considered as the hydrogen percentage. Comparing
the theoretical formula to the observable “mass-luminosity”
relation gives the function X (ρ,B) or X (M,R). Looking
at the Strömgren surface from the physical viewpoint we
can interpret it as follows. As we know, the heat drainage
equation imposes a condition on the energy generation in
stars. This is condition (1.13), according to which κ and
μ depend on the chemical composition of a star. Let us
suppose that the chemical composition is determined by one
parameter X . Then

ε = f1 (ρ,B,X) . (I)

For processes like a reaction, the energy productivity ε
is dependent on the same variables by the equation of this
reaction

ε = f2 (ρ,B,X) . (II)

So we obtain the condition f1 = f2 , which will be true
only if a specific relation X (ρ,B) is true in the star. The
parameter X undergoes changes within the narrow range
06X 6 1, so stars should fill a region in the plane (ρ,B).
Some details of the Russell-Hertzsprung diagram can be
obtained as a result of an additional condition, imposed
on X (ρ,B): Strömgren showed that arcs of X = const can
be aligned with the distribution of stars in the Russell-
Hertzsprung diagram. Kuiper’s research [33] is especially
interesting in this relation. He discovered that stars collected
in open clusters are located along one of Strömgren’s arcs
X = const and that the numerical values ofX are different for
different clusters. Looking at this result, showing that stellar

clusters are different according to their hydrogen percentage,
one can perceive an evolutionary meaning — the proof of the
nuclear transformations of elements in stars.

Strömgren’s research prepared the ground for checking
the whole nuclear hypothesis of stellar energy: substituting
the obtained correlation X (ρ,B) into the reaction equation
(II), we must come to the well-known relation (I). The
nuclear reaction equation (1.16), whereX is included through
A, had not passed that examination. Therefore they intro-
duced the second parameter Y into the theory — the percent-
age of helium. As a result, every function f1 and f2 can
be separately equated to the function ε(ρ,B) known from
observations. Making the calculations for many stars, it is
possible to obtain two surfaces:X (ρ,B) and Y (ρ,B). How-
ever, both surfaces are not a consequence of the equilibrium
conditions of stars. It remains unknown as to why such
surfaces exist, i. e. why the observed ε is a simple function
of ρ and B? It is very difficult to explain this result by
evolutionary transformations of X and Y , if the transform-
ation of elements procedes in only one direction. Of course,
taking a very small part of the plane (ρ,B), the evolution
of elements can explain changes of X and Y . For instance,
calculations made by Masevich [34] gave a monotone de-
crease of hydrogen for numerous stars located between the
spectral classes B and G. To the contrary, from the class
G to the class M, the hydrogen percentage increases again
(see the work of Lohmann work [26] cited above). As a
result we should be forced to think that stars evolve in two
different ways. In such a case the result that the chemical
composition of stars is completely determined by the physical
conditions inside them can only be real if there is a balanced
transformation of elements. Then the mechanism that gen-
erates energy in stars becomes the Helmholtz-Kelvin mech-
anism, not reactions. Nuclear transformations of elements
only become an auxiliary circumstance which changes the
thermal capacity of the gas. At the same time, the balanced
transformation of elements is excluded from consideration,
because it is possible only if the temperature becomes tens
of billions of degrees, which is absolutely absent in stars.

All the above considerations show that the surfaces
X (ρ,B) and Y (ρ,B) obtained by the aforementioned res-
earchers are only a result of the trimming of formulae (I)
and (II) to the observed relation ε(ρ,B). Following this
approach, we cannot arrive at a solution to the stellar energy
problem and the problem of the evolution of stars. This con-
clusion is related not only to nuclear reactions; it also shows
the impossibility of any sources of energy whose productivity
is not regulated by the heat drainage condition. Naturally,
the coincidence of the surfaces (I) and (II) manifests their
identity. In a real situation the second condition is not present∗.

