Meth8 validation of Bayes rule

© Copyright 2017 Colin James III All rights reserved.
From: Bayes rule from cs.cornell.edu/home/kleinber/networks-book/networks-book-ch16.pdf, information cascades

Section 1. We ask:
"Can we validate Bayes rule as defined in the captioned textbook link?"
We assume the notation of Meth8 and $\operatorname{Pr}[. .$.$] from the text as Probability of [...], which is ignored for$ our purposes here because $\operatorname{Pr}[\ldots]$ precedes each term of the formulas of the text.

LET: p q [A B, from the text], (q>p) [A|B], (p>q) [B|A]
vt Validated True, nvt Not Validated True,
Designated truth values: T True, E Evaluated
The text defines A given B, that is, if B then A :

$$
\begin{equation*}
(q>p)=((p \& q) \backslash q) ; \text { nvt } ; \text { TTFFTTFF } \tag{1}
\end{equation*}
$$

Because Eq 1 is not $v t$, as expected from the text, we test the main connective for $>$ Imply instead of $=$ Equivalent.

$$
\begin{equation*}
(q>p)>((p \& q) \backslash q) ; \text { nvt } ; \text { TTTFTTTF } \tag{1.1}
\end{equation*}
$$

The text defines B given A , that is, if A then B :

$$
\begin{equation*}
(p>q)=((q \& p) \backslash p) ; \text { nvt } ; \text { TFTFTFTF } \tag{2}
\end{equation*}
$$

Because Eq 2 is not vt, as expected from the textbook, we test the main connective for > Imply instead of $=$ Equivalent.

$$
\begin{equation*}
(p>q)>((q \& p) \backslash p) ; \text { nvt } ; \text { TTTFTTTF } \tag{2.1}
\end{equation*}
$$

Eq 1 and Eq 2 are supposed to be vt but are not. We note that Eq 1.1 is equivalent to Eq 2.1 where the respective main connectives are $>$ Imply, not $=$ Equivalent.

$$
\begin{equation*}
((q>p)>((p \& q) \backslash q))=((p>q)>((q \& p) \backslash p)) ; \text { vt } ; \text { TTTTTTTT } \tag{3}
\end{equation*}
$$

Because Eqs 1 and 2 are nvt, we could terminate validation at this point.
Section 2. We ask:
"Can the argument from the text be resuscitated in the process of continuing to evaluate it?"
The text rewrites Eqs 1 and 2 by multiplying both sides of the formula by the denominator in the respective consequent. In Eqs 1 and 2 the respective multiplier terms are q and p. The idea is to clear the denominator in the respective consequents.

$$
\begin{align*}
& ((\mathrm{q}>\mathrm{p}) \& q)=(((\mathrm{p} \& q) \backslash \mathrm{q}) \& q) ; \text { nvt } ; \text { TTFFTTFF } \tag{4}\\
& ((\mathrm{p}>\mathrm{q}) \& \mathrm{p})=(((\mathrm{q} \& \mathrm{p}) \backslash \mathrm{p}) \& \mathrm{p}) ; \text { nvt } ; \text { TFTFTFTF } \tag{5}
\end{align*}
$$

We test the main connective in Eqs 4 and 5 for > Imply instead of = Equivalent, with the same result as in Eqs 1.1,2.1, and 3.

Because $(p \& q)=(q \& p)$, the text rewrites Eq 5 but Eq 4 is carried over as unchanged.

$$
\begin{align*}
& ((\mathrm{q}>\mathrm{p}) \& q)=(((\mathrm{p} \& q) \backslash \mathrm{q}) \& q) ; \text { nvt } ; \text { TTFFTTFF } \tag{6}\\
& ((\mathrm{p}>\mathrm{q}) \& \mathrm{p})=(((\mathrm{p} \& q) \backslash \mathrm{p}) \& \mathrm{p}) ; \text { nvt } ; \text { TFTFTFTF } \tag{7}
\end{align*}
$$

The text rewrites Eqs 6 and 7 by simplifying the consequents.

$$
\begin{align*}
& ((q>p) \& q)=(p \& q) ; v t ; \tag{8}\\
& ((p>q) \& p)=(p \& q) ; v t \tag{9}
\end{align*}
$$

The text sets Eq 8 equal to Eq 9.

$$
\begin{equation*}
((\mathrm{q}>\mathrm{p}) \& q)=((\mathrm{p}>\mathrm{q}) \& \mathrm{p}) ; \mathrm{vt} \tag{10}
\end{equation*}
$$

For Eq 10 the text divides both antecedent and consequent by the term q to reduce the antecedent then rewrites.

$$
\begin{equation*}
(q>p)=(((p>q) \& p) \backslash q) ; n v t ; \text { TTFFTTFF } \tag{11}
\end{equation*}
$$

This produces the intended definition of the text for the expression $\operatorname{Pr}[(A \mid B](16.4)$ as Bayes rule.
Bayes rule as Eq 11 is nvt. We note the text begins with Eqs 1 and 2, both nvt.
This leads us to consider Eq 3 vt as the basis from which to obtain Bayes rule.

$$
\begin{equation*}
((q>p)>((p \& q) \backslash q))=((p>q)>((q \& p) \backslash p)) ; \text { vt } ; \text { TTTTTTTT } \tag{3}
\end{equation*}
$$

From Eq 3, we seek to find the definition of ($q>p$), or as an alternative approach of ($p>q$).
In the case of the term ($q>p$) we seek to remove from the antecedent in Eq 3 the term $((p \& q) \backslash q)$. The procedure is to apply the expression $<((\mathrm{p} \& q) \backslash \mathrm{q})$ to the antecedent and consequent.

