
Kanban Cell Neuron Network
Stock Trading System (KCNSTS)

Colin James III
Ersatz Systems Machine Cognition, LLC

3925 Elisa Ct, Colorado Springs CO 80904 USA
info@cec-services.com +011 (719) 210.9534

© 2015 by Colin James III All rights reserved

Abstract—To predict stock trading signals, a novel system for
machine cognition includes Kanban cells (KC), Kanban cell
neurons (KCN), and Kanban cell neuron networks (KCNN),
patent pending. The KC is an asynchronous AND-OR gate
without feedback that is self-timing by the input data to process
until input is equal to output. For the KCN, the input example is
a four-valued logic (4VL) based on the 2-tuple as the four logical
values in the set of {"", 01, 10, 11} of four-valued bit code (4vbc)
where "" is equivalent to 00. The unique algorithm of multiple
KCNs in the KCNN emulates the human neuron with nine logical
inputs and one output. The KCNN model in parallel is scalable
for large data sets and is adaptable as a forward-looking rules-
engine as based on bivalent trial and error. The real-time
algorithm is implemented by a look up table (LUT). In software
the LUT occupies 64 KB, and on a desktop processes 1MM KCNs
per second. Access to a sparsely filled look up table (LUT) is
minimized in hardware with a 2-bit value per logical signal. In
hardware the LUT occupies 194 KB, and on a $40 device
processes at 1.8 BB KCNs per second, or about 1600 times faster.
The immediate application of KCNN is analytics for time series
of econometrics as the Kanban Cell Neuron Stock Trading
System (KCNSTS). Two virtual examples are given for the
prediction of trading signals. For 126-trading days, 24 Asian
electronic traded funds (ETF) produced an annualized 6.5%
return on 70 no load trades. For 49-trading days, one OTC
stock produced an annualized 67% return on 10 no load trades.

Keywords—analytics; AND-OR gate; ETF; Kanban cell neuron;
multi-valued logic; OTC; stock trading signals

I. Historical background

Originally the Kanban cell (KC) was the production part of
a linear pull system used to minimize the change of parts
inventory for the Just in Time (JIT) assembly of automobiles.
The KC was used by Toyota in about 1964.

Fig. 1 shows the KC in the Petri net, a bipartite directed
graph, and with or without a failure or idle subnet as an
abstraction of the generalized stochastic Petri net (GSPN) of
flexible manufacturing systems (FMS), which are push
production systems (for example, using pallets to load
incomplete parts and to unload completed parts by continuous
transportation as by conveyer or automatic guided vehicle
(AGV)).

The system in Fig. 1 is a Petri net of a KC [4] as abstracted
for an accounting arithmetic system [3]. Step 104 is a

transition. Step 101 is the input and output place. Steps 105 and
106 are feedback paths of the feedback loops of the paths 103
to 104 and 102 to 104. In this context, feedback paths serve as
decision branches in the logic of the KC, and are commonly
referred to in their totality as feedback loops. (Steps marked as
m1, m2, m6, and t2 are true to the original labels and
equivalent to the respective Steps 101, 102, 103, and 104.)

Fig. 1. A Kanban cell in a Petri net

Fig. 2. Synchronous, self-timing neural network as feedback loops

Fig. 2 shows a network that is a synchronous, self-timing
neural network as a series of feedback loops. The network
consists of data places, through which data flows as data places
301, 311, and 321, and of timing places as timing places 302,
312, and 322, which stimulate the data places as 301, 311, and
321. The direction the data flows is bidirectional as in paths
305 and 306. The direction of timing paths is bidirectional as in
paths 303 and 304. The timing places 302, 312, and 322
effectively open and close the data places 301, 311, and 321 to
control when waiting data is allowed to flow. The timing
places 302, 312, and 322 may be either physical clock cycles or
logical looping structures, the duration for which constitutes a
delay in that network.

Neural components can be represented as vector spaces
such as an adaptive linear neuron or adaptive linear element
(Adaline) composed of weight and bias vectors with a
summation function (OR circuit), and also a multi-layered
Adaline (Madaline) where two such units emulate a logical
XOR function (exclusive OR circuit). Such components are
examples of probabilistic methods to mimic the neuron.

A perceptron can be represented as a binary classifier using
a dot product to convert a real-valued vector to a single binary
value and serve as a probabilistic method to mimic a neuron.

A spike neuron or spiking neuron can be represented as a
conductive network based on temporal or time bias and
differential equations or a calculus which serves also as a
probabilistic method to mimic a neuron.

The first deficiency with these neural networks is that as
they are based on a vector space, so a solution is ultimately not
bivalent, is probabilistic, and hence is undecidable. (Bivalency
is not a vector space [5].)

The second deficiency with these networks is that an
exclusive OR (XOR) function is sometimes mistakenly
developed in them to mimic a neuron. The logical XOR
connective is orthogonal or effectively perpendicular as a
mathematical operator. However, biological bodies are not
rectilinear, but rather based on a phi or Phi ratio of (1 ± (5 ^
0.5)) / 2. This means that there are no right angles (90-degree
arcs) in biology per se. While the logical XOR connective may
be constructed from the NOR or NAND logical connectives,
there is no evidence that the XOR function is built into the
neuron, or necessarily should be.

