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Abstract—In this paper we look at two methods for modelling
formal languages. We first look at a bivalent framework used to
weaken a class of many valued logics with twin functors. We then
introduce  the  idea  of  primary  values.  Primary  values  are  the
maximal  number  of  contrary  formulae  expressible  in  the
language. The set of primary values is equally as important as the
set of axioms. In the spirit of Suszko’s Thesis the set is evaluated
as a two valued logic. As an example, we provide the primary set
for S5’s binary fragment. This approach informs an automated
theorem prover /  model  checker named  Meth8.  In  the  second
part of this paper, we show how Meth8 implements elements of
the semantic framework from the first part.  The purpose is to
show five proof models and which, where, and why if they fail.
Meth8  uses  a  novel  approach  to:  1.  Parse  parentheses  named
shift  window  parsing  (SWP);  and  2.  Substitute  logical  values
named  conditional  symbol  spoofing  (CSS)  based  on  the
conditional storing connectives, operators, and modifiers. 

Keywords—Łukasiewicz variant; Meth8; modal theorem prover;
multi-valued logic; VŁ4

I. INTRODUCTION

We characterize a formal language as a many valued logic
with the generic structure:

General Structure:

[ TΠ, TV: {V⟙, Vn, V⟘}],                                    
⊨, ~, &, v, →, ⇒, ↔, v, , +△ △, –   △

TΠ is  the set  of  truth possibilities.  TV is  the set  of  truth
values.  V  ⟙ is  the  set  of  designated  values,  V⟘ is  the  set  of
falsifying values, and Vn the set of non designating values not
false. Tab. 1 and Tab. 2 offer two versions of validity.

Table 1                                           Table 2
1⊨ V⟙ V n V⟘

2⊨ V⟙ Vn V⟘

V⟙ ✗ V⟙ ✗

Vn Vn ✗

V⟘ V⟘

Tab. 1 is the minimum threshold for validity. Tab. 1 in words:

Γ 1⊨ A  iff there are no models such that all                   
values of Γ are true and A is false.                        (1.0) 

Tab.  1 may  prove  insecure  for  many  valued  logic  and  is
strengthened as Tab. 2. In words:

Γ 2⊨ A   iff there are no models such that all         
values of Γ are non falsifying and A is false.        (1.1)

Other elements of the general structure are defined on Tab.
3. The triangular notation  marks the presence of △ a functor.

II. BIVALENT FRAMEWORK

The bivalent framework evaluates the two truth possibilities
p is case and p is not the case. Two valued logic is as Tab. 3

Table 3

p ~p ⟙ ⟘

p is the case T F T F

p is not the case F T T F

On Tab. 3 the truth conditions are tautological. For example, to
assert ‘p’ means p is the case is true when p is not the case is
false.

The bivalent framework was originally designed to weaken
the four valued modal logic of Łukasiewicz.[12,13] Ł4  is a B4

algebra with twin modal functors as Tab. 4. 

Table 4
△ ▽

~ □ ◇ □ ◇
1 0 2 1 3 1

2 3 2 1 0 2

3 2 0 3 3 1

0 1 0 3 0 2

Despite Ł4’s conservatism it has multiple complaints. 2.0 is
a noted egregious Ł4 theorem.

⊨Ł4 (◇p & ◇q) → ◇(p & q)                                    (2.0)

Béziau points out 2.0 proved a nightmare for Łukasiewicz.
[2] Consider the counter: If it is possible the President is in
Washington and possible the President is in London, then, it is
possible the President is both in Washington and London. It is



clear Ł4 is untenable as an alethic logic but we wonder how Ł4

may be rehabilitated.

Tab. 5 introduces the Łukasiewicz △ functor to the bivalent
framework.

Table 5

p ~p □p ~□p p◇ ~p

p is the case 1 0 2 3 1 0

p is not the case 0 1 0 1 3 2

For Tab. 5 if 1 is interpreted as true and 0 is false, this begs
the question as how to interpret 2 and 3.  For an answer we
refer to basic RGB color theory in Fig 1.

