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Abstract—To  predict stock trading signals, a novel system for
machine  cognition  includes  Kanban  cells  (KC),  Kanban  cell
neurons  (KCN),  and  Kanban  cell  neuron  networks  (KCNN),
patent  pending.  The  KC  is  an  asynchronous  AND-OR  gate
without feedback that is self-timing by the input data to process
until input is equal to output. For the KCN, the input example is
a four-valued logic (4VL) based on the 2-tuple as the four logical
values in the set of {"", 01, 10, 11} of four-valued bit code (4vbc)
where "" is equivalent to 00.  The unique algorithm of multiple
KCNs in the KCNN emulates the human neuron with nine logical
inputs and one output. The KCNN model in parallel is scalable
for large data sets and is adaptable as a forward-looking rules-
engine  as  based  on  bivalent  trial  and  error.  The  real-time
algorithm is implemented by a look up table (LUT).  In software
the LUT occupies 64 KB, and on a desktop processes 1MM KCNs
per  second.  Access  to a  sparsely filled  look up table  (LUT) is
minimized in hardware with a 2-bit value per logical signal. In
hardware  the  LUT  occupies  194  KB,  and  on  a  $40  device
processes at 1.8 BB KCNs per second, or about 1600 times faster.
The immediate application of KCNN is analytics for time series
of  econometrics  as  the  Kanban  Cell   Neuron  Stock  Trading
System  (KCNSTS).   Two  virtual  examples  are  given  for  the
prediction  of  trading  signals.  For  126-trading  days,  24  Asian
electronic  traded  funds  (ETF)  produced  an  annualized  6.5%
return on 70 no load trades.    For 49-trading days, one OTC
stock produced an annualized 67% return on 10 no load trades. 

Keywords—analytics; AND-OR gate; ETF; Kanban cell neuron;
multi-valued logic; OTC; stock trading signals

I. Historical background

Originally the Kanban cell (KC) was the production part of
a  linear  pull  system  used  to  minimize  the  change  of  parts
inventory for the Just in Time (JIT) assembly of automobiles.
The KC was used by Toyota in about 1964.

Fig. 1 shows the KC in the Petri net, a bipartite directed
graph,  and  with  or  without  a  failure  or  idle  subnet  as  an
abstraction of the generalized stochastic Petri net (GSPN) of
flexible  manufacturing  systems  (FMS),  which  are  push
production  systems  (for  example,  using  pallets  to  load
incomplete parts and to unload completed parts by continuous
transportation  as  by  conveyer  or  automatic  guided  vehicle
(AGV)).

The system in Fig. 1 is a Petri net of a KC [4] as abstracted
for  an  accounting  arithmetic  system  [3].  Step  104  is  a

transition. Step 101 is the input and output place. Steps 105 and
106 are feedback paths of the feedback loops of the paths 103
to 104 and 102 to 104. In this context, feedback paths serve as
decision branches in the logic of the KC, and are commonly
referred to in their totality as feedback loops. (Steps marked as
m1,  m2,  m6,  and  t2  are  true  to  the  original  labels  and
equivalent to the respective Steps 101, 102, 103, and 104.)

Fig. 1. A Kanban cell in a Petri  net

Fig. 2. Synchronous, self-timing neural network as feedback loops

Fig. 2 shows a network that is a synchronous, self-timing
neural  network  as  a  series  of  feedback  loops.  The  network
consists of data places, through which data flows as data places
301, 311, and 321, and of timing places as timing places 302,
312, and 322, which stimulate the data places as 301, 311, and
321. The direction the data flows is bidirectional as in paths
305 and 306. The direction of timing paths is bidirectional as in
paths  303  and  304.  The  timing  places  302,  312,  and  322
effectively open and close the data places 301, 311, and 321 to
control  when  waiting  data  is  allowed  to  flow.  The  timing
places 302, 312, and 322 may be either physical clock cycles or
logical looping structures, the duration for which constitutes a
delay in that network. 



Neural  components  can  be  represented  as  vector  spaces
such as an adaptive linear neuron or adaptive linear element
(Adaline)  composed  of  weight  and  bias  vectors  with  a
summation  function  (OR  circuit),  and  also  a  multi-layered
Adaline  (Madaline)  where  two such units  emulate  a  logical
XOR function  (exclusive  OR circuit).  Such  components  are
examples of probabilistic methods to mimic the neuron.

A perceptron can be represented as a binary classifier using
a dot product to convert a real-valued vector to a single binary
value and serve as a probabilistic method to mimic a neuron.  

A spike neuron or spiking neuron can be represented as a
conductive  network  based  on  temporal  or  time  bias  and
differential  equations  or  a  calculus  which  serves  also  as  a
probabilistic method to mimic a neuron.

The first deficiency with these neural networks is that as
they are based on a vector space, so a solution is ultimately not
bivalent, is probabilistic, and hence is undecidable. (Bivalency
is not a vector space [5].)

The  second  deficiency  with  these  networks  is  that  an
exclusive  OR  (XOR)  function  is  sometimes  mistakenly
developed  in  them  to  mimic  a  neuron.  The  logical  XOR
connective  is  orthogonal  or  effectively  perpendicular  as  a
mathematical  operator.  However,  biological  bodies  are  not
rectilinear, but rather based on a phi or Phi ratio of ( 1 ± ( 5 ^
0.5)) / 2. This means that there are no right angles (90-degree
arcs) in biology per se. While the logical XOR connective may
be constructed from the NOR or NAND logical connectives,
there is no evidence that  the XOR function is built  into the
neuron, or necessarily should be.

