
Model Prover for Multivalued Logic: Meth8

Colin James III

Ersatz Systems Machine Cognition, LLC
Colorado Springs CO USA

info@cec-services.com

Garry Goodwin

Semantic-Qube
London, England UK

Abstract—In this paper we look at two methods for modelling
formal languages. We first look at a bivalent framework used to
weaken a class of many valued logics with twin functors. We then
introduce the idea of primary values. Primary values are the
maximal number of contrary formulae expressible in the
language. The set of primary values is equally as important as the
set of axioms. In the spirit of Suszko’s Thesis the set is evaluated
as a two valued logic. As an example, we provide the primary set
for S5’s binary fragment. This approach informs an automated
theorem prover / model checker named Meth8. In the second
part of this paper, we show how Meth8 implements elements of
the semantic framework from the first part. The purpose is to
show five proof models and which, where, and why if they fail.
Meth8 uses a novel approach to: 1. Parse parentheses named
shift window parsing (SWP); and 2. Substitute logical values
named conditional symbol spoofing (CSS) based on the
conditional storing connectives, operators, and modifiers.

Keywords—Łukasiewicz variant; Meth8; modal theorem prover;
multi-valued logic; VŁ4

I. INTRODUCTION

We characterize a formal language as a many valued logic
with the generic structure:

General Structure:

[TΠ, TV: {V⟙, Vn, V⟘}],
⊨, ~, &, v, →, ⇒, ↔, v, , +△ △, – △

TΠ is the set of truth possibilities. TV is the set of truth
values. V ⟙ is the set of designated values, V⟘ is the set of
falsifying values, and Vn the set of non designating values not
false. Tab. 1 and Tab. 2 offer two versions of validity.

Table 1 Table 2
1⊨ V⟙ V n V⟘

2⊨ V⟙ Vn V⟘

V⟙ ✗ V⟙ ✗

Vn Vn ✗

V⟘ V⟘

Tab. 1 is the minimum threshold for validity. Tab. 1 in words:

Γ 1⊨ A iff there are no models such that all
values of Γ are true and A is false. (1.0)

Tab. 1 may prove insecure for many valued logic and is
strengthened as Tab. 2. In words:

Γ 2⊨ A iff there are no models such that all
values of Γ are non falsifying and A is false. (1.1)

Other elements of the general structure are defined on Tab.
3. The triangular notation marks the presence of △ a functor.

II. BIVALENT FRAMEWORK

The bivalent framework evaluates the two truth possibilities
p is case and p is not the case. Two valued logic is as Tab. 3

Table 3

p ~p ⟙ ⟘

p is the case T F T F

p is not the case F T T F

On Tab. 3 the truth conditions are tautological. For example, to
assert ‘p’ means p is the case is true when p is not the case is
false.

The bivalent framework was originally designed to weaken
the four valued modal logic of Łukasiewicz.[12,13] Ł4 is a B4

algebra with twin modal functors as Tab. 4.

Table 4
△ ▽

~ □ ◇ □ ◇
1 0 2 1 3 1

2 3 2 1 0 2

3 2 0 3 3 1

0 1 0 3 0 2

Despite Ł4’s conservatism it has multiple complaints. 2.0 is
a noted egregious Ł4 theorem.

⊨Ł4 (◇p & ◇q) → ◇(p & q) (2.0)

Béziau points out 2.0 proved a nightmare for Łukasiewicz.
[2] Consider the counter: If it is possible the President is in
Washington and possible the President is in London, then, it is
possible the President is both in Washington and London. It is

clear Ł4 is untenable as an alethic logic but we wonder how Ł4

may be rehabilitated.

Tab. 5 introduces the Łukasiewicz △ functor to the bivalent
framework.

Table 5

p ~p □p ~□p p◇ ~p

p is the case 1 0 2 3 1 0

p is not the case 0 1 0 1 3 2

For Tab. 5 if 1 is interpreted as true and 0 is false, this begs
the question as how to interpret 2 and 3. For an answer we
refer to basic RGB color theory in Fig 1.

