
2.a. Authors: Colin James III; Garry Goodwin
2.b. Title: Meth8 model prover for multivalued logic: Truth is as a white light.
2.c. Keywords: Łukasiewicz variant, Meth8, modal theorem prover, multi-valued logic, VŁ4
2.d. Abstract: [words 131]

In this paper we look at two methods for modelling formal languages. We first look at
a bivalent framework used to weaken a class of many valued logics with twin
functors. We then introduce the idea of primary values. Primary values are the
maximal number of contrary formulae expressible in the language. The set of primary
values is equally as important as the set of axioms. In the spirit of Suszko’s Thesis the
set is evaluated as a two valued logic. As an example, we provide the primary set for
S5’s binary fragment. This approach informs an automated theorem prover / model
checker presently under development named Meth8. In the second part of this paper,
we show how Meth8 implements elements of the semantic framework as elucidated in
the first part.

2.e. Affiliations, respectively: Ersatz Systems Machine Cognition, LLC; Semantic-Qube UK
2.f. 1440 Farnham Pt #203, Colorado Springs, CO 80904-5220, USA
2.g. info@cec-services.com, USA +011.719.210.9534

Size of the entire document herewith including this separate title page is:
24,437 characters out of 27,000; or about 15 pages of continuous text.

Table 15 should appear on its own page.

1

Title: Meth8 model prover for multivalued logic: Truth is as a white light.

INTRODUCTION

We characterize a formal language as a many valued logic with the generic structure:

General Structure: [TΠ, TV: {V⟙, Vn, V⟘}], ⊨, ~, &, v, →, ⇒, ↔, v, , +△ △, –] △

TΠ is the set of truth possibilities. TV is the set of truth values. V ⟙is the set of designated
values, V⟘ is the set of falsifying values, and Vn the set of non designating values not false.
Tab. 1 and Tab. 2 offer two versions of validity.

Tab. 1 Tab. 2

1⊨ V⟙ V n V⟘
2⊨ V⟙ Vn V⟘

V⟙ ✗ V⟙ ✗
Vn Vn ✗
V⟘ V⟘

Tab. 1 is the minimum threshold for validity. Tab. 1 in words:

Γ 1⊨ A iff there are no models such that all values of Γ
are true and A is false. (1.0)

Tab. 1 may prove insecure for many valued logic and is strengthened as Tab. 2. In words:

Γ 2⊨ A iff there are no models such that all values of Γ
are non falsifying and A is false. (1.1)

Other elements of the general structure are defined on Tab. 3. The triangular notation marks△
the presence of a functor.

BIVALENT FRAMEWORK

The bivalent framework evaluates the two truth possibilities p is case and p is not the case.
Two valued logic is as Tab. 3.

Tab. 3

p ~p ⟙ ⟘
p is the case T F T F

p is not the case F T T F

On Tab. 3 the truth conditions are tautological. For example, to assert ‘p’ means p is the case
is true when p is not the case is false.

2

The bivalent framework was originally designed to weaken the four valued modal logic of
Łukasiewicz. [Łukasiewicz, J. (1953), 1, 111-149; Łukasiewicz, J. (1957), VII] Ł4 is a B4
algebra with twin modal functors as Tab. 4.

Tab. 4

△ ▽
~ □ ◇ □ ◇

1 0 2 1 3 1
2 3 2 1 0 2
3 2 0 3 3 1
0 1 0 3 0 2

Despite Ł4’s conservatism it has multiple complaints. 2.0 is a noted egregious Ł4 theorem.

⊨Ł4 (◇p & ◇q) → ◇(p & q) (2.0)

Béziau points out 2.0 proved a nightmare for Łukasiewicz. [Béziau, J-Y. (2011), 54]
Consider the counter: If it is possible the President is in Washington and possible the
President is in London, then, it is possible the President is both in Washington and London. It
is clear Ł4 is untenable as an alethic logic but we wonder how Ł4 may be rehabilitated.

Tab. 5 introduces the Łukasiewicz △ functor to the bivalent framework.