Fig. 1

Basic color  theory is  an eight  valued B8 algebra.  In  the
additive model the presence of a primary color is a denial of
the  minimal  value  black.  In  the  subtractive  model  primary
colors are contrary properties. For both models a primary color
is a property of white light. The lesson is generalised: 

A primary value is a denial of the minimal zero, 
contrary to other primary values, and a property        
of the maximal value.                                            (3.0) 

Following 3.0, if the designated value of Ł4 is interpreted as
true, then the middle values 2 and 3 are properties of true and
deny false. A class of contingent adjectives provides a solution
e.g. {accidental, incidental, coincidental, marginal, temporary,
extraneous, superfluous, etc.}.  This class preserves truth. For
example, if a state of affairs is accidental it is contingent yet
also true. When the class is joined we name it C.

C =def accidental or incidental or coincidental or 
marginal or temporary or superfluous, ... etc.       (4.0)

We name the  series  of  negative  conjunction  N for  non-
contingent.

N =def not accidental and not incidental and not 
coincidental and not marginal and not temporary    
and not superfluous, … etc.                                  (4.1) 

There  is  a  possible  world  counterpart  to  the  natural
language definitions. W1 is the start world and W2 some world
accessible from W1.

C
True in W1 & False in W2

N
True in W1 & True in W2 (5.0)

The set  of  values  are false,  contingent,  non contingent,  and
true,  viz.,  {F,  C,  N,  T}.  The  basic  non-modal  and  alethic
propositions are defined as Tab. 6.

Table 6

p ~p □p ~□p p◇ ~ p◇ Np Cp

p is the case T F N C T F N C

p is not the case F T F T C N N C

If we replace {0, 3, 2, 1} with the B4 set {00, 10, 01, 11}
there is an intuition that says extremes of necessity ought to be
held farthest apart, i.e. (00 01)(p) = □p and (10 00)(p) = ~◇p.
We name this polarity. Polarity occurs if the ▽ functor applies
to the positive case and the  △ functor to the negative case as
Tab. 7.

Table 7

p ~p □p ~□p p◇ ~ p◇
p is the case 11 00 01 10 11 00 +▽

p is not the case 00 11 00 11 01 10 –△

The set {F, C, N, T} proves an inconsistent interpretation of
a polar system i.e.  both 01 and 10 are interpreted as N. We
introduce the alternative values {(U) unevaluated, (I) improper,
(P) proper, (E) evaluated}. The values I and P are a conditional
access between worlds.

I
True in W1 → False in W2

P
True in W1 → True in W2 (6.0)

As a combined system {F, C, N, T} is Model 1 and {U, I, P,
E} is Model 2. Tab. 8 makes clear how the B4 set is interpreted
in either model.

Table 8
11 1 T E

01 2 N P

10 3 C I

00 4 F U

Tab.  9  extends the interpretations of  the non modal  and
propositions to both models.

Table 9

p ~p □p ~□p p◇ ~ p◇
p is the case T, E F, U N, P C, I T, E F, U

p is not the case F, U T, E F, U T, E C, P N, I



In Model 2 the modal box is interpreted as correct and the
lozenge  as  passable.  Correct  may  mean  unmistaken  or
appropriate.

A theorem in this  two-tone variant of Ł4 (VŁ4) is valid in
both models. Model 1 is equivalent to Ł4 and harbors no further
caveats. Model 2 qualifies Model 1, and so VŁ4 theorems are a
subset  of  Ł4.  Model  2  has  additional  technical  framework
because it  is  not  clear which is the correct  functor to apply
when the number of propositions is greater than one. At such
times middle rows of a table mix truth possibilities. Tab. 10
covers all of the available options.