∗For reactions, the energy productivity increases with the increase of
the density. In the heat drainage condition we see the opposite: equation
(1.13). Therefore the surfaces (I) and (II), located over the plane (ρ,B),
should be oppositely inclined — their transection should be very sharp.
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So we get back to our conclusion of the previous paragraph:
there are special physical conditions, the main direction
(1.28) and the main point in the plane (ρ,B), about which
stars generate exactly as much energy as they radiate into
space. In other words, stars are machines which generate
radiant energy. The heat drainage is the power regulation
mechanism in the machines.

1.6 The “mass-luminosity” relation in connection with
the Russell-Hertzsprung diagram

The luminosity of stars built on an ideal gas, radiant transfer
of energy and low radiant pressure, is determined by formula
(1.7a). This formula is given in its exact form by (2.38) in
Part I. We re-write formula (2.38) as

ε̄ =
L̄

M̄
= 1.04×104

μ4

κc

(
λLx0
M3
x0

)

M̄2, (1.30)

where Mx0 is the dimensionless mass of a star, κc is the
absorption coefficient at its centre. It has already been shown
that the structural multiplier of this formula has approxim-
ately the same numerical value

λLx0
M3
x0

' 2×10−3 (1.31)

for all physically reasonable models of stars. The true “mass-
luminosity” relation is shown in Fig. 2 by the system of
isoergs ε̄= L̄/M̄ = const. If we do not take the radius of a
star into account, we obtain the correlation shown in Fig. 1,
Part I. There L is approximately proportional to the cube of
M , although we saw a dispersion of points near this direction
L∼M3. As we mentioned before, in Part I, the comparison
of this result to formula (1.30) indicates that: (1) the radiant
pressure plays no substantial rôle in stars, (2) stars are built
on hydrogen.

Now we know that the dispersion of points near the
average direction L∼M3 is not stochastic. So we could
compare the exact correlation to the formula (1.30), and also
check our previous conclusions.

Our first conclusion about the negligible rôle of the rad-
iant pressure is confirmed absolutely, because of the mech-
anical equilibrium of giants. Naturally, comparing formula
(1.7b) to (1.7a), we see that the greater the rôle of the
radiant pressure, the less ε is dependent onM , so the interval
between the neighbouring isotherms should increase for large
masses. Such a tendency is completely absent for bulky
stars (see the stellar energy diagram, Fig. 2). This result,
in combination with formula (1.9) (its exact form is formula
2.47, Part I), leads to the conclusion that giants are built
mainly on hydrogen (the molecular weight 1/2). Thus we
calculate the absorption coefficient for giants. We see in the
diagram that red giants of masses ≈ 20M� have log ε̄= 3.

By formulae (1.30) and (1.31), we obtain

κc
μ4
= 8 . (1.32)

If μ= 1/2, we obtain κc= 0.5. This result implies that
the non-transparency of giants is derived from Thomson’s
dispersion of light in free electrons (κT= 0.40), as it should
be in a pure hydrogen star.

The main peculiarity of the “mass-luminosity” relation
is the systematic curvilinearity of the isoergs in the plane
(ρ,B). Let us show that this curvilinearity cannot be ex-
plained by the changes of the coefficient in formula (1.30).
First we consider the multiplier containing the molecular
weight and the absorption coefficient.

The curvilinearity of the isoergs shows that for the same
mass the diagram contains anomalous low luminosity stars at
the top and anomalous bright stars at the bottom. Hence, the
left part of (1.32) should increase under higher temperatures,
and should decrease with lower temperatures. Looking from
the viewpoint of today’s physics, such changes of the absorpt-
ion coefficient are impossible. Moreover, for the ultimate
inclinations of the isoergs, we obtain absolutely impossible
numerical values of the coefficient (1.32). For instance, in
the case of super-giants, the lower temperature stars, this
coefficient is 100 times less than that in giants. Even if we
imagine a star built on heavy elements, we obtain that κ
is about 1. In hot super-giants (the direction of Trumpler
stars) the coefficient (1.32) becomes 200. Because of high
temperatures in such stars, the absorption coefficient cannot
be so large.

