Faradays law (4-2) can be rewritten using Stokes theorem Lucas (4-02) := Faradays_Law /$ ∫E(Rpcv,t´)•∂(l) = -1/c*∂[∂(t): ∫B(r,t)•nda] /*very similar to (4-18)? Stokes theorem - Kreyszig1972 p364h0.6 Eqn (8.10-1) /$ ∬[∂(Area): (curl(v))_n) = ∮[ds,.over.C: v*t) /* where (curl v)_n = (curl v)•n is the component of curl v in the direction of a unit normal vector n of S; the integration around C is taken in the sense shown in Figure 166, and vt is the component of v in the direction of the tanjent vector of C in Fig 166 (Howell : right-hand curl!) Faradays law as expressed in (4-2)≈ RHS of (4-18), so this is OK with a warning about the switched ordering of differentiation and integration BUT its not clear what has been done on the LHS : stated as : /$ (Ei´(r´,t´) - 1/c*vBi(r´,t´)) /*BUT - this MUST have ∂[∂t: of B (differential or integral) My GUESS is that E0 is needed as per (4-13) /$ B(r´,t´) = (v/c)[ E0(r´,t´) + Ei(r´,t´) ] /* NOTE : units dont work for (2-2) versus (2-3), and (4-19) appears to have the same problem. Replacing Ei(r´,t´) with Ei´(Rpcv,t´) - E0(r´,t´) /$1) ∫[Ei´(Rpcv,t´) - E0(r´,t´))•∂(l) = -1/c*∂[∂(t): ∫B(r,t)•nda] /* failed-try : For E0(r´,t´), for a point charge : see Jackson1999 p28h0.1 /$(1.7) ET•n*∂(Area) = q/4/π/ε0*cos(θ)/r^2*∂(Area) ET•n = q/4/π/ε0*cos(θ)/r^2 /* or spherical surfaces centered on a particle /$ ET = q/4/π/ε0/r^2 (1.8) ET•n*∂(Area) = q/4/π/ε0*dΩ /* where dΩ = solid angle subtended by da at the position of the charge /$ r^2*dΩ = cos(θ)*∂(Area) /* Taking E0(r´,t´) = E in 1.7 = q/4/π/ε0/r^2, and substituting Nyet Oops take Amperes Law (4-1)!!! Lucas04_01 := Generalized_Amperes_Law, note change of refFrame /$ B(r´,t´) = v/c × E0(Rpcv,t´) /* so /$2) E0(Rpcv,t´) = c/v*B(r´,t´) /*OOPS!!! CROSS PRODUCT! putting this into 1 above /$3) ∫[E´(Rpcv,t´) - c/v*B(r´,t´))•∂(l) = -1/c*∂[∂(t): ∫B(r,t)•nda] /*write out more specifically (Howell notation) : /$4) ∮[•d(l´),.over.L: (E´(Rpcv,t´) - c/v*B(r´,t´))) = -1/c*∂[∂(t): ∫[dArea,.over.A: B(r,t)•n)] /*Notice that I didn't have to apply Stokes theorem! /*++++++++++++++++++++++++++++++++++++++ /*add_eqn "Question 04_19 ( E,B for symmetry point charge @v_const add Faradays law to [Ampere] /$-Lucas ∮[•d(l´),.over.L: (Ei´(r´,t´) - v/cBi(r´,t´))) = -1/c* ∮[dAreap,.over.Ap: (∂[∂(t): Bi(r - v*t,t)]•n) -Howell ∮[•d(l´),.over.L: (Ep(r´,t´) - c/v*Bi(r,t))) = -1/c*∂[∂(t): ∮[dArea,.over.A: B(r,t]•n) /%^%-Lucas ∮[•d(l´),.over.closedcurveL: EIpdv(POIp) - Vonv(PART)/c*BIodv(POIp(t),t)) = -1/c*∮[dAreap,.over.Ap: (∂[∂(t): BIodv(POIo,t)]•n} -Howell ∮[•d(l´),.over.closedcurveL: EIpdv(POIp) - c/Vonv(PART)*BIodv(POIp(t),t)) = -1/c *∂[∂(t): ∮[*∂(Area),.over.A: BIodv(POIo,t)]•n} /* better to use ∬ rather than ∮ for Bi.over.A ?? PROBLEMS - cross-product correction to my deriv, v/cBi(r´,t´ versus c/v*Bi(r,t), changed order of diff/integ- B(r,t) vs Bi(ro - vo*t,t),