The third deficiency with these networks is that the
perceptron and spike neuron can accept any input without
discrimination.

The Kanban cell (KC), Kanban cell neuron (KCN), and
Kanban cell neuron network (KCNN) are improvements on the
above background components. For example, the KC
processes three input values and one output value. The values
are only in a multi-valued logic (MVL) such as the 2-tuple set
of { "00", "01", "10", "11"}. This is a four-valued logic (4VL)
of four-valued bit code (4vbc). It also includes a four-valued
logic with null (4VLN) and four-valued bit code with null
(4VBCN).

The KC is a logic gate using solely the OR and AND
logical connectives, that is, with only the arithmetical
operations of addition and multiplication. The KC performs
self-timing and terminates processing when the first of the
three input values equals the output value. The KCN maps
three such KCs into one output, that is, nine inputs as dendrites
into one output as axon. The KCNN consists of KCNs in
sequential and/or parallel operation.

The purpose of the KCNN is: to process input and output
more quickly than the ion transfers; not to require synchronous,
repetitive feedback or timing paths; and to use the attributes of
the input and output data to self-time itself internally. The
KCNN goal is faster asynchronous machine cognition of itself.
A benefit of KCNN is also to map neurons into a non-vector

space that is not probabilistic and hence to ensure bivalency
and decidability.

II. Introduction

The system described below is a massive forest or
collection of trees with branches or bundles of leaves or nodes.
A node is the Kanban cell (KC). A bundle is a Kanban cell
neuron (KCN). A tree is cascaded KCNs, each with a Kanban
cell level (KCL). A forest is a Kanban cell neuron network
(KCNN, KCN2, or KCN2, and pronounced KCN-Two or
KCN-Squared). The KC is effectively a sieve that processes
signals in a highly selective way. The KC is the atomic and
logical mechanism of the system. Three KCs make up a KCN.
Hence the KCN is a radix-3 tree. Multiple KCs as nodes at the
same level form a KCL to better describe the KCN to which
the KCs belong. The KCNN contains nine KCNs to produce
one KCN result. Hence the KCNN is also a radix-9 tree.

The KCN maps the biological mechanism of the human
neuron as a series of 9-dendrites that process input signals
concurrently into 1-axon, the path of the output signal. The
input signals are equivalent to the logical values of null,
contradiction, true, false, and tautology. These are respectively
assigned as a 2-tuple of the set of {"", "00", "01", "11"} or as
the set of {"", 0, 1, 2, 3}, depending on which set of valid
results is required.

As a sieve, the KCN filters three input signals into one
output signal. The number of all input signals to produce one
valid output signals as a result is in the ratio of about 15 to 1.

The computational or machine mechanism to accomplish
this is basically the same for software or hardware
implementation. The core concept is that LUTs produce output
results at a faster rate than by the brute force of computational
arithmetic.

III. Theory of input signals

The Kanban cell (KC) is defined as

(ii1 /\ pp11) \/ qq11 = kk11 (1)

where ˄ is the logical connective of AND, and ˅ is the
logical connective of OR.

The Kanban cell neuron (KCN) is four of these connected
KCs and is defined as

 (((ii1 /\ pp1) \/ qq1 = kk1) /\ ((ii2 /\ pp2) \/ qq2 = kk2))
 \/ ((ii3 /\ pp3) \/ qq3) = kk3) = kk4. (2)

The utility of the KCN is that it matches the human neuron
with 9-inputs as dendrites and 1- output as axon. The 9-inputs
are: ii1, pp1, qq1; ii2, pp2, qq2; ii3, pp3, qq3. The 1-output is: kk4.
This algorithm is the program for the KC. Pseudo code to
process input values of ii, pp, qq into kk is presented here:

LET kk_lut = lut(ii, pp, qq) ! 3-D LUT indexed by ii, pp, qq for kk
LET kk_output = ii ! Preset output kk to ii if test fails below
IF kk_lut ^ ii THEN LET kk_output = kk_lut ! iff LUT result <> ii

The input to the KC is in the form of 3 x 2-tuples or three
dibit values as effectively a 2-tuple set of {ii, pp, qq}. To

produce a single dibit value as kk output, the three input values
are required. Hence the expression "3-inputs to 1-output"
accurately describes the KC. When KCs are chained, three
inputs are required to produce each of the three outputs
accepted into the next consecutive KC, for a total of 9-input
signals. Hence the KCN is expressed as "9- inputs to 1-output."

The number of inputs required in KC1 to produce KCn is
given by the formula below where n > 0

KCn = 3n (3)

It follows that KCs in parallel and chained in succession
represent a permutation of exponential complexities. Each
successively complex level of KCs hence has its number of
KCs as a power of 9 (= 3^2), such as (3^2) ^0 = 1, (3^2)^1 =
9, (3^2)^2 = 81, … , (3^2)^n.

The number of groups of signals of {ii, pp, qq} required for
levels of KCs as KCLs may be tabulated. The number of
groups where three groups are processed concurrently for KCL
is the result of reducing the cumulative signals by a factor of
three of the cumulative number of the groups of signals. For
KCL-12 or 3 ^ 13, the number of discrete signals is 1,594,323,
and the cumulative number of KCNs is 531,444. For sizing in
hardware implementation, each such result occupies 2-bits for
a respective KCL-12 storage requirement of 1,062,882 bits.