The  third  deficiency  with  these  networks  is  that  the
perceptron  and  spike  neuron  can  accept  any  input  without
discrimination.

The Kanban  cell  (KC),  Kanban  cell  neuron  (KCN),  and
Kanban cell neuron network (KCNN) are improvements on the
above  background  components.   For  example,  the  KC
processes three input values and one output value. The values
are only in a multi-valued logic (MVL) such as the 2-tuple set
of { "00", "01", "10", "11"}. This is a four-valued logic (4VL)
of four-valued bit code (4vbc). It  also includes a four-valued
logic  with  null  (4VLN)  and  four-valued  bit  code  with  null
(4VBCN).

The  KC is  a  logic  gate  using  solely  the  OR and  AND
logical  connectives,  that  is,  with  only  the  arithmetical
operations  of  addition  and  multiplication.  The KC performs
self-timing  and  terminates  processing  when  the  first  of  the
three  input  values  equals  the  output  value.  The KCN maps
three such KCs into one output, that is, nine inputs as dendrites
into  one  output  as  axon.  The  KCNN  consists  of  KCNs  in
sequential and/or parallel operation.

The purpose of the KCNN is: to process input and output
more quickly than the ion transfers; not to require synchronous,
repetitive feedback or timing paths; and to use the attributes of
the  input  and  output  data  to  self-time  itself  internally.  The
KCNN goal is faster asynchronous machine cognition of itself.
A benefit of KCNN is also to map neurons into a non-vector

space that is not probabilistic and hence to ensure bivalency
and decidability.

II. Introduction

The  system  described  below  is  a  massive  forest  or
collection of trees with branches or bundles of leaves or nodes.
A node is the Kanban cell (KC). A bundle is a Kanban cell
neuron (KCN). A tree is cascaded KCNs, each with a Kanban
cell  level  (KCL).  A forest  is  a Kanban cell  neuron network
(KCNN,  KCN2,  or  KCN2,  and  pronounced  KCN-Two  or
KCN-Squared).  The KC is effectively a sieve that processes
signals in a highly selective way.  The KC is the atomic and
logical mechanism of the system. Three KCs make up a KCN.
Hence the KCN is a radix-3 tree. Multiple KCs as nodes at the
same level form a KCL to better describe the KCN to which
the KCs belong. The KCNN contains nine KCNs to produce
one KCN result. Hence the KCNN is also a radix-9 tree.

The KCN maps the biological  mechanism of the human
neuron  as  a  series  of  9-dendrites  that  process  input  signals
concurrently into 1-axon,  the path of  the output  signal.  The
input  signals  are  equivalent  to  the  logical  values  of  null,
contradiction, true, false, and tautology. These are respectively
assigned as a 2-tuple of the set of {"", "00", "01", "11"} or as
the set  of {"",  0,  1,  2,  3},  depending on which set  of valid
results is required.

As a  sieve,  the KCN filters  three  input  signals  into one
output signal. The number of all input signals to produce one
valid output signals as a result is in the ratio of about 15 to 1.

The computational  or machine mechanism to accomplish
this  is  basically  the  same  for  software  or  hardware
implementation. The core concept is that LUTs produce output
results at a faster rate than by the brute force of computational
arithmetic.

III. Theory of input signals 

The Kanban cell (KC) is defined as  

(ii1 /\ pp11) \/ qq11 = kk11                           (1)

where  ˄ is the logical  connective of  AND, and  ˅ is the
logical connective of OR.

The Kanban cell neuron (KCN) is four of these connected
KCs and is defined as 

        ( ( ( ii1 /\ pp1) \/ qq1 = kk1) /\ ( ( ii2 /\ pp2) \/ qq2 = kk2)) 
     \/ ( ( ii3 /\ pp3) \/ qq3) = kk3) = kk4.                         (2)

The utility of the KCN is that it matches the human neuron
with 9-inputs as dendrites and 1- output as axon. The 9-inputs
are: ii1, pp1, qq1; ii2, pp2, qq2; ii3, pp3, qq3. The 1-output is: kk4.
This algorithm is the program for  the KC.  Pseudo code to
process input values of ii, pp, qq into kk is presented here:

LET kk_lut = lut( ii, pp, qq)      ! 3-D LUT indexed by ii, pp, qq for kk
LET kk_output = ii                  ! Preset output kk to ii if test fails below
IF kk_lut ^ ii THEN LET kk_output = kk_lut       ! iff LUT result <> ii

The input to the KC is in the form of 3 x 2-tuples or three
dibit  values  as  effectively  a  2-tuple  set  of  {ii,  pp,  qq}.  To



produce a single dibit value as kk output, the three input values
are  required.  Hence  the  expression  "3-inputs  to  1-output"
accurately  describes  the  KC.  When  KCs  are  chained,  three
inputs  are  required  to  produce  each  of  the  three  outputs
accepted into the next consecutive KC, for a total of 9-input
signals. Hence the KCN is expressed as "9- inputs to 1-output."

The number of inputs required in KC1 to produce KCn is
given by the formula below where n > 0 

KCn = 3n                                     (3)

It follows that KCs in parallel and chained in succession 
represent a permutation of exponential complexities.  Each 
successively complex level of KCs hence has its number of 
KCs as a power of 9 ( = 3^2), such as ( 3^2) ^0 = 1, ( 3^2)^1 = 
9, ( 3^2)^2 = 81,  …  , (3^2)^n.  