In order to explain the curvilinearity by the structural
multiplier (1.31), we should propose that it be anomalously
large in stars of high luminosity (sub-giants) and anomal-
ously small in stars like Trumpler stars. We note that the
dimensionless mass Mx0 included in (1.31) cannot be sub-
stantially changed, as shown in Part I. So the structural
multiplier (1.31) can be changed by only λLx0 . Employing
the main system of the dimensionless equations of equilibr-
ium of stars, we easily obtain the equation

dB1
dp1

=
λLx
Mx

, (1.33)

which is equation (2.22) of Part I, where B1 and p1 are
the radiant pressure and the gaseous pressure expressed in
multiples of their values at the centre of a star. Here the
absorption coefficient κ is assumed constant from the centre
to the surface, i. e. κ1=1. Applying this equation to the
surface layers of a star, we deduce that the structural coef-
ficient is

λLx0
Mx0

=
B1
p1
. (1.34)

We denote the numerical values of the functions at the
boundary between the surface layer and the “internal” layers
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of a star by the subscript 0. We consider two ultimate cases
of the temperature gradients within the “internal” layers:

1. The “internal” zone of a star is isothermal:

λLx0
Mx0

=
1

p10
, (1.34a)

2. The “internal” zone of a star is convective (B1 = p
8/5

1 ):

λLx0
Mx0

= p10 . (1.34b)

In the first theoretical case, spreading the isothermal zone
to almost the surface of a star, we can make the structural
coefficient as large as we please. This case is attributed
to sub-giants and anomalous bright stars in general. The
second theoretical case can explain stars of anomalously low
luminosity. Following this way, i. e. spreading the convective
zone inside stars, Tuominen [35] attempted to explain the low
luminosity of Trumpler stars.

The isothermy can appear if energy is generated mainly
in the upper layers of a star. The spreading of the convective
zone outside the Schwarzschild boundary can occur if energy
is generated in moved masses of stellar gas, i. e. under forced
convection. A real explanation by physics should connect the
above peculiarities of the energy generation to the physical
conditions inside stars or their general characteristics L, M ,
R. Before attempting to study the theoretical possibility of
such relations, it is necessary to determine them first from
observational data. Dividing ε̄ by M̄2 for every star, we
obtain the relation of the structural coefficient of formula
(1.30) for ρ and B. But, at the same time, the determination
of this relation in this way is somewhat unclear. There are no
clear sequences or laws, so we do not show it here. Generally
speaking, a reason should be simpler than its consequences.
Therefore, it is most probable that the structural coefficient
is not the reason. It is most probable that the reason for the
incompatibility of the observed “mass-luminosity” relation
with formula (1.30) is that equation (1.30) itself is built
incorrectly. This implies that the main equations of equi-
librium of stars are also built incorrectly. This conclusion is
in accordance with our conclusion in the previous paragraph:
energy is generated in stars like in machines — their workings
are incompatible with the standard principles of today’s
mechanics and thermodynamics.

1.7 Calculation of the main constants of the stellar en-
ergy state

The theoretical “mass-luminosity” relation (1.30) is obtained
as a result of comparing the radiant energy B calculated by
the excess energy flow (formula 1.4a or 1.13) to the same
B calculated by the phase state equation of matter (through
p and ρ by formula 1.14). Therefore the incompatibility of
the theoretical correlation (1.30) to observational data can be

considered as the incompatibility of both the values of B.
So we denote by B∗ the radiant pressure calculated by the
ideal gas equation. For the radiant transport of energy in a
star, formulae (1.4a) and (1.13) lead to

B̄∗

κ̄
= ε̄p̄ . (1.35)

