
Three Modern Roles for Logic in AI
Adnan Darwiche

Computer Science Department
University of California, Los Angeles

darwiche@cs.ucla.edu

Figure 1: Tractable Boolean circuits as a basis for computation.

ABSTRACT
We consider three modern roles for logic in artificial intelligence,
which are based on the theory of tractable Boolean circuits: (1) logic
as a basis for computation, (2) logic for learning from a combina-
tion of data and knowledge, and (3) logic for reasoning about the
behavior of machine learning systems.

CCS CONCEPTS
•Computingmethodologies→Learning in probabilistic graph-
icalmodels; Logical and relational learning; •Theory of com-
putation→Automated reasoning;Complexity classes; Prob-
lems, reductions and completeness.

KEYWORDS
tractable circuits, knowledge compilation, explainable AI
ACM Reference Format:
Adnan Darwiche. 2020. Three Modern Roles for Logic in AI. In Proceedings of
the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS’20), June 14–19, 2020, Portland, OR, USA. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3375395.3389131

1 INTRODUCTION
Logic has played a fundamental role in artificial intelligence since
the field was incepted [52]. This role has been mostly in the area
of knowledge representation and reasoning, where logic is used to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PODS’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7108-7/20/06.
https://doi.org/10.1145/3375395.3389131

represent categorical knowledge and then draw conclusions based
on deduction and other more advanced forms of reasoning. Starting
with [59], logic also formed the basis for drawing conclusions from
a mixture of categorial and probabilistic knowledge.

In this paper, we review three modern roles for propositional
logic in artificial intelligence, which are based on the theory of
tractable Boolean circuits. This theory, which matured consider-
ably during the last two decades, is based on Boolean circuits in
Negation Normal Form (NNF) form. NNF circuits are not tractable,
but they become tractable once we impose certain properties on
them [34]. Over the last two decades, this class of circuits has been
studied systematically across three dimensions. The first dimension
concerns a synthesis of NNF circuits that have varying degrees
of tractability (the polytime queries they support). The second di-
mension concerns the relative succinctness of different classes of
tractable NNF circuits (the optimal size circuits can attain). The third
dimension concerns the development of algorithms for compiling
Boolean formula into tractable NNF circuits.

The first modern role for logic we consider is in using tractable
circuits as a basis for computation, where we show how problems
in the complexity classes NP, PP, NPPP and PPPP can be solved by
compiling Boolean formula into corresponding tractable circuits.
These are rich complexity classes, which include some commonly
utilized problems from probabilistic reasoning and machine learn-
ing. We discuss this first role in two steps. In Section 2, we discuss
the prototypical problems that are complete for these complexity
classes, which are all problems on Boolean formula. We also discuss
problems from probabilistic reasoning which are complete for these
classes and their reduction to prototypical problems. In Section 3,
we introduce the theory of tractable circuits with exposure to cir-
cuit types that can be used to efficiently solve problems in these
complexity classes (if compiled successfully).

ar
X

iv
:2

00
4.

08
59

9v
1

 [
cs

.A
I]

 1
8

A
pr

 2
02

0

https://doi.org/10.1145/3375395.3389131
https://doi.org/10.1145/3375395.3389131

The second role for logic we shall consider is in learning from a
combination of data and symbolic knowledge. We show again that
this task can be reduced to a process of compiling, then reasoning
with, tractable circuits. This is discussed in Section 4, where we
also introduce and employ a class of tractable probabilistic circuits
that are based on tractable Boolean circuits.

The third role for logic that we consider is in meta-reasoning,
where we employ it to reason about the behavior of machine learn-
ing systems. In this role, some common machine learning classifiers
are compiled intro tractable circuits that have the same input-output
behavior. Queries pertaining to the explainability and robustness
of decisions can then be answered efficiently, while also allowing
one to formally prove global properties of the underlying machine
learning classifiers. This role is discussed in Section 5.

The paper concludes in Section 6 with a perspective on research
directions that can mostly benefit the roles we shall discuss, and a
perspective on how recent developments in AI have triggered some
transitions that remain widely unnoticed.

2 LOGIC FOR COMPUTATION
The first role we shall consider for logic is that of systematically
solving problems in the complexity classes NP, PP, NPPP and PPPP,
which are related in the following way:

NP ⊆ PP ⊆ NPPP ⊆ PPPP.

The prototypical problems for these complexity classes all corre-
spond to questions on Boolean formula. Moreover, these classes
include problems that are commonly used in the areas of probabilis-
tic reasoning and machine learning. While there is a long tradition
of developing dedicated algorithmswhen tackling problems in these
complexity classes, it is now common to solve such problems by re-
ducing them to their Boolean counterparts, especially for problems
with no tradition of dedicated algorithms.

Let us first consider four common problems from probabilistic
reasoning and machine learning that are complete for the classes
NP, PP, NPPP and PPPP. These problems can all be stated on prob-
ability distributions specified using Bayesian networks [27, 45,
57, 65]. These networks are directed acyclic graphs with nodes
representing (discrete) variables. Figure 2 depicts a Bayesian net-
work with five variables sex, c, t1, t2 and agree. The structure of
a Bayesian network encodes conditional independence relations
among its variables. Each network variable is associated with a set
of distributions that are conditioned on the states of its parents
(not shown in Figure 2). These conditional probabilities and the
conditional independences encoded by the network structure are
satisfied by exactly one probability distribution over the network
variables. There are four question on this distribution whose de-
cision versions are complete for the complexity classes NP, PP,
NPPP and PPPP. Before we discuss these problems, we settle some
notation first.

Upper case letters (e.g., X) will denote variables and lower case
letters (e.g., x) will denote their instantiations. That is, x is a literal
specifying a value for variable X . Bold upper case letters (e.g., X)
will denote sets of variables and bold lower case letters (e.g., x) will
denote their instantiations. We liberally treat an instantiation of a
variable set as conjunction of its corresponding literals.

The four problems we shall consider on a Bayesian network
with variables X and distribution Pr(X) areMPE,MAR,MAP and
SDP. The MPE problem finds an instantiation x of the network
variables that has a maximal probability Pr(x). This is depicted in
Figure 2 which illustrates the result of anMPE computation. The
decision version of this problem, D-MPE, asks whether there is a
variable instantiation whose probability is greater than a given k .
The decision problem D-MPE is complete for the class NP [86].

We next have MAR which computes the probability of some
value x for a variableX . Figure 2 depicts these probabilities for each
variable/value pair. The decision version, D-MAR, asks whether
Pr(x) is greater than a given k . D-MAR is complete for the class
PP [72].MAR is perhaps themost commonly used query on Bayesian
networks and similar probabilistic graphical models.

The next two problems are stated with respect to a subset of
network variables Y ⊆ X. The problem MAP finds an instantiation
y that has a maximal probability. For example, we may wish to find
a most probable instantiation of variables sex and c in Figure 2.
The decision version of this problem, D-MAP, asks whether there
is an instantiation y whose probability is greater than a given k .
D-MAP is complete for the class NPPP [64].1

Suppose now that we are making a decision based on whether
Pr(x) ≥ T for some variable value x and threshold T . The SDP
problem finds the probability that this decision will stick after
having observed the state of variables Y. For example, we may want
to operate on a patient if the probability of condition c in Figure 2
is greater than 90% (the decision is currently negative). The SDP
(same-decision probability) can be used to compute the probability
that this decision will stick after having obtained the results of
tests t1 and t2 [31]. The SDP computes an expectation. Its decision
version,D-SDP, asks whether this probability is greater than a given
k and is complete for the class PPPP [18]. This query was used to
assess the value of information with applications to reasoning about
features in Bayesian network classifiers; see, e.g., [11, 19, 20].

There is a tradition of solving the above problems using dedicated
algorithms; see, e.g., the treatments in [27, 45, 57, 65]. Today these
problems are also being commonly solved using reductions to the
prototypical problems of the corresponding complexity classes,
which are defined over Boolean formula asmentioned earlier. This is
particularly the case for theMAR problem and for distributions that
are specified by representations that go beyond Bayesian networks;
see, e.g., [35, 47, 50]. These reduction-based approaches are the
state of the art on certain problems; for example, when the Bayesian
network has an abundance of 0/1 probabilities or context-specific
independence [32].2

We next discuss the prototypical problems of complexity classes
NP, PP, NPPP and PPPP before we illustrate in Section 2.2 the core
technique used in reductions to these problems. We then follow
in Section 3 by showing how these prototypical problems can be
solved systematically by compiling Boolean formula into Boolean
circuits with varying degrees of tractability.

1Some treatments in the literature useMAP and partialMAP when referring toMPE
and MAP, respectively. Our treatment follows the original terminology used in [65].
2Context-specific independence refers to independence relations among network
variables which are implied by the specific probabilities that quantify the network and,
hence, cannot be detected by only examining the network structure [4].

Figure 2: Left: A Bayesian network with an illustration of the MPE query. The network concerns a medical condition c and
two tests t1 and t2 that can be used to detect the condition. The variable agree indicates whether the two test results are in
agreement. Right: Decision problems on Bayesian networks that are complete for the classes NP, PP, NPPP and PPPP.

Figure 3: A Boolean circuit to illustrate the problems Sat,
MajSat, E-MajSat andMajMajSat.