Tab. 5

p ~p □p ~□p ◇p ~p

p is the case 1 0 2 3 1 0

p is not the case 0 1 0 1 3 2

For Tab. 5 if 1 is interpreted as true and 0 is false, this begs the question as how to interpret 2
and 3. For an answer we refer to basic RGB color theory in Fig 1.

 Additive Subtractive
Fig. 1

3

Basic color theory is an eight valued B8 algebra. In the additive model the presence of a
primary color is a denial of the minimal value black. In the subtractive model primary colors
are contrary properties. For both models a primary color is a property of white light. The
lesson is generalised:

A primary value is a denial of the minimal zero, contrary to
other primary values, and a property of the maximal value. (3.0)

Following 3.0, if the designated value of Ł4 is interpreted as true, then the middle values 2 and
3 are properties of true and deny false. A class of contingent adjectives provides a solution
e.g. {accidental, incidental, coincidental, marginal, temporary, extraneous, superfluous, etc.}.
This class preserves truth. For example, if a state of affairs is accidental it is contingent yet
also true. When the class is joined we name it C.

C =def accidental or incidental or coincidental or
marginal or temporary or superfluous, … etc. (4.0)

We name the series of negative conjunction N for non-contingent.

N =def not accidental and not incidental and not coincidental and
not marginal and not temporary and not superfluous, … etc. (4.1)

There is a possible world counterpart to the natural language definitions. W1 is the start world
and W2 some world accessible from W1.

C
True in W1 & False in W2

N
True in W1 & True in W2 (5.0)

The set of values are false, contingent, non contingent, and true, viz., {F, C, N, T}. The basic
non-modal and alethic propositions are defined as Tab. 6.

Tab. 6

p ~p □p ~□p ◇p ~◇p Np Cp

p is the case T F N C T F N C

p is not the case F T F T C N N C

If we replace {0, 3, 2, 1} with the B4 set {00, 10, 01, 11} there is an intuition that says
extremes of necessity ought to be held farthest apart, i.e. (00 01)(p) = □p and (10 00)(p) =
~◇p. We name this polarity. Polarity occurs if the ▽ functor applies to the positive case and
the △ functor to the negative case as Tab. 7.

4

Tab. 7

p ~p □p ~□p ◇p ~◇p

p is the case 11 00 01 10 11 00 +▽
p is not the case 00 11 00 11 01 10 –△

The set {F, C, N, T} proves an inconsistent interpretation of a polar system i.e. both 01 and
10 are interpreted as N. We introduce the alternative values {(U) unevaluated, (I) improper,
(P) proper, (E) evaluated}. The values I and P are a conditional access between worlds.

I
True in W1 → False in W2

P
True in W1 → True in W2 (6.0)

As a combined system {F, C, N, T} is Model 1 and {U, I, P, E} is Model 2. Tab. 8 makes
clear how the B4 set is interpreted in either model.

Tab. 8

11 1 T E
01 2 N P
10 3 C I
00 4 F U

Tab. 9 extends the interpretations of the non modal and propositions to both models.

Tab. 9

p ~p □p ~□p ◇p ~◇p

p is the case T, E F, U N, P C, I T, E F, U
p is not the case F, U T, E F, U T, E C, P N, I

In Model 2 the modal box is interpreted as correct and the lozenge as passable. Correct may
mean unmistaken or appropriate.

A theorem in this two-tone variant of Ł4 (VŁ4) is valid in both models. Model 1 is equivalent
to Ł4 and harbors no further caveats. Model 2 qualifies Model 1, and so VŁ4 theorems are a
subset of Ł4. Model 2 has additional technical framework because it is not clear which is the
correct functor to apply when the number of propositions is greater than one. At such times
middle rows of a table mix truth possibilities. Tab. 10 covers all of the available options.