By this formula we can calculate B̄∗/κ̄ for every star
of the stellar energy diagram (Fig. 2). As a result we can
find the correlation of the quantity B̄∗/κ̄ to p̄ and ρ̄. Fig. 3
shows the stellar energy diagram transformed in this fashion.
Here the abscissa is log ρ̄, while the ordinate is log p̄. In
order to make the diagram readable, we have not plotted all
stars. We have plotted only the Sun and a few giants. At the
same time we drawn the lines of constant B̄∗/κ̄ through ten
intervals. The lines show the surface log B̄∗/κ̄ (log ρ̄, log p̄).
For the constant absorption coefficient κ, the lines show the
system of isotherms. If B∗=B, there should be a system
of parallel straight lines, inclined at 45◦ to the log p̄ axis
and following through the interval 0.25. As we see, the real
picture is different in principle. There is in it a wonderful
symmetry of the surface log B̄∗/κ̄. Here the origin of the
coordinates coincides with the central point of symmetry of
the isoergs. At the same time it is the main point mentioned
in relation in the stellar energy diagram. The coordinates of
the point with respect to the Sun are

log ρ̄0 = −0.58, log p̄0 = −0.53,

log B̄0 = +0.22, log B̄∗0 = +0.50.
(1.36)

Using the data, we deduce that the main point is attributed
to a star of the Russell-Hertzsprung main sequence, which
has spectral class A4. Rotating the whole diagram around the
main point by 180◦, we obtain almost the same diagram, only
the logarithms of the isotherms change their signs. Hence, if

B∗

κ
B∗
0

κ

= f

(
p

p0
,
ρ

ρ0

)

,

we have

f

(
p

p0
,
ρ

ρ0

)

f

(
p0
p
,
ρ0
ρ

)

= 1 . (1.37)

The relation (1.37) is valid in the central region of the
diagram. An exception is white dwarfs, in which B∗/κ is
100 times less than that required by formula (1.37), i. e. 100
times less than that required for the correspondence to giants
after the 180◦ rotation of the diagram. It is probable that this
circumstance is connected to the fact that white dwarfs are
located close to the boundary of degenerate gas.

Besides the isotherms, we have drawn the main direction
along which stars are distributed. Now the equation of the
direction (1.28) can be written in the more precise form

log
B̄

ρ̄
= +0.80. (1.38)
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Fig. 3: Isotherms of stellar matter. The coordinate axes are the logarithms of the matter density and the gaseous pressure. Dashed lines
show isotherms of an ideal gas.

Because of the very large range of the physical states in
the diagram, the main direction is drawn very precisely (to
within 5%). It should be noted that, despite their peculiarities,
white dwarfs satisfy the main direction like all regular stars.

A theory of the internal constitution of stars, which could
explain observational data (the relation 1.37, for instance),
should be built on equations containing the coordinates of the
main point. This circumstance is very interesting: it shows
that there is an absolute system of “physical coordinates”,
where physical quantities of absolutely different dimensions
can be combined. Such combinations can lead to a com-
pletely unexpected source of stellar energy. Therefore it is
very important to calculate the absolute numerical values of
the constants (1.36). Assuming in (1.36) a mostly hydrogen
content for stars μ= 1/2, and using the above calculated
physical characteristics at the centre of the Sun (1.26), we
obtain

ρ0 = 2.4, p0 = 2.8×1015, B0 = 6.3×1012. (1.39)

We calculate B∗0 by formula (1.13). Introducing the aver-
age productivity of energy ε

B∗c =
εκcpc
4πGc

Mx0

λLx0
, (1.40)

assuming κc equal to Thomson’s absorption coefficient, ε�=
= 1.9, Mx0 = 11, and the structural multiplier according to
(1.31). We then obtain for the Sun, B∗c�= 1.1×1012 instead
of Bc�= 3.8×1012. Hence,

B∗0 = 4.1×1012 ≈ B0 . (1.41)

We introduce the average number of electrons in one
cubic centimetre ne instead of the density of matter: ρ= 1.66
×10−24ne. Then the equation of the main direction becomes

3B

ne
= 1.4×10−11 = 8.7 eV, (1.42)

which is close to the hydrogen ionization potential, i. e. χ0=
= 13.5 eV. Thus the average radiant energy per particle in
stars (calculated by the ideal gas formula) is constant and

is about the ionization energy of the hydrogen atom. Fig. 3
shows that, besides the main direction, the axis ρ= ρ0 is
also important. Its equation can be formulated through the
average distance between particles in a star

r = 0.55 (ne)
−1/3

as follows

r = 0.51×10−8 = rH =
e2

2χ0
, (1.43)

where rH is the radius of the hydrogen atom, e is the charge of
the electron. As a result we obtain the very simple correlation
between the constants of the lines (1.42) and (1.43), which
bears a substantial physical meaning.