2.1 Prototypical Problems
NP is the class of decision problems that can be solved by a non-
deterministic polynomial-time Turing machine. PP is the class
of decision problems that can be solved by a non-deterministic
polynomial-time Turing machine, which has more accepting than
rejecting paths. NPPP and PPPP are the corresponding classes as-
suming the corresponding Turing machine has access to a PP oracle.

The prototypical problems for these classes are relatively simple
and are usually defined on Boolean formula in Conjunctive Normal
Form (CNF). We will however illustrate them on Boolean circuits
to make a better connection to the discussion in Section 3.

Consider a Boolean circuit ∆ which has input variables X and
let ∆(x) be the output of this circuit given input x; see Figure 3.
The following decision problems are respectively complete and
prototypical for the complexity classes NP, PP, NPPP and PPPP.

—Sat asks if there is a circuit input x such that ∆(x) = 1.

—MajSat asks if the majority of circuit inputs x are such that
∆(x) = 1.

The next two problems require that we partition the circuit input
variables X into two sets Y and Z.

—E-MajSat asks if there is a circuit input y such that ∆(y, z) = 1
for the majority of circuit inputs z.

—MajMajSat asks if the majority of circuit inputs y are such that
∆(y, z) = 1 for the majority of circuit inputs z.

There are two functional versions ofMajSat which have been
receiving increased attention recently. The first is #Sat which asks
for the number of circuit inputs x such that ∆(x) = 1. Algorithms
that solve this problem are known as model counters.3 The more
general functional version of MajSat and the one typically used
in practical reductions is called weighted model counting, WMC. In
this variant, each circuit input x for variable X is given a weight
W (x). A circuit input x = x1, . . . ,xn is then assigned the weight
W (x) =W (x1) . . .W (xn). Instead of counting the number of inputs
x such that ∆(x) = 1, weighted model counting adds up the weights
of such inputs. That is, WMC computes

∑
xW (x) for all circuit

inputs x such that ∆(x) = 1.

2.2 The Core Reduction
Asmentioned earlier, the decision problems Sat,MajSat, E-MajSat
andMajMajSat on Boolean formula are complete and prototypical
for the complexity classes NP, PP, NPPP and PPPP. The decision
problems D-MPE, D-MAR, D-MAP and D-SDP on Bayesian net-
works are also complete for these complexity classes, respectively.
Practical reductions of the latter problems to the former ones have
been developed over the last two decades; see [27, Chapter 11] for
a detailed treatment. Reductions have also been proposed from
the functional problem MAR to WMC, which are of most practical
significance. We will next discuss the first such reduction [24] since
it is relatively simple yet gives the essence of how one can reduce
problems that appear in probabilistic reasoning and machine learn-
ing to problems on Boolean formula and circuits. In Section 3, we
will further show how these problems (of numeric nature) can be
competitively solved using purely symbolic manipulations.

3Some of the popular or traditional model counters are c2d [26], mini-c2d [63], d4 [46],
cache [73], sharp-sat [88], sdd [12] and dsharp [56]. Many of these systems can
also compute weighted model counts.

Figure 4: A Bayesian network and its distribution.

Consider the Bayesian network in Figure 4, which has three bi-
nary variablesA, B andC . VariableA has one distribution (θA,θ¬A).
Variable B has two distributions, which are conditioned on the state
of its parent A: (θB |A,θ¬B |A) and (θB |¬A,θ¬B |¬A). Variable C also
has two similar distributions: (θC |A,θ¬C |A) and (θC |¬A,θ¬C |¬A).
We will refer to the probabilities θ as network parameters. The
Bayesian network in Figure 4 has ten parameters.

This Bayesian network induces the distribution depicted in Fig-
ure 4, where the probability of each variable instantiation is simply
the product of network parameters that are compatible with that
instantiation; see [27, Chapter 3] for a discussion of the syntax and
semantics of Bayesian networks. We will next show how one can
efficiently construct a Boolean formula ∆ from a Bayesian network,
allowing one to compute marginal probabilities on the Bayesian
network by performing weighted model counting on formula ∆.

The main insight is to introduce a Boolean variable P for each
network parameter θ , which is meant to capture the presence or
absence of parameter θ given an instantiation of the network vari-
ables (i.e., a row of the table in Figure 4). For the network in Fig-
ure 4, this leads to introducing ten Boolean variables: PA, P¬A,
PB |A, . . . , P¬C |¬A. In the second row of Figure 4, which corresponds
to variable instantiation A,B,¬C , parameters θA, θB |A and θ¬C |A
are present and the other seven parameters are absent.

We can capture such presence/absence by adding one expression
to the Boolean formula ∆ for each network parameter. For example,
the parameters associated with variable A introduce the following
expressions: A ⇐⇒ PA and ¬A ⇐⇒ ¬P¬A. Similarly, the
parameters of variable B introduce the expressions A ∧ B ⇐⇒
PB |A, A∧¬B ⇐⇒ P¬B |A, ¬A∧B ⇐⇒ PB |¬A and ¬A∧¬B ⇐⇒
P¬B |¬A. The parameters of variableC introduce similar expressions.

The resulting Boolean formula ∆ will have exactly eight models,
which correspond to the network instantiations. The following is
one of these models which correspond to instantiation A,B,¬C:

A B ¬C PA PB |A P¬C |A
¬P¬A ¬P¬B |A¬PB |¬A¬P¬B |¬A ¬PC |A¬PC |¬A¬P¬C |¬A . (1)

In this model, all parameters associated with instantiation A,B,¬C
appear positively (present) while others appear negatively (absent).

Figure 5: Negation Normal Form (NNF) circuit.

The last step is to assign weights to the values of variables (liter-
als). For network variables, all literals get a weight of 1; for exam-
ple,W (A) = 1 andW (¬A) = 1. The negative literals of parameter
variables also get a weight of 1; for example,W (¬PA) = 1 and
W (¬P¬C |A) = 1. Finally, positive literals of network parameters
get weights equal to these parameters; for example,W (PA) = θA
and W (P¬C |A) = θ¬C |A. The weight of expression (1) is then
θAθB |Aθ¬C |A, which is precisely the probability of network in-
stantiation A,B,¬C . We can now compute the probability of any
Boolean expression α by simply computing the weighted model
count of ∆ ∧ α , which completes the reduction ofMAR toWMC.

Another reduction was proposed in [73] which is suited towards
Bayesian networks that have variables with large cardinalities. More
refined reductions have also been proposed which can capture
certain properties of network parameters such as 0/1 parameters
and context-specific independence (can be critical for the efficient
computation of weighted model counts on the resulting Boolean
formula). A detailed treatment of reduction techniques and various
practical tradeoffs can be found in [10] and [27, Chapter 13].4

3 TRACTABLE CIRCUITS
We now turn to a systematic approach for solving prototypical
problems in the classes NP, PP, NPPP and PPPP, which is based
on compiling Boolean formula into tractable Boolean circuits. The
circuits we shall compile into are in Negation Normal Form (NNF)
as depicted in Figure 5. These circuits have three types of gates:
and-gates, or-gates and inverters, except that inverters can only
feed from the circuit variables. Any circuit with these types of gates
can be converted to an NNF circuit while at most doubling its size.

NNF circuits are not tractable. However, by imposing certain
properties on them we can attain different degrees of tractabil-
ity. The results we shall review next are part of the literature on
knowledge compilation, an area that has been under development
for a few decades, see, e.g., [8, 51, 74], except that it took a dif-
ferent turn since [34]; see also [29]. Earlier work on knowledge
compilation focused on flat NNF circuits, which include subsets
of Conjunctive Normal Form (CNF) and Disjunctive Normal Form
(DNF) such as prime implicates, Horn clauses and prime implicants.
Later, however, the focus shifted towards deep NNF circuits with
no restriction on the number of circuit layers. A comprehensive
treatment was initially given in [34], in which some tractable NNF
circuits were studied across the two dimensions of tractability and
4ace implements some of these reductions: http://reasoning.cs.ucla.edu/ace/

http://reasoning.cs.ucla.edu/ace/

Figure 6: Illustrating the decomposability property of NNF
circuits. The illustration does not tie shared inputs of the
circuit for clarity of exposition.

Figure 7: Illustrating the determinism property of NNF cir-
cuits. Red wires are high and blue ones are low.

succinctness. As we increase the strength of properties imposed on
NNF circuits, their tractability increases by allowing more queries
to be performed in polytime. This, however, typically comes at the
expense of succinctness as the size of circuits gets larger.

One of the simplest properties that turnNNF circuits into tractable
ones is decomposability [22]. According to this property, subcircuits
feeding into an and-gate cannot share circuit variables. Figure 6
illustrates this property by highlighting the two subcircuits (in blue)
feeding into an and-gate. The subcircuit on the left feeds from cir-
cuit variables K and L, while the one on the right feeds from circuit
variables A and P . NNF circuits that satisfy the decomposability
property are known as Decomposable NNF (DNNF) circuits. The
satisfiability of DNNF circuits can be decided in time linear in the
circuit size [22]. Hence, enforcing decomposability is sufficient to
unlock the complexity class NP.