A commonly published statistic is that on average there are
seven to nine dendrites per neuron. This means two to three
complete groups of signals (six to nine discrete signals) can be
processed concurrently at receptor points for the dendrites
along a neuron.

In the formula (ii AND pp) OR qq = kk of a KC in (1),
there are 64-combinations of 2-tuples (or dibits) of the set of
{00, 01, 10, 11}. When ii and kk are the same value (ii = kk),
this represents the condition where input is processed to the
same output result. This also means there was no change to the
input after processing. Consequently, this event marks the
termination of processing for that particular signal, and hence
the result is final and produces no new logical result.

When ii, pp, or qq is "00", a contradiction is present to
mean something is both true and false. This has the same effect
as a null value because no logical information is disclosed
other than that the there is a void result. Consequently the
values "00" and "" are folded together into "". Hence the four-
valued logical set of values as the 2-tuple of the set of {"00",
"01", "10", "11"} becomes {"", "01", "10", "11"}. This is
named four-valued logic with null (4VLN) composed of four-
valued bit code with null (4vbcn).

All possible combinations of the values within the 2-tuple
produce 64-values. A LUT for these values has an index in the
inclusive interval range of [0, 63]. It is named LUT-64. This
represents a sparsely filled LUT of three inputs {ii, pp, qq} to
produce one output {kk} for a KC, in Table 1 below. When
three KCs are combined to make a KCN, there are nine inputs
to produce one output. This is named LUT-9 and is built by
combining three LUTs of 64 entries each into 64 ^ 3 entries or
262,144 entries. The sparsely filled LUT-9S is indexed as (0 ...
63, 0 ... 63, 0 ... 63).

Statistics for the percentage of signals processed from
KCN-18 are presented here. The signals accepted and rejected
for the KCL-18 cascade are for input of 129,140,163 discrete
random signals to a single result as a dibit (2-tuple) where
8,494.377 signals are accepted at about 7%, for a ratio of
accepted signals to rejected signals of 1 to 13. This also
indicates how the KCN overcomes the deficiencies of
accepting all signals as in the Background section above.

Of interest is the relative distribution of the four-valued bit
code (4vbc) for contradiction (00), true (01), false (10), and
tautology (11). The logical results of the KCN favor the
tautology (11) by about 34560 / 50432 = 69% over the other
frequency of the other combined logical values. In the same
way, true (01) and false (10) represent about (7936 + 7936) /
50432 = 31%. These statistics imply that the KCN filters
about: 2-valid assertions to 9-invalid assertions; equal numbers
of true- and false-assertions; and 1-true or 1-false to 2-
tautologies. This implies that the KCN places an onus on
rejecting invalid assertions and on finding tautologies. This
also indicates how the KCN overcomes the problem of
accepting all signals as in the historical neurons described in
the Background section above.

IV. Models based on the Kanban cell

Fig. 3 illustrates a logical circuit for the KC that consists of
multiple inputs, one output, and synchronous feedback loops.
Steps 505 and 506 represent back propagating paths. Exactly
how these feedback paths are stimulated is a matter of
sequencing, either by decision based on data, by external clock,
or by both. This KC model is ultimately synchronous, and not
asynchronous.

Fig. 3. Synchronous Kanban cell in feedback loops as external propagation
delays.

Fig. 4. Functional diagram of the Kanban cell in symbols for nodes and
processes

Fig. 4 illustrates a functional process diagram of the KC
using symbols for nodes and processes according to an
asynchronous model. Steps 601 and 604 are the respective
input and output places. Step 602 is a circuit for the logical
connective AND. Step 603 is a circuit for the connective OR.
This KC model includes two logical connective gates, an AND
gate 602 and an OR gate 603. The signals specified for
processing are the set of {ii, pp, qq} in 601 where ii AND pp is
processed in 602, and that result is OR qq in 603 to produce the
result renamed kk in 604. Note that the instant KC model in
Fig. 4 is a simplification of the previous KC model in Fig. 3 in

that the instant shows no feedback loops connecting from 603
to 601 or from 604 to 602, as is the case in the previous from
503 to 501 and from 504 to 502. There are no feedback paths
present in the instant model. This means it is asynchronous or
untimed by its data and with straight through data flow.

This model is made further unique by the method to
terminate the input of signals to 601. If kk in 604 is determined
to be equal to ii from 601, then this instance of system 60 stops
processing. This feature inhibits the model from the otherwise
potentially endless processing of results kk to 604. This
method effectively makes the model into a self-timing KC
where the input ii of 601 and the output kk of 604 determine
the next state of system 60 as active or dormant. This feature
means that the model is immune to external timing constraints
and is wholly self-reliant for control of its asynchronous
operation on input and output data.