In the previous paragraph we showed that the peculiarit-
ies of the “mass-luminosity” relation∗ cannot be explained by
changes of the absorption coefficient κ. Therefore the lines
B∗/κ= const should bear the properties of the isotherms.
The isotherms drawn in Fig. 3 are like the isotherms of the
van der Waals gas. The meaning of this analogy is that there
is a boundary near which the isotherms become distorted,
at which the regular laws of thermodynamics are violated.
The asymptotes of the boundary line (the boundary between
two different phases in the theory of van der Waals) are axes
(1.42) and (1.43). The distortion of the isotherms increases
with approach to the axis ρ= ρ0 or r= rH. That region is
filled by stars of the Russell-Hertzsprung main sequence. The
wonderful difference from van der Waals’ formula is the fact
that there are two systems of the distortions, equation (1.37),
which become smoothed with the distance from the axis
ρ= ρ0 (for both small densities and large densities).

Stars can radiate energy for a long time only under
conditions close to the boundaries (1.42) and (1.43). This
most probably happens because the mechanism generating
energy in stars works only if the standard laws of classical
physics are broken.

The results are completely unexpected from the view-
point of contemporary theoretical physics. The results show

∗The dispersion of showing-stars points around the theoretically
calculated direction “mass-luminosity”. — Editor’s remark.
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that in stars the classical laws of mechanics and thermody-
namics are broken much earlier than predicted by Einstein’s
theory of relativity, and it occurs under entirely different cir-
cumstances. The main direction constants (1.42) and (1.43)
show that the source of stellar energy is not Einstein’s con-
version of mass and energy (his mass-energy equivalence
principle), but by a completely different combination of
physical quantities.

Here we limit ourselves only to conclusions which follow
from the observational data. A generalization of the results
and subsequent theoretical consequences will be dealt with
in the third part of this research. In the next chapter we only
consider some specific details of the Russell-Hertzsprung
diagram, not previously discussed.

Chapter 2

Properties of Some Sequences in the Russell-
Hertzsprung Diagram

2.1 The sequence of giants

The stellar energy diagram (see Fig. 2) shows that the “mass-
luminosity” relation has the most simple form for stars of the
Russell-Hertzsprung main sequence

L ∼Mα, α = 3.8. (2.1)

Cepheids, denoted by crosses in the diagram, also satisfy
the relation (2.1). Using the pulsation equation P

√
ρ= c1 we

obtained (see formula 3.25 of Part I)
(

0.30−
1

5α

)
(
mb−4.62

)
+ logP+3 log T̄eff= log c1 , (2.2)

where T̄eff is the reduced temperature of a star, expressed in
multiples of the reduced temperature of the Sun, mb is the
absolute stellar magnitude, P is the pulsation period (days).
We plot stars in a diagram where the abscissa is mb− 4.62,
while the ordinate is logP + log T̄eff . As a result we should
obtain a straight line, which gives both the constant c1 (see
§3.3 of Part I) and the angular coefficient 0.30− 1/5α. Fig. 4
shows this diagram, built using the collected data of Becker
[36], who directly calculated T̄eff and mb by the radiant
velocities arc (independently of the distances). As a result the
average straight line satisfying all the stars has the angular
coefficient 0.25 and c1= 0.075. Hence, α= 4, which is in
fine accordance with the expected result (α= 3.8). Such a
coincidence makes Melnikov’s conclusion unreasonable: that
Cepheids have the same masses (α=∞), as shown by the
dashed line in Fig. 4.