Tab. 10. Three modal options for mixed truth possibilities

□1 □2 □3 ◇1 ◇2 ◇3
×E ×U ×P , ×I +U +E +I , +P

On Tab. 10 option 1 is neutral, leaving the middle rows of a truth table unchanged. The box
operator under option 2 returns U, the lozenge returns E. Option 3 evaluates twins functors

5

separately. Given options 1 and 2, option 3 is redundant. Atomic formulae are unary and do
not have a middle row. Hence the question of which option does not arise.

Along with many implausible theorems, Model 2 invalidates 2.0 as seen on Tab. 11.

Tab. 11

(◇A & ◇B) → ◇ (A & B)

◇p
PEPE
PEPE
PEPE
PEPE

PEPE
PEPE
PPPP
PPPP

◇q
EEEE
EEEE
PPPP
PPPP

IIEE
IUEP
IIII
IIII

Option1
UIPE
UUPP
UIUI
UUUU

p
UIPE
UIPE
UIPE
UIPE

UIPE
UUPP
UIUI
UUUU

q
EEEE
PPPP
IIII
UUUU

The one instance on Tab. 11 where E → U means the inference is not a valid consequence in
VŁ4 (see Tab. 1). More controversial is Model 2 which finds against axiom K.

Tab. 12

□ (A → B) → (□A → □B)

Option1
EEEE
EPEP
EEII
EPIU

UIPE
UIPE
UIPE
UIPE

EEEE
EPEP
EEII
EPIU

EEEE
PPPP
IIII
UUUU

EPEP
EEEE
EPEP
EEEE

Option1
UIPE
UIPE
UIPE
UIPE

EPEP
EPEP
EPIU
EPIU

□q
PPPP
PPPP
UUUU
UUUU

As K is not controversial we should not expect conspicuous counter examples. However, on

Tab. 12 the condition I → U is a cause for concern, viz., □(A → B) 2⊭ (□A → □B).

Consider the following example first reading the modal box as ‘correct’: If correct that
banking regulations imply egregious losses mount up, then, correct banking regulations
imply it is correct egregious losses mount up. It may be correct the present state of regulation
leads to egregious losses, but this does not mean correct regulation implies egregious losses.

Another example reads the modal box as necessity: If it is necessarily the case freewill
implies sometimes a person abstains, then freewill is necessarily the case implies sometimes
a person abstains is necessarily the case. If a person who never abstains entails the negation
of freewill, then on that condition the antecedent is true. However, if the final consequent
means sometimes abstinence is the only option then freewill is negated.

If we look again at Tab. 12 the inference fails where the consequent is unevaluated. The first
example invokes regulation both ‘correct and egregious’ and the second example invokes an
abstinence both ‘necessary and optional’. Both examples invite oxymora that make little
sense and hence the validity of K as a structural inference is threatened.
The bivalent framework is not limited to Ł4. One well known set of four valued matrices is
Lewis and Langford’s Groups I-V. [Lewis, C. I., Langford, H. C. (1959), 493-494] On Tab.
13 we include the necessity operator.

6

Tab. 13

I II III IV V

□ ◇ □ ◇ □ ◇ □ ◇ □ ◇
1 2 1 1 1 1 1 1 2 2 1
2 4 1 4 2 4 1 3 2 4 2
3 4 1 3 1 4 1 3 2 3 1
4 4 3 4 4 4 4 3 4 4 3

Group III lacks a twin and cannot be weakened. The other groups do have twins if the second
designated value is switched when the negative case. This is problematic in as far as it is
uncertain whether it is 2 or 3 that is designated where truth possibilities are mixed. With that
caveat, groups I, II, IV and V may be weakened using the bivalent framework. For axiom K
groups I, II and V have a set of conditions such that 2 → 4 or 3 → 4. For group IV there is
the set of conditions 2 → 3 or 3 → 2. Despite uncertain designation these conditions ensure
the inference is invalid. Whilst Model 2 militates against Lewis’ strict implication it is worth
noting I and II preserve his amended postulates A1-A7 after weakening, but A8 is now
invalid. However, Group V also originally failed to validate A8. [(1959), 493-495].