Fig. 1

Basic color theory is an eight valued B8 algebra. In the
additive model the presence of a primary color is a denial of
the minimal value black. In the subtractive model primary
colors are contrary properties. For both models a primary color
is a property of white light. The lesson is generalised:

A primary value is a denial of the minimal zero,
contrary to other primary values, and a property
of the maximal value. (3.0)

Following 3.0, if the designated value of Ł4 is interpreted as
true, then the middle values 2 and 3 are properties of true and
deny false. A class of contingent adjectives provides a solution
e.g. {accidental, incidental, coincidental, marginal, temporary,
extraneous, superfluous, etc.}. This class preserves truth. For
example, if a state of affairs is accidental it is contingent yet
also true. When the class is joined we name it C.

C =def accidental or incidental or coincidental or
marginal or temporary or superfluous, ... etc. (4.0)

We name the series of negative conjunction N for non-
contingent.

N =def not accidental and not incidental and not
coincidental and not marginal and not temporary
and not superfluous, … etc. (4.1)

There is a possible world counterpart to the natural
language definitions. W1 is the start world and W2 some world
accessible from W1.

C
True in W1 & False in W2

N
True in W1 & True in W2 (5.0)

The set of values are false, contingent, non contingent, and
true, viz., {F, C, N, T}. The basic non-modal and alethic
propositions are defined as Tab. 6.

Table 6

p ~p □p ~□p p◇ ~ p◇ Np Cp

p is the case T F N C T F N C

p is not the case F T F T C N N C

If we replace {0, 3, 2, 1} with the B4 set {00, 10, 01, 11}
there is an intuition that says extremes of necessity ought to be
held farthest apart, i.e. (00 01)(p) = □p and (10 00)(p) = ~◇p.
We name this polarity. Polarity occurs if the ▽ functor applies
to the positive case and the △ functor to the negative case as
Tab. 7.

Table 7

p ~p □p ~□p p◇ ~ p◇
p is the case 11 00 01 10 11 00 +▽

p is not the case 00 11 00 11 01 10 –△

The set {F, C, N, T} proves an inconsistent interpretation of
a polar system i.e. both 01 and 10 are interpreted as N. We
introduce the alternative values {(U) unevaluated, (I) improper,
(P) proper, (E) evaluated}. The values I and P are a conditional
access between worlds.

I
True in W1 → False in W2

P
True in W1 → True in W2 (6.0)

As a combined system {F, C, N, T} is Model 1 and {U, I, P,
E} is Model 2. Tab. 8 makes clear how the B4 set is interpreted
in either model.

Table 8
11 1 T E

01 2 N P

10 3 C I

00 4 F U

Tab. 9 extends the interpretations of the non modal and
propositions to both models.

Table 9

p ~p □p ~□p p◇ ~ p◇
p is the case T, E F, U N, P C, I T, E F, U

p is not the case F, U T, E F, U T, E C, P N, I

In Model 2 the modal box is interpreted as correct and the
lozenge as passable. Correct may mean unmistaken or
appropriate.

A theorem in this two-tone variant of Ł4 (VŁ4) is valid in
both models. Model 1 is equivalent to Ł4 and harbors no further
caveats. Model 2 qualifies Model 1, and so VŁ4 theorems are a
subset of Ł4. Model 2 has additional technical framework
because it is not clear which is the correct functor to apply
when the number of propositions is greater than one. At such
times middle rows of a table mix truth possibilities. Tab. 10
covers all of the available options.

Table 10. Three modal options for mixed truth values

□1
×E

□2
×U

□3
×P , ×I

◇1
+U

◇2
+E

◇3
+I , +P

On Tab. 10 option 1 is neutral, leaving the middle rows of a
truth table unchanged. The box operator under option 2 returns
U, the lozenge returns E. Option 3 evaluates twins functors
separately. Given options 1 and 2, option 3 is redundant.
Atomic formulae are unary and do not have a middle row.
Hence the question of which option does not arise.

Along with many implausible theorems, Model 2
invalidates 2.0 as seen on Tab. 11.