In §1.5 of Part I we showed that the “mass-luminosity”
relation for giants is explained by the fact that the structural
coefficient λLx0/M

3
x0 has the same value ' 2×10−3 (1.31)

for all stars. In order to obviate difficulties which appear if

Fig. 4: Finding the exponent index α in the L ∼ Mα relation for
Cepheids.

one attempts to explain the luminosity of giants by nuclear
reactions, one attributes to them an exotic internal constit-
ution (the large shell which covers a normal star). Therefore,
the simple structure of giants we have obtained gives an
additional argument for the inconsistency of the nuclear
sources of stellar energy. At the same time, because of their
simple structure, giants and super-giants are quite wonderful.
For instance, for a giant like the satellite of ε Aurigae we
obtain its central density at 10−4 of the density of air, and
the pressure at about 1 atmosphere. Therefore, it is quite
possible that in moving forward along the main direction we
can encounter nebulae satisfying the condition (1.42). Such
nebulae can generate their own energy, just like stars.

Because of the physical conditions in giants, obtained
above, the huge amounts of energy radiating from them can-
not be explained by nuclear reactions. Even if this were true,
their life-span would be very short. For reactions, the upper
limit of the life-span of a star (the full transformation of its
mass into radiant energy) can be obtained as the ratio of ε̄ to
c2. So, by formula (1.40), we obtain

t =
t0
4γc

(
Mx0

λLx0

)

, (2.3)

where

t0 =
κTc

πG
= 6×1016 sec = 2×109 years (2.4)

and γc=Bc/pc is the ratio of the radiant pressure to the
gaseous one. As obtained, the structural multiplier here is
about 4. Therefore

t =
t0
γc
. (2.5)

In giants γc≈ 1, so we obtain that t is almost the same as
t0. At the same time, as we know, the percentage of energy
which could be set free in nuclear reactions is no more than
0.008. Hence, the maximum life-span of a giant is about
1.6×107 years, which is absolutely inapplicable. This gives
additional support for our conclusion that the mechanism of
stellar energy is not like reactions.
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It is very interesting that the constant (2.4) has a numer-
ical value similar to the time constant in Hubble’s relation
(the red shift of nebulae). It is probable that the exact form
of the Hubble equation should be

ν = ν0 e
−t/t0 , (2.6)

where ν is the observed frequency of a line in a nebula
spectrum when it is located at t light years from us, ν0 is
its normal frequency. According to the General Theory of
Relativity the theoretical correlation between the constant t0
and the average density ρ̄ of matter in the visible part of the
Universe

t0 '
1

√
πGρ̄

, (2.7)

which, independently of its theoretical origin, is also the very
interesting empirical correlation. Because of (2.4) and (2.7),
we re-write equation (2.6) as follows

ν = ν0 e
−κTρ̄x, (2.8)

where x= ct is the path of a photon. Formula (2.8) is like the
formula of absorption, and so may give additional support to
the explanation of the nebula red shift by unusual processes
which occur in photons during their journey towards us. It is
possible that in this formula ρ̄ is the average density of the
intergalactic gas.

2.2 The main sequence

The contemporary data of observational astronomy has suf-
ficiently filled the Russell-Hertzsprug diagram, i. e. the “lum-
inosity — spectral class” plane. As a result we see that there
are no strong arcs L(T̄eff) and L(R), but regions filled
by stars. In the previous chapter we showed that such a
dispersion of points implies that the energy productivity in
stars is regulated exclusively by the energy drainage (the
radiation). So the mechanism generating stellar energy is not
like any reactions. It is possible that only the main sequence
of the Russell-Hertzsprung diagram can be considered a line
along which stars are located. According to Parenago [38],
this direction is

mb = m� − 1.62x, x = 10 log T̄eff . (2.9)

An analogous relation had been found by Kuiper [8] as the
M (R) relation

log R̄ = 0.7 log M̄ . (2.10)

Using formulae (1.12) and (1.14), we could transform
formula (2.10) to a correlation B(ρ). At the same time,
looking at the stellar energy diagram (Fig. 2), we see that the
stars of the Russell-Hertzsprung “main sequence” have no
B(ρ) correlation, but fill instead a ring at the centre of the
diagram. This incompatibility should be considered in detail.