GENERAL STRATEGY FOR PARSING MINIMAL SETS

The objective is to take any logic with Boolean operations (&) and (~) and parse the minimal
set of semantic elements. The minimal set is an intuitively easy concept to grasp. In color
theory it is the set of primary colors, viz., {red, green, blue}. The set contains no subcontrary
pair of elements, and no individual formula is a contradiction. In a formal language the
minimal set has the maximal number of contrary elements expressible in the language.
Suszko’s Thesis is taken to mean “every logic is logically two valued”. [Suszko, R. (1977),
378] The objective here is to give a zero-one evaluation of the minimal set.

We look at modal system S5. The S5 unary fragment is a simple B4 algebra with four primary
values, viz., (0001)(□p), (0010)(~□p &p), (0100)(◇p & ~p), (1000)(~◇p).

As the unary fragment is a B4 logic the starting point for binary formula is a 4 × 4 grid.
Extended analysis proves a simple 4 × 4 grid is insufficient and the final grid is as Tab. 14.

Tab. 14

1 2 3 4

5 6 7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28

29 30 31 32

We account for all 32 primary values in Tab. 15. The number corresponds to their location on
the grid. These formula whilst syntactically complex are the S5 semantic atoms (primary
colors).

7

Tab. 15. The minimal set for S5 has 32 primary values.

1. □p & □~q

2. □p & ◇q & ~q

3. □p & q & ◇~q

4. □p & □q

5. p & ◇~p & □~q

6. □(q → p) & p & ◇~p & ◇q & ~q

7. (□(p v q) v □(~p v ~q)) & ◇(p & q) & p & ◇~p & ◇q & ~q

8. (□(p v q) v □(~p v ~q)) & ◇(~p & ~q) & p & ◇~p & ◇q & ~q

9. □(p v q) & □(~p v ~q) & p & ◇~p & ◇q & ~q

10. (◇ (~p & q) ↔ ◇ (p & q)) & ◇ (~p & ~q) & p & ◇~p & ◇q & ~q

11. □(p v q) & p & ◇~p & ◇~q & q

12. (□(p v ~q) v □(~p v q)) & ◇ (~p & q) & p & ◇~p & ◇~q & q

13. (□(p v ~q) v □(~p v q)) & ◇(p & ~q) & p & ◇~p & ◇~q & q

14. □(p v ~q) & □(~p v q) & p & ◇~p & ◇~q & q

15. (◇(~p & ~q) ↔ ◇ (p & ~q)) & ◇(~p & q) & p & ◇~p & ◇~q & q

16. □q & p & ◇~p

17. ◇p & □~q & ~p

18. □(~p v ~q) & ~p & ◇p & ◇q & ~q

19. (□(p v ~q) v □(~p v q)) & ◇ (~p & q) & ~p & ◇p & ◇q & ~q

20. (□(p v ~q) v □(~p v q)) & ◇(p & ~q) & ~p & ◇p & ◇q & ~q

21. □(p v ~q) & □(~p v q) & ~p & ◇p & ◇q & ~q

22. (◇(p & q) ↔ ◇(p & ~q)) & ◇(~p & q) & ~p & ◇p & ◇q & ~q

23. □(p → q) & ~p & ◇p & ◇q & q

24. (□(p v q) v □(~p v ~q)) & ◇(p & q) & ~p & ◇p & ◇~q & q

25. (□(p v q) v □(~p v ~q)) & ◇ (~p & ~q) & ~p & ◇p & ◇~q & q

26. □(p v q) & □(~p v ~q) & ~p & ◇p & ◇~q & q

27. (◇(p & ~q) ↔ ◇(p & q)) & ◇(~p & ~q) & ~p & ◇p & ◇~q & q

28. □q & ◇p & ~p

29. □~p & □~q

30. □~p & ~q & ◇q

31. □~p & q & ◇~q

32. □~p & □q

The 32 primary values form a grid. However, the extra five formulae of the four central cells
on Tab. 15 require additional 4 × 4 grids that qualify the formula as Tab. 16.