Table 10.  Three modal options for mixed truth values

□1
×E

□2
×U

□3
×P , ×I

◇1
+U

◇2
+E

◇3
+I , +P

On Tab. 10 option 1 is neutral, leaving the middle rows of a
truth table unchanged. The box operator under option 2 returns
U,  the lozenge returns E.  Option 3 evaluates  twins functors
separately.  Given  options  1  and  2,  option  3  is  redundant.
Atomic  formulae  are  unary and  do not  have  a  middle  row.
Hence the question of which option does not arise.

Along  with  many  implausible  theorems,  Model  2
invalidates 2.0 as seen on Tab. 11.

Table 11

(◇A & ◇B) → ◇ (A & B)

◇p
PEPE
PEPE
PEPE
PEPE

PEPE
PEPE
PPPP
PPPP

◇q
EEEE
EEEE
PPPP
PPPP

IIEE
IUEP
IIII
IIII

Option1
UIPE
UUPP
UIUI
UUUU

p
UIPE
UIPE
UIPE
UIPE

UIPE
UUPP
UIUI
UUUU

q
EEEE
PPPP
IIII
UUUU

The one instance on Tab. 11 where E → U means the inference
is  not  a  valid  consequence  in  VŁ4 (see  Tab.  1).  More
controversial is Model 2 which finds against axiom K. 

Table 12

□ (A → B) → (□A → □B)

Option1
EEEE
EPEP
EEII
EPIU

UIPE
UIPE
UIPE
UIPE

EEEE
EPEP
EEII
EPIU

EEEE
PPPP
IIII
UUUU

EPEP
EEEE
EPEP
EEEE

Option1
UIPE
UIPE
UIPE
UIPE

EPEP
EPEP
EPIU
EPIU

□q
PPPP
PPPP
UUUU
UUUU

As K is not controversial we should not expect conspicuous
counter examples. However, on Tab. 12 the condition I → U is
a cause for concern, viz., □(A → B) 2⊭ (□A → □B).

Consider the following example first reading the modal box
as  ‘correct’:  If  correct  that  banking  regulations  imply
egregious losses mount up, then, correct banking regulations
imply it is correct egregious losses mount up. It may be correct
the present state of regulation leads to egregious losses, but this
does not mean correct regulation implies egregious losses.

Another example reads the modal box as necessity: If it is
necessarily  the  case  freewill  implies  sometimes  a  person

abstains,  then  freewill  is  necessarily  the  case  implies
sometimes  a  person  abstains  is  necessarily  the  case.   If  a
person who never abstains entails the negation of freewill, then
on that condition the antecedent is true. However, if the final
consequent  means  sometimes  abstinence  is  the  only  option
then freewill is negated. 

If we look again at Tab. 12 the inference fails where the
consequent  is  unevaluated.  The  first  example  invokes
regulation both ‘correct and egregious’ and the second example
invokes  an  abstinence  both  ‘necessary  and  optional’.  Both
examples invite oxymora that make little sense and hence the
validity of K as a structural inference is threatened.

The  bivalent  framework  is  not  limited  to  Ł4.  One  well
known set  of four valued matrices is  Lewis  and Langford’s
Groups I-V.[10]  On Tab. 13 we include the necessity operator.

Table 13
I II III IV V

□ ◇ □ ◇ □ ◇ □ ◇ □ ◇
1 2 1 1 1 1 1 1 2 2 1

2 4 1 4 2 4 1 3 2 4 2

3 4 1 3 1 4 1 3 2 3 1

4 4 3 4 4 4 4 3 4 4 3

Group III  lacks  a  twin and cannot  be weakened.  The other
groups  do  have  twins  if  the  second  designated  value  is
switched when the negative case. This is problematic in as far
as it is uncertain whether it is 2 or 3 that is designated where
truth possibilities are mixed. With that caveat, groups I, II, IV
and V may be weakened using the bivalent  framework. For
axiom K groups I, II and V have a set of conditions such that 2
→ 4 or 3 → 4. For group IV there is the set of conditions 2 →
3 or  3  →  2.  Despite  uncertain  designation  these  conditions
ensure  the  inference  is  invalid.  Whilst  Model  2  militates
against  Lewis’ strict  implication  it  is  worth  noting I  and  II
preserve his amended postulates A1-A7 after weakening, but
A8 is now invalid. However, Group V also originally failed to
validate A8.[10].

