Coercing scalability of six-variables out of two in the free student demo of Meth8/VŁ4

We assume the method and apparatus of Meth8/VŁ4 with Tautology as the designated proof value, **F** as contradiction, N as truthity (non-contingency), and C as falsity (contingency). The 16-valued truth table is row-major and horizontal, or repeating fragments of 128-tables, sometimes with table counts, for more variables. (See ersatz-systems.com.)

LET ~ Not, \neg ; + Or, \lor , \cup , \sqcup , \mid ; - Not Or; & And, \land , \cap , \neg , \circ , \otimes ; \backslash Not And, \uparrow ; > Imply, greater than, \rightarrow , \Rightarrow , \Rightarrow , \succ , \supset , *; < Not Imply, less than, \in , \prec , \subset , \nvdash , \nvDash , \leftarrow , \lesssim ; = Equivalent, \equiv , :=, \Leftrightarrow , \leftrightarrow , \triangleq , \approx , \simeq ; @ Not Equivalent, \neq , \oplus ; % possibility, for one or some, \exists , \exists !, \diamond , M; # necessity, for every or all, \forall , \Box , L; (z=z) T as tautology, \top , ordinal 3; (z@z) F as contradiction, Ø, Null, \bot , zero; (%z>#z) <u>N</u> as non-contingency, \triangle , ordinal 1; (%z<#z) <u>C</u> as contingency, ∇ , ordinal 2; ~(y < x) (x ≤ y), (x ⊆ y), (x ⊆ y); ~(x < y) (x ≥ y); (A=B) (A~B). Notes: for clarity, we usually distribute quantifiers onto each designated variable; and for ordinal arithmetic, the result is implied.

In the free student demo that supports 2-variables, using the prime and double-prime designation increases the number from 2-variables to 6-variables with 16-valued truth tables. The coercion uses the ordinal numbers of 1 as (%p>#p) or (%q>#q) and 2 as (%p<#p) or (%q<#q) as scalars to overload p and q.

p:	p=(p=p);	$\mathbf{F} \mathbf{T} \mathbf{F} \mathbf{T}$			
q:	q=(q=q);	FFTT	FF TT	FF TT	FF TT
p':	p&(%p>#p);	$\mathbf{F}\underline{N}\mathbf{F}\underline{N}$	$\textbf{F}\underline{N}\textbf{F}\underline{N}$	$\textbf{F}\underline{N}\textbf{F}\underline{N}$	$\textbf{F}\underline{N}\textbf{F}\underline{N}$
q':	q&(%q>#q);	FF <u>NN</u>	$\mathbf{FF}\underline{\mathrm{NN}}$	$\mathbf{FF}\underline{\mathrm{NN}}$	$\mathbf{FF}\mathbf{N}\underline{\mathbf{N}}$
p":	p&(%p<#p);	F <u>C</u> F <u>C</u>	$\textbf{F}\underline{C}\textbf{F}\underline{C}$	$\textbf{F}\underline{C}\textbf{F}\underline{C}$	$\textbf{F}\underline{C}\textbf{F}\underline{C}$
q":	q&(%q<#q);	FF <u>CC</u>	FF <u>CC</u>	FF <u>CC</u>	FF <u>CC</u>

This scalability technique expands a product version of n-variables to an over-capacity of n*3-variables. For example, this effectively overloads the 4-variables of the standard edition into 12-variables, and the 11-variables of the extended version into 33-variables. (Similarly, the 20- and 22-variable editions expand to 60- and 66-variables, while still fitting on a 4.7 GB CD-ROM.)

The advantage is that truth table size is unchanged from the initial respective size of 2-, 4-, or 11variables. This also serves to minimize the overall number of 16-valued truth tables as horizontal rows in the larger, many-variabled truth tables.

Scalability in user practice may involve much more typing of input scripts because variable names expand from 1-character for 1-variable into potentially 9-characters for each of n-variables.

However, what is avoided by contrast to the other proof assistants is their building of enormous trees to search for counter-examples as dictated by intuitionistic logic systems using the lambda calculus.

Hence Meth8/VŁ4 can perform magnitudes faster than other assistants. This advance is due to logic table lookup technology (LT²), pronounced LT-squared.