The next property we consider is determinism [23], which applies
to or-gates in anNNF circuit. According to this property, at most one
input for an or-gate must be high under any circuit input. Figure 7
illustrates this property when all circuit variables A,K ,L, P are
high. Examining the or-gates in this circuit, under this circuit input,
one sees that each or-gate has either one high input or no high
inputs. This property corresponds to mutual exclusiveness when
the or-gate is viewed as a disjunction of its inputs. MajSat can be
decided in polytime onNNF circuits that are both decomposable and
deterministic. These circuits are called d-DNNF circuits. If they are
also smooth [25], a property that can be enforced in quadratic time,
d-DNNF circuits allow one to perform weighted model counting

Figure 8: Model counting in linear time on d-DNNF circuits.

Figure 9: Illustrating the sentential decision property of NNF
circuits. Red wires are high and blue ones are low.

(WMC) in linear time.5 The combination of decomposability and
determinism therefore unlocks the complexity class PP.

Smoothness requires that all subcircuits feeding into an or-gate
mention the same circuit variables. For example, in Figure 7, three
subcircuits feed into the top or-gate. Each of these subcircuits men-
tions the same set of circuit variables: A,K ,L, P . Enforcing smooth-
ness can introduce trivial gates into the circuit such as the bottom
three or-gates in Figure 7 and can sometimes be done quite effi-
ciently [85]. An example of model counting using a d-DNNF circuit
is depicted in Figure 8. Every circuit literal, whether a positive
literal such as A or a negative literal such as ¬A, is assigned the
value 1. Constant inputs ⊤ and ⊥ are assigned the values 1 and 0.
We then propagate these numbers upwards, multiplying numbers
assigned to the inputs of an and-gate and summing numbers as-
signed to the inputs of an or-gate. The number we obtain for the
circuit output is the model count. In this example, the circuit has
9 satisfying inputs out of 16 possible ones. To perform weighted
model counting, we simply assign a weight to a literal instead of
the value 1—model counting (#Sat) is a special case of weighted
model counting (WMC) when the weight of each literal is 1.

There are stronger versions of decomposability and determinism
which give rise to additional, tractable NNF circuits. Structured
decomposability is stated with respect to a binary tree whose leaves
are in one-to-one correspondence with the circuit variables [66].
Such a tree is depicted in Figure 10(a) and is known as a vtree.
5One can actually compute all marginal, weighted model counts in linear time [23].

1

2

L K

3

P A

(a) vtree

1

2

3

A B

D

4

C E

(b) constrained CE |ABD

1

A 2

B 3

C D

(c) right-linear

Figure 10: A constrained vtree forX|Y is a vtree over variables
X ∪ Y that contains a node u with following properties: (1) u
can be reached from the vtree root by following right chil-
dren only and (2) the variables of u are precisely X. A right-
linear vtree is one in which the left child of every internal
node is a leaf.

Structured decomposability requires that each and-gate has two
inputs i1 and i2 and correspond to a vtree node v such that the
variables of subcircuits feeding into i1 and i2 are in the left and right
subtrees of vtree nodev . The DNNF circuit in Figure 6 is structured
according to the vtree in Figure 10(a). For example, the and-gate
highlighted in Figure 6 respects vtree node v = 1 in Figure 10(a).
Two structured DNNF circuits can be conjoined in polytime to yield
a structured DNNF, which cannot be done on DNNF circuits under
standard complexity assumptions [34].

Structured decomposability, together with a stronger version of
determinism, yields a class of NNF circuits known as Sentential
Decision Diagrams (SDDs) [28]. To illustrate this stronger version of
determinism, consider Figure 9 and the highlighted circuit fragment.
The fragment corresponds to the Boolean expression (p1 ∧ s1) ∨
(p2 ∧ s2) ∨ (p3 ∧ s3), where each pi is called a prime and each si is
called a sub (primes and subs correspond to subcircuits). Under any
circuit input, precisely one prime will be high. In Figure 9, under the
given circuit input, prime p2 is high while primes p1 and p3 are low.
This means that this circuit fragment, which acts as a multiplexer,
is actually passing the value of sub s2 while suppressing the value
of subs s1 and s3. As a result, the or-gate in this circuit fragment is
guaranteed to be deterministic: at most one input of the or-gate will
be high under any circuit input. SDD circuits result from recursively
applying this multiplexer construct, which implies determinism, to
a given vtree (the SDD circuit in Figure 9 is structured with respect
to the vtree in Figure 10(a)). See [28] for the formal definitions of
SDD circuits and the underlying stronger version of determinism.6

SDDs support polytime conjunction and disjunction. That is,
given two SDDs α and β , there is a polytime algorithm to construct
another SDD γ that represents α ∧ β or α ∨ β .7 SDDs can also be
negated in linear time. The size of an SDD can be very sensitive to
the underlying vtree, ranging from linear to exponential in some

6The vtree of an SDD is ordered: the distinction between left and right children matters.
7If s and t are the sizes of input SDDs, then conjoining or disjoining the SDDs takes
O (s · t) time, although the resulting SDD may not be compressed [89]. Compression
is a property that ensures the canonicity of an SDD for a given vtree [28].

Figure 11: OBDD fragment and corresponding NNF circuit.

cases [12, 93]. Recall that E-MajSat and MajMajSat, the proto-
typical problems for the complexity classes NPPP and PPPP, are
stated with respect to a split of variables in the Boolean forumla.
If the vtree is constrained according to this split, then these prob-
lems can be solved in linear time on the corresponding SDD [61].8
Figure 10(b) illustrates the concept of a constrained vtree.

SDDs subsume the well known Ordered Binary Decision Di-
agrams (OBDDs) and are exponentially more succinct than OB-
DDs [5]; see also [3]. An OBDD is an ordered decision graph: the
variables on every path from the root to a leaf (0 or 1) respect a
given variable order [7, 55, 90]; see Figure 25. An OBDD node and
its corresponding NNF fragment are depicted in Figure 11. As the
figure shows, this fragment is also a multiplexer as in SDDs, except
that we have precisely two primes which correspond to a variable
and its negation. When an SDD is structured with respect to a
right-linear vtree, the result is an OBDD; see Figure 10(c). SDDs
and OBDDs can also be contrasted based on how they make deci-
sions. An OBDD makes a decision based on the state of a binary
variable and hence its decisions are always binary. An SDD makes
decisions based on sentences (primes) so the corresponding number
of decisions (subs) is not restricted to being binary.

The compilation of Boolean formula into tractable NNF circuits
is done by systems known as knowledge compilers. Examples include
c2d9 [26], cudd10, mini-c2d11 [62, 63], d412 [46], dsharp13 [56]
and the sdd library [12].14 See also http://beyondnp.org/pages/
solvers/knowledge-compilers/. A connection was made between
model counters and knowledge compilers in [38], showing how
model counters can be turned into knowledge compilers by keeping
a trace of the exhaustive search they conduct on a Boolean formula.
The dsharp compiler for d-DNNF [56] was the result of keeping a
trace of the sharp-sat model counter [88]. While dedicated SAT
solvers remain the state of the art for solving Sat, the state of the
art for (weighted) model counting are either knowledge compilers
or model counters whose traces are (subsets) of d-DNNF circuits.
8A weaker condition exists for the class NPPP but is stated on another circuit type
known as Decision-DNNF [38], which we did not introduce in this paper; see [37, 67].
9http://reasoning.cs.ucla.edu/c2d
10https://davidkebo.com/cudd
11http://reasoning.cs.ucla.edu/minic2d
12http://www.cril.univ-artois.fr/kc/d4
13https://bitbucket.org/haz/dsharp
14http://reasoning.cs.ucla.edu/sdd (open source). A Pythonwrapper of the sdd library is
available at https://github.com/wannesm/PySDD and an NNF-to-SDD circuit compiler,
based on PySDD, is available open-source at https://github.com/art-ai/nnf2sdd

http://beyondnp.org/pages/solvers/knowledge-compilers/
http://beyondnp.org/pages/solvers/knowledge-compilers/
http://reasoning.cs.ucla.edu/c2d
http://reasoning.cs.ucla.edu/minic2d
http://www.cril.univ-artois.fr/kc/d4
https://bitbucket.org/haz/dsharp
http://reasoning.cs.ucla.edu/sdd
https://github.com/wannesm/PySDD
https://github.com/art-ai/nnf2sdd

Figure 12: A partial taxonomy of NNF circuits.

Figure 13: A probabilistic SDD circuit. The probabilities an-
notating inputs of or-gate are known as PSDD parameters.

Figure 12 depicts a partial taxonomy of NNF circuits, most of
which are tractable. A more comprehensive taxonomy was studied
in [34] under the term knowledge compilation map. A recent update
on this map can be found in [87], which includes recent results on
the exponential separations between tractable NNF circuits.

Tractable NNF circuits were connected to, utilized by, and also
benefited from other areas of computer science. This includes data-
base theory, where connections were made to the notions of prove-
nance and lineage, e.g., [1, 42]. It also includes communication com-
plexity, which led to sharper separation results between tractable
NNF circuits, e.g., [2, 6]. Further applications to probabilistic rea-
soning and machine learning include the utilization of tractable
circuits for uniform sampling [75] and improving deep learning
through the injection of symbolic knowledge; see, e.g., [91, 92].

