Refutation of axiom pinpointing

© Copyright 2020 by Colin James III All rights reserved.

Abstract

We evaluate the first example of ontology where the antecedent description of a graph implies three possible consequents as equivalences. The conjecture is not tautologous in two sets of variables, hence refuting the method of axiom pinpointing, to form a non tautologous fragment of the universal logic VŁ4.

We assume the method and apparatus of Meth8/VŁ4 with Tautology as the designated proof value, \mathbf{F} as contradiction, N as truthity (non-contingency), and C as falsity (contingency). The 16 -valued truth table is row-major and horizontal, or repeating fragments of 128 -tables, sometimes with table counts, for more variables. (See ersatz-systems.com.)

LET \sim Not, $\neg ;+$ Or, $\vee, \cup, \sqcup ;-\operatorname{Not}$ Or; \& And, $\wedge, \cap, \sqcap, \cdot, \otimes ; \backslash$ Not And;
$>$ Imply, greater than, $\rightarrow, \Rightarrow, \mapsto, \succ, \supset, \rightarrow ;<$ Not Imply, less than, $\in,<, \subset, \nvdash, \nvdash, \longleftarrow, \lesssim$;
$=$ Equivalent, $\equiv,:=, \Leftrightarrow, \leftrightarrow, \triangleq, \approx, \simeq$; $@$ Not Equivalent, \neq, \oplus;
$\%$ possibility, for one or some, $\exists, \exists!, \diamond, \mathrm{M}$; \# necessity, for every or all, $\forall, \square, \mathrm{L}$;
($\mathrm{z}=\mathrm{z}$) T as tautology, T , ordinal 3 ; ($\mathrm{z} @ \mathrm{z}$) \mathbf{F} as contradiction, \varnothing, Null, \perp, zero;
$(\% \mathrm{z}>\# \mathrm{z}) \mathrm{N}$ as non-contingency, Δ, ordinal 1; (\%z<\#z) C as contingency, ∇, ordinal 2;
$\sim(y<x)(x \leq y),(x \subseteq y),(x \subseteq y) ;(A=B)(A \sim B)$.
Note for clarity, we usually distribute quantifiers onto each designated variable.
From: Peñaloza, R. (2020). Axiom Pinpointing. arxiv.org/pdf/2003.08298.pdf
Abstract. Axiom pinpointing refers to the task of finding the specific axioms in an ontology which are responsible for a consequence to follow. ...

2 Axiom Pinpointing

Fig. 1. The ontology \mathcal{G} depicted as a graph (a), and three justifications for the consequence (u, w) (b)-(d).

Remark 2.1.1: We render Fig. 1 as excluding the y edge because it is irrelevant to and simplifies the instant conjecture.

LET $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}: \quad \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}$.

$$
\begin{align*}
& ((\mathrm{u}>\mathrm{v})>((\mathrm{x}>\mathrm{w})+\mathrm{w}))>((\mathrm{u}>\mathrm{w})=((\mathrm{u}>(\mathrm{v}>\mathrm{w}))=((\mathrm{u}>\mathrm{v})>(\mathrm{x}>\mathrm{w})))) ; \\
& \text { TTTT TTTT TTTT TTTT(2)\}8 } \\
& \text { FFFF frff frff frff(} 2 \text {) \} } \\
& \text { TTTT TTTT TTTT TTTT(4)\} } \\
& \text { TTTT TTTT TTTT TTTT(8) \} } \tag{2.1.2}\\
& ((\mathrm{p}>\mathrm{q})>((\mathrm{s}>\mathrm{r})+\mathrm{r}))>((\mathrm{p}>\mathrm{r})=((\mathrm{p}>(\mathrm{q}>\mathrm{r}))=((\mathrm{p}>\mathrm{q})>(\mathrm{s}>\mathrm{r})))) ; \\
& \text { TFTT TTTT TFTT TTTT } \tag{2.1.3}
\end{align*}
$$