8

Tab. 16

6 7 8 9 10 11 12 13 14 15
1100
1100
0000
0001

0010
0011
0000
0000

0000
0000
1100
0100

0001
0000
0000
1000

0000
0000
0011
0010

0011
0011
0000
1000

0100
1100
0000
0000

0000
0000
0011
0010

1000
0000
0000
0001

0000
0000
1100
0100

a b

18 19 20 21 22 23 24 25 26 27
0001
0000
1100
1100

0100
1100
0000
0000

0000
0000
0011
0010

1000
0000
0000
0001

0010
0011
0000
0000

1000
0000
0011
0011

0000
0000
1100
0100

0010
0011
0000
0000

0001
0000
0000
1000

0100
1100
0000
0000

c d

Tab. 17 is a limited selection of binary grids sufficient for modeling S5’s binary fragment.
Formulae in which the scope of the modal operators extends to two variables incorporate
grids a, b, c, d from Tab. 16, or their negations.

Tab. 17

1 2 3 4 5 6 7
□p p ◇p □q q ◇q □(p v q)

1111
0000
0000
0000

1111
1111
0000
0000

1111
1111
1111
0000

0001
0001
0001
0001

0011
0011
0011
0011

0111
0111
0111
0111

1111
0bb1
00b1
0001

8 9 10 11 12 13 14

□(q → p) □(p → ~q) □(p → q) ◇(~p &~q) ◇(q & ~p) ◇(p & q) ◇(p & ~q)
1111
1aa0
1a00
1000

1000
1c00
1cc0
1111

0001
00d1
0dd1
1111

0000
1bb0
11b0
1110

0000
0aa1
0a11
0111

0111
0c11
0cc1
0000

1110
11d0
1dd0
0000

The system of truth functional grids expands with each new variable considered. Hence the
values are enumerable but potentially infinite. This point means a truth functional S5
complies with the result of Dugundji that establishes S1-S5 to have no finite matrix.
[Dugundji, J. (1940), 5 (4), 150-151]

S5 is a normal modal logic with axiom K, but we have given reason to doubt K. A similar
logic to S5 retains the basic grids 1-6 but additionally qualifies grids 7-14 in Tab. 18.

9

Tab. 18

10*
□(p → q)
00d1
00d1
ddd1
1111

Grid 10* belongs to a system that invalidates K.

METH8 MODEL PROVER

Meth8 stands for Mechanical theorem prover in 8-bits. [James, 2015a, 50-51] It is a model
prover for modal logic using the rules of VŁ4 in the sections above. The prover is driven by
look up tables (lut) with calculation for intermediate results. The purpose of Meth8 is to
invalidate models of logic systems.

The development language used is TrueBASIC®, an ANSI standard for educators. The
source code is directly portable for embedded systems into VHDL (a subset of Ada 95) as for
example in [James, 2015b, Appendix].

Programming constraints on large memory limit the number of literal variables to 24
propositions or 12 theorems. The propositions are named as the 24 lower case letters from a
to z, but excluding the lower case letter of "l", as in lion, and lower case letter "o" as in ocean
because they are easily confused with the ordinal digits of one and zero. The theorems are
named as the 12 upper case letters from A to L. The operators supported are the modal box
and lozenge, and negation here given in one character symbols as {#, %, ~}. The eight
connectives supported are conjunction, disjunction, joint denial, converse implication,
biconditional, implication, exclusive disjunction, and alternative denial in one character
symbols as {&+-<=>@\}. The maximum number of characters in an input expression is
2^30 (1 B).

The model prover consists of three parts for parser, processor, prover as named with the
acronym of p-cubed or P3.

PARSER

The parser component requests input from the user for the logic system and parameter
directives unique to that logic system and is stored in a file at the root directory. The parser
requests input of an expression to be processed. It is checked for syntax compliance and
semantic content. The syntax includes correct symbols within the allowed character sets for
literal types, literal operators, and connectives. The semantic content includes: the order of
operators, literals, and connectives; and the nesting of parentheses for argument. Sequential
combinations of modal operators and negation to literals are automatically reduced to the

10

minimal algebraic state. A novel approach to mapping matched parentheses uses a sliding
window parser named SWP. Fig. 2 is a worked example.