III. GENERAL STRATEGY FOR PARSING MINIMAL SETS

The objective is to take any logic with Boolean operations
(&) and (~) and parse the minimal set of semantic elements.
The minimal set is an intuitively easy concept to grasp. In color
theory it is the set of primary colors, viz., {red, green, blue}.
The  set  contains  no  subcontrary  pair  of  elements,  and  no
individual formula is a contradiction. In a formal language the
minimal  set  has  the  maximal  number  of  contrary  elements
expressible in the language. Suszko’s Thesis is taken to mean
“every logic is logically two valued”.[16]  The objective here is
to give a zero-one evaluation of the minimal set.

We look at modal system S5. The S5 unary fragment is a
simple B4 algebra with four primary values, viz., (0001)(□p),
(0010)(~□p &p), (0100)(◇p & ~p), (1000)(~◇p).

As the unary fragment is a B4 logic the starting point for
binary formula is  a  4  × 4 grid.  Extended analysis  proves a
simple 4 × 4 grid is insufficient and the final grid is as Tab. 14.



Table 14

1 2 3 4

5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28

29 30 31 32

We  account  for  all  32  primary  values  in  Tab.  15.  The
number  corresponds  to  their  location  on  the  grid.  These
formula  whilst  syntactically  complex  are  the  S5  semantic
atoms (primary colors).