The number of groups of signals of {ii, pp, qq} required for
levels  of  KCs  as  KCLs  may  be  tabulated.  The  number  of
groups where three groups are processed concurrently for KCL
is the result of reducing the cumulative signals by a factor of
three of the cumulative number of the groups of signals. For
KCL-12 or 3 ^ 13, the number of discrete signals is 1,594,323,
and the cumulative number of KCNs is 531,444. For sizing in
hardware implementation, each such result occupies 2-bits for
a respective KCL-12 storage requirement of 1,062,882 bits.

A commonly published statistic is that on average there are
seven to nine dendrites per neuron. This means two to three
complete groups of signals (six to nine discrete signals) can be
processed  concurrently  at  receptor  points  for  the  dendrites
along a neuron.

In the formula (ii AND pp) OR qq = kk of a KC in (1),
there are 64-combinations of 2-tuples (or dibits) of the set of
{00, 01, 10, 11}. When ii and kk are the same value (ii = kk),
this represents the condition where input is processed to the
same output result. This also means there was no change to the
input  after  processing.  Consequently,  this  event  marks  the
termination of processing for that particular signal, and hence
the result is final and produces no new logical result.

When ii,  pp, or qq is "00",  a contradiction is present  to
mean something is both true and false. This has the same effect
as  a  null  value  because  no  logical  information  is  disclosed
other  than  that  the  there  is  a  void  result.  Consequently  the
values "00" and "" are folded together into "". Hence the four-
valued logical set of values as the 2-tuple of the set of {"00",
"01",  "10",  "11"}  becomes  {"",  "01",  "10",  "11"}.  This  is
named four-valued logic with null (4VLN) composed of four-
valued bit code with null (4vbcn).

All possible combinations of the values within the 2-tuple
produce 64-values. A LUT for these values has an index in the
inclusive interval range of [0, 63]. It is named LUT-64.  This
represents a sparsely filled LUT of three inputs {ii, pp, qq} to
produce one output {kk} for a KC, in Table 1 below. When
three KCs are combined to make a KCN, there are nine inputs
to produce one output. This is named LUT-9 and is built by
combining three LUTs of 64 entries each into 64 ^ 3 entries or
262,144 entries. The sparsely filled LUT-9S is indexed as ( 0 ...
63, 0 ... 63, 0 ... 63).

Statistics  for  the  percentage  of  signals  processed  from
KCN-18 are presented here. The signals accepted and rejected
for the KCL-18 cascade are for input of 129,140,163 discrete
random signals  to  a  single  result  as  a  dibit  (2-tuple)  where
8,494.377  signals  are  accepted  at  about  7%,  for  a  ratio  of
accepted  signals  to  rejected  signals  of  1  to  13.  This  also
indicates  how  the  KCN  overcomes  the  deficiencies  of
accepting all signals as in the Background section above.

Of interest is the relative distribution of the four-valued bit
code (4vbc) for contradiction (00),  true (01),  false (10),  and
tautology  (11).  The  logical  results  of  the  KCN  favor  the
tautology (11) by about 34560 / 50432 = 69% over the other
frequency of the other combined logical  values. In the same
way, true (01) and false (10) represent about (7936 + 7936) /
50432  =  31%.  These  statistics  imply  that  the  KCN  filters
about: 2-valid assertions to 9-invalid assertions; equal numbers
of  true-  and  false-assertions;  and  1-true  or  1-false  to  2-
tautologies.  This  implies  that  the  KCN  places  an  onus  on
rejecting invalid assertions and on finding tautologies.   This
also  indicates  how  the  KCN  overcomes  the  problem  of
accepting all signals as in the historical neurons described in
the Background section above.

IV. Models based on the Kanban cell

Fig. 3 illustrates a logical circuit for the KC that consists of
multiple inputs, one output, and synchronous feedback loops.
Steps 505 and 506 represent back propagating paths. Exactly
how  these  feedback  paths  are  stimulated  is  a  matter  of
sequencing, either by decision based on data, by external clock,
or by both. This KC model is ultimately synchronous, and not
asynchronous.

Fig. 3. Synchronous Kanban cell in feedback loops as external propagation
delays.

Fig.  4.  Functional diagram of the  Kanban cell  in symbols  for nodes  and
processes

Fig.  4 illustrates a functional  process diagram of the KC
using  symbols  for  nodes  and  processes  according  to  an
asynchronous  model.  Steps  601  and  604  are  the  respective
input and  output  places.  Step 602  is  a circuit  for  the logical
connective  AND.   Step 603 is a circuit for the connective OR.
This KC model includes two logical connective gates, an AND
gate  602  and  an  OR  gate  603.   The  signals  specified  for
processing are the set of {ii, pp, qq} in 601 where ii AND pp is
processed in 602, and that result is OR qq in 603 to produce the
result renamed kk in 604.  Note that the instant KC model in
Fig. 4 is a simplification of the previous KC model in Fig. 3 in



that the instant shows no feedback loops connecting from 603
to 601 or from 604 to 602, as is the case in the previous from
503 to 501 and from 504 to 502. There are no feedback paths
present in the instant model. This means it is asynchronous or
untimed by its data and with straight through data flow.  

This  model  is  made  further  unique  by  the  method  to
terminate the input of signals to 601. If kk in 604 is determined
to be equal to ii from 601, then this instance of system 60 stops
processing. This feature inhibits the model from the otherwise
potentially  endless  processing  of  results  kk  to  604.  This
method  effectively  makes  the  model  into  a  self-timing  KC
where the input ii of 601 and the output kk of 604 determine
the next state of system 60 as active or dormant. This feature
means that the model is immune to external timing constraints
and  is  wholly  self-reliant  for  control  of  its  asynchronous
operation on input and output data.