Fig. 2

From Fig. 2, five steps match the pairs of nested parentheses, each of which is an argument:

1. Map all parentheses as L or R for left or right; there are three valid pairs.

2. Slide the window left, so that L in step 1 moves from character position 2 to
position 1.

3. From the combined maps of steps 1 and 2 as on the top and bottom, tag the first
adjacent L/R pair as [04, 09]; then tag the next adjacent L/R pair as [12,17].

4. Write these tagged pairs to a first in, first out (FIFO) stack list as: [04, 09], [12, 17].

5. Match remaining parentheses [02, 18] and write to the stack: [04, 09], [12, 17],
 [02, 18].

11

Each argument within the expression is stored in a parse tree, with index keyed to the stack.

The parser is not relaxed but strict, as it makes no effort to second guess the input of the user.
Explicit input assures correct parsing by using parentheses for order of precedence of
arguments. For example, the formula

B & A + A & ~(A & ~B) = A & B + A & A + A & ~B; A & B = A (7.0)

reduces to a result of A & B = A, which probably is not the intended result. However,
rewriting (7.0) using parentheses as the formula

(B & A) + (A & ~((A & ~B)) = (A & B) + (A & A) + (A & ~B); A = A (8.0)

assures an intended result of A = A. Meth8 rejects (7.0) as ambiguous and not a well formed
function (wff), but accepts (8.0) as a wff.

PROCESSOR

A lut is based on three sources of data to populate it: 1. External files; 2. Data statements;
and 3. Algorithmic calculation. Data read from external files is best suited in a small memory
footprint of lut such as implementation in programmable hardware parts for speed. Software
programs use self-contained data statements to build a lut in a larger memory space such as
for desktop computing. Building a lut by calculation as needed on the fly is for hand held
and portable devices such as tablets and cellphones. The software program relies on internal
calculation and data statements to build a lut.

Two models are supported with optional variants named: M1; M2.1; M2.2; and M2.3. From
Tab. 8 above, M1 is for propositions with the default quaternary logic of {F, C, N, T}; and
M2.1, 2.2, 2.3 is for theorems with the quaternary logic of {U, I, P, E}.

The processor implements the rules of VŁ4 in six steps to build and calculate tables:

1. Read logical value equivalents and negations by model options:

False = Unapplied = 00 = 0; [Not:] True = Evaluated = 11 = 1.

2. Read logical value modal conversions by model:

(F) (U): FC UU EU UP UI; ... ; (T)(E): NT EE UE IE PE.

3. Read logical value connective truth table rows by model:

&FCNT, FFFFF, CFCUC, NFUNN, TFCNT.

4. Read algebraic form of 4096 combinations for antecedent, conditional, and

12

 consequent as literal propositions, theorems, and connectives:

~s & ~p; ~D & ~A.

5. Calculate atomic propositions and theorems as logical values:

for two propositions, p = FTFT and q = FFTT; for one theorem A = FCNT.

6. Calculate algebraic antecedent, conditional, and consequent into logic values
 for model options: for three propositions, ~r & ~q becomes

~(FFFFTTTT) & ~(FFTTFFTT) = (TTFFFFFF).

Step 6 uses a lut from each of steps 1-4 in order, with a result in the form of
successive rows of a truth table. (Step 1 is useful in compact systems for translating
the same truth tables from Model 1 to Model 2.x.)

The parsed input expression of interest is processed in respective iterations of three
subsequent steps

7. An argument result as a truth table is stored from step 6 in the parse tree as the
truth table of an intermediate result.

8. Intermediate results from step 7 are assigned as antecedent and consequent to a
conditional in the lut of connectives in step 3. Each respective logic value in the
argument is evaluated to produce another intermediate result as a truth table and
stored back into the parse tree.

