proceeding from Howells (4-14) because Lucas (4-14) is missing 1/c term, and its B(rov,t), NOT B(r´,t) /$4-14) B(r´,t´) = q/c*(vr´h)/r´s^2 + v/cEi(r´,t´) /%^% B(rov,t) = Q(particle)/c*(Vonv(PART)rph)/rps^2 + Vonv(PART)/cEIodv(Rpcv(POIp(t),t) /*selectively substitute for (rov,t), |r´|, vov X rph, vov X Ei(ro - vo*t,t) : as rph & Ei are collinear direction is normal to v,Ei -> (vr)h = Pph : Equation (4-17) below explains the transformations /$ r´s = |r´| = |r - v*t| = [ (Rocs(POIo)*sin(θ))^2 + (Rocs(POIo)*cos(θ) - vs*t)^2 ]^(1/2) v X r´h = vs*sin(θ´)*φ´hat v X r´h = vs*sin(θ´)*φ´hat v X Ei(r - v*t,t) = vs*sin(θ´)*|Ei(r - v*t,t)|*φ´hat r´s*sin(θ´) = Rocs(POIo)*sin(θ) /%^% rps = |Rpcv(POIp)| = |rov - vo*t| = [ (Rocs(POIo)*sinOo)^2 + (Rocs(POIo)*cosOo - vos*t)^2 ]^(1/2) Vonv(PART) X rph = vos*sinOp*Pph Vonv(PART) X rph = vos*sinOp*Pph Vonv(PART) X EIodv(POIp(t),t) = vos*sinOp*|EIodv(POIp(t),t)|*Pph rps*sinOp = Rocs(POIo)*sinOo /* Substituting for cross-products : This seems WRONG -> should be Bi(rov,t)? /$ Bi(r - v*t,t) /%^% BIodv(ro - vo*t,t) /*what follows is a "normal interpretation" founded on fixed geometry /$ B(r´,t´) = q/c*(vr´)/r´s^2 + v/cEi(r´,t´) /%^% B(rov,t) = Q(particle)/c*(Vonv(PART)Rpcv(POIp))/rps^2 + Vonv(PART)/cEIodv(Rpcv(POIp(t),t) /*(NOTE: rov NOT r´!!) => first term is a constant, so derivative is zero. Note that an expression is needed for what the observer POI "sees" and that, is a dynamic (differential) expression /$ B(r´,t´) = q/c*(vB(r,t) rr´)/r´s^2 + v/cEi(r´,t´) /* (NOTE: rov NOT r´!!) 1st term -> substitute for [sinOp,rps] /$ ∂[∂(t): q/c*vs*sin(θ´)/r´s^2*φ´hat = vs/c*q*(Rocs(POIo)*sin(θ)/r´s)/r´s^2*φ´hat = vs/c*Rocs(POIo)*sin(θ)*q/r´s^3*φ´hat 2) = vs/c*Rocs(POIo)*sin(θ)*q/|r - v*t|^3*φ´hat /* 2nd term -> substitute for sinOp /$ 1/c*vs*sin(θ´)*|Ei(r - v*t,t)|*φ´hat = vs/c*(Rocs(POIo)*sin(θ)/r´s)*|Ei(r - v*t,t)|*φ´hat 3) = vs/c*Rocs(POIo)*sin(θ)/|r - v*t|*|Ei(r - v*t,t)|*φ´hat /*substituting (2),(3) into (1) : /$4) Bi(r - v*t,t) = vs/c*Rocs(POIo)*sin(θ)*q/|r - v*t|^3*φ´hat + vs/c*Rocs(POIo)*sin(θ) /|r - v*t|*|Ei(r - v*t,t)|*φ´hat = vs/c*Rocs(POIo)/|r - v*t|*sin(θ)*φ´hat *[ q/|r - v*t|^2 + |Ei(r - v*t,t)| ] /* NOTE : If I simply leave Op in expression with |Ei(ro - vo*t,t)| I get : /$5) Bi(r - v*t,t) = vs/c*φ´hat * [ q*sin(θ)*Rocs(POIo)/|r - v*t|^3 + sin(θ´)*|Ei(r - v*t,t)| ] /*++++++++++++++++++++++++++++++++++++++ /*add_eqn "Lucas_Typo_or_omission 04_15rev3 E,B for symmetry point charge @v_const Adapted non-[derivative, integral] form of Amperes law /$ Bi(r - v*t,t) = vs/c*φ´hat * [ q*sin(θ)*Rocs(POIo)/|r - v*t|^3 + sin(θ) *|Ei(r - v*t,t)| ] /%^% BIodv(POIo,t) = Vons(PART)/c*APpch * [ Q(particle)*sin(Aθoc(POIo))*Rocs(POIo)/Rpcs(POIo(t),t)^3 + sin(Aθpc(POIo(t),t)) *EIods(POIo,t) ] /* ( 09Jan2016 WRONG - I have Op rather than Oo in 2nd term. NOTE : If I repace Op in expression with |Ei(ro - vo*t,t)| Difference between static and induced fields!?! I havent wrapped my head around the details. - must re-check basis of angles!