Fig. 5 illustrates a flow diagram of the KCN (Kanban cell
neuron) using symbols for nodes according to an asynchronous
model of the KC. The three inputs into one output is known as
3- to-1 processing. From previous operations, the respective kk
results are in 801, 802, and 803. These serve as the subsequent
inputs of ii, pp, and qq into 804 as a kk result. That in turn
serves  as an input to the next subsequent  operations if  any.
This  model  maps the paths  of  signals  named as  nodes  in  a
network tree. The input nodes are for ii in 801, pp in 802, and
qq in 803, and serve as three inputs in this model to produce
one output  for  kk in  804.  The signal  values  at  any labeled
location  are  automatically  stored  there  as  data  which  is
persistent for the electrical life of the model or until changed.

Fig. 5. Flow diagram of the Kanban cell neuron

Fig. 6. Flow diagram of Kanban cell neuron network

Fig. 6 illustrates a flow diagram of the KCNN (Kanban cell
neuron  network)  using  symbols  for  nodes  according  to  an
asynchronous  model.  This  network  implements  the  KCN as
nine inputs into one output, and named as 9-to-1 processing.
Inputs 901a, 902a, and 903a result in 911a. Inputs 904a, 905a,

and 906a result in 912a. Inputs 907a, 908a, and 909a result in
913a. Results 911a, 912a, and 913a are renamed respectively
as 921a, 922a, and 923 a. The input set of {901a, ... , 909a} is a
set of 9-values that produce 924a as a single output result. The
result of 924a is renamed to 931a as one of three prospective
inputs to the result in 934a.

This  network  maps  a  multitude  of  the  paths  of  signals
named as nodes in a network tree for the model of the KCN in
Fig. 5. A unique feature is how consecutive outputs of kk in the
set  of {kkn,  kkn+1,  kkn+2} serve as inputs of the set  of  {iin+3,
ppn+3, qqn+3} to produce kkn+3. This method effectively passes
results from one level of the nodes in a network tree into the
next level of the nodes in the cascade of the nodes in a network
tree.  This mechanism is inherently combined with the method
from the Fig.6 above where individual KCNs become dormant
when  input  ii  is  equal  to  output  kk,  to  make  this  KCNN
terminate when input signals are exhausted. 

 For example, if ii 1 in 901a is equal to kk1 in 911a, then ii4

in 921a is null, not set to kk1 of 911a, and 911a terminates that
KCN.  This  means  that  for  a  cascade  of  network  paths  to
proceed requires no interruptions in the consecutive sequence
of valid input values. Therefore if kk1 in 911a is null, then any
subsequent output value, such as kk4 in 924a and kk5 in 934a
are null paths and no longer active. What follows from this is
that  kk2 in  912a  and  kk3 in  913a  are  also  ignored  by  this
network, and the next set of input signals, beginning with the
unattached potential node 9nn, are potentially processed.

V. Implementation by look up table (LUT)

A software implementation is presented here. The values in
a LUT of 64-entries may be represented as the same respective
values but in three different formats such as a natural number,
the character string of that natural number, or character digits
representing exponential  powers  of arbitrary radix bases.  As
numeric symbols, the four valid results are in the set of {0, 1,
2, 3}, and the invalid results are specified as a null set of {-1}.
As character string symbols, the four valid results are in the set
of {"0", "1", "2", "3"}, and the invalid results are specified as a
null set of {""}. As character strings, four valid results are the
set of {"00", "01", "10", "11"} or of {00, 01, 10, 11}.

The representation of the data elements within a LUT is
important because the format affects the size of the LUT and
the speed at which data is manipulated. For example, to test a
number for invalid result requires determining if it is a negative
number, that is less than zero. To test a character string for an
invalid result requires determining if it is a null character {""},
that is, not within the set of {"1", "2", "3"}. A faster method is
to test the length of the character string because a null string
has a length of zero. The size of the LUT is also smaller for a
literal character string: 64-elements as numbers occupies 64 * 8
= 512-characters, whereas 64-elements as characters occupy 64
* 1 = 64-characters or 1/8 less.

A LUT for 9-inputs [LUT-9] consists of a 2-tuple each (2-
bits)  to  make 9 * 2 = 18-bits.  The binary number  2A18 is
decimal 262,144 or those numbers in the range of the inclusive
interval of [0, 262143]. This means LUT-9 is an array indexed



from 0 to 262,143 that is sparsely populated with kk results as
the set of {"", "1", "2", "3"} for binary "", 01, 10, 11. (The null
symbol  means  that  if  it  is  used  in  a  multiplication  or
exponential calculation, the resulting number is likely to raise
exceptions.) The fill rate for the sparsely populated LUT-9 also
shows that a single KCN rejects about 93% of all signals, and
accepts about 7%. This reiterates how the KCN overcomes the
deficiencies  of  accepting  all  signals  described  in  the
Background section above.

The design flow of the software implementation consists of
three parts: build the LUT (as above), populate the top-tier of
the KCL with input values, and process the subsequent lower-
tier KCLs. For testing purposes, the input values are generated
randomly in the range interval of [0, 2462143], that is, at the
rate of 9-input signals at once. These are checked for results
(valid or invalid) and used to populate the top-tier of KCL. The
size  of  the  top-tier  level  is  determined  by  the  maximum
memory available in the software programming environment.
In  the  case  of  True  BASIC®,  the  maximum  array  size  is
determined  by  the  maximum  natural  number  in  the  IEEE-
format which is (2 ^ 32) - 1. The largest radix-3 number to fit
within that maximum is (3 ^ 20) - 1. However the compiler
system allows two exponents less at 3 ^ 18 (3 ^ 18.5, to be
exact). Hence the top-tier KCL is set as KCL-18. Subsequent
lower-tier  KCLs  are  processed  by  string  manipulation.
Consecutive  blocks  of  9-signal  inputs  are  evaluated  for  all
valid results. The valid results as single ordinal characters are
multiplied  to  the  respective  exponent  power  of  four  and
summed into an index value for the LUT. If the indexed LUT
result is a valid result, namely not null, then the result is stored
at the point in the KCL tier. This phase is KCN performance.

