
Kanban Cell Neuron Network
Stock Trading System (KCNSTS)

Colin James III
Ersatz Systems Machine Cognition, LLC

3925 Elisa Ct, Colorado Springs CO 80904 USA
info@cec-services.com +011 (719) 210.9534

Abstract—To map and process "big data" requires new types
of development for machine cognition and signal processing of
combinatorial logic in a network. A novel system for machine
cognition includes Kanban cells (KC), Kanban cell neurons
(KCN), and Kanban cell neuron networks (KCNN), patent
pending. The KC is an asynchronous AND-OR gate without
feedback that is self-timing by the input data to process until
input is equal to output. For the KCN, the input example is a
four-valued logic (4VL) based on the 2-tuple as four logical
values in the set {"", 01, 10, 11} of four-valued bit code (4vbc)
where "" is equivalent to 00. The unique algorithm of multiple
KCNs in the KCNN emulates the human neuron with nine logical
inputs and one output. The real-time algorithm is implemented
by a look up table (LUT) of 64 KB in software and 192 KB in
hardware. The model in parallel is scalable for large data sets
and adaptable for a forward-looking rules-engine as based on
bivalent trial and error. The immediate applications are
analytics for high velocity streaming data such as in time series
for econometrics. The example with results is presented for the
Kanban Cell Neuron Stock Trading System (KCNSTS).

Keywords—analytics; AND-OR gate; high velocity stream;
Kanban cell neuron; linear network; multi-valued logic; stock
trading system

I. Historical background

Originally the Kanban cell (KC) was the production part of
a linear pull system used to minimize the size, change, and
turnover of parts inventory for the Just in Time (JIT)
manufacturing of automobiles. The KC was used by Toyota in
about 1964.

Fig. 1. A Kanban cell in a Petri net

Fig. 1 shows the KC in the Petri net, a bipartite directed
graph, and with or without a failure or idle subnet as an
abstraction of the generalized stochastic Petri net (GSPN) of
flexible manufacturing systems (FMS), which are push
production systems (for example, using pallets to load
incomplete parts and to unload completed parts by continuous
transportation as by conveyer or automatic guided vehicle
(AGV)).

The system in Fig. 1 is a Petri net of a KC [James 1999] as
abstracted for an accounting arithmetic system [James 1998].
Step 104 is a transition. Step 101 is the input and output place.
Steps 105 and 106 are feedback paths of the feedback loops of
the paths 103 to 104 and 102 to 104. In this context, feedback
paths serve as decision branches in the logic of the KC, and are
commonly referred to in their totality as feedback loops. (Steps
marked as m1, m2, m6, and t2 are true to the original labels
and equivalent to the respective Steps 101, 102, 103, and 104.)

Fig. 2 shows a network that is synchronous, self-timing
neural network as a series of feedback loops. The network
consists of data places, through which data flows as data places
301, 311, and 321, and of timing places as timing places 302,
312, and 322, which stimulate the data places as 301, 311, and
321. The direction the data flows is bidirectional as in paths
305 and 306. The direction of timing paths is bidirectional as in
paths 303 and 304. The timing places 302, 312, and 322
effectively open and close the data places 301, 311, and 321 to
control when waiting data is allowed to flow. The timing
places 302, 312, and 322 may be either physical clock cycles or
logical looping structures, the duration for which constitutes a
delay in that network.

Fig. 2. Synchronous, self-timing nerural network as feedback loops

In biology, a neuron is a cell nucleus and body with
multiple dendrites as input paths, and a single axon as output
path. The entry pathway of the dendrite to the neuron cell is a
synapse and receptor where in the neurotransmitter fluid such

as serotonin, ion transfers occur with calcium (Ca+), potassium
(K+), and sodium (Na+).

Neural components can be represented as vector spaces
such as an adaptive linear neuron or adaptive linear element
(Adaline) composed of weight and bias vectors with a
summation function (OR circuit), and also a multi-layered
Adaline (Madaline) where two such units emulate a logical
XOR function (exclusive OR circuit). Such components are
examples of probabilistic methodology applied as an apparatus
to map and mimic the biological neuron.

A perceptron can be represented as a binary classifier using
a dot product to convert a real-valued vector to a single binary
value which serves as a probabilistic methodology and
apparatus to map and mimic the biological neuron.

A spike neuron or spiking neuron can be represented as a
conductive network based on temporal or time bias and
differential equations or calculus which serves as a
probabilistic methodology and apparatus to map and mimic the
biological neuron.