Fig. 5 illustrates a flow diagram of the KCN (Kanban cell
neuron) using symbols for nodes according to an asynchronous
model of the KC. The three inputs into one output is known as
3- to-1 processing. From previous operations, the respective kk
results are in 801, 802, and 803. These serve as the subsequent
inputs of ii, pp, and qq into 804 as a kk result. That in turn
serves as an input to the next subsequent operations if any.
This model maps the paths of signals named as nodes in a
network tree. The input nodes are for ii in 801, pp in 802, and
qq in 803, and serve as three inputs in this model to produce
one output for kk in 804. The signal values at any labeled
location are automatically stored there as data which is
persistent for the electrical life of the model or until changed.

Fig. 5. Flow diagram of the Kanban cell neuron

Fig. 6. Flow diagram of Kanban cell neuron network

Fig. 6 illustrates a flow diagram of the KCNN (Kanban cell
neuron network) using symbols for nodes according to an
asynchronous model. This network implements the KCN as
nine inputs into one output, and named as 9-to-1 processing.
Inputs 901a, 902a, and 903a result in 911a. Inputs 904a, 905a,

and 906a result in 912a. Inputs 907a, 908a, and 909a result in
913a. Results 911a, 912a, and 913a are renamed respectively
as 921a, 922a, and 923 a. The input set of {901a, ... , 909a} is a
set of 9-values that produce 924a as a single output result. The
result of 924a is renamed to 931a as one of three prospective
inputs to the result in 934a.

This network maps a multitude of the paths of signals
named as nodes in a network tree for the model of the KCN in
Fig. 5. A unique feature is how consecutive outputs of kk in the
set of {kkn, kkn+1, kkn+2} serve as inputs of the set of {iin+3,
ppn+3, qqn+3} to produce kkn+3. This method effectively passes
results from one level of the nodes in a network tree into the
next level of the nodes in the cascade of the nodes in a network
tree. This mechanism is inherently combined with the method
from the Fig.6 above where individual KCNs become dormant
when input ii is equal to output kk, to make this KCNN
terminate when input signals are exhausted.

 For example, if ii 1 in 901a is equal to kk1 in 911a, then ii4

in 921a is null, not set to kk1 of 911a, and 911a terminates that
KCN. This means that for a cascade of network paths to
proceed requires no interruptions in the consecutive sequence
of valid input values. Therefore if kk1 in 911a is null, then any
subsequent output value, such as kk4 in 924a and kk5 in 934a
are null paths and no longer active. What follows from this is
that kk2 in 912a and kk3 in 913a are also ignored by this
network, and the next set of input signals, beginning with the
unattached potential node 9nn, are potentially processed.

V. Implementation by look up table (LUT)

A software implementation is presented here. The values in
a LUT of 64-entries may be represented as the same respective
values but in three different formats such as a natural number,
the character string of that natural number, or character digits
representing exponential powers of arbitrary radix bases. As
numeric symbols, the four valid results are in the set of {0, 1,
2, 3}, and the invalid results are specified as a null set of {-1}.
As character string symbols, the four valid results are in the set
of {"0", "1", "2", "3"}, and the invalid results are specified as a
null set of {""}. As character strings, four valid results are the
set of {"00", "01", "10", "11"} or of {00, 01, 10, 11}.

The representation of the data elements within a LUT is
important because the format affects the size of the LUT and
the speed at which data is manipulated. For example, to test a
number for invalid result requires determining if it is a negative
number, that is less than zero. To test a character string for an
invalid result requires determining if it is a null character {""},
that is, not within the set of {"1", "2", "3"}. A faster method is
to test the length of the character string because a null string
has a length of zero. The size of the LUT is also smaller for a
literal character string: 64-elements as numbers occupies 64 * 8
= 512-characters, whereas 64-elements as characters occupy 64
* 1 = 64-characters or 1/8 less.

A LUT for 9-inputs [LUT-9] consists of a 2-tuple each (2-
bits) to make 9 * 2 = 18-bits. The binary number 2A18 is
decimal 262,144 or those numbers in the range of the inclusive
interval of [0, 262143]. This means LUT-9 is an array indexed

from 0 to 262,143 that is sparsely populated with kk results as
the set of {"", "1", "2", "3"} for binary "", 01, 10, 11. (The null
symbol means that if it is used in a multiplication or
exponential calculation, the resulting number is likely to raise
exceptions.) The fill rate for the sparsely populated LUT-9 also
shows that a single KCN rejects about 93% of all signals, and
accepts about 7%. This reiterates how the KCN overcomes the
deficiencies of accepting all signals described in the
Background section above.

The design flow of the software implementation consists of
three parts: build the LUT (as above), populate the top-tier of
the KCL with input values, and process the subsequent lower-
tier KCLs. For testing purposes, the input values are generated
randomly in the range interval of [0, 2462143], that is, at the
rate of 9-input signals at once. These are checked for results
(valid or invalid) and used to populate the top-tier of KCL. The
size of the top-tier level is determined by the maximum
memory available in the software programming environment.
In the case of True BASIC®, the maximum array size is
determined by the maximum natural number in the IEEE-
format which is (2 ^ 32) - 1. The largest radix-3 number to fit
within that maximum is (3 ^ 20) - 1. However the compiler
system allows two exponents less at 3 ^ 18 (3 ^ 18.5, to be
exact). Hence the top-tier KCL is set as KCL-18. Subsequent
lower-tier KCLs are processed by string manipulation.
Consecutive blocks of 9-signal inputs are evaluated for all
valid results. The valid results as single ordinal characters are
multiplied to the respective exponent power of four and
summed into an index value for the LUT. If the indexed LUT
result is a valid result, namely not null, then the result is stored
at the point in the KCL tier. This phase is KCN performance.