4 LOGIC FOR LEARNING FROM DATA AND
KNOWLEDGE

The second role we consider for logic is in learning distributions
from a combination of data and symbolic knowledge. This role
has two dimensions: representational and computational. On the
representational side, we use logic to eliminate situations that are
impossible according to symbolic knowledge, which can reduce
the amount of needed data and increase the robustness of learned

Figure 14: The compositional distributions of a PSDD circuit.

representations. On the computational side, we use logic to factor
the space of possible situations into a tractable NNF circuit so we
can learn a distribution over the space and reason with it efficiently.

Consider the SDD circuit in Figure 13 which we showed earlier
to have 9 satisfying inputs out of 16. Suppose that our goal is to
induce a distribution on this space of satisfying circuit inputs. We
can do this by simply assigning a distribution to each or-gate in the
circuit as shown in Figure 13: each input of an or-gate is assigned
a probability while ensuring that the probabilities assigned to the
inputs add up to 1. These local distributions are independent of one
another. Yet, they are guaranteed to induce a normalized distribu-
tion over the space of satisfying circuit inputs. The resulting circuit
is known as a probabilistic SDD circuit or a PSDD for short [44].

Given a PSDD with variables X, the distribution Pr(X) it induces
can be obtained as follows. To compute the probability of input
x we perform a bottom-up pass on the circuit while assigning a
value to each literal and gate output. The value of a literal is just
its value in input x (1 or 0). The value of an and-gate is the product
of values assigned to its inputs. The value of an or-gate is the
weighted sum of values assigned to its inputs (the weights are the
probabilities annotating the gate inputs). The value assigned to the
circuit output will then be the probability Pr(x). Figure 14 depicts
the result of applying this evaluation process. As the figure shows,
the probabilities of satisfying circuit inputs add up to 1. Moreover,
the probability of each unsatisfying input is 0. The PSDD has a
compositional semantics: each or-gate induces a distribution over
the variables in the subcircuit rooted at the gate. Figure 14 depicts
the distribution induced by an or-gate over variables P and A.

To see how PSDDs can be used to learn from a combination of
data and symbolic knowledge, consider the example in Figure 15
from [44]. What we have here is a dataset that captures student en-
rollments in four courses offered by a computer science department.
Each row in the dataset represents the number of students who
have enrolled in the corresponding courses. Our goal is to learn a
distribution from this data and the knowledge we have about the
course prerequisites and requirements that is shown in Figure 15.

This symbolic knowledge can be captured by the propositional
statement (P ∨ L) ∧ (A ⇒ P) ∧ (K ⇒ (A ∨ L)). The first step is to
compile this knowledge into an SDD circuit. The SDD circuit in

Figure 15: Learning from data and knowledge.

Figure 13 is actually the result of this compilation (using the vtree
in Figure 10(a)). This SDD circuit will evaluate to 1 for any course
combination that is allowed by the prerequisites and requirements,
otherwise it will evaluate to 0. Our next step is to induce a distribu-
tion on the satisfying inputs of this course, that is, the valid course
combinations. This can be done by learning a distribution for each
or-gate in the SDD circuit, to yield a PSDD circuit.

The data in Figure 15 is complete in the sense that each row
specifies precisely whether a course was enrolled into or not by
the corresponding number of students. An incomplete dataset in
this case would, for example, specify that 30 students took logic,
AI and probability, without specifying the status of enrollment in
knowledge representation. If the data is complete, the maximum-
likelihood parameters of a PSDD can be learned in time linear in
the PSDD size. All we need to do is evaluate the SDD circuit for
each example in the dataset, while keeping track of how many
times a wire become high; see [44] for details. The parameters
shown in Figure 13 were actually learned using this procedure so
the distribution they induce is the one guaranteed to maximize the
probability of given data (under the chosen vtree).15

Both MPE and MAR queries, discussed in Section 2, can be com-
puted in time linear in the PSDD size [44]. Hence, not only can we
estimate parameters efficiently under complete data, but we can
also reason efficiently with the learned distribution. Finally, the
PSDD is a complete and canonical representation of probability dis-
tributions. That is, PSDDs can represent any distribution, and there
is a unique PSDD for that distribution (under some conditions) [44].

PSDD circuits are based on the stronger versions of decompos-
ability and determinism that underly SDD circuits. Probabilistic
circuits that are based on the standard properties of decompos-
ability and determinism are called ACs (Arithmetic Circuits) [25].
Those based on decomposability only were introduced about ten
years later and are known as SPNs (Sum-Product Networks) [68].
A treatment on the relative tractability and succinctness of these
three circuit types can be found in [13, 76].

4.1 Learning With Combinatorial Spaces
We now discuss another type of symbolic knowledge that arises
when learning distributions over combinatorial objects.

Consider Figures 16 and 17 which depicts two common types
of combinatorial objects: routes and total orderings. In the case of

15See https://github.com/art-ai/pypsdd for a package that learns PSDDs and http:
//reasoning.cs.ucla.edu/psdd/ for additional tools.

Figure 16: Encoding routes using SDDs. The red variable as-
signment (left) encoudes a valid route. The orange variable
assignment (right) does not encode a valid route as the edges
are disconnected.

Figure 17: Encoding rankings (total orderings) using SDDs.
The red variable assignment (left) encodes a valid ranking.
The orange variable assignment (right) does not encode a
valid ranking (e.g., item 2 appears in two positions).

routes, we have amap (in this case a grid for simplicity), a source and
a destination. Our goal is to learn a distribution over the possible
routes from the source to the destination given a dataset of routes, as
discussed in [16]. In the case of total orderings (rankings), we haven
items and we wish to learn a distribution over the possible rankings
of these items, again from a dataset of rankings, as discussed in [17].

It is not uncommon to develop dedicated learning and inference
algorithms when dealing with combinatorial objects. For example,
a number of dedicated frameworks exist for learning and inference
with distributions over rankings; see, e.g., [36, 49, 54]. What we will
do, however, is show how learning and inferencewith combinatorial
objects including rankings can be handled systematically using
tractable circuits as proposed in [14, 16, 17, 77, 79].

Consider the grid in Figure 16 (more generally, a map is modeled
using an undirected graph). We can represent each edge i in the map
by a Boolean variable Ei and each route as a variable assignment
that sets only its corresponding edge variables to true. While every

https://github.com/art-ai/pypsdd
http://reasoning.cs.ucla.edu/psdd/
http://reasoning.cs.ucla.edu/psdd/

route can be represented by a variable assignment (e.g., the red
route on the left of Figure 16), some assignments will correspond
to invalid routes (e.g., the orange one on the right of Figure 16).
One can construct a Boolean formula over edge variables whose
satisfying assignments correspond precisely to valid (connected)
routes and include additional constraints to keep only, for example,
simple routes with no cycles; see [16, 60] for how this can be done.

After capturing the space of valid routes using an appropriate
Boolean formula, we compile it to an SDD circuit. Circuit inputs
that satisfy the SDD will then correspond to the space of valid
routes; see Figure 16. A complete dataset in this case will be a multi-
set of variable assignments, each corresponding to a taken route
(obtained, for example, from GPS data). We can then learn PSDD
parameters from this dataset and compiled SDD as done in [14, 16].

Figure 17 contains another example of applying this approach to
learning distributions over rankings with n items. In this case, we
usen2 Boolean variablesAi j to encode a ranking, by setting variable
Ai j to true iff item i is in position j . One can also construct a Boolean
formula whose satisfying assignments correspond precisely to valid
rankings. Compiling the formula to an SDD and then learning PSDD
parameters from data allow us to learn a distribution over rankings
that can be reasoned about efficiently. This proposal for rankings
(and partial rankings, including tiers) was extended in [17], showing
competitive results with some dedicated approaches for learning
distributions over rankings. It also included an account for learning
PSDD parameters from incomplete data and from structured data
in which examples are expressed using arbitrary Boolean formula
instead of just variable assignments.

A combinatorial probability space is a special case of the more
general structured probability space, which is specified by a Boolean
formula (i.e., the satisfying assignments need not correspond to
combinatorial objects). The contrast is a standard probability space
that is defined over all instantiations of a set of variables. We will
use the term structured instead of combinatorial in the next section,
as adopted in earlier works [14, 16, 17, 79], even as we continue to
give examples from combinatorial spaces.

4.2 Conditional Spaces
We now turn to the notion of a conditional space: a structured space
that is determined by the state of another space. The interest is in
learning and reasoning with distributions over conditional spaces.
This is a fundamental notion that arises in the context of causal
probabilistic models, which require such conditional distributions
when specifying probabilistic relationships between causes and
effects. More generally, it arises in directed probabilistic graphical
models, in which the graph specifies conditional independence
relationships even though it may not have a causal interpretation.

A concrete example comes from the notion of a hierarchical map,
which was introduced to better scale the compilation of maps into
tractable circuits [14, 79]. Figure 18 depicts an example of a three-
level hierarchical map with a number of regions. It is a simplified
map of neighborhoods in the Los Angeles Westside, where edges
represent streets and nodes represent intersections. Nodes of the
LA Westside have been partitioned into four sub-regions: Santa
Monica, Westwood, Venice and Culver City. Westwood is further
partitioned into two sub-regions: UCLA and Westwood Village.

Figure 18: A three-level hierarchical map.

Figure 19: Specifying conditional independence relation-
ships using a directed acyclic graph. The relationship be-
tween a node and its parent requires a conditional space.