The first deficiency with these neural networks is that as
they are based on a vector space, so a solution is ultimately not
bivalent, is probabilistic, and hence is undecidable. (Bivalency
is not a vector space [James 2010].)

The second deficiency with these networks is that an
exclusive OR (XOR) function is sometimes mistakenly
developed in them to mimic a neuron. The logical XOR
connective is orthogonal or effectively perpendicular as a
mathematical operator. However, biological bodies are not
rectilinear, but rather based on a phi or Phi ratio of (1 ± (5 ^
0.5)) / 2. This means that there are no right angles (90-degree
arcs) in biology per se. While the logical XOR connective may
be constructed from the NOR or NAND logical connectives,
there is no evidence that the XOR function is built into the
neuron, or necessarily should be.

The third deficiency with these networks is that the
perceptron and spike neuron can accept any input without
discrimination.

The Kanban cell (KC), Kanban cell neuron (KCN), and
Kanban cell neuron network (KCNN) are improvements on the
above background components.

For example, the KC processes three input values and one
output value. The values are only in a multi-valued logic
(MVL) such as the 2-tuple set of { "00", "01", "10", "11"}.
This is a four-valued logic (4VL) of four-valued bit code
(4vbc). It also includes a four-valued logic with null (4VLN)
and four-valued bit code with null (4vbcn).

The KC is a logic gate using solely the OR and AND
logical connectives, that is, with only the arithmetical
operations of addition and multiplication. The KC performs
self-timing and terminates processing when the first of the
three input values equals the output value.

The KCN maps three such KCs into one output, that is,
nine inputs as dendrites into one output as axon. The KCNN
consists of KCNs in sequential and/or parallel operation.

The purpose of the KCNN is: to process input and output
more quickly than the ion transfers; not to require synchronous,
repetitive feedback or timing paths; and to use the attributes of
the input and output data to self-time itself internally. The
KCNN goal is faster asynchronous machine cognition of itself.
A benefit of KCNN is also to map neurons into a non-vector
space that is not probabilistic and hence to ensure bivalency
and decidability.

II. Introduction

The system described below is a massive forest or
collection of trees with branches or bundles of leaves or nodes.
A node is the Kanban cell (KC). A bundle is a Kanban cell
neuron (KCN). A tree is cascaded KCNs, each with a Kanban
cell level (KCL). A forest is a Kanban cell neuron network
(KCNN, KCN2, or KCN2, and pronounced KCN-Two or
KCN-Squared). The KC is effectively a sieve that processes
signals in a highly selective way. The KC is the atomic and
logical mechanism of the system. Three KCs make up a KCN.
Hence the KCN is a radix-3 tree. Multiple KCs as nodes at the
same level form a KCL to better describe the KCN to which
the KCs belong. The KCNN contains nine KCNs to produce
one KCN result. Hence the KCNN is also a radix-9 tree.

The KCN maps the biological mechanism of the human
neuron as a series of 9-dendrites that process input signals
concurrently into 1-axon, the path of the output signal. The
input signals are equivalent to the logical values of null,
contradiction, true, false, and tautology. These are respectively
assigned as a 2-tuple of the set {"", "00", "01", "11"} or as the
set of {"", 0, 1, 2, 3}, depending on which set of valid results is
required.

As a sieve, the KCN filters three input signals into one
output signal. The number of all input signals to produce one
valid output signals as a result is in the ratio of about 15 to 1.

The computational or machine mechanism to accomplish
this is basically the same for software or hardware
implementation. The core concept is that LUTs produce output
results at a faster rate than by the brute force of computational
arithmetic.

III. Theory of input signals

The Kanban cell (KC) is defined as

(ii1 /\ pp11) \/ qq11 = kk11, Equation 1
where /\ is AND and \/ is OR.

The Kanban cell neuron (KCN) is four of these connected KCs
and is defined as

(((ii1 /\ pp1) \/ qq1 = kk1) /\ ((ii2 /\ pp2) \/ qq2 = kk2))
\/ ((ii3 /\ pp3) \/ qq3) = kk3) = kk4. Equation 2

The utility of the KCN is that it matches the human neuron
with 9-inputs as dendrites and 1- output as axon. The 9-inputs
are: ii1, pp1, qq1; ii2, pp2, qq2; ii3, pp3, qq3. The 1-output is: kk4.
This algorithm is the program for the KC.