Table 11

(◇A & ◇B) → ◇ (A & B)

◇p
PEPE
PEPE
PEPE
PEPE

PEPE
PEPE
PPPP
PPPP

◇q
EEEE
EEEE
PPPP
PPPP

IIEE
IUEP
IIII
IIII

Option1
UIPE
UUPP
UIUI
UUUU

p
UIPE
UIPE
UIPE
UIPE

UIPE
UUPP
UIUI
UUUU

q
EEEE
PPPP
IIII
UUUU

The one instance on Tab. 11 where E → U means the inference
is not a valid consequence in VŁ4 (see Tab. 1). More
controversial is Model 2 which finds against axiom K.

Table 12

□ (A → B) → (□A → □B)

Option1
EEEE
EPEP
EEII
EPIU

UIPE
UIPE
UIPE
UIPE

EEEE
EPEP
EEII
EPIU

EEEE
PPPP
IIII
UUUU

EPEP
EEEE
EPEP
EEEE

Option1
UIPE
UIPE
UIPE
UIPE

EPEP
EPEP
EPIU
EPIU

□q
PPPP
PPPP
UUUU
UUUU

As K is not controversial we should not expect conspicuous
counter examples. However, on Tab. 12 the condition I → U is
a cause for concern, viz., □(A → B) 2⊭ (□A → □B).

Consider the following example first reading the modal box
as ‘correct’: If correct that banking regulations imply
egregious losses mount up, then, correct banking regulations
imply it is correct egregious losses mount up. It may be correct
the present state of regulation leads to egregious losses, but this
does not mean correct regulation implies egregious losses.

Another example reads the modal box as necessity: If it is
necessarily the case freewill implies sometimes a person

abstains, then freewill is necessarily the case implies
sometimes a person abstains is necessarily the case. If a
person who never abstains entails the negation of freewill, then
on that condition the antecedent is true. However, if the final
consequent means sometimes abstinence is the only option
then freewill is negated.

If we look again at Tab. 12 the inference fails where the
consequent is unevaluated. The first example invokes
regulation both ‘correct and egregious’ and the second example
invokes an abstinence both ‘necessary and optional’. Both
examples invite oxymora that make little sense and hence the
validity of K as a structural inference is threatened.

The bivalent framework is not limited to Ł4. One well
known set of four valued matrices is Lewis and Langford’s
Groups I-V.[10] On Tab. 13 we include the necessity operator.

Table 13
I II III IV V

□ ◇ □ ◇ □ ◇ □ ◇ □ ◇
1 2 1 1 1 1 1 1 2 2 1

2 4 1 4 2 4 1 3 2 4 2

3 4 1 3 1 4 1 3 2 3 1

4 4 3 4 4 4 4 3 4 4 3

Group III lacks a twin and cannot be weakened. The other
groups do have twins if the second designated value is
switched when the negative case. This is problematic in as far
as it is uncertain whether it is 2 or 3 that is designated where
truth possibilities are mixed. With that caveat, groups I, II, IV
and V may be weakened using the bivalent framework. For
axiom K groups I, II and V have a set of conditions such that 2
→ 4 or 3 → 4. For group IV there is the set of conditions 2 →
3 or 3 → 2. Despite uncertain designation these conditions
ensure the inference is invalid. Whilst Model 2 militates
against Lewis’ strict implication it is worth noting I and II
preserve his amended postulates A1-A7 after weakening, but
A8 is now invalid. However, Group V also originally failed to
validate A8.[10].

III. GENERAL STRATEGY FOR PARSING MINIMAL SETS

The objective is to take any logic with Boolean operations
(&) and (~) and parse the minimal set of semantic elements.
The minimal set is an intuitively easy concept to grasp. In color
theory it is the set of primary colors, viz., {red, green, blue}.
The set contains no subcontrary pair of elements, and no
individual formula is a contradiction. In a formal language the
minimal set has the maximal number of contrary elements
expressible in the language. Suszko’s Thesis is taken to mean
“every logic is logically two valued”.[16] The objective here is
to give a zero-one evaluation of the minimal set.

