Lucas's derivation : /$ ∂[∂t: Bi(r - v*t,t)) = ∂[∂(t): Bi(r - v*t,t)] + (v•∇´)*Bi(r - v*t,t) = ∂[∂(t): Bi(r - v*t,t)] + ∇´ [Bi(r - v*t,t)v] + v* [∇´•Bi(r - v*t,t)] = ∂[∂(t): Bi(r - v*t,t)] + ∇´ [Bi(r - v*t,t)v] /* since ∇´•Bi = 0 Irrelevant : 04_19 Point charge with symmetry @ v_const, add Faradays law (Ampere!) /$ ∮[•d(l´),.over.L: (Ei´(r´,t´) - v/cBi(r´,t´))) = -1/c* ∫[dAreap,.over.Ap: (∂[∂(t): Bi(r - v*t,t)]•n) /* 04_20 Convective_derivative /$ ∂/∂(t) = ∂[∂t: + v•∇´ /* Apply Lucas's (4-20) to Lucas's (4-19) /$ (∂[∂t: + v•∇´)) /* First try - Howells derivation Apply Lucas's (4-20) convDeriv to Bi(ro - vo*t,t) B total, observer frame) /$ ∂/∂(t)[Bi(r - v*t,t)] = (∂[∂t: + v•∇´)[Bi(r - v*t,t)] /$ ∂/∂(t)[Bi(r - v*t,t)] = ∂[∂(t): Bi(r - v*t,t)] + (v•∇´)[Bi(r - v*t,t)] /* Vector operations from Jackson1999 inside front cover /$ ∇(a•β) = (a•∇)*β + (β•∇)*a + a(∇β) + β(∇a) /* therefore /$ (a•∇)β = ∇(a•β) - [+ (β•∇)*a + a(∇β) + β(∇a) ] /* HOWEVER - I dont fully comprehend the form (a•∇´)b, presumably eg /$ (a•∇) = (a1*n1 + a2*n2 + a3*n3) • (∂/∂x1*n1 + ∂/∂x2*n2 + ∂/∂x3*n3) (a•∇) = (a1*∂/∂x1 + a2*∂/∂x2 + a3*∂/∂x3) /* therefore /$ (a•∇)β = (a1*∂/∂x1 + a2*∂/∂x2 + a3*∂/∂x3) * β /* but what does that "*b" mean? - assume "kind of" a dot product ??? /$ (a•∇)β = a1*∂/∂x1(b1) + a2*∂/∂x2(b2) + a3*∂/∂x3(b3) /* take /$ a = v, β = Bi(r - v*t,t), ∇ = ∇´ (v•∇´)* [Bi(r - v*t,t)] = + ∇(v• Bi(r - v*t,t)) - [ + (Bi(r - v*t,t)•∇)*v + v(∇ Bi(r - v*t,t)) + Bi(r - v*t,t)(∇v) ] /* Oops, wrong one /$ ∇(aβ) = a*(∇•β) - β*(∇•a) + (β•∇)*a - (a•∇)*β /* therefore /$ (a•∇)β = a*(∇•β) - β*(∇•a) + (β•∇)*a - ∇(aβ) /* again, take a = v, b = Bi(ro - vo*t,t), ∇ = ∇´ /$ (v•∇´) Bi(r - v*t,t) = + v(∇´•Bi(r - v*t,t)) - Bi(r - v*t,t)(∇´•v) + (Bi(r - v*t,t)•∇´)v - ∇´(v Bi(r - v*t,t)) /* Using ∇´•B = 0, ∇´v = 0 for constant relative v /$ (v•∇´)* Bi(r - v*t,t) = - Bi(r - v*t,t)(∇´•v) - ∇´(vBi(r - v*t,t)) /* Summarizing Howells development : /$ ∂/∂(t)[Bi(r - v*t,t)] = ∂[∂(t): Bi(r - v*t,t)] + (v•∇´)[Bi(r - v*t,t)] ∂/∂(t)[Bi(r - v*t,t)] = ∂[∂(t): Bi(r - v*t,t)] - Bi(r - v*t,t)(∇´•v) /* rearrange /$ ∂/∂(t)[Bi(r - v*t,t)] = ∂[∂(t): Bi(r - v*t,t)] - ∇´(vBi(r - v*t,t)) - Bi(r - v*t,t)(∇´•v) Can I combine? : - ∇´(vBi(r - v*t,t)) - Bi(r - v*t,t)(∇´•v) From Kreyszig /$ aβ = - βa /* Try /$ β(c∂) = (β∂)c - (βc)∂ on ∇´(vBi(r - v*t,t)) = (∇´.Bi(r - v*t,t))*v - (∇´.v)*Bi(r - v*t,t) /* but /$ ∇´.Bi(r - v*t,t) = 0 /* so /$ ∇´(vBi(r - v*t,t)) = 0 - (∇´.v)*Bi(r - v*t,t) /* putting this in /$ - ∇´(v Bi(r - v*t,t)) - Bi(r - v*t,t)*(∇´•v) = - [- (∇´.v)* Bi(r - v*t,t)] - Bi(r - v*t,t)*(∇´•v) = 0 /* OOPS - that wiped me out! -should check why some day, wheres my mistake? 2nd try - Howells derivation Apply Lucas's (4-20) convDeriv to Bi(ro - vo*t,t) B total, observer frame) /$ ∂/∂(t)[Bi(r - v*t,t)] = (∂[∂t: + v•∇´)[Bi(r - v*t,t)] ∂/∂(t)[Bi(r - v*t,t)] = ∂[∂(t): Bi(r - v*t,t)] + (v•∇´)[Bi(r - v*t,t)] /* scalar triple products Kreyszig Section 5.9 p213-216 /$ β(c∂) = (β∂)*c - (βc)*∂ (β∂))*c = β(c∂) + (βc)*∂ /* again, take b = ∇´, c = Bi(ro - vo*t,t), d = v (∇´v)Bi(ro - vo*t,t) = ∇´(Bi(ro - vo*t,t)v) + (∇´Bi(ro - vo*t,t))*v so /* OK - this looks closer? /$ Given ∇´Bi(r - v*t,t) = 0 then (∇´v)Bi(r - v*t,t) = ∇´(Bi(r - v*t,t)v) + 0 /* such that /$ ∂/∂(t)[Bi(r - v*t,t)] = ∂[∂(t): Bi(r - v*t,t)] + ∇´[Bi(r - v*t,t)v] /*++++++++++++++++++++++++++++++++++++++ /*add_eqn "no_issue 04_21 convective derivative of Total magnetic flux density Bi /$ ∂/∂(t)[Bi(r - v*t,t)] = ∂[∂(t): Bi(r - v*t,t)] + ∇´[Bi(r - v*t,t)v] ∂/∂(t)[Bi(r - v*t,t)] = ∂[∂(t): Bi(r - v*t,t)] + ∇´[Bi(r - v*t,t)v] /%^% d/∂(t)[BIodv(ro - vo*t,t)] = ∂[∂(t): BIodv(ro - vo*t,t)] + ∇´[BIodv(ro - vo*t,t)Vonv(PART)] dT[∂(t): BIodv(POIo,t)] = ∂[∂(t): BIodv(POIo,t)] + ∇´[BIodv(POIo,t)Vons(PART)] /* OK - 2nd try gets same as Lucas HOWEVER - I should have been using convective derivatives elsewhere!! - eg as I did with dp[dt : E] (eg file "Howell - Background math for Lucas Universal Force, Chapter 4.odt")