For example, pseudo code to process input values of ii, pp,
qq into kk is presented here.

LET kk_lut = lut(ii, pp, qq)
! 3-D LUT indexed by ii, pp, qq for kk

LET kk_output = ii
! Preset output kk to ii if test fails below

IF kk_lut ^ ii THEN LET kk_output = kk_lut
! iff LUT result <> ii

The input to the KC is in the form of 3 x 2-tuples or three
dibit values as effectively a 2-tuple set of {ii, pp, qq}. To
produce a single dibit value as kk output, the three input values
are required. Hence the expression "3-inputs to 1-output"
accurately describes the KC. When KCs are chained, three
inputs are required to produce each of the three outputs
accepted into the next consecutive KC, for a total of 9-input
signals. This defines the KCN as the expression of "9- inputs to
1-output."

The number of inputs required in KC1 to produce KCn is
given by the formula of

KCn = 3n, Equation 3
where n > 0.

It follows that KCs in parallel and chained in succession
represent a permutation of exponential complexities. Each
successively complex level of KCs hence has its number of
KCs as a power of 9 (= 3^2), such as (3^2) ^0 = 1, (3^2)^1 =
9, (3^2)^2 = 81, … , (3^2)^n.

The number of groups of signals of {ii, pp, qq} required for
levels of KCs as KCLs may be tabulated. The number of
groups where three groups are processed concurrently for KCL
is the result of reducing the cumulative signals by a factor of
three of the cumulative number of the groups of signals. For
KCL-12 or 3 ^ 13, the number of discrete signals is 1,594,323,
and the cumulative number of KCNs is 531,444. For sizing in
hardware implementation, each such result occupies 2-bits for
a respective KCL-12 storage requirement of 1,062,882 bits.

A commonly published statistic is that on average there are
seven to nine dendrites per neuron. This means two to three
complete groups of signals (six to nine discrete signals) could
be processed concurrently at receptor points for the dendrites
along a neuron.

In the formula (ii AND pp) OR qq = kk of a KC in
Equation (1), there are 64-combinations of 2-tuples (or dibits)
of the set of {00, 01, 10, 11}. When ii and kk are the same
value (ii = kk), this represents the condition where input is
processed to the same output result. This also means there was
no change to the input after processing. Consequently, this
event marks the termination of processing for that particular
signal, and hence the result is final. Such an event or condition
produces no new logical result.

When ii, pp, or qq is "00", a contradiction is present to
mean something is both true and false. This has the same effect
as a null value because no logical information is disclosed
other than that the there is a void result. Consequently the

values "00" and "" are folded together into "". Hence the four-
valued logical set of values as the 2-tuple of the set {"00",
"01", "10", "11"} becomes {"", "01", "10", "11"}. This is
named four-valued logic with null (4VLN) composed of four-
valued bit code with null (4vbcn).

All possible combinations of the values within the 2-tuple
produce 64-values. A LUT for these values has an index in the
inclusive interval range of [0, 63]. It is named LUT-64. This
represents a sparsely filled LUT of three inputs {ii, pp, qq} to
produce one output {kk} for a KC, in Table 1 below. When
three KCs are combined to make a KCN, there are nine inputs
to produce one output. This is named LUT-9 and is built by
combining three LUTs of 64 entries each into 64 ^ 3 entries or
262,144 entries. The sparsely filled LUT-9S is indexed as (0 ...
63, 0 ... 63, 0 ... 63).

Statistics for the percentage of signals processed from
KCN-18 are presented here. The signals accepted and rejected
for the KCL-18 cascade are for input of 129,140,163 discrete
random signals to a single result as a dibit (2-tuple) where
8,494.377 signals are accepted at about 7%, for a ratio of
accepted signals to rejected signals of 1 to 13. This also
indicates how the KCN overcomes the deficiencies of
accepting all signals as in the Background section above.

Of interest is the relative distribution of the four-valued bit
code (4vbc) for contradiction (00), true (01), false (10), and
tautology (11). The logical results of the KCN favor the
tautology (11) by about 34560 / 50432 = 69% over the other
frequency of the other combined logical values. In the same
way, true (01) and false (10) represent about (7936 + 7936) /
50432 = 31%. These statistics imply that the KCN filters
about: 2-valid assertions to 9-invalid assertions; equal numbers
of true- and false-assertions; and 1-true or 1-false to 2-
tautologies. By extension, this signifies that the KCN places an
onus on rejecting invalid assertions and on finding tautologies.