To access  the  three  dimensional  array  faster,  it  may be
rewritten in a one dimensional array. This is because while the
three indexes of ii, pp, and qq are conceptually easier to digest,
a  single index of 262,144 elements in the range interval  [0,
262143] requires only one index value. Incidental arrays used
to perfect the LUT may be re-indexed to zero or null to reclaim
memory  space.  This  table  is  named  LUT-241K  and  is
implemented in software as 2-tuples or 2-bits for 262,144 * 2-
bits or 524,288 bits at 8-bits per byte for 64K bytes.

A LUT with a 6-character key is presented here. The values
of searchable element values for "iippqq" should also have the
same key string-length,  to enhance  a radix  search  or binary
search. Hence the numerical value of the index in the interval
of [0, 63] is converted into a 2-character  string value of the
index in the interval ["00", "63"]. The subsequent indexes for
the remaining two array dimensions are concatenated onto the
first  string index to form a 6-character  key.  The interval  of
digital  search  keys  as  [000000,  636363] contains  potentially
636,364 keys.  However,  this is not exactly the case as some
keys  are impossible because  the range is  sparsely occupied.
Excluding consecutive null values at the extrema of the range,
the interval range of valid keys is [010002, 586353], but again
not all key combinations therein are possible as the frequency
or cycle of valid results is in runs of four separated by blocks
of seven nulls. This is named LUT- 636K.

These are calculated as a radix-3 function where 3^12 or
531,441 entries at 2-bits each is 1,062,882 bits. The LUT and

data  structure  occupy a  total  requirement  of  1,587,470 bits.
This  example  is  directed  to  the  use  of  many  field
programmable gate arrays (FPGAs) to build the KCNN system
at a lower cost of less than $40 per target device. In addition,
performance becomes a factor for faster or slower devices. On
average  in  hardware,  one  access  to  LUT-241K takes  13.25
nanoseconds for processing at the rate of 1.8 BB KCNs per
second, which is about 1,600 times faster than in software.

Fig. 7 illustrates an abstraction of Fig. 6. A unique feature
of  this  method  is  that  if  all  input  and  output  signals  are
acceptable and not null, then the output result of kk4 in 931b
may be obtained directly by one access to a LUT as indexed by
the nine input signals in the set of {ii1, pp1, qq1, ii2, pp2, qq2,
ii3,  pp3,  qq3}. In other  words,  this KCNN is based on nine-
input signals to one-output signal as in the ratio of (3 ^ 2) to 1
or 9:1. It is the KCNN model that performs most quickly, and
hence is suited for implementation in hardware over software.

Fig. 7. Flow diagram of Kanban cell neuron network as a LUT

Fig. 8. Behavioral diagram of the Kanban cell neuron network in blocks of
tasks

Fig. 8 illustrates a behavioral diagram of the KCNN using
symbols for blocks of computer programming tasks according
to an asynchronous model. Fig. 8 contains the flow chart steps
to program the KCNN. In 1101, data structures and variables
are initialized. In  1102, LUT(s)  are built by arithmetic from
primitives or reading from a constant list of supplied values. In
1103, the signals to process are input. In 1104, results from the
input values are processed by LUT, by arithmetical calculation,
or by both. The results from 1104 are output in 1105.

Of interest is the method to build LUTs in 1102. Results
may  be  obtained  by  logical  arithmetic,  or  LUTs  may  be
constructed  by  either  logical  arithmetic  or  by  reading  data
directly  from a  specification  list,  or  a  combination of  both.



However the size or extent of the LUT may be limited by the
number and type of datum. The MVL chosen for exposition
here by example is 4VL or a 4vbc where the values are in the
set of {00, 01, 10, 11} and taken to express respectively the
logical states of {contradiction, true, false, tautology} and the
decimal digits of {0, 1, 2, 3}. 

Of further interest to this approach is the rationale behind
folding the 2-tuple 00 into null "". Contradiction or 00 means
"not false and not true" or in other words "true and false" as
absurdum. Null on the other hand has the meaning of nothing
or no value. Absurdum imparts no information about the state
of true (01),  false (10),  or  tautology (11) as  "false or  true".
Hence the informational value of absurdum is as void to the
state of falsifiability as is null. Hence the 4VL adopted here is
the set of {"", 01, 10, 11}. This means that the whenever an
input signal  of 00 or "" is encountered,  it  short  circuits and
voids that KCN processing it.

The method for building the LUT for three inputs to one
output is presented here. For the three input variables as in the
set of {ii, pp, qq}, each variable of which is a 2-tuple as in the
set of {"", "01", "10", "11"}, there are 2 ^ 6 or 64-combinations
possible,  and  typically  indexed  as  in  the  inclusive  interval
range  of  [0,  63].  Of  these  64-combinations,  there  are  14-
combinations that do not include the value "" as in Table 1.