Table 15. The minimal set for S5 has 32 primary values.
1. □p & □~q

2. □p & ◇q & ~q

3. □p & q & ◇~q

4. □p & □q

5. p & ◇~p & □~q

6. □(q → p) & p & ◇~p & ◇q & ~q

7. (□(p v q) v □(~p v ~q)) & ◇(p & q) & p & ◇~p & ◇q & ~q

8. (□(p v q) v □(~p v ~q)) & ◇(~p & ~q) & p & ◇~p & ◇q & ~q

9. □(p v q) & □(~p v ~q) & p & ◇~p & ◇q & ~q

10. (◇ (~p & q) ↔ ◇ (p & q)) & ◇ (~p & ~q) & p & ◇~p & ◇q & ~q

11. □(p v q) & p & ◇~p & ◇~q & q

12. (□(p v ~q) v □(~p v q)) & ◇ (~p & q) & p & ◇~p & ◇~q & q

13. (□(p v ~q) v □(~p v q)) & ◇(p & ~q) & p & ◇~p & ◇~q & q

14. □(p v ~q) & □(~p v q) & p & ◇~p & ◇~q & q

15. (◇(~p & ~q) ↔ ◇ (p & ~q)) & ◇(~p & q) & p & ◇~p & ◇~q & q

16. □q & p & ◇~p

17. ◇p & □~q & ~p

18. □(~p v ~q) & ~p & ◇p & ◇q & ~q

19. (□(p v ~q) v □(~p v q)) & ◇ (~p & q) & ~p & ◇p & ◇q & ~q

20. (□(p v ~q) v □(~p v q)) & ◇(p & ~q) & ~p & ◇p & ◇q & ~q

21. □(p v ~q) & □(~p v q) & ~p & ◇p & ◇q & ~q

22. (◇(p & q) ↔ ◇(p & ~q)) & ◇(~p & q) & ~p & ◇p & ◇q & ~q

23. □(p → q) & ~p & ◇p & ◇q & q

24. (□(p v q) v □(~p v ~q)) & ◇(p & q) & ~p & ◇p & ◇~q & q

25. (□(p v q) v □(~p v ~q)) & ◇ (~p & ~q) & ~p & ◇p & ◇~q & q

26. □(p v q) & □(~p v ~q) & ~p & ◇p & ◇~q & q

27. (◇(p & ~q) ↔ ◇(p & q)) & ◇(~p & ~q) & ~p & ◇p & ◇~q & q

28. □q & ◇p & ~p

29. □~p & □~q

30. □~p & ~q & ◇q

31. □~p & q & ◇~q

32. □~p & □q

The 32 primary values form a grid. However, the extra five
formulae of the four central cells on Tab. 15 require additional
4 × 4 grids that qualify the formula as Tab. 16.

Table 16
6 7 8 9 10 11 12 13 14 15

1100

1100

0000

0001

0010

0011

0000

0000

0000

0000

1100

0100

0001

0000

0000

1000

0000

0000

0011

0010

0011

0011

0000

1000

0100

1100

0000

0000

0000

0000

0011

0010

1000

0000

0000

0001

0000

0000

1100

0100

a b

18 19 20 21 22 23 24 25 26 27

0001

0000

1100

1100

0100

1100

0000

0000

0000

0000

0011

0010

1000

0000

0000

0001

0010

0011

0000

0000

1000

0000

0011

0011

0000

0000

1100

0100

0010

0011

0000

0000

0001

0000

0000

1000

0100

1100

0000

0000

c d

Tab. 17 is a limited selection of binary grids sufficient for
modelling S5’s binary fragment. Formulae in which the scope
of  the  modal  operators  extends to  two variables  incorporate
grids a, b, c, d from Tab. 16, or their negations.

Table 17
1 2 3 4 5 6 7

□p p ◇p  □q q ◇q □(q→ p)

1111
0000
0000
0000

1111
1111
0000
0000

1111
1111
1111
0000

0001
0001
0001
0001

0011
0011
0011
0011

0111
0111
0111
0111

1111
0aa1
00a1
0001

8 9 10 11 12 13 14

□(p v q) □(p→ ~q) □(p→q) ◇(~p&~q) ◇(q&~p) ◇(p&q) □(q→p)

1111
1bb0
1b00
1000

1000
1c00
1cc0
1111

0001
00d1
0dd1
1111

0000
1aa0
11a0
1110

0000
0bb1
0b11
0111

0111
0c11
0cc1
0000

1111
11d0
1dd0
0000

The system of truth functional grids expands with each new
variable  considered.  Hence  the  values  are  enumerable  but
potentially  infinite.  This  point  means  a  truth  functional  S5
complies with the result of Dugundji that establishes S1-S5 to
have no finite matrix.[3]

S5 is a normal  modal logic with axiom K, but we have
given reason to doubt K.  A similar logic to S5 retains the basic
grids 1-6 but additionally qualifies grids 7-14 in Tab. 18. 

 



Table 18
10*

□(p→q)

00d1
00d1
ddd1
1111

Grid 10* belongs to a system that invalidates K.

IV. METH8 MODEL PROVER

Meth8 stands for Mechanical theorem prover in 8-bits.[6] It
is a model prover for modal logic using the rules of VŁ4 in the
sections above. The prover is  driven by look up tables  (lut)
with  calculation  for  intermediate  results.   The  purpose  of
Meth8 is to invalidate models of logic systems. 

The development language used is TrueBASIC®, an ANSI
standard for educators.  The source code is directly portable for
embedded  systems into  VHDL (a  subset  of  Ada  95)  as  for
example in [7].  