This also indicates how the KCN overcomes the problem of
accepting all signals as in the historical neurons described in
the Background section above.

IV. Models based on the Kanban cell

Fig. 3 illustrates a logical circuit for the KC that consists of
multiple inputs, one output, and synchronous feedback loops.
Steps 505 and 506 represent back propagating paths. Exactly
how these feedback paths are stimulated is a matter of
sequencing, either by decision based on data, by external clock,
or by both. This KC model is ultimately synchronous, and not
asynchronous.

Fig. 3. Synchronous Kanban cell in feedback loops as external propagation
delays.

Fig. 4. Functional diagram of the Kanban cell in symbols for nodes and
processes

Fig. 4 illustrates a functional process diagram of the KC
using symbols for nodes and processes according to an
asynchronous model. Steps 601 and 604 are the respective
input and output places. Step 602 is a circuit for the logical
connective of AND. Step 603 is a circuit for the logical
connective of OR.

This KC model includes two logical connective gates, an
AND gate 602 and an OR gate 603.

The signals specified to be processed are the set {ii, pp, qq}
in 601 where ii AND pp is processed in 602, and that result is
OR qq in 603 to produce the result renamed as kk in 604.

Note that the instant KC model in Fig. 4 is a simplification
of the previous KC model in Fig. 3 in that the instant shows no
feedback loops connecting from 603 to 601 or from 604 to 602,
as is the case in the previous from 503 to 501 and from 504 to
502. There are no feedback paths present in the instant model.
This means it is asynchronous or untimed by its data and with
straight through data flow.

This model is made further unique by the method to
terminate the input of signals to 601. If kk in 604 is determined
to be equal to ii from 601, then this instance of system 60 stops
processing. This feature inhibits the model from the otherwise
potentially endless processing of results kk to 604. This
method effectively makes the model into a self-timing KC
where the input ii of 601 and the output kk of 604 determine
the next state of system 60 as active or dormant. This unique
feature means that the model is immune to external timing
constraints and is wholly self-reliant for control of its
asynchronous operation on input and output data.

Fig. 5. Flow diagram of the Kanban cell neuron

Fig. 6. Flow diagram of Kanban cell neuron network

Fig. 5 illustrates a flow diagram of the KCN (Kanban cell
neuron) using symbols for nodes according to an asynchronous
model of the KC. The three inputs into one output is known as
3- to-1 processing. From previous operations, the respective kk
results are in 801, 802, and 803. These serve as the subsequent
inputs of ii, pp, and qq into 804 as a kk result. That in turn
serves as an input to the next subsequent operations if any.
This model maps the paths of signals named as nodes in a
network tree. The input nodes are for ii in 801, pp in 802, and
qq in 803, and serve as three inputs in this model to produce
one output for kk in 804. The signal values at any labeled
location are automatically stored there as data which is
persistent for the duration of the electrical life of the model or
until reassigned or erased.

Fig. 6 illustrates a flow diagram of the KCNN (Kanban cell
neuron network) using symbols for nodes according to an
asynchronous model. This network implements the KCN as
nine inputs into one output, and named as 9-to-1 processing.
Inputs 901a, 902a, and 903a result in 911a. Inputs 904a, 905a,
and 906a result in 912a. Inputs 907a, 908a, and 909a result in
913a. Results 911a, 912a, and 913a are renamed respectively
as 921a, 922a, and 923 a. The input set of {901a, ... , 909a} is a
set of 9-values that produce 924a as a single output result. The
result of 924a is renamed to 931a as one of three prospective
inputs to the result in 934a.

This network maps a multitude of the paths of signals
named as nodes in a network tree for the model of the KCN in
Fig. 5. A unique feature is how consecutive outputs of kk in the
set {kkn, kkn+1, kkn+2} serve as inputs of the set {iin+3, ppn+3,
qqn+3} to produce kkn+3. This method effectively passes results
from one level of the nodes in a network tree into the next level
of the nodes in the cascade of the nodes in a network tree. This
mechanism is inherently combined with the method from the
Fig.6 above where individual KCNs become dormant when
input ii is equal to output kk, to make this KCNN terminate
when input signals are exhausted. For example, if ii 1 in 901a
is equal to kk1 in 911a, then ii4 in 921a is null, not set to kk1 of
911a, and 911a terminates that KCN. This means that for a
cascade of network paths to proceed requires no interruptions
in the consecutive sequence of valid input values. Therefore if
kk1 in 911a is null, then any subsequent output value, such as
kk4 in 924a and kk5 in 934a are null paths and no longer active.
What follows from this is that kk2 in 912a and kk3 in 913a are
also ignored by this network, and the next set of input signals,

beginning with the unattached potential node 9nn, are
potentially processed.