In the stellar energy diagram, the Russell-Hertzsprung
main sequence is the ring of radius c filled by stars. The
boundary equation of this region is

log2 B̄ + log2 ρ̄ = c2. (2.11)

We transform this equation to the variables M̄ and R̄ by
formulae (1.12) and (1.14). We obtain

17 log2 M̄ − 38 log M̄ log R̄+ 25 log2 R̄ = c2. (2.12)

As we have found, for stars located in this central region
(the Russell-Hertzsprung main sequence), the exponent of
the “mass-luminosity” relation is about 4. Therefore, using
formulae

log M̄ = −0.1mb , 5 log R̄ = −mb − x ,

we transform (2.12) to the form

m2
b + 2×1.51mbx+ 2.44x2 = c21 . (2.13)

The left side of this equation is almost a perfect square,
hence we have the equation of a very eccentric ellipse, with
an angular coefficient close to 1.51. The exact solution can
be found by transforming (2.13) to the main axes using the
secular equation. As a result we obtain

a

b
= 8.9, α = −1.58 , (2.14)

where a and b are the main axis and the secondary axis
of the ellipse respectively, α is the angle of inclination of
its main axis to the abscissa’s axis. Because of the large
eccentricity, there is in the Russell-Hertzsprung diagram the
illusion that stars are concentrated along the line a, the
main axis of the ellipse. The calculated angular coefficient
α=−1.58 (2.14) is in close agreement with the empirically
determined α=−1.62 (2.9).

Thus the Russell-Hertzsprung main sequence has no
physical meaning: it is the result of the scale stretching used
in observational astrophysics. In contrast, the reality of the
scale used in our stellar energy diagram (Fig. 2) is confirmed
by the homogeneous distribution of the isoergs.

As obtained in Part I of this research, from the viewpoint
of the internal constitution of stars, stars located at the op-
posite ends of the main sequence (the spectral classes O
and M) differ from each other no more than stars of the
same spectral class, but of different luminosity. Therefore the
“evolution of a star along the main sequence” is a senseless
term.

The results show that the term “sequence” was applied
very unfortunately to groups of stars in the Russell-
Hertzsprung diagram. It is quite reasonable to change this
terminology, using the term “region” instead of “sequence”:
the region of giants, the main region, etc.
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2.3 White dwarfs

There is very little observational data related to white dwarfs.
Only for the satellite of Sirius and for o2 Eridani do we know
values of all three quantities L,M , andR. For Sirius’ satellite
we obtain

M̄ = 0.95, R̄ = 0.030, ε = 1.1×10−2,

ρ = 104, ρc = 3×105, pc = 1×1022.
(2.15)

For an ideal gas and an average molecular weight μ= 1/2,
we obtain Tc= 2×108 degrees. The calculations show that
white dwarfs generate energy hundreds of times smaller
than regular stars. Looking at the isoergs in Fig. 2 and
the isotherms in Fig. 3, we see that the deviation of white
dwarfs from the “mass-luminosity” relation is of a special
kind; not the same as that for regular stars. At the same time
white dwarfs satisfy the main direction in the stellar energy
diagram: they lie in the line following giants. Therefore it
would be natural to start our brief research into the internal
constitution of white dwarfs by proceeding from the general
supposition that they are hot stars whose gas is at the bound-
ary of degeneration

ρ = AT 3/2, A = 10−8μe . (2.16)

We now show that, because of high density of matter in
white dwarfs, the radiant transport of energy FR is less than
the transport of energy by the electron conductivity FT

FR = −
1

3
v̄e λ̄ c̄vne

dT

dr
,

where λ̄ is the mean free path of electrons moved at the
average velocity v̄e, c̄v is the average heat capacity per
particle. Also

λ =
1

niσ
, ni =

ne
z
, σ = πr2, cv =

3

2
k , (2.18)

where ni is the number of ions deviating the electrons, σ is
the ion section determined by the 90◦ deviation condition

mev
2
e =

ze2

r
, (2.19)

i. e. the condition to move along a hyperbola.
Substituting (2.19) and (2.18) into formula (2.17) and

eliminating v̄ by the formula

v̄5 =
12
√
π

(
2kT

me

)5/2
,

we obtain

FT = −
24
ze4

(
2k7T 5

π3me

)1/2
dT

dr
. (2.20)