The main intuition behind a hierarchical map is that navigation
behavior in a region R can become independent of navigation be-
havior in other regions, once we know how region R was entered
and exited. These independence relations are specified using a di-
rected acyclic graph as shown in Figure 19 (called a cluster DAG
in [78]). Consider the root node ‘Westside’ which contains vari-
ables e1, . . . , e6. These variables represent the roads used to cross
between the four (immediate) sub-regions of the Westside. Once we
know the state of these variables, we also know how each of these
regions may have been entered and exited so their inner navigation
behaviors become independent of one another.

Let us now consider Figure 20 to see how the notion of a condi-
tional space arises in this context. The figure highlights Culver City
with streets e1, . . . , e6: the ones for crossing between regions in
the Westside. What we need is a structured space over inner roads
c1, . . . , c6 of Culver City that specifies valid routes inside the city.
But this structured space depends on how we enter and exit the
city, which is specified by another space over crossings e1, . . . , e6.
That is, the structured space over Culver City roads is conditional
on the space over Westside crossings.

The left of Figure 20 expands this example by illustrating the
structured space over c1, . . . , c6 assuming we entered/existed Cul-
ver city using crossings e3 and e4 (highlighted in red). The illustra-
tion shows some variable assignments that belong to this structured

Figure 20: Illustrating the notion of a conditional space. The
valid routes insideCulverCity are a function of theWestside
crossings we use to enter and exit the city.

Figure 21: A conditional PSDD and the two conditional dis-
tributions it represents.

space (valid) and some that do not (invalid). If we were to enter/exit
Culver city using, say, crossings e3 and e5, then the structured space
over c1, . . . , c6 would be different.

Figure 21 depicts a new class of tractable circuits, called condi-
tional PSDDs, which can be used to induce distributions on con-
ditional spaces [78]. In this example, we have a structured space
over variables X ,Y that is conditioned on a space over variables
A,B. The conditional PSDD has two components: an SDD circuit
(highlighted in yellow) and a multi-rooted PSDD (highlighted in
green). The conditional distributions specified by this conditional
PSDD are shown on the right of Figure 21. There are two of them:
one for state a0,b0 of variables A,B and another for the remaining
states. The structured space of the first distribution corresponds to
the Boolean formula x0 ∨ y0. The structured space for the second
distribution corresponds to x1 ∨ y1.

The semantics of a conditional PSDD is relatively simple and
illustrated in Figure 24. Consider state a0,b0 of variables A,B (right
of Figure 24). Evaluating the SDD component at this input leads to
selecting the PSDD rooted at p2, which generates the distribution
conditioned on this state. Evaluating the SDD at any other state
of variables A,B leads to selecting the PSDD rooted at p1, which
generates the distribution for these states (left of Figure 24).

Figure 22: A map of downtown San Fransisco that was com-
piled into SDD/PSDD circuits.

Figure 23: Reasoning about machine learning systems.

When a cluster DAG such as the one in Figure 19 is quantified us-
ing conditional PSDDs, the result is known as a structured Bayesian
network (SBN) [78]. The conditional PSDDs of an SBN can be multi-
plied together to yield a classical PSDD over network variables [76].
To give a sense of practical complexity, the map of San Francisco
depicted in Figure 22 has 10, 500 edges. A corresponding hierarchi-
cal map used in [79] was compiled into a PSDD with size of about
8.9M (edges). The parameters of this SDD were learned from routes
collected from GPS data and the induced distribution was used for
several reasoning and classification tasks [79].16

5 LOGIC FOR META REASONING
We now turn to a most recent role for logic in AI: Reasoning about
the behavior of machine learning systems.

Consider Figure 23 which depicts how most machine learning
systems are constructed today. We have a labeled dataset that is
used to learn a classifier, which is commonly a neural network, a
Bayesian network classifier or a random forest. These classifiers are
effectively functions that map instances to decisions. For example,
an instance could be a loan application and the decision is whether
to approve or decline the loan. There is now considerable interest in
reasoning about the behavior of such systems. Explaining decisions

16See https://github.com/hahaXD/hierarchical_map_compiler for a package that com-
piles route constraints into an SDD.

https://github.com/hahaXD/hierarchical_map_compiler

Figure 24: Selecting conditional distributions using the conditional PSDD of Figure 21.

is at the forefront of current interests: Why did you decline Maya’s
application? Quantifying the robustness of these decisions is also
attracting a lot of attention: Would reversing the decision on Maya
require many changes to her application? In some domains, one
expects the learned systems to satisfy certain properties, like mono-
tonicity, and there is again an interest in proving such properties
formally. For example, can we guarantee that a loan applicant will
be approved when the only difference they have with another ap-
proved applicant is their higher income? These interests, however,
are challenged by the numeric nature of machine learning systems
and the fact that these systems are often model-free, e.g., neural
networks, so they appear as black boxes that are hard to analyze.

The third role for logic we discuss next rests on the following
observation: Even though these machine learning classifiers are
learned from data and numeric in nature, they often implement dis-
crete decision functions. One can therefore extract these decisions
functions and represent them symbolically using tractable circuits.
The outcome of this process is a circuit that precisely captures the
input-output behavior of the machine learning system, which can
then be used to reason about its behavior. This includes explaining
decisions, measuring robustness and formally proving properties.

Consider the example in Figure 25 which pertains to one of
the simplest machine learning systems: a Naive Bayes classifier.
We have class variable P and three features B, U and S . Given an
instance (patient) and their test results b, u and s , this classifier ren-
ders a decision by computing the posterior probability Pr(p |b,u, s)
and then checking whether it passes a given threshold T . If it does,
we declare a positive decision; otherwise, a negative decision.

While this classifier is numeric and its decisions are based on
probabilistic reasoning, it does induce a discrete decision function.
In fact, the function is Boolean in this case as it maps the Boolean
variables B, U and S , which correspond to test results, into a bi-
nary decision. This observation was originally made in [9], which
proposed the compilation of Naive Bayes classifiers into symbolic

Figure 25: Compiling aNaive Bayes classifier into a symbolic
decision graph (a tractable NNF circuit).

decision graphs as shown in Figure 25. For every instance, the deci-
sion made by the (probabilistic) naive Bayes classifier is guaranteed
to be the same as the one made by the (symbolic) decision graph.

The compilation algorithm of [9] generates Ordered Decision
Diagrams (ODDs), which correspond to Ordered Binary Decision
Diagrams (OBDDs) when the features are binary. Recall from Fig-
ure 11 that an OBDD corresponds to a tractable NNF circuit (once
one adjusts for notation). Hence, the proposal in [9] amounted to
compiling a Naive Bayes classifier into a tractable NNF circuit that
precisely captures its input-output behavior. This compilation algo-
rithm was recently extended to Bayesian network classifiers with
tree structures [82] and later to Bayesian network classifiers with
arbitrary structures [83].17 Certain classes of neural networks can
also be compiled into tractable circuits, which include SDD circuits
as shown in [15, 80, 84].

While Bayesian and neural networks are numeric in nature, ran-
dom forests are not (at least the ones with majority voting). Hence,
random forests represent less of a challenge for this role of logic as
we can easily encode the input-output behavior of a random forest
using a Boolean formula. We first encode each decision tree into a
Boolean formula, which is straightforward even in the presence of

17See http://reasoning.cs.ucla.edu/xai/ for related software.

http://reasoning.cs.ucla.edu/xai/

continuous variables (the learning algorithm discretizes the vari-
ables). We then combine these formulas using a majority circuit.
The remaining challenge is purely computational as we now need
to compile the Boolean formula into a suitable tractable circuit.

We next turn to reasoning about the behavior of classifiers, as-
suming they have been compiled into tractable circuits.

5.1 Explaining Decisions
Consider the classifier in Figure 25 and Susan who tested positive
for the blood, urine and scanning tests. The classifier says that
Susan is pregnant and we need to know why.

The first notion to address this question is the PI-explanation
introduced in [82] and termed sufficient reason in [33] (to make
distinctions with other types of reasons). A sufficient reason is a
minimal set of instance characteristics that is guaranteed to trigger
the decision, regardless of what the other characteristics might be.
In this example, Susan would be classified as pregnant as long as
she tests positive for the scanning test; that is, regardless of what
the other two test results are. Hence, S =+ve is a sufficient reason
for the decision. There is only one other sufficient reason for this
decision: B=+ve, U =+ve . Combining the two sufficient reasons
we get S =+ve ∨ (B=+ve, U =+ve), which is called the complete
reason behind the decision [33] or simply the decision’s reason.

The reason behind a decision provides the most general abstrac-
tion of an instance that can trigger the decision. Any instance
property that can trigger the decision is captured by the reason.
The reason behind a decision can also be used to decide whether
the decision is biased, and in some cases whether the classifier itself
is biased even when the considered decision is not. We will provide
concrete examples later but we first need to establish the semantics
of sufficient and complete reasons.

Figure 26: Prime implicants of Boolean functions.