IV. Implementation by look up table (LUT)

A software implementation is presented here. The values in
a LUT of 64-entries may be represented as the same respective
values but in three different formats such as a natural number,
the character string of that natural number, or character digits
representing exponential powers of arbitrary radix bases. As
numeric symbols, the four valid results are in the set of {0, 1,
2, 3}, and the invalid results are specified as a null set {-1}. As
character string symbols, the four valid results are in the set of
{"0", "1", "2", "3"}, and the invalid results are specified as a
null set {""}. As character string exponents, four valid results
are the set of {"00", "01", "10", "11"} or {00, 01, 10, 11}.

The representation of the data elements within a LUT is
important because the type of format affects the size of the
LUT and the speed at which the data is manipulated. For
example, to test a number for invalid result requires
determining if it is a negative number, that is, is less than zero.
To test a character string for an invalid result requires
determining if it is a null character {""}, that is, not within the
set {"1", "2", "3"}. A faster method is to test the length of the
character string because a null string has a length of zero. The
size of the LUT is also smaller for a literal character string: 64-
elements as numbers occupies 64 * 8 = 512-characters,
whereas 64-elements as characters occupy 64 * 1 = 64-
characters or 1/8 less.

A LUT for 9-inputs [LUT-9] consists of a 2-tuple each (2-
bits) to make 9 * 2 = 18-bits. The binary number 2A18 is
decimal 262,144 or those numbers in the range of the inclusive
interval of [0, 262143]. This means LUT-9 is an array indexed
from 0 to 262,143 that is sparsely populated with kk results as
{"", "1", "2", "3"} for binary "", 01, 10, 11. (The null symbol
means that if it is used in a multiplication or exponential
calculation, the resulting number is likely to raise exceptions.)
The fill rate for the sparsely populated LUT-9 also shows that a
single KCN rejects about 93% of all signals, and accepts about
7%. This reiterates how the KCN overcomes the deficiencies
of accepting all signals described in the Background section
above.

The design flow of the software implementation consists of
three parts: build the LUT (as above), populate the top-tier of
the KCL with input values, and process the subsequent lower-
tier KCLs. For testing purposes, the input values are generated
randomly in the range interval of [0, 2462143], that is, at the
rate of 9-input signals at once. These are checked for results
(valid or invalid) and used to populate the top-tier of KCL. The
size of the top-tier level is determined by the maximum
memory available in the software programming environment.
In the case of True BASIC®, the maximum array size is
determined by the maximum natural number in the IEEE-
format which is (2 ^ 32) - 1. The largest radix-3 number to fit
within that maximum is (3 ^ 20) - 1. However the compiler
system allows two exponents less at 3 ^ 18 (3 ^ 18.5, to be
exact). Hence the top-tier KCL is set as KCL-18. Subsequent
lower-tier KCLs are processed by string manipulation.
Consecutive blocks of 9-signal inputs are evaluated for all

valid results. The valid results as single ordinal characters are
multiplied to the respective exponent power of four and
summed into an index value for the LUT. If the indexed LUT
result is a valid result, namely not null, then the result is stored
at the point in the KCL tier. This phase constitutes KCN
performance.

To access the three dimensional array faster, it may be
rewritten in a one dimensional array. This is because while the
three indexes of ii, pp, and qq are conceptually easier to digest,
a single index of 262,144 elements in the range interval [0,
262143] requires only one index value. Incidental arrays used
to perfect the LUT may re-indexed to zero or null to reclaim
memory space. This table is named LUT-241K and is
implemented in software as 2-tuples or 2-bits for 262,144 * 2-
bits or 524,288 bits at 8-bits per byte for 64K bytes.

