/* Restating iterative solution : (mathL)/* generative form /% EIods(POIo,t,2nd stage) = K_1st + f_sphereCapSurf(EIods(POIo,t,1st stage)) (endMath) /* using /% 1) ????:(mathL) EIods(POIo,t=0,2nd stage) = + K_1st + β^1*Rocs(POIo)^2 1a) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): 1/c/Rocs(POIo)*sin(Aθpc(POIo(t),t)) *{ + ∂[∂(t): 3/2*β^2 *Q(PART)*Rocs(POIo)^3*Rpcs(POIo(t),t)^(-5) *sin(Aθpc(POIo(t),t))^2 ] + ∂[∂(t): 3 *β^2 *Q(PART)*Rocs(POIo)^2*Rpcs(POIo(t),t)^(-5)*Vons(PART)*t*(cos(Aθpc(POIo(t),t)) - 1) ] - ∂[∂(t): λ(Vons(PART)) *Q(PART) *Rpcs(POIo(t),t)^(-2) ] } ] + f_sphereCapSurf{f_sphereCapSurf(EIods(POIo,t,0th stage))]} ?????????????????????????????????? /* Substitute for (1b) from "Bottom-up (6b)" results below 2) EIods(POIo,t=0,2nd stage) = + K_1st + β*Rocs(POIo)^2 1g) *{ + 21/2 *β^3*Q(PART)*Rocs(POIo)^2 *Rpcs(POIo(t),t)^(-6) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): sin(Aθpc(POIo(t),t))^3*cos(Aθpc(POIo(t),t)) ] + 3 *β^3*Q(PART)*Rocs(POIo) *Rpcs(POIo(t),t)^(-5) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): sin(Aθpc(POIo(t),t)) *(cos(Aθpc(POIo(t),t)) - 1) - 2 *λ(Vons(PART)) *β *Q(PART)/Rocs(POIo) *Rpcs(POIo(t),t)^(-3) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): sin(Aθpc(POIo(t),t)) *cos(Aθpc(POIo(t),t)) ] } + f_sphereCapSurf{f_sphereCapSurf(EIods(POIo,t,0th stage))]} /*********************************** >>>>>> Bottom-up (2b1) /* Looking at (1b) /% 1b) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): 1/c/Rocs(POIo)*sin(Aθpc(POIo(t),t)) *{ + ∂[∂(t): 3/2*β^2 *Q(PART)*Rocs(POIo)^3*Rpcs(POIo(t),t)^(-5) *sin(Aθpc(POIo(t),t=0))^2 ] + ∂[∂(t): 3 *β^2 *Q(PART)*Rocs(POIo)^2*Rpcs(POIo(t),t)^(-5)*Vons(PART)*t*(cos(Aθpc(POIo(t),t)) - 1) ] - ∂[∂(t): λ(Vons(PART)) *Q(PART) *Rpcs(POIo(t),t)^(-2) ] } ] /* "Percolate" constant terms up through [derivatives, integrals] in Chapter 4 : see "Howell - Background math for Lucas Universal Force, Chapter 4.txt" section "Constants of [derivative, integration] expressions" section "Rpcs(POIo(t),t)" is a constant for integrals like "∫{∂(Aθtc),0 to Aθoc(POIp(t),t=0):" ?" [c, β, λ(Vons(PART)), Q(PART), Rocs(POIo), Vons(PART)] [Rpcs(POIo(t),t)] - is NOT a constant wrt ∂[∂(t): - IS a constant wrt ∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): /% 1c) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): 1/c/Rocs(POIo)*sin(Aθpc(POIo(t),t)) *{ + 3/2 *β^2 *Q(PART)*Rocs(POIo)^3*∂[∂(t): Rpcs(POIo(t),t)^(-5) *sin(Aθpc(POIo(t),t))^2 ] + 3 *β^2*Vons(PART)*Q(PART)*Rocs(POIo)^2*∂[∂(t): Rpcs(POIo(t),t)^(-5)*t*(cos(Aθpc(POIo(t),t))] - 1) ] - λ(Vons(PART)) *Q(PART) *∂[∂(t): Rpcs(POIo(t),t)^(-2) ] } ] /* using /% 2304:(mathH) ∂[∂(t): sin(Aθpc(POIo(t),t))^2*Rpcs(POIo(t),t)^(-5)] = 7*Vons(PART)*sin(Aθpc(POIo(t),t))^2*cos(Aθpc(POIo(t),t))*Rpcs(POIo(t),t)^(-6) ????:(mathH) ∂[∂(t): Rpcs(POIo(t),t=0)^(-5)*(t=0)*(cos(Aθpc(POIo(t),t)) - 1)] = + Rpcs(POIo(t),t=0)^(-5)*(cos(Aθpc(POIo(t),t)) - 1) 2059:(mathL) ∂[∂(t): Rpcs(POIo(t),t)^(-2)] = 2*Vons(PART)*cos(Aθpc(POIo(t),t))*Rpcs(POIo(t),t)^(-3) /* substitute into (1b) /% 1d) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): 1/c/Rocs(POIo)*sin(Aθpc(POIo(t),t)) *{ + 3/2 *β^2 *Q(PART)*Rocs(POIo)^3 *7*Vons(PART)*sin(Aθpc(POIo(t),t))^2*cos(Aθpc(POIo(t),t))*Rpcs(POIo(t),t)^(-6) + 3 *β^2*Vons(PART)*Q(PART)*Rocs(POIo)^2 *Rpcs(POIo(t),t)^(-5)*(cos(Aθpc(POIo(t),t)) - 1) - λ(Vons(PART)) *Q(PART) *2*Vons(PART)*cos(Aθpc(POIo(t),t))*Rpcs(POIo(t),t)^(-3) } ] /* [collect, rearrange] terms /% 1e) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): 1/c/Rocs(POIo)*sin(Aθpc(POIo(t),t)) *{ + 3/2*7*β^2 *Vons(PART)*Q(PART)*Rocs(POIo)^3 *Rpcs(POIo(t),t)^(-6)*sin(Aθpc(POIo(t),t))^2*cos(Aθpc(POIo(t),t)) + 3 *β^2 *Vons(PART)*Q(PART)*Rocs(POIo)^2 *Rpcs(POIo(t),t)^(-5)*(cos(Aθpc(POIo(t),t)) - 1) - 2*λ(Vons(PART)) *Vons(PART)*Q(PART) *Rpcs(POIo(t),t)^(-3)*cos(Aθpc(POIo(t),t)) } ] /* distribute the integral /* "Percolate" constant terms up through [derivatives, integrals] in Chapter 4 : see "Howell - Background math for Lucas Universal Force, Chapter 4.txt" section "Constants of [derivative, integration] expressions" section "Rpcs(POIo(t),t)" is a constant for integrals like "∫{∂(Aθtc),0 to Aθoc(POIp(t),t=0):" ?" [c, β, λ(Vons(PART)), Q(PART), Rocs(POIo), Vons(PART)] [Rpcs(POIo(t),t)] - is NOT a constant wrt ∂[∂(t): - IS a constant wrt ∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): /% 1f) *{ + 21/2*β^2*Rocs(POIo)^3 *Q(PART)*Vons(PART) *1/c/Rocs(POIo)*Rpcs(POIo(t),t)^(-6) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): sin(Aθpc(POIo(t),t))*cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^2 ] + 3 *β^2*Vons(PART) *Q(PART)*Rocs(POIo)^2 *1/c/Rocs(POIo)*Rpcs(POIo(t),t)^(-5) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): sin(Aθpc(POIo(t),t))*(cos(Aθpc(POIo(t),t)) - 1) - 2 *λ(Vons(PART)) *Q(PART)*Vons(PART) *1/c/Rocs(POIo)*Rpcs(POIo(t),t)^(-3) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): sin(Aθpc(POIo(t),t))*cos(Aθpc(POIo(t),t)) ] } /* set Vons(PART)/c = β, collect terms /% 1g) *{ + 21/2 *β^3*Q(PART)*Rocs(POIo)^2 *Rpcs(POIo(t),t)^(-6) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): sin(Aθpc(POIo(t),t))^3*cos(Aθpc(POIo(t),t)) ] + 3 *β^3*Q(PART)*Rocs(POIo) *Rpcs(POIo(t),t)^(-5) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): sin(Aθpc(POIo(t),t)) *(cos(Aθpc(POIo(t),t)) - 1) - 2 *λ(Vons(PART)) *β *Q(PART)/Rocs(POIo) *Rpcs(POIo(t),t)^(-3) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): sin(Aθpc(POIo(t),t)) *cos(Aθpc(POIo(t),t)) ] } /* insert this result in "Top-down" section above /*++++++++++++++++++++++++++++++++++++++ /*add_eqn "Likely_Lucas_error_or_omission 04_34 F therefore E balance - taking partial derivatives wrt time /$L Eis(r - v*t,t) APPLY |t=0 TO EACH TERM =+ 3/2*β^2*q*rs^3/|r - v*t|^5*sin(θ´)^2 - λ(v)*q*rs/|r - v*t|^3 + β *rs^2*∫[∂(θ´),0 to θ´f: sin(θ´)* (+ 15/2*β^3*q*rs^4/|r - v*t|^7*sin(θ´)^2*cos(θ´) - 3 *β *q*rs^2/|r - v*t|^5*λ(v) *cos(θ´) )) + β^2 *rs^4*∫[∂(θ´),0 to θ´f: 1/rs/c*sin(θ´)*∂[∂(t): ∫[∂(θ´),0 to θ´f: 1/rs/c*sin(θ´)*∂[∂(t): Eis(r - v*t,t)])]) /$H Eis(r - v*t,t) APPLY |t=0 TO EACH TERM =+ 3/2*β^2*q*rs^3/|r - v*t|^5*sin(θ´)^2 - λ(v)*q*rs/|r - v*t|^3 + β *rs^2*∫[∂(θ´),0 to θ´f: sin(θ´)* (+ 15/2*β^3*q*rs^3/|r - v*t|^7*sin(θ´)^2*cos(θ´) - 3 *β *q*rs^1/|r - v*t|^5*λ(v) *cos(θ´) )) + β^2 *rs^4*∫[∂(θ´),0 to θ´f: 1/rs/c*sin(θ´)*∂[∂(t): ∫[∂(θ´),0 to θ´f: 1/rs/c*sin(θ´)*∂[∂(t): Eis(r - v*t,t)])]) /%H (mathL)/* 4-34 /% EIods(POIo,t=0,2nd stage) = + K_1st + β*Rocs(POIo)^2 *{ + 21/2 *β^3*Q(PART)*Rocs(POIo)^2 *Rpcs(POIo(t),t)^(-6) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): sin(Aθpc(POIo(t),t))^3 *cos(Aθpc(POIo(t),t)) ] + 3 *β^3*Q(PART)*Rocs(POIo) *Rpcs(POIo(t),t)^(-5) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): sin(Aθpc(POIo(t),t)) *(cos(Aθpc(POIo(t),t)) - 1) - 2 *λ(Vons(PART)) *β *Q(PART)/Rocs(POIo) *Rpcs(POIo(t),t)^(-3) *∫[∂(Aθpc),0 to Aθpc(POIo(t),t=0): sin(Aθpc(POIo(t),t)) *cos(Aθpc(POIo(t),t)) ] } + f_sphereCapSurf{f_sphereCapSurf(EIods(POIo,t,0th stage))]} (endMath) /* iterative form, see "Howell - independent math for Lucas Universal Force, Chapter 4.txt" /% 1049:(mathH) EIods(POIo,t=0,ith stage) = K_1st + f_sphereCapSurf(EIods(POIo,t=0,(i-1) stage)))} 1046:(mathH) EIods(POIo,t=0,2nd stage) = K_1st + f_sphereCapSurf(EIods(POIo,t=0,1st stage) /* for symbols & HIGHLY restrictive conditions : see "textIn - relativistic factor, intermediate symbols, restrictive conditions.txt" /% /* for a detailed comparison, see above "Comparison of Lucas (4-34) and previous (4-34) derivation to (5)"