These notions are based on prime implicants of Boolean functions,
which have been studied extensively in the literature [21, 53, 69, 70].
Consider the Boolean function f in Figure 26 over variables A, B
and C . A prime implicant of the function is a minimal setting of its
variables that causes the function to trigger. This function has three
prime implicants as shown in the figure: AB, AC and BC . Consider
now the instance ABC leading to a positive decision f (ABC) = 1.
The sufficient reasons for this decision are the prime implicants
of function f that are compatible with the instance: AB and BC .
Explaining negative decisions requires working with the function’s
complement f . Consider instance ABC , which sets the function
to 0. The complement f has three prime implicants AC , BC and
AB. Only one of these is compatible with the instance, AC , so it is
the only sufficient reason for the decision on this instance.18

18The popular Anchor [71] system can be viewed as computing approximations of
sufficient reasons. The quality of these approximations has been evaluated on some

Sufficient reasons can be used to reason about decision and
classifier bias, which are defined in the context of protected features.
A decision on an instance is biased iff it would be different had
we only changed protected features in the instance. A classifier is
biased iff it makes at least one biased decision. If every sufficient
reason of a decision contains at least one protected feature, the
decision is guaranteed to be biased [33]. If some but not all sufficient
reasons contain protected features, the decision is not biased but
the classifier is guaranteed to be biased (that is, the classifier will
make a biased decision on some other instance).

Consider Figure 27 which depicts an admissions classifier in the
form of an OBDD (the classifier could have been compiled from
a Bayesian network, a neural network or a random forest). The
classifier has five features, one of them is protected: whether the
applicant comes from a rich hometown (R). Robin is admitted by
the classifier and the decision has five sufficient reasons, depicted
in Figure 27. Three of these sufficient reasons contain the protected
feature R and two do not. Hence, the decision on Robin is not biased,
but the classifier is biased. Consider now Scott who is also admitted.
The decision on Scott has four sufficient reasons and all of them
contain a protected feature. Hence, the decision on Scott is biased:
it will be reversed if Scott were not to come from a rich hometown.

A decision may have an exponential number of reasons, which
makes it impractical to analyze decisions by enumerating sufficient
reasons. One can use the complete reason behind a decision for this
purpose as it contains all the needed information. Moreover, if the
classifier is represented by an appropriate tractable circuit, then the
complete reason behind a decision can be extracted from the classi-
fier in linear time, in the form of another tractable circuit called the
reason circuit [33]. Figure 27 depicts the reason circuits for decisions
on Robin and Scott. Reason circuits get their tractability from being
monotone, allowing one to efficiently reason about decisions in-
cluding their bias. One can also reason about counterfactuals once
the reason circuit for a decision is constructed. For example, one
can efficiently evaluate statements such as: The decision on April
would stick even if she were not to have work experience because
she passed the entrance exam; see [33] for details.

We conclude this section by pointing to an example from [80],
which compiled a Convolutional Neural Network (CNN) that clas-
sifies digits 0 and 1 in 16 × 16 images. The CNN had an accuracy of
98.74%. Figure 28 depicts an image that was classified correctly as
containing digit 0. One of the sufficient reasons for this decision is
also shown in the figure, which includes only 3 pixels out of 256. If
these three pixels are kept white, the CNN will classify the image
as containing digit 0 regardless of the state of other pixels.

5.2 Robustness and Formal Properties
One can define both decision and model robustness. The robustness
of a decision is defined as the smallest number of features that need
to flip before the decision flips [81]. Model robustness is defined as

datasets and corresponding classifiers in [41], where an approximation is called opti-
mistic if it is a strict subset of a sufficient reason and pessimistic if it is a strict superset
of a sufficient reason. Anchor computes approximate explanations without having to
abstract the machine learning system into a symbolic representation. Another set of
approaches abstract the behavior into symbolic form and compute sufficient reasons or
other verification queries exactly, but using SAT-based techniques instead of compiling
into tractable circuits; see, e.g., [39, 40, 43, 48, 58, 82, 84].

Figure 27: Explaining admission decisions of an OBDD classifier (left). The reason circuit represents the complete reason
behind a decision (a disjunction of all its sufficient reasons). The reason circuit is monotone and hence tractable.

Figure 28: Explaining the decisions of a neural network.

Figure 29: Robustness level vs. proportion of instances for
two neural networkswith similar accuracies. Net 1 is plotted
in blue (right) and Net 2 in red (left).

the average decision robustness (over all possible instances) [80].
Decision robustness is coNP-complete and model robustness is #P-
hard. If the decision function is represented using a tractable circuit
of a suitable type, which includes OBDDs, then decision robustness
can be computed in time linear in the circuit size [81]. Model ro-
bustness can be computed using a sequence of polytime operations
but the total complexity is not guaranteed to be in polytime [80].

Figure 29 depicts an example of robustness analysis for twoCNNs
that classify digits 1 and 2 in 16 × 16 images [80]. The two CNNs

have the same architectures but were trained using two different
parameter seeds, leading to testing accuracies of 98.18 (Net 1) and
96.93 (Net 2). The CNNs were compiled into SDD circuits where
the SDD of Net 1 had 3, 653 edges and the one for Net 2 had only
440 edges. The two CNNs are similar in terms of accuracy (differing
by only 1.25%) but are very different when compared by robustness.
For example, Net 1 attained a model robustness of 11.77 but Net 2
obtained a robustness of only 3.62. For Net 2, this means that on
average, 3.62 pixel flips are needed to flip a digit-1 classification to
digit-2, or vice versa. Moreover, the maximum robustness of Net 1
was 27, while that of Net 2 was only 13. For Net 1, this means that
there is an instance that would not flip classification unless one
is allowed to flip at least 27 of its pixels. For Net 2, it means the
decision on any instance can be flipped if one is allowed to flip 13
or more pixels. Note that Figure 29 reports the robustness of 2256
instances for each CNN, which is made possible by having captured
the input-output behavior of these CNNs using tractable circuits.

In the process of compiling a neural network into a tractable
circuit as proposed in [15, 80], one also compiles each neuron into its
own tractable circuit. This allows one to interpret the functionality
of each neuron by analyzing the corresponding tractable circuit,
which is a function of the network’s inputs. For example, if the
tractable circuit supports model counting in polytime, then one
can efficiently answer questions such as: Of all network inputs that
cause a neuron to fire, what proportion of them set input Xi to 1?
This is just one mode of analysis that can be performed efficiently
once the input-output behavior of a machine learning system is
compiled into a suitable tractable circuit. Other examples include
monotonicity analysis, which is discussed in [81].

6 CONCLUSION AND OUTLOOK
We reviewed three modern roles for logic in artificial intelligence:
logic as a basis for computation, logic for learning from a combi-
nation of data and knowledge, and logic for reasoning about the
behavior of machine learning systems.

Everything we discussed was contained within the realm of
propositional logic and based on the theory of tractable Boolean
circuits. The essence of these roles is based on an ability to compile
Boolean formula into Boolean circuits with appropriate properties.
As such, the bottleneck for advancing these roles further—at least

as far as enabling more scalable applications—boils down to the
need for improving the effectiveness of knowledge compilers (i.e.,
algorithms that enforce certain properties on NNF circuits). The
current work on identifying (more) tractable circuits and further
studying their properties appears to be ahead of work on improv-
ing compilation algorithms. This imbalance needs to be addressed,
perhaps by encouraging more open source releases of knowledge
compilers and the nurturing of regular competitions as has been
done successfully by the SAT community.19

McCarthy’s proposal for using logic as the basis for knowledge
representation and reasoning had an overwhelming impact [52].
But it also entrenched into our thinking a role for logic that has
now been surpassed, while continuing to be the dominant role
associated with logic in textbooks on artificial intelligence. Given
the brittleness of purely symbolic representations in key applica-
tions, and the dominance today of learned, numeric representations,
this entrenched association has pushed logic to a lower priority in
artificial intelligence research than what can be rationally justified.

Another major (and more recent) transition relates to the emer-
gence of machine learning “boxes,” which have expanded the scope
and utility of symbolic representations and reasoning. While sym-
bolic representations may be too brittle to fully represent certain
aspects of the real world, they are provably sufficient for represent-
ing the behavior of certain machine learning boxes (and exactly
when the box’s inputs/outputs are discrete). This has created a new
role for logic in “reasoning about what was learned” in contrast to
the older and entrenched role of reasoning about the real world.

The latter transition is more significant than may appear on
first sight. For example, the behavior of a machine learning box is
driven by the box’s internal causal mechanisms and can therefore be
subjected to causal reasoning and analysis—evenwhen the box itself
was built using ad hoc techniques and may have therefore missed
on capturing causality of the real world. Machine learning boxes,
called “The AI” by many today, are now additional inhabitants of
the real world. As such, they should be viewed as a new “subject” of
logical and causal reasoning perhaps more so than their competitor.

These modern transitions—and the implied new modes of inter-
play between logic, probabilistic reasoning and machine learning—
need to be paralleled by a transition in AI education that breaks
away from the older models of viewing these areas as being either
in competition or merely in modular harmony. What we need here
is not only integration of these methods but also their fusion. Quot-
ing [30]: “We need a new generation of AI researchers who are
well versed in and appreciate classical AI, machine learning, and
computer science more broadly while also being informed about AI
history.” Cultivating such a generation of AI researchers is another
bottleneck to further advance the modern roles of logic in AI and
to further advance the field of AI as a whole.

ACKNOWLEDGMENTS
I wish to thank Arthur Choi and Jason Shen for their valuable
feedback and help with some of the figures. This work has been
partially supported by grants from NSF IIS-1910317, ONR N00014-
18-1-2561, DARPA N66001-17-2-4032 and a gift from JP Morgan.