To access the three dimensional array faster, it may be
rewritten in a one dimensional array. This is because while the
three indexes of ii, pp, and qq are conceptually easier to digest,
a single index of 262,144 elements in the range interval [0,
262143] requires only one index value. Incidental arrays used
to perfect the LUT may be re-indexed to zero or null to reclaim
memory space. This table is named LUT-241K and is
implemented in software as 2-tuples or 2-bits for 262,144 * 2-
bits or 524,288 bits at 8-bits per byte for 64K bytes.

A LUT with a 6-character key is presented here. The values
of searchable element values for "iippqq" should also have the
same key string-length, to enhance a radix search or binary
search. Hence the numerical value of the index in the interval
of [0, 63] is converted into a 2-character string value of the
index in the interval ["00", "63"]. The subsequent indexes for
the remaining two array dimensions are concatenated onto the
first string index to form a 6-character key. The interval of
digital search keys as [000000, 636363] contains potentially
636,364 keys. However, this is not exactly the case as some
keys are impossible because the range is sparsely occupied.
Excluding consecutive null values at the extrema of the range,
the interval range of valid keys is [010002, 586353], but again
not all key combinations therein are possible as the frequency
or cycle of valid results is in runs of four separated by blocks
of seven nulls. This is named LUT- 636K.

These are calculated as a radix-3 function where 3^12 or
531,441 entries at 2-bits each is 1,062,882 bits. The LUT and

data structure occupy a total requirement of 1,587,470 bits.
This example is directed to the use of many field
programmable gate arrays (FPGAs) to build the KCNN system
at a lower cost of less than $40 per target device. In addition,
performance becomes a factor for faster or slower devices. On
average in hardware, one access to LUT-241K takes 13.25
nanoseconds for processing at the rate of 1.8 BB KCNs per
second, which is about 1,600 times faster than in software.

Fig. 7 illustrates an abstraction of Fig. 6. A unique feature
of this method is that if all input and output signals are
acceptable and not null, then the output result of kk4 in 931b
may be obtained directly by one access to a LUT as indexed by
the nine input signals in the set of {ii1, pp1, qq1, ii2, pp2, qq2,
ii3, pp3, qq3}. In other words, this KCNN is based on nine-
input signals to one-output signal as in the ratio of (3 ^ 2) to 1
or 9:1. It is the KCNN model that performs most quickly, and
hence is suited for implementation in hardware over software.

Fig. 7. Flow diagram of Kanban cell neuron network as a LUT

Fig. 8. Behavioral diagram of the Kanban cell neuron network in blocks of
tasks

Fig. 8 illustrates a behavioral diagram of the KCNN using
symbols for blocks of computer programming tasks according
to an asynchronous model. Fig. 8 contains the flow chart steps
to program the KCNN. In 1101, data structures and variables
are initialized. In 1102, LUT(s) are built by arithmetic from
primitives or reading from a constant list of supplied values. In
1103, the signals to process are input. In 1104, results from the
input values are processed by LUT, by arithmetical calculation,
or by both. The results from 1104 are output in 1105.

Of interest is the method to build LUTs in 1102. Results
may be obtained by logical arithmetic, or LUTs may be
constructed by either logical arithmetic or by reading data
directly from a specification list, or a combination of both.

However the size or extent of the LUT may be limited by the
number and type of datum. The MVL chosen for exposition
here by example is 4VL or a 4vbc where the values are in the
set of {00, 01, 10, 11} and taken to express respectively the
logical states of {contradiction, true, false, tautology} and the
decimal digits of {0, 1, 2, 3}.

Of further interest to this approach is the rationale behind
folding the 2-tuple 00 into null "". Contradiction or 00 means
"not false and not true" or in other words "true and false" as
absurdum. Null on the other hand has the meaning of nothing
or no value. Absurdum imparts no information about the state
of true (01), false (10), or tautology (11) as "false or true".
Hence the informational value of absurdum is as void to the
state of falsifiability as is null. Hence the 4VL adopted here is
the set of {"", 01, 10, 11}. This means that the whenever an
input signal of 00 or "" is encountered, it short circuits and
voids that KCN processing it.

The method for building the LUT for three inputs to one
output is presented here. For the three input variables as in the
set of {ii, pp, qq}, each variable of which is a 2-tuple as in the
set of {"", "01", "10", "11"}, there are 2 ^ 6 or 64-combinations
possible, and typically indexed as in the inclusive interval
range of [0, 63]. Of these 64-combinations, there are 14-
combinations that do not include the value "" as in Table 1.