We look at modal system S5. The S5 unary fragment is a
simple B4 algebra with four primary values, viz., (0001)(□p),
(0010)(~□p &p), (0100)(◇p & ~p), (1000)(~◇p).

As the unary fragment is a B4 logic the starting point for
binary formula is a 4 × 4 grid. Extended analysis proves a
simple 4 × 4 grid is insufficient and the final grid is as Tab. 14.

Table 14

1 2 3 4

5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28

29 30 31 32

We account for all 32 primary values in Tab. 15. The
number corresponds to their location on the grid. These
formula whilst syntactically complex are the S5 semantic
atoms (primary colors).

Table 15. The minimal set for S5 has 32 primary values.
1. □p & □~q

2. □p & ◇q & ~q

3. □p & q & ◇~q

4. □p & □q

5. p & ◇~p & □~q

6. □(q → p) & p & ◇~p & ◇q & ~q

7. (□(p v q) v □(~p v ~q)) & ◇(p & q) & p & ◇~p & ◇q & ~q

8. (□(p v q) v □(~p v ~q)) & ◇(~p & ~q) & p & ◇~p & ◇q & ~q

9. □(p v q) & □(~p v ~q) & p & ◇~p & ◇q & ~q

10. (◇ (~p & q) ↔ ◇ (p & q)) & ◇ (~p & ~q) & p & ◇~p & ◇q & ~q

11. □(p v q) & p & ◇~p & ◇~q & q

12. (□(p v ~q) v □(~p v q)) & ◇ (~p & q) & p & ◇~p & ◇~q & q

13. (□(p v ~q) v □(~p v q)) & ◇(p & ~q) & p & ◇~p & ◇~q & q

14. □(p v ~q) & □(~p v q) & p & ◇~p & ◇~q & q

15. (◇(~p & ~q) ↔ ◇ (p & ~q)) & ◇(~p & q) & p & ◇~p & ◇~q & q

16. □q & p & ◇~p

17. ◇p & □~q & ~p

18. □(~p v ~q) & ~p & ◇p & ◇q & ~q

19. (□(p v ~q) v □(~p v q)) & ◇ (~p & q) & ~p & ◇p & ◇q & ~q

20. (□(p v ~q) v □(~p v q)) & ◇(p & ~q) & ~p & ◇p & ◇q & ~q

21. □(p v ~q) & □(~p v q) & ~p & ◇p & ◇q & ~q

22. (◇(p & q) ↔ ◇(p & ~q)) & ◇(~p & q) & ~p & ◇p & ◇q & ~q

23. □(p → q) & ~p & ◇p & ◇q & q

24. (□(p v q) v □(~p v ~q)) & ◇(p & q) & ~p & ◇p & ◇~q & q

25. (□(p v q) v □(~p v ~q)) & ◇ (~p & ~q) & ~p & ◇p & ◇~q & q

26. □(p v q) & □(~p v ~q) & ~p & ◇p & ◇~q & q

27. (◇(p & ~q) ↔ ◇(p & q)) & ◇(~p & ~q) & ~p & ◇p & ◇~q & q

28. □q & ◇p & ~p

29. □~p & □~q

30. □~p & ~q & ◇q

31. □~p & q & ◇~q

32. □~p & □q

The 32 primary values form a grid. However, the extra five
formulae of the four central cells on Tab. 15 require additional
4 × 4 grids that qualify the formula as Tab. 16.

Table 16
6 7 8 9 10 11 12 13 14 15

1100

1100

0000

0001

0010

0011

0000

0000

0000

0000

1100

0100

0001

0000

0000

1000

0000

0000

0011

0010

0011

0011

0000

1000

0100

1100

0000

0000

0000

0000

0011

0010

1000

0000

0000

0001

0000

0000

1100

0100

a b

18 19 20 21 22 23 24 25 26 27

0001

0000

1100

1100

0100

1100

0000

0000

0000

0000

0011

0010

1000

0000

0000

0001

0010

0011

0000

0000

1000

0000

0011

0011

0000

0000

1100

0100

0010

0011

0000

0000

0001

0000

0000

1000

0100

1100

0000

0000

c d

Tab. 17 is a limited selection of binary grids sufficient for
modelling S5’s binary fragment. Formulae in which the scope
of the modal operators extends to two variables incorporate
grids a, b, c, d from Tab. 16, or their negations.