$$
\begin{equation*}
(((\mathrm{q}>\mathrm{p})>((\mathrm{p} \& q) \backslash \mathrm{q}))<((\mathrm{p} \& \mathrm{q}) \backslash \mathrm{q}))=(((\mathrm{p}>\mathrm{q})>((\mathrm{q} \& \mathrm{p}) \backslash \mathrm{p}))<((\mathrm{p} \& q) \backslash \mathrm{q})) ; \text { vt } ; \text { TTTTTTTT } \tag{12}
\end{equation*}
$$

We simply and rewrite Eq 12.

$$
\begin{equation*}
(\mathrm{q}>\mathrm{p})=(((\mathrm{p}>\mathrm{q})>((\mathrm{q} \& \mathrm{p}) \backslash \mathrm{p}))<((\mathrm{p} \& q) \backslash \mathrm{q})) ; \text { nvt } ; \text { FFTFFFTF } \tag{13}
\end{equation*}
$$

In the case of the term $(p>q)$ we seek to remove from the consequent in Eq 3 the term $((q \& p) \backslash p))$. The procedure is to apply the expression $<((\mathrm{q} \& \mathrm{p}) \backslash \mathrm{p})$ to the consequent and antecedent.

$$
\begin{equation*}
(((\mathrm{q}>\mathrm{p})>((\mathrm{p} \& q) \backslash \mathrm{q}))<((\mathrm{q} \& \mathrm{p}) \backslash \mathrm{p}))=(((\mathrm{p}>\mathrm{q})>((\mathrm{q} \& \mathrm{p}) \backslash \mathrm{p}))<((\mathrm{q} \& \mathrm{p}) \backslash \mathrm{p})) ; \text { vt } ; \text { TTTTTTTT } \tag{14}
\end{equation*}
$$

We simplify and rewrite Eq 14 .

$$
\begin{equation*}
(\mathrm{p}>\mathrm{q})=(((\mathrm{q}>\mathrm{p})>((\mathrm{p} \& \mathrm{q}) \backslash \mathrm{q}))<((\mathrm{q} \& \mathrm{p}) \backslash \mathrm{p})) ; \text { nvt } ; \text { FTFFFTFF } \tag{15}
\end{equation*}
$$

The textbook definitions of Bayes rule are not validated as true and cannot be resuscitated from the textbook.

Section 3. As an experiment, we ask:
"Are the definitions of Bayes rule derivable from Eq 3, the only expression validated true, from Section 1; in other words, can Meth8 produce a correct Bayes rule because Section 1 failed to do so?"

We reiterate Eq 3 from above (3) and rename it for this section as 3 .

$$
\begin{equation*}
((\mathrm{q}>\mathrm{p})>((\mathrm{p} \& q) \backslash \mathrm{q}))=((\mathrm{p}>\mathrm{q})>((\mathrm{q} \& \mathrm{p}) \backslash \mathrm{p})) ; \mathrm{vt} \tag{3}
\end{equation*}
$$

LET $\mathrm{r}=((\mathrm{p} \& q) \backslash \mathrm{q}), \mathrm{s}=((\mathrm{q} \& \mathrm{p}) \backslash \mathrm{p})$ and rewrite 3 with those definitions by substitution.

$$
((\mathrm{r}=((\mathrm{p} \& \mathrm{q}) \backslash \mathrm{q})) \&(\mathrm{~s}=((\mathrm{q} \& \mathrm{p}) \backslash \mathrm{p})))>((((\mathrm{q}>\mathrm{p})>\mathrm{r})-\mathrm{s})=(((\mathrm{p}>\mathrm{q})>\mathrm{s})-\mathrm{r})) ; \mathrm{vt}
$$

Our approach is to manipulate the term $((q>p)>r)-s)$ so that $(q>p)$ is the antecedent of an equality.
This means finding the correct method to represent $(q>p)$ as a separate term in $((q>p)>r)-s)$, or as an alternative approach to represent $(p>q)$ as a separate term in $((p>q)>s)-r)$, or both.

We use the template $A>B=\sim A+B$ where A is $(q>p)$ and B is r, so $((q>p)>r)$-s becomes $(\sim(q>p)+r)$-s.

$$
((\mathrm{r}=((\mathrm{p} \& \mathrm{q}) \backslash \mathrm{q})) \&(\mathrm{~s}=((\mathrm{q} \& \mathrm{p}) \backslash \mathrm{p})))>(((\sim(\mathrm{q}>\mathrm{p})+\mathrm{r})-\mathrm{s})=(((\mathrm{p}>\mathrm{q})>\mathrm{s})-\mathrm{r})) ; \mathrm{vt}
$$

This successfully removed from the antecedent term of interest the second > Imply connective to leave connectives +Or and - Not Or.

We use the same template as $C>D=\sim C+D$ where C is $(p>q)$ and D is s, so $((p>q)>s)$ - r becomes $(\sim(p>q)+s)-r$.

$$
((\mathrm{r}=((\mathrm{p} \& \mathrm{q}) \backslash \mathrm{q})) \&(\mathrm{~s}=((\mathrm{q} \& \mathrm{p}) \backslash \mathrm{p})))>(((\sim(\mathrm{q}>\mathrm{p})+\mathrm{r})-\mathrm{s})=(((\sim(\mathrm{p}>\mathrm{q})+\mathrm{s})-\mathrm{r})) ; \mathrm{vt}
$$

This successfully removed from the consequent term of interest the second $>$ Imply connective to leave connectives + Or and - Not Or.

We cannot extract either ($q>p$) or $(p>q)$ as separate terms from 6. Therefore we abandon seeking these terms as those claimed for $\operatorname{Pr}[\mathrm{A} \mid \mathrm{B}]$ or $\operatorname{Pr}[\mathrm{B} \mid \mathrm{A}]$ in the text for Bayes rule.