A LUT with a 6-character key is presented here. The values
of searchable element values for "iippqq" should also have the
same key string-length, to enhance a radix search or binary
search. Hence the numerical value of the index in the interval
of [0, 63] is converted into a 2-character string value of the
index in the interval ["00", "63"]. The subsequent indexes for
the remaining two array dimensions are concatenated onto the
first string index to form a 6-character key. The interval of
digital search keys as [000000, 636363] contains potentially
636,364 keys. However, this is not exactly the case as some
keys are impossible because the range is sparsely occupied.
Excluding consecutive null values at the extrema of the range,
the interval range of valid keys is [010002, 586353], but again
not all key combinations therein are possible as the frequency
or cycle of valid results is in runs of four separated by blocks
of seven nulls. This is named LUT- 636K.

These are calculated as a radix-3 function where 3^12 or
531,441 entries at 2-bits each is 1,062,882 bits. The LUT and
data structure occupy a total requirement of 1,587,470 bits.
This example is directed to the use of many field
programmable gate arrays (FPGAs) to build the KCNN system
at a lower cost of less than $40 per target device. In addition,
performance becomes a factor for faster or slower devices. On
average in hardware, one access to LUT-241K takes 13.25
nanoseconds for processing at the rate of 1.8 BB KCNs per
second, which is about 1,600 times faster than in software.

Fig. 7. Flow diagram of Kanban cell neuron network as a LUT

Fig. 7 illustrates an abstraction of Fig. 6. A unique feature
of this method is that if all input and output signals are
acceptable and not null, then the output result of kk4 in 931b

may be obtained directly by one access to a LUT as indexed by
the nine input signals in the set {ii1, pp1, qq1, ii2, pp2, qq2, ii3,
pp3, qq3}. In other words, this KCNN is based on nine-input
signals to one-output signal as in the ratio of (3 ^ 2) to 1 or 9:1.
It is the KCNN model that performs most quickly, and hence is
suited for implementation in hardware over software.

Fig. 8 illustrates a behavioral diagram of the KCNN using
symbols for blocks of computer programming tasks according
to an asynchronous model. Fig. 8 contains the flow chart steps
to program the KCNN. In 1101, data structures and variables
are initialized. In 1102, LUT(s) are built by arithmetic from
primitives or by reading from a constant list of predetermined
values. In 1103, signals to process are input. In 1104, results
from input values are processed by LUT, by arithmetical
calculation, or by both. The results from 1104 are output in
1105.

Of unique interest is the method to build LUTs in 1102.
Results may be obtained by logical arithmetic, or LUTs may be
constructed by either logical arithmetic or by reading data
directly from a specification list, or a combination of both.
However the size or extent of the LUT may be limited by the
number and type of datum. The MVL chosen for exposition
here by example is 4VL or a 4vbc where the values are in the
set {00, 01, 10, 11} and taken to express respectively in words
the logical states of {contradiction, true, false, tautology} and
the decimal digits of {0, 1, 2, 3}. A fifth value of null or "" is
for ease in programming.

Of unique interest to this method is the rationale behind
folding the 2-tuple 00 into null "". Contradiction or 00 means
"not false and not true" or in other words "true and false" as
absurdum. Null on the other hand has the meaning of nothing
or no value. Because absurdum imparts no information about
the the state of true (01), false (10), or tautology as "false or
true" (11), then the informational value of absurdum is as void
as to the state of falsifiability as is null. Hence the 4VL adopted
in this exposition is the set {"", 01, 10, 11}. This means that the
whenever an input signal of 00 or "" is encountered, it short
circuits and voids that KCN processing it.

Fig. 8. Behavioral diagram of the Kanban cell neuron network in blocks of
tasks

The methodology for building the LUT for three inputs to
one output is presented here. For the three input variables as in
the set of {ii, pp, qq}, each variable of which is a 2-tuple as in
the set of {"", "01", "10", "11"}, there are 2 ^ 6 or 64-
combinations possible, and typically indexed as in the inclusive
interval range of [0, 63]. Of these 64-combinations, there are
14-combinations that do not include the value "", as presented
in Table 1.

Table 1. Connective assignments to 4vbc

The connective number is the decimal equivalent of the
binary digits. For example, binary " 11 10 10 10", with most
significant on the left, is decimal 234. The connective number
is meaningful as an identifier in the mathematical theory of
4vbc which has 256 8-bit logical connectives as < 0, 1, ... , 254,
255>. When the 14-combinations of Table 1 are placed in the
LUT of 64-entries, the frequency of distribution is sparse.