Table 1. Connective assignments to 4vbc

Connective No.    ( ( ii     AND    qq)   OR pp)  = kk

090 01 01 10 11

095 01 01 11 11

106 01 10 10 10

111 01 10 11 11

122 01 11 10 11

127 01 11 11 11

149 10 01 01 01

159 10 01 11 11

165 10 10 01 11

175 10 10 11 11

181 10 11 01 11

191 10 11 11 11

213 11 01 01 01

234 11 10 10 10

The connective  number  is  the  decimal  equivalent  of  the
binary digits. For example, binary " 11 10 10 10", with most
significant on the left, is decimal 234. The connective number
is meaningful  as an identifier  in the mathematical  theory of
4vbc which has 256 8-bit logical connectives as < 0, 1, ... , 254,
255>. When the 14-combinations of Table 1 are placed in the
LUT of 64-entries, the frequency of distribution is sparse.

The implementation method for building the LUT for nine
inputs to one output is presented here. Three instances of the
table of 64-elements are manipulated to produce all possible

combinations. Each combination of three inputs and one output
is further  checked for the exclusive condition of ii  = kk for
which that combination is excluded as null "".

The resulting LUT consists of 64 ^ 3 or 262,144 entries,
each  of  which  is  a  2-tuple.  In  the  source  code  in  True
BASIC®,  this  LUT  is  populated  by  manipulation  of  input
arrays from minimal DATA statements. In the source code in
VHDL, this LUT is enumerated bit-by-bit and occupies over
300-pages of text.

VI. Forward looking rules engine

The KCNN makes use of clusters to assign logical values to
statistics in time series. 

The  data  set  of  a  variable  is  sorted  in  rank  order  then
divided evenly into the number of logical values of the multi
valued logic. For example with four logical values as in 4VL,
the sorted list of <10, 20, 30, 40, 50, 60, 70, 80> is assigned
respectively to logic values of the list of <00, 01, 10, 11> as
clusters: <00> for <10, 20> ; <01> for <30, 40>; <10> for <50,
60>; and <11> for <70, 80>. Alternatively the numeric values
are  assigned  as  <1,  2,  3,  4>.  Similarly,  the  assignment
respectively of logical values to clusters could be in a reverse
or different order as clusters: <11> for <10, 20> ; <10> for
<30, 40>; <01> for <50, 60>; and <00> for <70, 80>. In this
example, the assignment of values does not include weighting,
such that all clusters do not have the same count of statistical
values  as  cluster  assignments  of:  <00> for  <10> ;  <01> for
<20, 30, 40>;<10> for <50, 60, 70>; <11> for <80>.

To determine cluster assignments the sorted order of values
for variables may be sorted in ascending or descending order.
For  example  with  econometric  time  series  by  trading  date
and/or time, cluster values may be selected for volume and the
price at open, close,  high, and low [6]. The justification for
which type  of  sorting order  is  determined by trial  and error
tests of the data.

To  determine  parameters  for  the  forward  looking  rules
engine,  a  comprehensive  tabulation  of  all  possible
combinations of variable values indicates the logical signals of
interest.  For example in either data set above, there are five
variables  each  in  ascending  and  descending  order  but  only
three such variables taken at a time, and excluding repetition of
the  same  variable  in  opposite  sort  order,  to  serve  as  valid
inputs. For n = 5 * 2 = 10 and k = 3, from (k - 1)!(n - (k - 1))!
there are 80,640 possible combinations.

Some of these combinations are irrelevant because they do
not  make  sense.  For  example  with  econometric  data,  if  the
variables  for  price  at  open  and  close  are  deemed  irrelevant
(except to show return on a sell or buy position), then there are
three remaining variables of price at high and low and volume.
Because  there  is  no  known  inverse  relation  among  these
variables,  they are all either in ascending or descending sort
order.  Hence  from  n  =  3  and  k  =  3  there  are  2  possible
combinations depending on the sort order.

These  procedures  establish  the  forward  looking  rules
engines for the financial examples below. It is the assignment
of the time series variables to the input variables in the KCN



formula  and  especially  the  subsequent  evaluation  of  output
signals that is left for the analyst.

This  method  is  distinct  from  other  approaches  such  as
Gaussian distribution-based clustering and from density-based
clustering.  For  example,  the  Gaussian  distribution-based
clustering  method  uses  the  expectation-maximization  [EM]
algorithm to group probabilities of sets of  fixed points.  The
density-based  clustering  method  uses  the  frequency  of
occurrence  as  the  density  criterion  for  demarking  estimated
borders of clusters. As such, those other approaches evaluate
probabilities rather than the counted data points.

VII. Application to econometrics

The Kanban cell neuron stock trading system (KCNSTS)
applies the KCN to two types of stock trading signals, the buy-
side and sell-side. Fig. 9 illustrates this as the graph of closing
prices  over  time.  A  financial  market  generally  follows  that
graph as divided in two sides of increasing slope 1212 or buy-
side and decreasing slope 1213 or sell-side. Stock traders know
the  buy-side  as  buy-low  1203  and  sell-high  1204.  Options
traders know the sell-side as sell-high 1208 and buy-low 1209.

Fig. 9. Graph of financial market closing prices in time.

KCNSTS is implemented for buy-side trading where buy-
side signals are in the sequential order of buy-low 1203 and
sell-high 1204. KCNSTS is also adapted for sell-side trading
where sell- side signals are in the sequential order of sell-high
1208 and buy-low 1209.  Hence the implementation for sell-
side analysis reverses the rules of the buy-side analysis.  This is
known as inverse logic.   It  is a helpful approach to validate
what the rules are not, and hence by way of negation what the
rules can be. 