9. When a truth table of the final result is obtained, the constituent intermediate truth
tables are retrieved from the parse tree to build a final truth table record of the logical
value transactions. The format is that of which Tab. 11 and Tab. 12 are a fragment.

PROVER

The prover component evaluates the final truth table record for invalidation by model of the
input expression. The final truth table record and invalidation by model is printed to the user
screen and to an evaluation file.

OPERATION

The demonstration version of Meth8 is limited to four propositions (p, q, r, s) and four
theorems (A, B, C, D). The systems to be supported are ternary logics [Gödel, K. (1932),
Halldén, S. (1949), Kleene, S.C. (1938), Kleene, S.C. (1950), Łukasiewicz, J. (1920), Priest,
G. (1979)] and quaternary logics [Belnap, N.D. (1977), Béziau, J-Y. (2011), Lewis, C. I.,
Langford, H. C. (1959), Kleene, S. C. (1950), Łukasiewicz, J. (1953), Rescher, N. (1965)]

13

Fig. 3 is the screen of the utility program of Meth8 to specify the logic system and save
parameters to a file in root directory of the computer; Fig. 4 is the demo input screen.

Fig. 3

Fig. 4

14

FINAL REMARKS

Whilst the bivalent framework is a model to weaken a class of logics with twin functors,
Meth8 is also capable of testing a range of well known many valued logics. Significantly, a
later version will approach different logics as alternative classes of minimal sets. It is
intended Meth8 will allow the user to explore many valued logic and test practical examples
of logics that comply to Suszko’s Thesis. [Suszko, R. (1977)]

ACKNOWLEDGEMENTS

Thanks are due to the anonymous referees for helpful comments.

REFERENCES

Belnap, N.D. (1977). A useful four-valued logic, in J.M. Dunn, G. Epstein (eds.), Modern
Uses of Multiple-Valued Logic, Dordrecht: Reidel, 8–37.

Béziau, J-Y. (2011). A New Four Valued Approach to Modal Logic Logique et Analyse, 54.

Dugundji, J. (1940). Note on a Property of Matrices for Lewis and Langford's Calculi of
Propositions. The Journal of Symbolic Logic, 5 (4), 150-151.

Gödel, K. (1932). Zum intuitionischen Aussagenkalkül. Anzeiger der Akademie der
Wissenschaften in Wien 69, 65–66.

Halldén, S. (1949). The logic of nonsense. Uppsala University, Uppsala.

James, C. (2015a). First World Conference: Analogy. Beneméita Universidad Autónoma de
Puebla, Mexico, November 4-6, 20195, Handbook, ISBN 978-83-65273-01-1, 50-51.

James, C. (2015b). U.S. Patent No. 9,202,166, Method and system for Kanban cell neuron
network, December 1, 2015.

Kleene, S.C. (1938). On a Notation for Ordinal Numbers, The Journal of Symbolic Logic,
50–155.

Kleene, S. C. (1950) Introduction to Metamathematics. D. Van Nostrand, Princeton, NJ.

Lewis, C. I., Langford, H. C. (1959). Symbolic Logic (Second Edition). New York: Dover
Publications, 493-494.

Łukasiewicz, J. (1920). On Three-valued Logic, in L. Borkowski (ed.), Amsterdam, North-
Holland, 1970, pp. 87-88.

15

Łukasiewicz, J. (1953). A system of Modal Logic. The Journal of Computing Systems, 1,
111-149.

Łukasiewicz, J. (1957). Aristotle's Syllogistic Logic (Second Edition). Clarendon Press,
Chapter VII.

Priest, G. (1979). The Logic of Paradox. Journal of Philosophical Logic, Vol. 8, No. 1, Jan,
219-241.

Rescher, N. (1965), Notre Dame Journal of Formal Logic Volume VI, Number 2, April, 154-
156.

Suszko, R. (1977). The Fregean axiom and Polish mathematical logic in the 1920’s. Studia
Logica, 36:373–380.

16