Table 1. Connective assignments to 4vbc

Connective No. ((ii AND qq) OR pp) = kk

090 01 01 10 11

095 01 01 11 11

106 01 10 10 10

111 01 10 11 11

122 01 11 10 11

127 01 11 11 11

149 10 01 01 01

159 10 01 11 11

165 10 10 01 11

175 10 10 11 11

181 10 11 01 11

191 10 11 11 11

213 11 01 01 01

234 11 10 10 10

The connective number is the decimal equivalent of the
binary digits. For example, binary " 11 10 10 10", with most
significant on the left, is decimal 234. The connective number
is meaningful as an identifier in the mathematical theory of
4vbc which has 256 8-bit logical connectives as < 0, 1, ... , 254,
255>. When the 14-combinations of Table 1 are placed in the
LUT of 64-entries, the frequency of distribution is sparse.

The implementation method for building the LUT for nine
inputs to one output is presented here. Three instances of the
table of 64-elements are manipulated to produce all possible

combinations. Each combination of three inputs and one output
is further checked for the exclusive condition of ii = kk for
which that combination is excluded as null "".

The resulting LUT consists of 64 ^ 3 or 262,144 entries,
each of which is a 2-tuple. In the source code in True
BASIC®, this LUT is populated by manipulation of input
arrays from minimal DATA statements. In the source code in
VHDL, this LUT is enumerated bit-by-bit and occupies over
300-pages of text.

VI. Forward looking rules engine

The KCNN makes use of clusters to assign logical values to
statistics in time series.

The data set of a variable is sorted in rank order then
divided evenly into the number of logical values of the multi
valued logic. For example with four logical values as in 4VL,
the sorted list of <10, 20, 30, 40, 50, 60, 70, 80> is assigned
respectively to logic values of the list of <00, 01, 10, 11> as
clusters: <00> for <10, 20> ; <01> for <30, 40>; <10> for <50,
60>; and <11> for <70, 80>. Alternatively the numeric values
are assigned as <1, 2, 3, 4>. Similarly, the assignment
respectively of logical values to clusters could be in a reverse
or different order as clusters: <11> for <10, 20> ; <10> for
<30, 40>; <01> for <50, 60>; and <00> for <70, 80>. In this
example, the assignment of values does not include weighting,
such that all clusters do not have the same count of statistical
values as cluster assignments of: <00> for <10> ; <01> for
<20, 30, 40>;<10> for <50, 60, 70>; <11> for <80>.

To determine cluster assignments the sorted order of values
for variables may be sorted in ascending or descending order.
For example with econometric time series by trading date
and/or time, cluster values may be selected for volume and the
price at open, close, high, and low [6]. The justification for
which type of sorting order is determined by trial and error
tests of the data.

To determine parameters for the forward looking rules
engine, a comprehensive tabulation of all possible
combinations of variable values indicates the logical signals of
interest. For example in either data set above, there are five
variables each in ascending and descending order but only
three such variables taken at a time, and excluding repetition of
the same variable in opposite sort order, to serve as valid
inputs. For n = 5 * 2 = 10 and k = 3, from (k - 1)!(n - (k - 1))!
there are 80,640 possible combinations.

Some of these combinations are irrelevant because they do
not make sense. For example with econometric data, if the
variables for price at open and close are deemed irrelevant
(except to show return on a sell or buy position), then there are
three remaining variables of price at high and low and volume.
Because there is no known inverse relation among these
variables, they are all either in ascending or descending sort
order. Hence from n = 3 and k = 3 there are 2 possible
combinations depending on the sort order.

These procedures establish the forward looking rules
engines for the financial examples below. It is the assignment
of the time series variables to the input variables in the KCN

formula and especially the subsequent evaluation of output
signals that is left for the analyst.

This method is distinct from other approaches such as
Gaussian distribution-based clustering and from density-based
clustering. For example, the Gaussian distribution-based
clustering method uses the expectation-maximization [EM]
algorithm to group probabilities of sets of fixed points. The
density-based clustering method uses the frequency of
occurrence as the density criterion for demarking estimated
borders of clusters. As such, those other approaches evaluate
probabilities rather than the counted data points.

VII. Application to econometrics

The Kanban cell neuron stock trading system (KCNSTS)
applies the KCN to two types of stock trading signals, the buy-
side and sell-side. Fig. 9 illustrates this as the graph of closing
prices over time. A financial market generally follows that
graph as divided in two sides of increasing slope 1212 or buy-
side and decreasing slope 1213 or sell-side. Stock traders know
the buy-side as buy-low 1203 and sell-high 1204. Options
traders know the sell-side as sell-high 1208 and buy-low 1209.

Fig. 9. Graph of financial market closing prices in time.

KCNSTS is implemented for buy-side trading where buy-
side signals are in the sequential order of buy-low 1203 and
sell-high 1204. KCNSTS is also adapted for sell-side trading
where sell- side signals are in the sequential order of sell-high
1208 and buy-low 1209. Hence the implementation for sell-
side analysis reverses the rules of the buy-side analysis. This is
known as inverse logic. It is a helpful approach to validate
what the rules are not, and hence by way of negation what the
rules can be.

An example of how the KCN is applied to prediction of
stock trading signals is in Table 2 [2]. This is a virtual book of
performance or no load trades of one share. It is for 126
consecutive trading days from 2014.12.31 back to 2014.06.30.
From 2014.12.31 back to 2014.12.05 it was based on daily
statistics at the close. Previous to that back to 2014.06.30 it
was based on weekly statistics at Friday close. The equities
traded are mostly Chinese exchange traded funds (ETF) which
are tied to indexes such as Standard and Poor's SPY which
always rise slowly in time. These ETFs hold issues in business
sectors manipulated by the Chinese government. Nonetheless
after 126 trading days there is an annualized profit which beats
the market.