19www.satlive.org

REFERENCES
[1] Antoine Amarilli. 2019. Provenance in Databases and Links to Knowledge Com-

pilation. In KOCOON workshop on knowledge compilation. http://kocoon.gforge.
inria.fr/slides/amarilli.pdf.

[2] Paul Beame and Vincent Liew. 2015. New Limits for Knowledge Compilation
and Applications to Exact Model Counting. In UAI. AUAI Press, 131–140.

[3] Beate Bollig and Matthias Buttkus. 2019. On the Relative Succinctness of Senten-
tial Decision Diagrams. Theory Comput. Syst. 63, 6 (2019), 1250–1277.

[4] Craig Boutilier, Nir Friedman, Moisés Goldszmidt, and Daphne Koller. 1996.
Context-Specific Independence in Bayesian Networks. In UAI. 115–123.

[5] Simone Bova. 2016. SDDs Are Exponentially More Succinct than OBDDs. In
AAAI. 929–935.

[6] Simone Bova, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky. 2016.
Knowledge Compilation Meets Communication Complexity. In IJCAI. IJ-
CAI/AAAI Press, 1008–1014.

[7] Randal E. Bryant. 1986. Graph-Based Algorithms for Boolean Function Manipu-
lation. IEEE Trans. Computers 35, 8 (1986), 677–691.

[8] Marco Cadoli and Francesco M. Donini. 1997. A Survey on Knowledge Compila-
tion. AI Commun. 10, 3,4 (1997), 137–150.

[9] Hei Chan and Adnan Darwiche. 2003. Reasoning About Bayesian Network
Classifiers. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial
Intelligence (UAI). 107–115.

[10] Mark Chavira and Adnan Darwiche. 2008. On Probabilistic Inference byWeighted
Model Counting. Artificial Intelligence 172, 6–7 (April 2008), 772–799.

[11] Suming Jeremiah Chen, Arthur Choi, and Adnan Darwiche. 2015. Value of
Information Based on Decision Robustness. In AAAI. AAAI Press, 3503–3510.

[12] Arthur Choi and Adnan Darwiche. 2013. Dynamic Minimization of Sentential
Decision Diagrams. In Proceedings of the 27th Conference on Artificial Intelligence
(AAAI).

[13] Arthur Choi and Adnan Darwiche. 2017. On Relaxing Determinism in Arithmetic
Circuits. In Proceedings of the Thirty-Fourth International Conference on Machine
Learning (ICML). 825–833.

[14] Arthur Choi, Yujia Shen, and Adnan Darwiche. 2017. Tractability in Structured
Probability Spaces. In NIPS.

[15] Arthur Choi, Weijia Shi, Andy Shih, and Adnan Darwiche. 2019. Compiling
Neural Networks into Tractable Boolean Circuits. In AAAI Spring Symposium on
Verification of Neural Networks (VNN).

[16] Arthur Choi, Nazgol Tavabi, and Adnan Darwiche. 2016. Structured Features in
Naive Bayes Classification. In AAAI.

[17] Arthur Choi, Guy Van den Broeck, and Adnan Darwiche. 2015. Tractable Learn-
ing for Structured Probability Spaces: A Case Study in Learning Preference
Distributions. In IJCAI.

[18] Arthur Choi, Yexiang Xue, and AdnanDarwiche. 2012. Same-Decision Probability:
A Confidence Measure for Threshold-Based Decisions. International Journal of
Approximate Reasoning (IJAR) 53, 9 (2012), 1415–1428.

[19] YooJung Choi, Adnan Darwiche, and Guy Van den Broeck. 2017. Optimal Feature
Selection for Decision Robustness in Bayesian Networks. In IJCAI. ijcai.org,
1554–1560.

[20] YooJung Choi and Guy Van den Broeck. 2018. On Robust Trimming of Bayesian
Network Classifiers. In IJCAI. ijcai.org, 5002–5009.

[21] Yves Crama and Peter L. Hammer. 2011. Boolean Functions - Theory, Algorithms,
and Applications. Encyclopedia of mathematics and its applications, Vol. 142.
Cambridge University Press.

[22] Adnan Darwiche. 2001. Decomposable Negation Normal Form. J. ACM 48, 4
(2001), 608–647.

[23] Adnan Darwiche. 2001. On the Tractable Counting of Theory Models and its
Application to Truth Maintenance and Belief Revision. Journal of Applied Non-
Classical Logics 11, 1-2 (2001), 11–34.

[24] Adnan Darwiche. 2002. A Logical Approach to Factoring Belief Networks. In KR.
409–420.

[25] Adnan Darwiche. 2003. A Differential Approach to Inference in Bayesian Net-
works. JACM 50, 3 (2003), 280–305.

[26] Adnan Darwiche. 2004. New Advances in Compiling CNF into Decomposable
Negation Normal Form. In ECAI. 328–332.

[27] Adnan Darwiche. 2009. Modeling and Reasoning with Bayesian Networks. Cam-
bridge University Press.

[28] Adnan Darwiche. 2011. SDD: A New Canonical Representation of Propositional
Knowledge Bases. In IJCAI. 819–826.

[29] Adnan Darwiche. 2014. Tractable Knowledge Representation Formalisms. In
Tractability, Lucas Bordeaux, Youssef Hamadi, and Pushmeet Kohli (Eds.). Cam-
bridge University Press, 141–172.

[30] Adnan Darwiche. 2018. Human-level intelligence or animal-like abilities? Com-
mun. ACM 61, 10 (2018), 56–67.

[31] Adnan Darwiche and Arthur Choi. 2010. Same-Decision Probability: A Con-
fidence Measure for Threshold-Based Decisions under Noisy Sensors. In Pro-
ceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM).
113–120.

www.satlive.org
http://kocoon.gforge.inria.fr/slides/amarilli.pdf
http://kocoon.gforge.inria.fr/slides/amarilli.pdf

[32] Adnan Darwiche, Rina Dechter, Arthur Choi, Vibhav Gogate, and Lars Otten.
2008. Results from the Probabilistic Inference Evaluation of UAI-08. (2008).

[33] Adnan Darwiche and Auguste Hirth. 2020. On The Reasons Behind Decisions.
In Proceedings of the 24th European Conference on Artificial Intelligence (ECAI).

[34] Adnan Darwiche and Pierre Marquis. 2002. A knowledge compilation map. JAIR
17 (2002), 229–264.

[35] Anton Dries, Angelika Kimmig, Wannes Meert, Joris Renkens, Guy Van den
Broeck, Jonas Vlasselaer, and Luc De Raedt. 2015. ProbLog2: Probabilistic Logic
Programming. In ECML/PKDD (3) (Lecture Notes in Computer Science), Vol. 9286.
Springer, 312–315.

[36] Michael A Fligner and Joseph S Verducci. 1986. Distance based ranking models.
Journal of the Royal Statistical Society. Series B (Methodological) (1986), 359–369.

[37] Jinbo Huang, Mark Chavira, and Adnan Darwiche. 2006. Solving MAP Exactly
by Searching on Compiled Arithmetic Circuits. In AAAI. 1143–1148.

[38] Jinbo Huang and Adnan Darwiche. 2007. The Language of Search. J. Artif. Intell.
Res. (JAIR) 29 (2007), 191–219.

[39] Alexey Ignatiev, Nina Narodytska, and João Marques-Silva. 2019. Abduction-
Based Explanations for Machine Learning Models. In Proceedings of the Thirty-
Third Conference on Artificial Intelligence (AAAI). 1511–1519.

[40] Alexey Ignatiev, Nina Narodytska, and João Marques-Silva. 2019. On Relat-
ing Explanations and Adversarial Examples. In Advances in Neural Information
Processing Systems 32 (NeurIPS). 15857–15867.

[41] Alexey Ignatiev, Nina Narodytska, and João Marques-Silva. 2019. On Validating,
Repairing and Refining Heuristic ML Explanations. CoRR abs/1907.02509 (2019).

[42] Abhay Kumar Jha and Dan Suciu. 2013. Knowledge Compilation Meets Database
Theory: Compiling Queries to Decision Diagrams. Theory Comput. Syst. 52, 3
(2013), 403–440.

[43] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer.
2017. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. In
Computer Aided Verification CAV. 97–117.

[44] Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. 2014. Prob-
abilistic Sentential Decision Diagrams. In KR.

[45] D. Koller and N. Friedman. 2009. Probabilistic Graphical Models: Principles and
Techniques. MIT Press.

[46] Jean-Marie Lagniez and Pierre Marquis. 2017. An Improved Decision-DNNF
Compiler. In IJCAI. ijcai.org, 667–673.

[47] Anna L. D. Latour, Behrouz Babaki, Anton Dries, Angelika Kimmig, Guy Van den
Broeck, and Siegfried Nijssen. 2017. Combining Stochastic Constraint Optimiza-
tion and Probabilistic Programming - From Knowledge Compilation to Constraint
Solving. In CP (Lecture Notes in Computer Science), Vol. 10416. Springer, 495–511.

[48] Francesco Leofante, Nina Narodytska, Luca Pulina, and Armando Tacchella.
2018. Automated Verification of Neural Networks: Advances, Challenges and
Perspectives. CoRR abs/1805.09938 (2018).