The radiant flow can be written as

FR = −
4

3

cαT 3

κρ

dT

dr
, (2.21)

hence

FR
FT

=
zT 1/2

κρ

(
αce4π3/2m1/2

e

k7/218
√
2

)

=
2.6zT 1/2

κρ
. (2.22)

Using (2.15) it is easily seen that even if κ' 1, FR<FT
in the internal regions of white dwarfs. We can apply the
formulae obtained to the case of the conductive transport
of energy, if we eliminate κ with the effective absorption
coefficient κ∗

κ∗ =
2.6zT 1/2

ρ
. (2.23)

Thus, if white dwarfs are built on an ideal gas whose
state is about the degeneration boundary, their luminosity
should be more than that calculated by the “mass-luminosity”
formula (the heat equilibrium condition).

We consider the regular explanation for white dwarfs,
according to which they are stars built on a fully degenerate
gas. For the full degeneration, we use Chandrasekhar’s
“mass-radius” formula (see formula 2.32, Part I). With M̄ =1
we obtain

R̄ = 0.042 (μe = 1) , R̄ = 0.013 (μe = 2) .

The observable radius (2.15) cannot be twice as small, so
we should take Sirius’ satellite as being composed of at least
50% hydrogen. From here we come to a serious difficulty:
because of the high density of white dwarfs, even for a
few million degrees internally, they should produce much
more energy than they can radiate.We now show that such
temperatures are necessary for white dwarfs.

Applying the main equations of equilibrium to the surface
layer of a star, we obtain

B

p
=

Lκ

4πGcM
=

εκ

4πGc
, (2.24)

where κ is the absorption coefficient in the surface layer. At
the boundary of degeneration we can transform the left side
by (2.16)

ρ0 =
3εκ

4πGc

A2<
μα

so that

ρ0 = 125 εκ

(
μ2e
μ

)

,

T 3/2

0 = 1.25×1010 εκ

(
μe
μ

)

.

(2.25)

We see from formula (2.22) that even in the surface layer
the quantity FT can be greater than FR. Substituting κ∗

(2.23) into (2.25), we obtain

T0 = 2.5×107 ε2/5
(
z

μ

)2/5
. (2.26)
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For ε= 10−2, μ=1, and z=1, we obtain

T0 = 4×106, ρ0 = 80, κ∗0 = 65,

thus for such conditions, κ>κ∗.
We know that in the surface layer the temperature is

linked to the depth h as follows

T =
gμ

4<
h . (2.27)

In the surface of Sirius’ satellite we have g= 3×107.
Hence h0= 3×107. Therefore the surface layer is about 2%
of the radius of the white dwarf, so we can take the radius at
the observed radius of the white dwarf.

It should be isothermal in the degenerated core, because
the absorption coefficient rapidly decreases with increasing
density. For a degenerate gas we can transform formula (2.23)
in a simple way, if we suppose the heat capacity proportional
to the temperature. Then, in the formula for FR (2.20), the
temperature remains in the first power, while T 3/2

0 should be
eliminated with the density by (2.16). As a result we obtain
FR∼ ρT and also

κ∗1 ' 2.6×10−8
(
T

ρ

)2
zμe . (2.28)

Even for 4×106 degrees throughout a white dwarf, the
average productivity of energy calculated by the proton-
proton reaction formula (1.16) is ε= 102 erg/sec, which is
much more than that observed. In order to remove the contra-
diction, we must propose a very low percentage of hydrogen,
which contradicts the calculation above,∗ which gives hyd-
rogen as at least 50% of its contents. So the large observed
value of the radius of Sirius’ satellite remains unexplained.

So we should return to our initial point of view, according
to which white dwarfs are hot stars at the boundary of
degeneration, but built on heavy elements. The low lumi-
nosity of such stars is probably derived from the presence of
endothermic phenomena inside them. That is, besides energy
generating processes, there are also processes where ε is
negative. This consideration shows again that the luminosity
of stars is unexplained within the framework of today’s
thermodynamics.
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