The implementation methodology for building the LUT for
nine inputs to one output is presented here. Three instances of
the table of 64-elements are manipulated to produce all
possible combinations. Each combination of three inputs and
one output is further checked for the exclusive condition of ii =
kk for which that combination is excluded as null "".

The resulting LUT consists of 64 ^ 3 or 262,144 entries,
each of which is a 2-tuple. In the source code in True
BASIC®, this LUT is populated by manipulation of input
arrays from minimal DATA statements. In the source code in
VHDL, this LUT is enumerated bit-by-bit and occupies over
300-pages of text.

Connective No. ((ii & qq) 1 PP) = kk

090 01 01 10 11

095 01 01 11 11

106 01 10 10 10

111 01 10 11 11

122 01 11 10 11

127 01 11 11 11

149 10 01 01 01

159 10 01 11 11

165 10 10 01 11

175 10 10 11 11

181 10 11 01 11

191 10 11 11 11

213 11 01 01 01

234 11 10 10 10

VI. Forward looking rules engine

The KCNN makes use of clusters to assign logical values to
statistics in time series.

The data set of a variable is sorted in rank order then
divided evenly into the number of logical values of the multi
valued logic. For example with four logical values as in 4VL,
the sorted list of <10, 20, 30, 40, 50, 60, 70, 80> is assigned
respectively to logic values of <00, 01, 10, 11> as clusters:
<00> for <10, 20> ; <01> for <30, 40>; <10> for <50, 60>;
and <11> for <70, 80>. Alternatively the numeric values are
assigned as < 1, 2, 3, 4>. Similarly, the assignment respectively
of logical values to clusters could be in a reverse or different
order as clusters: <11> for <10, 20> ; <10> for <30, 40>; <01>
for <50, 60>; and <00> for <70, 80>. In this example, the
assignment of values does not include weighting, such that all
clusters do not have the same count of statistical values as
cluster assignments of: <00> for <10> ; <01> for <20, 30,
40>;<10> for <50, 60, 70>; <11> for <80>.

To determine cluster assignments the sorted order of values
for variables may be sorted in ascending or descending order.
For example with econometric time series by trading date
and/or time, cluster values may be selected for volume and the
price at open, close, high, and low [James, 2013]. The
justification for which type of sorting order is determined by
trial and error tests of the data.

To determine parameters for the forward looking rules
engine, a comprehensive tabulation of all possible
combinations of variable values indicates the logical signals of
interest. For example in either data set above, there are five
variables each in ascending and descending order but only
three such variables taken at a time, and excluding repetition of
the same variable in opposite sort order, to serve as valid
inputs. For n = 5 * 2 = 10 and k = 3, from (k - 1)!(n - (k - 1))!
there are 80,640 possible combinations.

Some of these combinations are irrelevant because they do
not make sense. For example with econometric data, if the
variables for price at open and close are deemed irrelevant
(except to show return on a sell or buy position), then there are
three remaining variables of price at high and low and volume.
Because there is no known inverse relation among these
variables, they are all either in ascending or descending sort
order. Hence from n = 3 and k = 3 there are 2 possible
combinations depending on sort order.

These procedures establish the forward looking rules
engines for the financial example below. It is the assignment of
the time series variables to the input variables in the KCN
formula and especially the subsequent evaluation of output
signals that is left for the analyst.

This method is distinct from other approaches such as
Gaussian distribution-based clustering and from density-based
clustering. For example, the Gaussian distribution-based
clustering method uses the expectation-maximization [EM]
algorithm to group probabilities of sets of fixed points. The
density-based clustering method uses the frequency of
occurrence as the density criterion for demarking estimated

borders of clusters. As such, those other approaches evaluate
probabilities rather than the counted data points.

VII. Application to econometrics

The KCN is applied to two types of stock trading signals,
buy-side and sell-side. Fig. 9 illustrates this as the graph of
closing prices over time. A financial market generally follows
that graph which is divided into two sides of increasing slope
1212 or buy-side and decreasing slope 1213 or sell-side.
Investors know buy-side as buy-low 1203 and sell-high 1204.
Options traders know sell-side as sell-high 1208 and buy-low
1209.

KCNSTS is implemented for buy-side trading where buy-
side signals are in the sequential order of buy-low 1203 and
sell-high 1204. KCNSTS is also adapted for sell-side trading
where sell- side signals are in the sequential order of sell-high
1208 and buy-low 1209.