An example of how the KCN is applied to prediction of
stock trading signals is in Table 2 [2]. This is a virtual book of
performance  or  no  load  trades  of  one  share.  It  is  for  126
consecutive trading days from 2014.12.31 back to 2014.06.30.
From 2014.12.31 back to 2014.12.05 it  was based on daily
statistics at the close.  Previous to that back to 2014.06.30 it
was based on weekly statistics at Friday close.  The equities
traded are mostly Chinese exchange traded funds (ETF) which
are tied to indexes such as  Standard and Poor's  SPY which
always rise slowly in time. These ETFs hold issues in business
sectors manipulated by the Chinese government. Nonetheless
after 126 trading days there is an annualized profit which beats
the market.

An example in Table 3 is for an OTC stock EXLLF.  In 49-
trading days there are five buys, the first with asterisk returning
profit at the end of the period. The annualized return is 67%. 

In contrast to [9], KCNSTS does not fit a traditional model
of the artificial neural network (ANN) which is non-linear, a
vector space, stochastic, and hence undecidable.   A potential
by product of linear ANN such as KCNSTS is concept drift
[7].   This  tests  for  the  three  indicators  of  performance
measures, classification models, and data properties.  The three
metrics are respectively accuracy of classifiers, complexity of
rules, and membership clusters.  Adaptive statistical windows
implement the tests in an If-Then-Else decision tree.  If a time
series is found acceptable,  then then window parameters are
validated.   If  a  times  series  is  not  acceptable,  then  other
parameters  are  selected  for  retesting  by   trial  and  error
approximation. 

However, KCNSTS is not subject to concept drifts because
the only criterion for success is accuracy of the prediction of
the stock trading signal to produce profit, a bivalent result.  For
example, success is gauged by published statistics such as the
daily closing price rather than instant real-time activity.

KCNSTS also applied to prediction of trading signals for
commodity  and  note  instruments  in  [6].   This  required
assigning the KCN variables of ii, pp, qq, and kk to meaningful
statistics in those markets.  

VIII. Contrast to other financial methods

Two methods bear remote resemblance to KCNN, but are
in fact disparate.

KCNN is distinct from the approach of Bollinger bands [1]
which  uses  means  (M)  in  simple  and  exponential  moving
averages (MA) with a trading day or time series period (N) of
typically 20-days  and a scaling factor  (K) of 2 for  standard
deviation  (σ)  as  MA  ±  Kσ for  upper  and  lower  bands.
Statistical studies found no evidence of consistent performance
for a buy and hold strategy,  but it  implied that an opposite,
contrarian approach could produce return in some markets (or
hence significance in some time series).  Bollinger  bands are
not  linear,  as  is  the  KCN,  but  require  stop-loss  orders
according to Forbes Magazine and other  trading sources.

KCNN  is  also  further  distinct  from  the  Elliot  wave
principle  [8]  which  uses  cycles  in  time  series  to  identify
periods based on the phi or Phi ratio ( ( 1 ± √5) / 2) or golden
ratio which produces Fibonacci numbers. Hence statistics in a
time series may fit into cycles in an unlimited number of ways,
depending on the practitioner. The Elliot wave principle is thus
derived from a defective hypothesis.

REFERENCES

[1] J. Bollinger, Bollinger on Bollinger Bands. McGraw Hill, 2002. 

[2] http:\\ersatz.systems.com/current_book.pdf, 2015.

[3] C.  James  III,  A  reusable  database  engine  for  accounting  arithmetic,
Proceedings  of  the  Third  Biennial  World  Conference  on  Integrated
Design & Process Technology, 2: 25-30, 1998.

[4] C.  James  III,  Recent  advances  in  logic  tables  for  reusable  database
engines. Proceedings of the American Society of Mechanical Engineers



International,  Petroleum  Division,  Energy  Sources  Technology
Conference & Exhibition, ETCE99-6628, 1999.

[5] C. James III, Proof of four valued bit code (4vbc) as a group, ring, and
module. World Congress and School on Universal Logic III, 2010.

[6] C.  James  III,  Recent  advances  in  algorithmic  learning  theory  of  the
Kanban cell  neuron network.  IEEE Proceedings of  International  Joint
Conference on Neural Networks. August, 2158-63, 2013.

[7] R. Klinkenberg, I. Renz, "Adaptive information filtering: learning in the
presence of concept drifts", AAAI Technical Report WS-98-05, 1998.

[8] R.R.  Prechter,  ed.,  R.N.  Elliott's  Masterworks:  The  Definitive
Collection.  New Classics Library, 2004. 

[9] N. Tudoroiu, C. Caludiu, M. Grigore, "Neural networks architectures for
modeling and simulation of the economy system dynamics", Spiru Haret
University, Romania, 2009.