Programming  constraints  on  large  memory  limit  the
number of literal variables to 24 propositions or 12 theorems.
The propositions are named as the 24 lower case letters from a
to z, but excluding the lower case letter of "l", as in lion, and
lower  case  letter  "o"  as  in  ocean  because  they  are  easily
confused with the ordinal digits of one and zero. The theorems
are  named  as  the  12  upper  case  letters  from  A to  L.  The
operators  supported  are  the  modal  box  and  lozenge,  and
negation here given in one character symbols as {#, %, ~}.
The eight connectives supported are conjunction, disjunction,
joint  denial,  converse implication, biconditional,  implication,
exclusive disjunction, and alternative denial  in one character
symbols  as  {&+-<=>@\}.   The  maximum  number  of
characters in an input expression is 2^30 (1 B). 

  The  model  prover  consists  of  three  parts  for  parser,
processor, prover as named with the acronym of p-cubed or P3.

V. PARSER

The parser component requests input from the user for the
logic  system  and  parameter  directives  unique  to  that  logic
system and is stored in a file at the root directory. The parser
requests input of an expression to be processed.  It is checked
for  syntax  compliance  and  semantic  content.   The  syntax
includes correct symbols within the allowed character sets for
literal types, literal operators, and connectives.  The semantic
content  includes:  the  order  of  operators,  literals,  and
connectives;  and  the  nesting  of  parentheses  for  argument.
Sequential  combinations of modal operators and negation to
literals  are  automatically  reduced  to  the  minimal  algebraic
state.  A novel approach to mapping matched parentheses uses
a  shifting  window  parser  named  SWP.  Fig.  2  is  a  worked
example.

Fig.2

From  Fig.  2,  five  steps  match  the  pairs  of  nested
parentheses, each of which is an argument:

1. Map all parentheses as L or R for left or right; there
are three valid pairs.

2. Slide the window left, so that L in step 1 moves
from character position 2 to position 1.

3. From the combined maps of steps 1 and 2 as on the
top and bottom, tag the first adjacent L/R pair as [04,
09]; then tag the next adjacent L/R pair as [12,17].

4.  Write  these  tagged  pairs  to  a  first  in,  first  out
(FIFO) stack list as: [04, 09], [12, 17].

5. Match remaining parentheses [02,  18] and write to
the stack: [04, 09], [12, 17], [02, 18].

Each argument within the expression is stored in a parse tree,
with index keyed to the stack.

The parser is not relaxed but strict, as it makes no effort to
second  guess  the  input  of  the  user.   Explicit  input  assures
correct parsing by using parentheses for order of precedence of
arguments.  For example, the formula 

B & A + A & ~(A & ~B) =                                           
A & B + A & A + A & ~B;    A & B = A                (7.0)

reduces to a result of A & B = A, which probably is not the
intended result.  However, rewriting (7.0) using parentheses as
the formula

(B & A) + (A & ~((A & ~B) ) =                                 
(A & B) + (A & A) + (A & ~B);    A = A               (8.0)

assures an intended result of A = A.  Meth8 rejects (7.0) as
ambiguous and not a well formed function (wff), but accepts
(8.0) as a wff.



VI. PROCESSOR

A lut is based on three sources of data to populate it:  1.
External  files;  2.  Data  statements;  and  3.  Algorithmic
calculation.  Data read from external files is best suited in a
small  memory  footprint  of  lut  such  as  implementation  in
programmable hardware parts for speed.  Software programs
use  self-contained  data  statements  to  build  a  lut  in  a  larger
memory space such as for desktop computing.  Building a lut
by calculation on the fly is needed for hand held and portable
devices such as tablets and cellphones.  

Two models are supported with optional variants named:
M1; M2.1; M2.2; and M2.3.  From Tab. 8 above, M1 is for
propositions with the default quaternary logic of {F, C, N, T};
and M2.1, 2.2, 2.3 is for theorems with the quaternary logic of
{U, I, P, E}.

The processor implements the rules of VŁ4 in six steps to
build and calculate tables:

1. Read logical value equivalents and negations by 
model options: 

False = Unapplied = 00 = 0;                            
[Not:] True = Evaluated = 11 = 1.

2. Read logical value modal conversions by model:

(F) (U): FC UU EU UP UI; ... ;                       
(T)(E): NT EE UE IE PE.