An example in Table 3 is for an OTC stock EXLLF. In 49-
trading days there are five buys, the first with asterisk returning
profit at the end of the period. The annualized return is 67%.

In contrast to [9], KCNSTS does not fit a traditional model
of the artificial neural network (ANN) which is non-linear, a
vector space, stochastic, and hence undecidable. A potential
by product of linear ANN such as KCNSTS is concept drift
[7]. This tests for the three indicators of performance
measures, classification models, and data properties. The three
metrics are respectively accuracy of classifiers, complexity of
rules, and membership clusters. Adaptive statistical windows
implement the tests in an If-Then-Else decision tree. If a time
series is found acceptable, then then window parameters are
validated. If a times series is not acceptable, then other
parameters are selected for retesting by trial and error
approximation.

However, KCNSTS is not subject to concept drifts because
the only criterion for success is accuracy of the prediction of
the stock trading signal to produce profit, a bivalent result. For
example, success is gauged by published statistics such as the
daily closing price rather than instant real-time activity.

KCNSTS also applied to prediction of trading signals for
commodity and note instruments in [6]. This required
assigning the KCN variables of ii, pp, qq, and kk to meaningful
statistics in those markets.

VIII. Contrast to other financial methods

Two methods bear remote resemblance to KCNN, but are
in fact disparate.

KCNN is distinct from the approach of Bollinger bands [1]
which uses means (M) in simple and exponential moving
averages (MA) with a trading day or time series period (N) of
typically 20-days and a scaling factor (K) of 2 for standard
deviation (σ) as MA ± Kσ for upper and lower bands.
Statistical studies found no evidence of consistent performance
for a buy and hold strategy, but it implied that an opposite,
contrarian approach could produce return in some markets (or
hence significance in some time series). Bollinger bands are
not linear, as is the KCN, but require stop-loss orders
according to Forbes Magazine and other trading sources.

KCNN is also further distinct from the Elliot wave
principle [8] which uses cycles in time series to identify
periods based on the phi or Phi ratio ((1 ± √5) / 2) or golden
ratio which produces Fibonacci numbers. Hence statistics in a
time series may fit into cycles in an unlimited number of ways,
depending on the practitioner. The Elliot wave principle is thus
derived from a defective hypothesis.

REFERENCES

[1] J. Bollinger, Bollinger on Bollinger Bands. McGraw Hill, 2002.

[2] http:\\ersatz.systems.com/current_book.pdf, 2015.

[3] C. James III, A reusable database engine for accounting arithmetic,
Proceedings of the Third Biennial World Conference on Integrated
Design & Process Technology, 2: 25-30, 1998.

[4] C. James III, Recent advances in logic tables for reusable database
engines. Proceedings of the American Society of Mechanical Engineers

International, Petroleum Division, Energy Sources Technology
Conference & Exhibition, ETCE99-6628, 1999.

[5] C. James III, Proof of four valued bit code (4vbc) as a group, ring, and
module. World Congress and School on Universal Logic III, 2010.

[6] C. James III, Recent advances in algorithmic learning theory of the
Kanban cell neuron network. IEEE Proceedings of International Joint
Conference on Neural Networks. August, 2158-63, 2013.

[7] R. Klinkenberg, I. Renz, "Adaptive information filtering: learning in the
presence of concept drifts", AAAI Technical Report WS-98-05, 1998.

[8] R.R. Prechter, ed., R.N. Elliott's Masterworks: The Definitive
Collection. New Classics Library, 2004.

[9] N. Tudoroiu, C. Caludiu, M. Grigore, "Neural networks architectures for
modeling and simulation of the economy system dynamics", Spiru Haret
University, Romania, 2009.