Table 17
1 2 3 4 5 6 7

□p p ◇p □q q ◇q □(q→ p)

1111
0000
0000
0000

1111
1111
0000
0000

1111
1111
1111
0000

0001
0001
0001
0001

0011
0011
0011
0011

0111
0111
0111
0111

1111
0aa1
00a1
0001

8 9 10 11 12 13 14

□(p v q) □(p→ ~q) □(p→q) ◇(~p&~q) ◇(q&~p) ◇(p&q) □(q→p)

1111
1bb0
1b00
1000

1000
1c00
1cc0
1111

0001
00d1
0dd1
1111

0000
1aa0
11a0
1110

0000
0bb1
0b11
0111

0111
0c11
0cc1
0000

1111
11d0
1dd0
0000

The system of truth functional grids expands with each new
variable considered. Hence the values are enumerable but
potentially infinite. This point means a truth functional S5
complies with the result of Dugundji that establishes S1-S5 to
have no finite matrix.[3]

S5 is a normal modal logic with axiom K, but we have
given reason to doubt K. A similar logic to S5 retains the basic
grids 1-6 but additionally qualifies grids 7-14 in Tab. 18.

Table 18
10*

□(p→q)

00d1
00d1
ddd1
1111

Grid 10* belongs to a system that invalidates K.

IV. METH8 MODEL PROVER

Meth8 stands for Mechanical theorem prover in 8-bits.[6] It
is a model prover for modal logic using the rules of VŁ4 in the
sections above. The prover is driven by look up tables (lut)
with calculation for intermediate results. The purpose of
Meth8 is to invalidate models of logic systems.

The development language used is TrueBASIC®, an ANSI
standard for educators. The source code is directly portable for
embedded systems into VHDL (a subset of Ada 95) as for
example in [7].

Programming constraints on large memory limit the
number of literal variables to 24 propositions or 12 theorems.
The propositions are named as the 24 lower case letters from a
to z, but excluding the lower case letter of "l", as in lion, and
lower case letter "o" as in ocean because they are easily
confused with the ordinal digits of one and zero. The theorems
are named as the 12 upper case letters from A to L. The
operators supported are the modal box and lozenge, and
negation here given in one character symbols as {#, %, ~}.
The eight connectives supported are conjunction, disjunction,
joint denial, converse implication, biconditional, implication,
exclusive disjunction, and alternative denial in one character
symbols as {&+-<=>@\}. The maximum number of
characters in an input expression is 2^30 (1 B).

 The model prover consists of three parts for parser,
processor, prover as named with the acronym of p-cubed or P3.

V. PARSER

The parser component requests input from the user for the
logic system and parameter directives unique to that logic
system and is stored in a file at the root directory. The parser
requests input of an expression to be processed. It is checked
for syntax compliance and semantic content. The syntax
includes correct symbols within the allowed character sets for
literal types, literal operators, and connectives. The semantic
content includes: the order of operators, literals, and
connectives; and the nesting of parentheses for argument.
Sequential combinations of modal operators and negation to
literals are automatically reduced to the minimal algebraic
state. A novel approach to mapping matched parentheses uses
a shifting window parser named SWP. Fig. 2 is a worked
example.

Fig.2

From Fig. 2, five steps match the pairs of nested
parentheses, each of which is an argument:

1. Map all parentheses as L or R for left or right; there
are three valid pairs.

2. Slide the window left, so that L in step 1 moves
from character position 2 to position 1.

3. From the combined maps of steps 1 and 2 as on the
top and bottom, tag the first adjacent L/R pair as [04,
09]; then tag the next adjacent L/R pair as [12,17].