3. Read logical value connective truth table rows by
model:

 &FCNT, FFFFF, CFCUC, NFUNN, TFCNT.

4.  [Optional  step  for  higher  performance]  Read
algebraic form of 4096 combinations for antecedent,
conditional,  and  consequent  as  literal  propositions,
theorems, and connectives:

~s & ~p; ~D & ~A.

5.  Calculate  atomic  propositions,and  theorems  as
logical values in truth tables: 

for two propositions, p = FTFT, q = FFTT;  
for one theorem, A = FCNT.

6.  Calculate  algebraic  antecedent,  consequent,  and
conditional  into logic  values  for  model  options:  for
three propositions, ~r & ~q becomes 

~(FFFFTTTT) & ~(FFTTFFTT) = 
(TTFFFFFF).

Step 6 uses a lut from each of steps 1-4 in order, with a
result in the form of successive rows of a truth table.  (Step 1 is
useful in compact systems for translating the same truth tables
from Model 1 to Model 2.x.)

Step 6 uses the conditional as a separator to demark the end
of the antecedent and the beginning of the consequent. This is
useful  in  string  manipulation  that  relies  on  the  indexing  of
characters.

While the conditional is thought of as storing connectives
only, the conditional here may also store modal operators and
the negation modifier such as necessity, possibility, and not (□,

,  ~ ).  This practice is named conditional symbol spoofing (CSS).  ◇

For example, this is useful in the case of some conditional
result H to which  □~ is applied as  □~H. The result for ~H is
either looked up as the logical values in a negation truth table
or the negation modifier is applied to each logical value in the
truth table of H.  The operator of necessity □ is stored as a
conditional which is then applied to each logical value in the
truth table of  ~H.  The result  is  passed as an antecedent or
consequent to the next level in the parse tree.

The  parsed  input  expression  of  interest  is  processed  in
respective iterations of three subsequent steps:

7.  An argument result as a truth table is stored from
step  6  in  the  parse  tree  as  the  truth  table  of  an
intermediate result. 

8.  Subsequent  intermediate  results  from  step  7  are
assigned as antecedent and consequent to produce a
conditional result.  That is elevated to the next level in
the parse tree.  Hence the processor performs a series
of conditional evaluations where each is saved into the
next higher level to be parsed. 

9. When a truth table of the final result is obtained, the
constituent intermediate truth tables are retrieved from
the parse tree to build a combined truth table record of
the logical  value transactions.  The format  is  that  of
which Tab. 11 and Tab. 12 are a fragment. 

VII. PROVER

The prover component evaluates the combined truth table
record for invalidation by model of the input expression.  That
record is printed to the user screen and to an evaluation file.
The  portions  of  the  combined  truth  table  which  cause  the
invalidation  are  marked  in  bold  or  italics  to  show  exactly
where the invalidation begins and is propagated.

VIII. OPERATION

The  full  production  version  of  Meth8  supports  24
propositions and 12 theorems. The minimal production version
of Meth8 is limited to four propositions (p, q, r, s) and four
theorems (A, B, C, D).  

The systems to be supported are ternary logics [4,5], [8,9],
[11], [14] and quaternary logics [1,2], [8], [10], [12], [15].  The
utility program of Meth8 specifies the logic system and saves
parameters to a file in the root directory of the computer.

The user may specify one or a series of expressions to test
as input in a batch file.  This avoids having to re-enter or cut
and paste corrections to input expressions at the input prompt.



IX. FINAL REMARKS

Whilst the bivalent framework is a model to weaken a class
of logics with twin functors, Meth8 is also capable of testing a
range of well known many valued logics. Significantly, a later
version will approach different logics as alternative classes of
minimal  sets.  It  is  intended  Meth8  will  allow  the  user  to
explore many valued logic and test practical examples of logics
that comply to Suszko’s Thesis.[16]
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