Table 2. 126 consecutive trading days from 2014.12.31 back to 2014.06.30

Table 3. 49-trading days for EXLLF from 2015.01.13 back to 2014.11.17

126 Trade days Annual

Symbol Buy date Buy $ Sell date Se l l $ Net Rate%

ASHR 2014/07/11 22.19 2014/07/21 22.62 0.43

CHIE vv 2014/12/17 13.11 2014/12/22 13.79 0.68

CHIM vv 2014/12/18 14.94 2014/12/29 15.17 0.23

CHIQ 2014/12/17 12.57 2014/12/26 12.99 0.42

CHIQ 2014/12/30 12.48 2014/12/31 12.62 0.14

CHLC vl 2014/08/11 25.50 2014/08/18 25.60 0.10

CHXF vl 2014/10/05 52.00 2014/10/09 52.57 0.57

CHXF vl 2014/12/10 51.01 2014/12/12 51.42 0.41

CHXX non 2014/06/30 16.88 2014/07/21 18.25 1.37

CN vv 2014/07/21 26.72 2014/08/11 28.68 1.96

CN vv 2014/10/27 28.62 2014/11/03 29.40 0.78

DSUM 2014/07/11 24.84 2014/08/11 25.04 0.20

DSUM 2014/12/19 24.33 2014/12/26 24.34 0.01

ECNS 2014/06/30 45.54 2014/07/21 45.96 0.42

EWH 2014/12/17 20.11 2014/12/26 20.74 0.63

EWS S 2014/12/18 12.76 2014/12/19 12.85 0.09

EWT T 2014/12/17 14.56 2014/12/29 15.10 0.54

EWY J 2014/12/19 55.12 2014/12/22 55.93 0.81

FCHI vv 2014/06/30 46.78 2014/07/21 48.48 1.70

FXI 2014/06/30 37.04 2014/07/11 37.90 0.86

FXI 2014/08/29 40.47 2014/09/05 42.52 2.05

FXP 2014/12/23 41.86 2014/12/26 42.28 0.42

FXP 2014/12/29 42.45 2014/12/30 43.76 1.31

JPP vv 2014/12/22 43.03 2014/12/26 43.55 0.52

PEK 2014/07/11 28.10 2014/08/11 31.14 3.04

PEK 2014/10/27 31.96 2014/11/03 33.66 1.70

PGJ 2014/12/30 27.86 2014/12/31 27.94 0.08

QQQC 2014/12/17 21.47 2014/12/19 21.64 0.17

QQQC 2014/12/22 21.51 2014/12/26 21.91 0.40

SCJ 2014/12/22 51.98 2014/12/26 52.35 0.37

YANG 2014/11/17 13.78 2014/11/19 15.95 2.17

YANG 2014/12/05 11.90 2014/12/11 13.54 1.64

YANG 2014/12/22 11.93 2014/12/23 12.34 0.41

YANG 2014/12/29 11.49 2014/12/30 12.00 0.51

YINN 2014/08/29 33.89 2014/09/05 39.12 5.23

Totals 990.78 1023.15 6.53

Symbol Buy date Buy $ Sell date Se l l $ Net AnRate%

vl volume low non not Nasdaq J, K Np, Kr

vv volume var ___ not followed S, T Sg, Tw

EXLLF Trade date Close Volume High Low
Signal

Sell 2015/01/13 0.72 73737 0.74 0.65
* Sell 2015/01/12 0.64 65144 0.66 0.56

Sell 2015/01/09 0.57 82146 0.57 0.56
Sell 2015/01/08 0.56 66853 0.57 0.55
Sell 2015/01/07 0.54 2300 0.57 0.54
Sell 2015/01/06 0.57 36428 0.57 0.52
Sell 2015/01/05 0.54 3621 0.56 0.54
Sell 2015/01/02 0.56 28377 0.56 0.52
Sell 2014/12/31 0.57 13404 0.57 0.54
Sell 2014/12/30 0.57 3396 0.58 0.56
sell 2014/12/29 0.57 4206 0.57 0.53

Buy 2014/12/26 0.55 14200 0.56 0.54
hold sell 2014/12/24 0.55 1520 0.56 0.54

Sell 2014/12/23 0.58 13500 0.58 0.55
sell 2014/12/22 0.56 10270 0.57 0.53
sell 2014/12/19 0.55 5992 0.55 0.48

Buy 2014/12/18 0.48 7392 0.49 0.47
hold sell 2014/12/17 0.45 15000 0.47 0.45

Sell 2014/12/16 0.46 12453 0.50 0.45
hold sell 2014/12/15 0.50 2500 0.52 0.48
Hold 2014/12/12 0.49 25100 0.51 0.49

sell 2014/12/11 0.52 10020 0.54 0.52
Sell 2014/12/10 0.52 25600 0.58 0.51
Sell 2014/12/09 0.59 23700 0.59 0.51
sell 2014/12/08 0.50 44300 0.54 0.49

hold sell 2014/12/05 0.53 2500 0.53 0.53
hold sell 2014/12/04 0.55 4900 0.55 0.51

sell 2014/12/03 0.55 2961 0.55 0.50
Sell 2014/12/02 0.55 1000 0.56 0.55
sell 2014/12/01 0.56 39194 0.58 0.50

hold sell 2014/11/28 0.55 4000 0.58 0.53
sell 2014/11/26 0.60 1500 0.60 0.60
sell 2014/11/25 0.60 122060 0.62 0.58

hold sell 2014/11/24 0.58 82309 0.59 0.54
Buy 2014/11/21 0.56 4400 0.56 0.54

hold sell 2014/11/20 0.55 54448 0.55 0.53
hold sell 2014/11/19 0.57 40250 0.57 0.55

sell 2014/11/18 0.57 98700 0.60 0.57
hold sell 2014/11/17 0.56 40620 0.58 0.56
hold sell 2014/11/14 0.57 4725 0.59 0.57

Sell 2014/11/13 0.57 3300 0.57 0.57
Sell 2014/11/12 0.59 2024 0.59 0.57

Buy 2014/11/11 0.53 110716 0.55 0.52
sell 2014/11/10 0.56 2500 0.56 0.53

hold sell 2014/11/07 0.56 43900 0.56 0.55
Buy 2014/11/06 0.51 47224 0.54 0.51

hold sell 2014/11/05 0.51 114745 0.60 0.51
Buy * 2014/11/04 0.60 119067 0.69 0.57

hold sell 2014/11/03 0.72 36550 0.73 0.69