[49] Colin L. Mallows. 1957. Non-null ranking models. Biometrika (1957).
[50] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester,

and Luc De Raedt. 2018. DeepProbLog: Neural Probabilistic Logic Programming.
In Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Asso-
ciates, Inc., 3749–3759. http://papers.nips.cc/paper/7632-deepproblog-neural-
probabilistic-logic-programming.pdf

[51] Pierre Marquis. 1995. Knowledge Compilation Using Theory Prime Implicates.
In IJCAI. 837–845.

[52] John McCarthy. 1959. Programs with common sense. In Proceedings of the Ted-
dington Conference on the Mechanization of Thought Processes. http://www-
formal.stanford.edu/jmc/mcc59.html.

[53] E. J. McCluskey. 1956. Minimization of Boolean functions. The Bell System
Technical Journal 35, 6 (Nov 1956), 1417–1444. https://doi.org/10.1002/j.1538-
7305.1956.tb03835.x

[54] Marina Meila and Harr Chen. 2010. Dirichlet process mixtures of generalized
Mallows models. In Proceedings of UAI.

[55] Christoph Meinel and Thorsten Theobald. 1998. Algorithms and Data Structures
in VLSI Design: OBDD - Foundations and Applications. Springer.

[56] Christian J. Muise, Sheila A. McIlraith, J. Christopher Beck, and Eric I. Hsu. 2012.
Dsharp: Fast d-DNNF Compilation with sharpSAT. In Canadian Conference on AI
(Lecture Notes in Computer Science), Vol. 7310. Springer, 356–361.

[57] Kevin Patrick Murphy. 2012. Machine Learning: A Probabilistic Perspective. MIT
Press.

[58] Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv,
and Toby Walsh. 2018. Verifying Properties of Binarized Deep Neural Networks.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI).

[59] N.J. Nilsson. 1986. Probabilistic logic. Artificial intelligence 28, 1 (1986), 71–87.
[60] Masaaki Nishino, Norihito Yasuda, Shin-ichi Minato, and Masaaki Nagata. 2017.

Compiling Graph Substructures into Sentential Decision Diagrams. In AAAI.
1213–1221.

[61] Umut Oztok, Arthur Choi, and Adnan Darwiche. 2016. Solving PPPP-Complete
Problems Using Knowledge Compilation. In Proceedings of the 15th International
Conference on Principles of Knowledge Representation and Reasoning (KR). 94–103.

[62] Umut Oztok and Adnan Darwiche. 2014. On Compiling CNF into Decision-DNNF.
In CP. 42–57.

[63] Umut Oztok and Adnan Darwiche. 2018. An Exhaustive DPLL Algorithm for
Model Counting. J. Artif. Intell. Res. 62 (2018), 1–32.

[64] James D. Park andAdnanDarwiche. 2004. Complexity Results andApproximation
Strategies for MAP Explanations. J. Artif. Intell. Res. (JAIR) 21 (2004), 101–133.

[65] J. Pearl. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann.

[66] Knot Pipatsrisawat and Adnan Darwiche. 2008. New Compilation Languages
Based on Structured Decomposability. In AAAI. 517–522.

[67] Knot Pipatsrisawat and Adnan Darwiche. 2009. A New d-DNNF-Based Bound
Computation Algorithm for Functional EMAJSAT. In IJCAI. 590–595.

[68] Hoifung Poon and Pedro M. Domingos. 2011. Sum-Product Networks: A New
Deep Architecture. In UAI. 337–346.

[69] W. V. Quine. 1952. The Problem of Simplifying Truth Functions. The American
Mathematical Monthly 59, 8 (1952), 521–531. http://www.jstor.org/stable/2308219

[70] W. V. Quine. 1959. On Cores and Prime Implicants of Truth Functions. The
American Mathematical Monthly 66, 9 (1959), 755–760. http://www.jstor.org/
stable/2310460

[71] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2018. Anchors: High-
Precision Model-Agnostic Explanations. In AAAI. AAAI Press, 1527–1535.

[72] Dan Roth. 1996. On the Hardness of Approximate Reasoning. AIJ 82, 1-2 (1996),
273–302.

[73] Tian Sang, Paul Beame, and Henry A. Kautz. 2005. Performing Bayesian Inference
by Weighted Model Counting. In AAAI. 475–482.

[74] Bart Selman and Henry A. Kautz. 1996. Knowledge Compilation and Theory
Approximation. JACM 43, 2 (1996), 193–224.

[75] Shubham Sharma, Rahul Gupta, Subhajit Roy, and Kuldeep S. Meel. 2018. Knowl-
edge Compilation meets Uniform Sampling. In LPAR (EPiC Series in Computing),
Vol. 57. EasyChair, 620–636.

[76] Yujia Shen, Arthur Choi, and Adnan Darwiche. 2016. Tractable Operations for
Arithmetic Circuits of Probabilistic Models. In Advances in Neural Information
Processing Systems 29 (NIPS).

[77] Yujia Shen, Arthur Choi, and Adnan Darwiche. 2017. A Tractable Probabilistic
Model for Subset Selection. In Proceedings of the 33rd Conference on Uncertainty
in Artificial Intelligence (UAI).

[78] Yujia Shen, Arthur Choi, and Adnan Darwiche. 2018. Conditional PSDDs: Mod-
eling and Learning With Modular Knowledge. In AAAI. AAAI Press, 6433–6442.

[79] Yujia Shen, Anchal Goyanka, Adnan Darwiche, and Arthur Choi. 2019. Structured
Bayesian Networks: From Inference to Learning with Routes. In AAAI. AAAI
Press, 7957–7965.

[80] Weijia Shi, Andy Shih, Adnan Darwiche, and Arthur Choi. 2020. On Tractable
Representations of Binary Neural Networks. http://arxiv.org/abs/2004.02082.

[81] Andy Shih, Arthur Choi, and Adnan Darwiche. 2018. Formal Verification of
Bayesian Network Classifiers. In Proceedings of the 9th International Conference
on Probabilistic Graphical Models (PGM).

[82] Andy Shih, Arthur Choi, and Adnan Darwiche. 2018. A Symbolic Approach to
Explaining Bayesian Network Classifiers. In Proceedings of the 27th International
Joint Conference on Artificial Intelligence (IJCAI).

[83] Andy Shih, Arthur Choi, and Adnan Darwiche. 2019. Compiling Bayesian Net-
work Classifiers into Decision Graphs. In AAAI. AAAI Press, 7966–7974.

[84] Andy Shih, Adnan Darwiche, and Arthur Choi. 2019. Verifying Binarized Neural
Networks by Angluin-Style Learning. In SAT.

[85] Andy Shih, GuyVan den Broeck, Paul Beame, andAntoine Amarilli. 2019. Smooth-
ing Structured Decomposable Circuits. In NeurIPS. 11412–11422.

[86] Solomon Eyal Shimony. 1994. Finding MAPs for Belief Networks is NP-Hard.
Artif. Intell. 68, 2 (1994), 399–410.

[87] Friedrich Slivovsky. 2019. An Introduction to Knowledge Compilation. In KO-
COON workshop on knowledge compilation. http://kocoon.gforge.inria.fr/slides/
slivovsky.pdf.

[88] Marc Thurley. 2006. sharpSAT - Counting Models with Advanced Component
Caching and Implicit BCP. In SAT (Lecture Notes in Computer Science), Vol. 4121.
Springer, 424–429.

[89] Guy Van den Broeck and Adnan Darwiche. 2015. On the Role of Canonicity in
Knowledge Compilation. In AAAI.

[90] Ingo Wegener. 2000. Branching Programs and Binary Decision Diagrams. SIAM.
[91] Yaqi Xie, Ziwei Xu, Kuldeep S. Meel, Mohan S. Kankanhalli, and Harold Soh. 2019.

Embedding Symbolic Knowledge into Deep Networks. In NeurIPS. 4235–4245.
[92] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. 2018.

A Semantic Loss Function for Deep Learning with Symbolic Knowledge. In ICML
(Proceedings of Machine Learning Research), Vol. 80. PMLR, 5498–5507.

[93] Yexiang Xue, Arthur Choi, and Adnan Darwiche. 2012. Basing Decisions on
Sentences in Decision Diagrams. In AAAI. 842–849.

http://papers.nips.cc/paper/7632-deepproblog-neural-probabilistic-logic-programming.pdf
http://papers.nips.cc/paper/7632-deepproblog-neural-probabilistic-logic-programming.pdf
http://www-formal.stanford.edu/jmc/mcc59.html
http://www-formal.stanford.edu/jmc/mcc59.html
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
http://www.jstor.org/stable/2308219
http://www.jstor.org/stable/2310460
http://www.jstor.org/stable/2310460
http://kocoon.gforge.inria.fr/slides/slivovsky.pdf
http://kocoon.gforge.inria.fr/slides/slivovsky.pdf

	Abstract
	1 Introduction
	2 Logic For Computation
	2.1 Prototypical Problems
	2.2 The Core Reduction

	3 Tractable Circuits
	4 Logic For Learning From Data and Knowledge
	4.1 Learning With Combinatorial Spaces
	4.2 Conditional Spaces

	5 Logic For Meta Reasoning
	5.1 Explaining Decisions
	5.2 Robustness and Formal Properties

	6 Conclusion and Outlook
	Acknowledgments
	References