4. Write these tagged pairs to a first in, first out
(FIFO) stack list as: [04, 09], [12, 17].

5. Match remaining parentheses [02, 18] and write to
the stack: [04, 09], [12, 17], [02, 18].

Each argument within the expression is stored in a parse tree,
with index keyed to the stack.

The parser is not relaxed but strict, as it makes no effort to
second guess the input of the user. Explicit input assures
correct parsing by using parentheses for order of precedence of
arguments. For example, the formula

B & A + A & ~(A & ~B) =
A & B + A & A + A & ~B; A & B = A (7.0)

reduces to a result of A & B = A, which probably is not the
intended result. However, rewriting (7.0) using parentheses as
the formula

(B & A) + (A & ~((A & ~B)) =
(A & B) + (A & A) + (A & ~B); A = A (8.0)

assures an intended result of A = A. Meth8 rejects (7.0) as
ambiguous and not a well formed function (wff), but accepts
(8.0) as a wff.

VI. PROCESSOR

A lut is based on three sources of data to populate it: 1.
External files; 2. Data statements; and 3. Algorithmic
calculation. Data read from external files is best suited in a
small memory footprint of lut such as implementation in
programmable hardware parts for speed. Software programs
use self-contained data statements to build a lut in a larger
memory space such as for desktop computing. Building a lut
by calculation on the fly is needed for hand held and portable
devices such as tablets and cellphones.

Two models are supported with optional variants named:
M1; M2.1; M2.2; and M2.3. From Tab. 8 above, M1 is for
propositions with the default quaternary logic of {F, C, N, T};
and M2.1, 2.2, 2.3 is for theorems with the quaternary logic of
{U, I, P, E}.

The processor implements the rules of VŁ4 in six steps to
build and calculate tables:

1. Read logical value equivalents and negations by
model options:

False = Unapplied = 00 = 0;
[Not:] True = Evaluated = 11 = 1.

2. Read logical value modal conversions by model:

(F) (U): FC UU EU UP UI; ... ;
(T)(E): NT EE UE IE PE.

3. Read logical value connective truth table rows by
model:

 &FCNT, FFFFF, CFCUC, NFUNN, TFCNT.

4. [Optional step for higher performance] Read
algebraic form of 4096 combinations for antecedent,
conditional, and consequent as literal propositions,
theorems, and connectives:

~s & ~p; ~D & ~A.

5. Calculate atomic propositions,and theorems as
logical values in truth tables:

for two propositions, p = FTFT, q = FFTT;
for one theorem, A = FCNT.

6. Calculate algebraic antecedent, consequent, and
conditional into logic values for model options: for
three propositions, ~r & ~q becomes

~(FFFFTTTT) & ~(FFTTFFTT) =
(TTFFFFFF).

Step 6 uses a lut from each of steps 1-4 in order, with a
result in the form of successive rows of a truth table. (Step 1 is
useful in compact systems for translating the same truth tables
from Model 1 to Model 2.x.)

Step 6 uses the conditional as a separator to demark the end
of the antecedent and the beginning of the consequent. This is
useful in string manipulation that relies on the indexing of
characters.

While the conditional is thought of as storing connectives
only, the conditional here may also store modal operators and
the negation modifier such as necessity, possibility, and not (□,

, ~). This practice is named conditional symbol spoofing (CSS). ◇

For example, this is useful in the case of some conditional
result H to which □~ is applied as □~H. The result for ~H is
either looked up as the logical values in a negation truth table
or the negation modifier is applied to each logical value in the
truth table of H. The operator of necessity □ is stored as a
conditional which is then applied to each logical value in the
truth table of ~H. The result is passed as an antecedent or
consequent to the next level in the parse tree.

The parsed input expression of interest is processed in
respective iterations of three subsequent steps:

7. An argument result as a truth table is stored from
step 6 in the parse tree as the truth table of an
intermediate result.

8. Subsequent intermediate results from step 7 are
assigned as antecedent and consequent to produce a
conditional result. That is elevated to the next level in
the parse tree. Hence the processor performs a series
of conditional evaluations where each is saved into the
next higher level to be parsed.

