25Sep2015 revision 1 started 14Sep2015 start verification, 23Sep2015 corrections & cleanup, 27May2016 reworked From 04_28a Faradays_law_spherical_coordinates - full form, 1st expression /$ ∇´Ei(r´,t) = + r´h/rs/sin(θ)*[ ∂[∂(θ): Ei(r´,t)•φ´hat*sin(θ)) - ∂[∂(φ): Ei(r´,t)•θ´hat) ] + θ´hat/rs *[ ∂[∂(φ): Ei(r´,t)•r´h)/sin(θ) - ∂[∂(r): Ei(r´,t)•φ´hat*rs) ] + φ´hat/rs *[ ∂[∂(r): Ei(r´,t)•θ´hat*r) - ∂[∂(θ): Ei(r´,t)•r´h) ] /* By symmetry, the following partial derivatives are zero (with respect to the scalar result!!): /$ ∂[∂(φ): Ei(r´,t)•θ´hat) ∂[∂(φ): Ei(r´,t)•r´h) ∂[∂(θ): Ei(r´,t)•r´h) /* The following are zero because Ei(r´,t) & Ph are at right angles : /$ ∂[∂(θ): Ei(r´,t)•φ´hat*sin(θ)) ∂[∂(r): Ei(r´,t)•φ´hat*rs) /* Therefore, the ONLY partial derivative that remains is : /$ ∂[∂(θ): Ei(r´,t)•r´h) /* yielding the expression : /$ ∇´Ei(r´,t) = -φ´hat/rs*∂[∂(θ): Ei(r´,t)•r´h) /* but rh is a unit vector in the same direction as Ei, so for a partial derivative along angle O : /$ ∂[∂(θ): Ei(r´,t)•r´h) = ∂[∂(θ): |Ei(r´,t)|) /*so /$ ∇´Ei(r´,t) = -φ´hat/rs*∂[∂(θ): |Ei(r´,t)|) /* which is the same as Lucas's LHS expression. /* Earlier approach, essentially the same, but clouded by ambiguous wording in Lucas's explanation Extract the "dp[dO : " terms : /$ ∂[∂(θ): Ei(r´,t)) = + r´h/rs/sin(θ)*[ ∂[∂(θ): Ei(r´,t)•φ´hat*sin(θ)) ] - φ´hat/rs *[ ∂[∂(θ): Ei(r´,t)•r´h) ] = + r´h/rs/sin(θ)*[ ∂[∂(θ): Ei(r´,t)•φ´hat*sin(θ)) ] - φ´hat/rs *[ ∂[∂(θ): Ei(r´,t)•r´h) ] /*zz)see "Howell - Variables, notations, styles for Bill Lucas, Universal Force.odt" : zz)"Pseudo-constant variables/expressions" within integrals wrt O zz)Remove : [q,v,L(v),r´,c,b] zz)Retain : [sinO,O] are the key retained variables for Chapter 4 verifications /$1) ∂[∂(θ): Ei(r´,t)) = + r´h/rs/sin(θ)•φ´hat*[ ∂[∂(θ): Ei(r´,t)*sin(θ)) ] - φ´hat/rs *[ ∂[∂(θ): Ei(r´,t)•r´h) ] /* Now /$ ∂[∂(θ): Ei(r´,t)*sin(θ)) = ∂[∂(θ): Ei(r´,t))*sin(θ) + Ei(r´,t)*∂[∂(θ): sin(θ)) ∂[∂(θ): Ei(r´,t)*sin(θ)) = ∂[∂(θ): Ei(r´,t))*sin(θ) + Ei(r´,t)*cos(θ) /* But from symmetry /$ ∂[∂(θ): Ei(r´,t)*sin(θ)) = ∂[∂(θ): Ei(r´,t))*sin(θ) + Ei(r´,t)*cos(θ) ∂[∂(θ): Ei(r´,t)) = 0 /* therefore /$1a) ∂[∂(θ): Ei(r´,t)*sin(θ)) = Ei(r´,t)*cos(θ) 1b) ∂[∂(θ): Ei(r´,t)•r´h) = 0 given symmetry /* Sub (1a),(1b) into (1) /$1) ∂[∂(θ): Ei(r´,t)) = + r´h/rs/sin(θ)•φ´hat*[ ∂[∂(θ): Ei(r´,t)*sin(θ)) ] - φ´hat/rs*[ ∂[∂(θ): Ei(r´,t)•r´h) ] = + r´h/rs/sin(θ)•φ´hat*Ei(r´,t)*cos(θ) - φ´hat/rs*0 = + r´h/rs/sin(θ)•φ´hat*Ei(r´,t)*cos(θ) /* The RHS of (4-29a) is the exact same as (4-28b) and (4-16) so no further work is required on that part. /$ -1/c*∂[∂(t): Bi(r - v*t,t)] = -vs/c*rs*sin(θ)*φ´*[ 3*q*vs/c*(rs*cos(θ) - vs*t)/|rs - vs*t|^5 + 1/rs/c*∂[∂(t): Eis(r - v*t,t)] ] /*++++++++++++++++++++++++++++++++++++++ /*add_eqn "no_issue 04_29arev1 Faradays_law_spherical_coordinates - reduced, integral form /$L -1/rs*∂[∂(θ): Ei(r - v*t,t))*φ´ = -vs/c*rs*sin(θ)*φ´*[ 3*q*vs/c*(r*cos(θ) - v*t)/|r - v*t|^5 + 1/rs/c*∂[∂(t): Eis(r - v*t,t)] ] /$H -1/rs*∂[∂(θ): Ei(r - v*t,t))*φ´ = -vs/c*rs*sin(θ)*φ´*[ 3*q*vs/c*(r*cos(θ) - v*t)/|r - v*t|^5 + 1/rs/c*∂[∂(t): Eis(r - v*t,t)] ] /* OK - straightforward, but clouded by some of the text explanations & omissions. /% -1/Rocs(POIo)*∂[∂(θ): EIods(POIo,t)]*Rφpdh = -Vons(PART)/c*Rocs(POIo)*sin(Aθoc(POIo)) *Rφpdh *{ 3*Q(particle)*Vons(PART)/c*(Rocs(POIo)*cos(Aθoc(POIo)) - Vons(PART)*t)/Rpcs(POIo(t),t)^5 + 1/Rocs(POIo)/c*∂[∂(t): EIods(POIo,t)] }