Table 2. 126 consecutive trading days from 2014.12.31 back to 2014.06.30

Table 3. 49-trading days for EXLLF from 2015.01.13 back to 2014.11.17

126 Trade days Annual

Symbol Buy date Buy $ Sell  date Se l l $ Net Rate%

ASHR 2014/07/11 22.19 2014/07/21 22.62 0.43

CHIE  vv 2014/12/17 13.11 2014/12/22 13.79 0.68

CHIM vv 2014/12/18 14.94 2014/12/29 15.17 0.23

CHIQ 2014/12/17 12.57 2014/12/26 12.99 0.42

CHIQ 2014/12/30 12.48 2014/12/31 12.62 0.14

CHLC vl 2014/08/11 25.50 2014/08/18 25.60 0.10

CHXF vl 2014/10/05 52.00 2014/10/09 52.57 0.57

CHXF vl 2014/12/10 51.01 2014/12/12 51.42 0.41

CHXX non 2014/06/30 16.88 2014/07/21 18.25 1.37

CN     vv 2014/07/21 26.72 2014/08/11 28.68 1.96

CN     vv 2014/10/27 28.62 2014/11/03 29.40 0.78

DSUM 2014/07/11 24.84 2014/08/11 25.04 0.20

DSUM 2014/12/19 24.33 2014/12/26 24.34 0.01

ECNS 2014/06/30 45.54 2014/07/21 45.96 0.42

EWH 2014/12/17 20.11 2014/12/26 20.74 0.63

EWS     S 2014/12/18 12.76 2014/12/19 12.85 0.09

EWT   T 2014/12/17 14.56 2014/12/29 15.10 0.54

EWY    J 2014/12/19 55.12 2014/12/22 55.93 0.81

FCHI  vv 2014/06/30 46.78 2014/07/21 48.48 1.70

FXI 2014/06/30 37.04 2014/07/11 37.90 0.86

FXI 2014/08/29 40.47 2014/09/05 42.52 2.05

FXP 2014/12/23 41.86 2014/12/26 42.28 0.42

FXP 2014/12/29 42.45 2014/12/30 43.76 1.31

JPP   vv 2014/12/22 43.03 2014/12/26 43.55 0.52

PEK 2014/07/11 28.10 2014/08/11 31.14 3.04

PEK 2014/10/27 31.96 2014/11/03 33.66 1.70

PGJ 2014/12/30 27.86 2014/12/31 27.94 0.08

QQQC 2014/12/17 21.47 2014/12/19 21.64 0.17

QQQC 2014/12/22 21.51 2014/12/26 21.91 0.40

SCJ 2014/12/22 51.98 2014/12/26 52.35 0.37

YANG 2014/11/17 13.78 2014/11/19 15.95 2.17

YANG 2014/12/05 11.90 2014/12/11 13.54 1.64

YANG 2014/12/22 11.93 2014/12/23 12.34 0.41

YANG 2014/12/29 11.49 2014/12/30 12.00 0.51

YINN 2014/08/29 33.89 2014/09/05 39.12 5.23

Totals 990.78 1023.15 6.53

Symbol Buy date Buy $ Sell  date Se l l $ Net AnRate%

vl volume low non not  Nasdaq J, K Np, Kr

vv volume var ___ not  followed S, T Sg, Tw

EXLLF Trade date Close Volume High Low
Signal

Sell 2015/01/13 0.72 73737 0.74 0.65
*  Sell 2015/01/12 0.64 65144 0.66 0.56

Sell 2015/01/09 0.57 82146 0.57 0.56
Sell 2015/01/08 0.56 66853 0.57 0.55
Sell 2015/01/07 0.54 2300 0.57 0.54
Sell 2015/01/06 0.57 36428 0.57 0.52
Sell 2015/01/05 0.54 3621 0.56 0.54
Sell 2015/01/02 0.56 28377 0.56 0.52
Sell 2014/12/31 0.57 13404 0.57 0.54
Sell 2014/12/30 0.57 3396 0.58 0.56
sell 2014/12/29 0.57 4206 0.57 0.53

Buy 2014/12/26 0.55 14200 0.56 0.54
hold sell 2014/12/24 0.55 1520 0.56 0.54

Sell 2014/12/23 0.58 13500 0.58 0.55
sell 2014/12/22 0.56 10270 0.57 0.53
sell 2014/12/19 0.55 5992 0.55 0.48

Buy 2014/12/18 0.48 7392 0.49 0.47
hold sell 2014/12/17 0.45 15000 0.47 0.45

Sell 2014/12/16 0.46 12453 0.50 0.45
hold sell 2014/12/15 0.50 2500 0.52 0.48
Hold 2014/12/12 0.49 25100 0.51 0.49

sell 2014/12/11 0.52 10020 0.54 0.52
Sell 2014/12/10 0.52 25600 0.58 0.51
Sell 2014/12/09 0.59 23700 0.59 0.51
sell 2014/12/08 0.50 44300 0.54 0.49

hold sell 2014/12/05 0.53 2500 0.53 0.53
hold sell 2014/12/04 0.55 4900 0.55 0.51

sell 2014/12/03 0.55 2961 0.55 0.50
Sell 2014/12/02 0.55 1000 0.56 0.55
sell 2014/12/01 0.56 39194 0.58 0.50

hold sell 2014/11/28 0.55 4000 0.58 0.53
sell 2014/11/26 0.60 1500 0.60 0.60
sell 2014/11/25 0.60 122060 0.62 0.58

hold sell 2014/11/24 0.58 82309 0.59 0.54
Buy 2014/11/21 0.56 4400 0.56 0.54

hold sell 2014/11/20 0.55 54448 0.55 0.53
hold sell 2014/11/19 0.57 40250 0.57 0.55

sell 2014/11/18 0.57 98700 0.60 0.57
hold sell 2014/11/17 0.56 40620 0.58 0.56
hold sell 2014/11/14 0.57 4725 0.59 0.57

Sell 2014/11/13 0.57 3300 0.57 0.57
Sell 2014/11/12 0.59 2024 0.59 0.57

Buy 2014/11/11 0.53 110716 0.55 0.52
sell 2014/11/10 0.56 2500 0.56 0.53

hold sell 2014/11/07 0.56 43900 0.56 0.55
Buy 2014/11/06 0.51 47224 0.54 0.51

hold sell 2014/11/05 0.51 114745 0.60 0.51
Buy  * 2014/11/04 0.60 119067 0.69 0.57

hold sell 2014/11/03 0.72 36550 0.73 0.69


