/* Reference frame notations for Chapter 4 (constant Vonv(PART)) - most commonly used forms in (4-30) to (4-37) : /* constants : c,Q,Vons,beta,lambda(v)=beta^2 particle RFp : t , Rocs(POIp(t),t),Rpcs(POIp) ,Aθoc(POIp(t),t),Aθpc(POIp),EIpds(POIp) ,[EI,BX] =0 in RFp observer RFo : t , Rocs(POIo) ,Rpcs(POIo(t),t) ,Aθoc(POIo) ,Aθpc(POIo(t),t),EIods(POIo) ,BIods(POIo) frozen RFt : t=0, Rocs(POIo) ,Rpcs(POIo(t),t), t=0),Aθtc(RFt) ,EItds(notused),BItds(notused) /* POIo context : integration ∫[∂(Aθpc),0.to.Aθpc(POIo(t), t=0): expressions with [Rocs(POIo),Rpcs(POIo(t), t=0),Aθtc(RFt)]} result gives [Rocs(POIo),Rpcs(POIo(t),t),Aθoc(POIo),Aθpc(POIo(t),t)] } /* For integrals in next step : derivative ∂[∂(t): expressions with [Rocs(POIo),Rpcs(POIo(t),t) ,Aθoc(POIo),Aθpc(POIo(t),t),E0ods(POIo,t)] result gives [Rocs(POIo),Rpcs(POIo(t),t=0),Aθtc(RFo) ,Aθtc(RFt) ,E0ods(POIo,t=0)] /* General formulae for Chapter 4 /$ dp[dt: E0ods(POIo,t=0)*Rpcs(POIo(t),t)^( - b)*sin(Aθoc(POIo))^a] = dp[dt: E0ods(POIo,t=0)] *Rpcs(POIo(t),t)^(-b)*sin(Aθoc(POIo))^a + E0ods(POIo,t=0) *dp[dt: Rpcs(POIo(t),t)^( - b)*sin(Aθoc(POIo))^a] /*From "Derivatives & Integrals adapted to Chapter 4 - Summary" above /% ∂[∂(t): Rpcs(POIo(t),t)^( - β)*sin(Aθpc(POIo(t),t))^a] = β*Vons(PART)*Rpcs(POIo(t),t)^(-β-1)*cos(Aθtc(POIp(t),t=0))*sin(Aθtc(RFt))^(a ) + a *Rpcs(POIo(t),t)^(-β )*cos(Aθtc(POIp(t),t=0))*sin(Aθtc(RFt))^(a-1) /* From "Howell - Background math for Lucas Universal Force, Chapter 4.odt" /% section "∂[∂(t): E0ods(POIo,t)] = ∂[∂(t): E0pds(POIo(t),t)] - proper E0odv(POIo,t) vector approach" 13*) ∂[∂(t): E0ods(POIo,t)] = 2*|Q(PART)|*Vons(PART)*cos(Aθpc(POIo(t),t))/Rpcs(POIo(t),t)^3 = E0ods(POIo,t)*2*Vons(PART)*Rpcs(POIo(t),t)^(-1)*cos(Aθpc(POIo(t),t)) /* Put into RFt form to be fed into integral /* ∂[∂(t): E0ods(POIo,t)] = E0ods(POIo(t)=0)*2*Vons(PART)*Rpcs(POIo(t),t)^(-1)*cos(Aθpc(POIo(t),t)) /*Click to see Therefore : /% ∂[∂(t): E0ods(POIo,t=0)*Rpcs(POIo(t),t)^( - β)*sin(Aθoc(POIo))^a] = E0ods(POIo,t=0)* (+ 2 *Vons(PART)*Rpcs(POIo(t),t)^(-1 )*cos(Aθtc(POIp(t),t=0)) *Rpcs(POIo(t),t)^(-β)*sin(Aθtc(RFt))^a + β *Vons(PART)*Rpcs(POIo(t),t)^(-β-1)*cos(Aθtc(POIp(t),t=0))*sin(Aθtc(RFt))^(a ) + a *Rpcs(POIo(t),t)^(-β )*cos(Aθtc(POIp(t),t=0))*sin(Aθtc(RFt))^(a-1) () = E0ods(POIo,t=0)* (+ 2 *Vons(PART)*Rpcs(POIo(t),t)^(-1 )*cos(Aθtc(POIp(t),t=0)) *Rpcs(POIo(t),t)^(-β)*sin(Aθtc(RFt))^a + β *Vons(PART)*Rpcs(POIo(t),t)^(-β-1)*cos(Aθtc(POIp(t),t=0))*sin(Aθtc(RFt))^(a ) + a *Rpcs(POIo(t),t)^(-β )*cos(Aθtc(POIp(t),t=0))*sin(Aθtc(RFt))^(a-1) () /* General formulae for Chapter 4 ∂[∂(t): E0ods(POIo(t)=0) *Rpcs(POIo(t),t)^(-b)*sin(Aθoc(POIo))^a] = E0ods(POIo(t)=0)* (+ 2 *Vons(PART)*Rpcs(POIo(t),t)^(-1-b)*cos(AOtc(RFt))*sin(AOtc(RFt))^a + b *Vons(PART)*Rpcs(POIo(t),t)^(-b-1)*cos(AOtc(RFt))*sin(AOtc(RFt))^a + a *Rpcs(POIo(t),t)^(-b )*cos(AOtc(RFt))*sin(AOtc(RFt))^(a-1) () = (+ E0ods(POIo(t)=0)*(2+b)*Vons(PART)*Rpcs(POIo(t)=0)^(-1-b)*cos(AOtc(RFt))*sin(AOtc(RFt))^a + E0ods(POIo(t)=0)*a *Rpcs(POIo(t)=0)^(-b )*cos(AOtc(RFt))*sin(AOtc(RFt))^(a-1) (mathH)/* old-wrong!! /% ∂[∂(t): E0ods(POIo,t=0)*Rpcs(POIo(t),t)^(-β)*sin(Aθoc(POIo))^a] = + E0ods(POIo(t)=0)*(2+b)*Vons(PART) *Rpcs(POIo(t)=0)^(-1-b)*cos(AOtc(RFt))*sin(AOtc(RFt))^a + E0ods(POIo(t)=0)*a *Rpcs(POIo(t)=0)^(-b )*cos(AOtc(RFt))*sin(AOtc(RFt))^(a-1) (endMath) /*-----+ /* Looking at "∂[∂(t): E0ods(POIo(t)=0)*Rpcs(POIo(t),t)^(-1)*sin(Aθoc(POIo))^4]" ∂[∂(t): E0ods(POIo(t)=0) *Rpcs(POIo(t),t)^(-1)*sin(Aθoc(POIo))^4] = ∂[∂(t): E0ods(POIo(t)=0)] *Rpcs(POIo(t),t)^(-1)*sin(Aθoc(POIo))^4 + E0ods(POIo(t)=0)*∂[∂(t): Rpcs(POIo(t),t)^(-1)*sin(Aθoc(POIo))^4] From "Derivatives & Integrals adapted to Chapter 4 - Summary" above ∂[∂(t): Rpcs(POIo(t),t)^(-1)*sin(Aθoc(POIo))^4 ] = 1*Vons(PART)*Rpcs(POIo(t),t)^(-2)*cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^4 + 4 *Rpcs(POIo(t),t)^(-1)*cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^3 /* using /% 2462:(mathH) ∂[∂(t): E0ods(POIo,t)] = 2*Q(PART)*Vons(PART)*Rpcs(POIo(t),t)^(-3)*cos(Aθpc(POIo(t),t)) ∂[∂(t): E0ods(POIo(t)=0) *Rpcs(POIo(t),t)^(-1)*sin(Aθoc(POIo))^4] = ∂[∂(t): E0ods(POIo(t)=0)] *Rpcs(POIo(t),t)^(-1)*sin(Aθoc(POIo))^4 + E0ods(POIo(t)=0) *∂[∂(t): Rpcs(POIo(t),t)^(-1)*sin(Aθoc(POIo))^4] = 2*|Q(PART)|*Vons(PART)*cos(Aθpc(POIo(t),t))/Rpcs(POIo(t),t)^3 *Rpcs(POIo(t),t)^(-1)*sin(Aθoc(POIo))^4 + E0ods(POIo(t)=0) *[ 1*Vons(PART)*Rpcs(POIo(t),t)^(-2)*cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^4 + 4 *Rpcs(POIo(t),t)^(-1)*cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^3 ] (1) = 2*|Q(PART)|*Vons(PART)*cos(Aθpc(POIo(t),t))/Rpcs(POIo(t),t)^3 *Rpcs(POIo(t),t)^(-1)*sin(Aθoc(POIo))^4 + E0ods(POIo(t)=0) *[ 1*Vons(PART)*Rpcs(POIo(t),t)^(-2)*cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^4 + 4 *Rpcs(POIo(t),t)^(-1)*cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^3 ] /* From "E0ods(POIo,t) = E0pds(POIo(t),t)" 2*) E0ods(POIo,t) = |Q(PART)|/Rpcs(POIp(t),t)^2 /* Subbing (2*) into (1) and consolidating ∂[∂(t): E0ods(POIo(t)=0) *Rpcs(POIo(t),t)^(-1)*sin(Aθoc(POIo))^4] = E0ods(POIo,t)* (+ 2*Vons(PART)*Rpcs(POIo(t),t)^(-2)*cos(Aθpc(POIo(t),t))*sin(Aθoc(POIo))^4 + 1*Vons(PART)*Rpcs(POIo(t),t)^(-2)*cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^4 + 4 *Rpcs(POIo(t),t)^(-1)*cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^3 ) = E0ods(POIo,t)* (+ 3*Vons(PART)*Rpcs(POIo(t),t)^(-2)*cos(Aθpc(POIo(t),t))*sin(Aθoc(POIo))^4 + 4 *Rpcs(POIo(t),t)^(-1)*cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^3 ) /*----+ Check on general model : ∂[∂(t): E0ods(POIo(t)=0)*Rpcs(POIo(t),t)^(-1)*sin(Aθoc(POIo))^4] = E0ods(POIo(t)=0)* (+ 2 *Vons(PART)*Rpcs(POIo(t),t)^(-1-1)*cos(AOtc(RFt))*sin(AOtc(RFt))^4 + 1 *Vons(PART)*Rpcs(POIo(t),t)^(-1-1)*cos(AOtc(RFt))*sin(AOtc(RFt))^4 + 4 *Rpcs(POIo(t),t)^(-1 )*cos(AOtc(RFt))*sin(AOtc(RFt))^(4-1) () = E0ods(POIo(t)=0)* (+ 2 *Vons(PART)*Rpcs(POIo(t),t)^(-2)*cos(AOtc(RFt))*sin(AOtc(RFt))^4 + 1 *Vons(PART)*Rpcs(POIo(t),t)^(-2)*cos(AOtc(RFt))*sin(AOtc(RFt))^4 + 4 *Rpcs(POIo(t),t)^(-1)*cos(AOtc(RFt))*sin(AOtc(RFt))^3 () = E0ods(POIo(t)=0)* (+ 3 *Vons(PART)*Rpcs(POIo(t),t)^(-2)*cos(AOtc(RFt))*sin(AOtc(RFt))^4 + 4 *Rpcs(POIo(t),t)^(-1)*cos(AOtc(RFt))*sin(AOtc(RFt))^3 () OK!! This is the same as the earlier hand derivation : ∂[∂(t): E0ods(POIo(t)=0)*Rpcs(POIo(t),t)^(-1)*sin(Aθoc(POIo))^4] = E0ods(POIo,t)* (+ 3*Vons(PART)*Rpcs(POIo(t)=0)^(-2)*cos(AOtc(RFt))*sin(AOtc(RFt))^4 + 4 *Rpcs(POIo(t)=0)^(-1)*cos(AOtc(RFt))*sin(AOtc(RFt))^3 ()