An example of how the KCN is applied to prediction of
stock trading signals is in Table 2 [Ersatz 2014]. This is a
virtual book of performance. It is for It is for no-load trades of
one share. It is for 88 consecutive trading days from
2014.11.03 back to 2014.06.30 based on weekly statistics
taken at close of business on Friday. The equities traded are
Chinese exchange traded funds (ETFs) which are tied to one or
more indexes such as Standard and Poor's SPY. Such indexes
in general always rise slowly in time. These ETFs are
noteworthy because their holdings are in a market manipulated
by the Chinese government. Nonetheless after about 90 trading
days there is an annualized profit which beats the market.

Fig. 9. Graph of financial market closing prices in time.

VIII. Contrast to other financial methods

Two methods bear remote resemblance to KCNN, but are
in fact disparate.

KCNN is distinct from the approach of Bollinger bands
[Bollinger 2002] which uses means (M) in simple and
exponential moving averages (MA) with a trading day or time
series period (N) of typically 20-days and a scaling factor (K)
of 2 for standard deviation (σ) as MA ± Kσ for upper and
lower bands. Statistical studies found no evidence of consistent
performance for a buy and hold strategy, but it implied that an
opposite, contrarian approach could produce return in some
markets (or hence significance in some time series). Bollinger

bands are not linear, as is the KCN, but require stop-loss orders
according to Forbes Magazine and many others.

KCNN is also further distinct from the Elliot wave
principle [Prechter 2004] which uses cycles in time series to
identify periods based on the phi or Phi ratio ((1 ± √5) / 2) or
golden mean which produces Fibonacci numbers. Hence
statistics in a time series may fit into cycles in an unlimited
number of ways, depending on the practitioner. The Elliot
wave principle is thus derived from a defective hypothesis.

ACKNOWLEDGMENT

Thanks are due for helpful comments from the anonymous
referees, Sang Du, and Tony Storey.

REFERENCES

[1] Bollinger, J. (2002). Bollinger on Bollinger Bands. McGraw Hill.

[2] Ersatz.systems.com/current_book.pdf (2014).

[3] James III, C. (1998). A reusable database engine for accounting
arithmetic, Proceedings of the Third Biennial World Conference on
Integrated Design & Process Technology, 2: 25-30.

[4] James III, C. (1999). Recent advances in logic tables for reusable
database engines. Proceedings of the American Society of Mechanical
Engineers International, Petroleum Division, Energy Sources
Technology Conference & Exhibition, ETCE99-6628.

[5] James III, C. (2010). Proof of four valued bit code (4vbc) as a group,
ring, and module. World Congress and School on Universal Logic III.

[6] James III, C. (2013). Recent advances in algorithmic learning theory of
the Kanban cell neuron network. IEEE Proceedings of International
Joint Conference on Neural Networks. August, 2158-63.

[7] Prechter, R.R., ed. (2004). R.N. Elliott's Masterworks: The Definitive
Collection. New Classics Library.

Table 2. 88 consecutive trading days from 2014.11.03 back to 2014.06.30

Issue Buy Buy Sell Sell Net Profit Annual

symbol date

2014

price date

2014

price profit % %

ASHR 07/11 22.19 07/21 22.62 0.43 1.94

ASHS none yet

CHLC← 08/11 25.50 08/18 25.60 0.10 0.39

CHXF← 10/05 52.00 10/09 52.57 0.57 1.10

CHXX ◌ 06/30 16.88 07/21 18.25 1.37 8.12

CN ↔
07/21
10/27

26.72
28.62

08/11
11/03

28.68
29.40

1.96
0.78

7.34
2.73

DSUM 07/11 24.84 08/11 25.04 0.20 0.81

ECNS 06/30 45.54 07/21 45.96 0.42 0.92

FCA ↔ none yet

FCHI ↔ 06/30 46.78 07/21 48.48 1.70 3.63

FXI
06/30
09/02

37.04
40.47

07/11
09/08

37.90
42.52

0.86
2.05

2.32
5.07

GXC none yet

MCHI none yet

PEK
07/11
10/27

28.10
31.96

08/11
11/03

31.14
33.66

3.04
1.70

10.82
 5.32

PGJ none yet

QQQC none yet

YANG none yet

YINN 09/02 33.89 09/08 39.12 5.23 15.43

Totals 460.53 480.94 20.41 4.43 12.69

Buy Sell Net Profit Annual

price price profit % %

Notes

volume: low ← varies ↔ market: now not Nasdaq ◌

