© Copyright 2020 by Colin James III All rights reserved.

**Abstract:** We evaluate the first example of ontology where the antecedent description of a graph implies three possible consequents as equivalences. The conjecture is *not* tautologous in two sets of variables, hence refuting the method of axiom pinpointing, to form a *non* tautologous fragment of the universal logic VŁ4.

We assume the method and apparatus of Meth8/VŁ4 with Tautology as the designated proof value, **F** as contradiction, N as truthity (non-contingency), and C as falsity (contingency). The 16-valued truth table is row-major and horizontal, or repeating fragments of 128-tables, sometimes with table counts, for more variables. (See ersatz-systems.com.)

LET ~ Not, 
$$\neg$$
; + Or, V, U,  $\sqcup$ ; - Not Or; & And,  $\land$ ,  $\cap$ ,  $\sqcap$ ,  $\cdot$ ,  $\otimes$ ; \ Not And;  
> Imply, greater than,  $\rightarrow$ ,  $\Rightarrow$ ,  $\mapsto$ ,  $\succ$ ,  $\supset$ ,  $\Rightarrow$ ; < Not Imply, less than,  $\in$ ,  $\prec$ ,  $\subset$ ,  $\nvDash$ ,  $\notin$ ,  $\notin$ ,  $\ll$ ,  $\lesssim$ ;  
= Equivalent,  $\equiv$ , :=,  $\Leftrightarrow$ ,  $\leftrightarrow$ ,  $\triangleq$ ,  $\approx$ ,  $\simeq$ ; @ Not Equivalent,  $\neq$ ,  $\oplus$ ;  
% possibility, for one or some,  $\exists$ ,  $\exists$ !,  $\diamond$ , M; # necessity, for every or all,  $\forall$ ,  $\Box$ , L;  
(z=z) T as tautology, T, ordinal 3; (z@z) F as contradiction, Ø, Null,  $\bot$ , zero;  
(%z>#z) N as non-contingency,  $\triangle$ , ordinal 1; (%z<#z) C as contingency,  $\nabla$ , ordinal 2;  
~(y < x) (x ≤ y), (x ⊆ y), (x ⊑ y); (A=B) (A~B).  
Note for clarity, we usually distribute quantifiers onto each designated variable.

From: Peñaloza, R. (2020). Axiom Pinpointing. arxiv.org/pdf/2003.08298.pdf

**Abstract.** Axiom pinpointing refers to the task of finding the specific axioms in an ontology which are responsible for a consequence to follow. ...

## **2** Axiom Pinpointing

(2.1.1)



Fig. 1. The ontology  $\mathcal{G}$  depicted as a graph (a), and three justifications for the consequence (u, w) (b)–(d).

**Remark 2.1.1:** We render Fig.1 as excluding the y edge because it is irrelevant to and simplifies the instant conjecture.

LET p, q, r, s: u, v, w, x.

$$((p>q)>((s>r)+r))>((p>r)=((p>(q>r))=((p>q)>(s>r))));$$
  
TFTT TTTT TFTT TTTT (2.1.3)