9. When a truth table of the final result is obtained, the
constituent intermediate truth tables are retrieved from
the parse tree to build a combined truth table record of
the logical value transactions. The format is that of
which Tab. 11 and Tab. 12 are a fragment.

VII. PROVER

The prover component evaluates the combined truth table
record for invalidation by model of the input expression. That
record is printed to the user screen and to an evaluation file.
The portions of the combined truth table which cause the
invalidation are marked in bold or italics to show exactly
where the invalidation begins and is propagated.

VIII. OPERATION

The full production version of Meth8 supports 24
propositions and 12 theorems. The minimal production version
of Meth8 is limited to four propositions (p, q, r, s) and four
theorems (A, B, C, D).

The systems to be supported are ternary logics [4,5], [8,9],
[11], [14] and quaternary logics [1,2], [8], [10], [12], [15]. The
utility program of Meth8 specifies the logic system and saves
parameters to a file in the root directory of the computer.

The user may specify one or a series of expressions to test
as input in a batch file. This avoids having to re-enter or cut
and paste corrections to input expressions at the input prompt.

IX. FINAL REMARKS

Whilst the bivalent framework is a model to weaken a class
of logics with twin functors, Meth8 is also capable of testing a
range of well known many valued logics. Significantly, a later
version will approach different logics as alternative classes of
minimal sets. It is intended Meth8 will allow the user to
explore many valued logic and test practical examples of logics
that comply to Suszko’s Thesis.[16]

ACKNOWLEDGEMENT

Thanks are due to the anonymous referees for comments.

REFERENCES

[1] Belnap, N.D. (1977). A useful four-valued logic, in J.M. Dunn, G.
Epstein (eds.), Modern Uses of Multiple-Valued Logic, Dordrecht:
Reidel, 8–37.

[2] Béziau, J-Y. (2011). A New Four Valued Approach to Modal Logic
Logique et Analyse, 54.

[3] Dugundji, J. (1940). Note on a Property of Matrices for Lewis and
Langford's Calculi of Propositions. The Journal of Symbolic Logic, 5
(4), 150-151.

[4] Gödel, K. (1932). Zum intuitionischen Aussagenkalkül. Anzeiger der
Akademie der Wissenschaften in Wien 69, 65–66.

[5] Halldén, S. (1949). The logic of nonsense. Uppsala University, Uppsala.

[6] James, C. (2015a). First World Conference: Analogy. Beneméita
Universidad Autónoma de Puebla, Mexico, November 4-6, 2015,
Handbook, ISBN 978-83-65273-01-1, 50-51.

[7] James, C. (2015b). U.S. Patent No. 9,202,166, Method and system for
Kanban cell neuron network, December 1, 2015.

[8] Kleene, S.C. (1938). On a Notation for Ordinal Numbers, The Journal of
Symbolic Logic, 50–155.

[9] Kleene, S. C. (1950) Introduction to Metamathematics. D. Van
Nostrand, Princeton, NJ.

[10] Lewis, C. I., Langford, H. C. (1959). Symbolic Logic (Second Edition).
New York: Dover Publications, 493-494.

[11] Łukasiewicz, J. (1920). On Three-valued Logic, in L. Borkowski (ed.),
Amsterdam, North-Holland, 1970, pp. 87-88.

[12] Łukasiewicz, J. (1953). A system of Modal Logic. The Journal of
Computing Systems, 1, 111-149.

[13] Łukasiewicz, J. (1957). Aristotle's Syllogistic Logic (Second Edition).
Clarendon Press, Chapter VII.

[14] Priest, G. (1979). The Logic of Paradox. Journal of Philosophical Logic,
Vol. 8, No. 1, Jan, 219-241.

[15] Rescher, N. (1965), Notre Dame Journal of Formal Logic Volume VI,
Number 2, April, 154-156.

[16] Suszko, R. (1977). The Fregean axiom and Polish mathematical logic in
the 1920’s. Studia Logica, 36:373–380.

