∂[∂(t): Rpcs(POIo(t),t)] = ∂[∂(t): |Rpcv(POIo(t),t)|] = Rpcv(POIo(t),t) dotPRod ∂[∂(t): Rpcv(POIo(t),t)] / |Rpcv(POIo(t),t)| from (1) above in "∂[∂(t): Rpcv(POIo(t),t)]" ∂[∂(t): Rpcv(POIo(t),t)] = -Vonv(PART) therefore : ∂[∂(t): Rpcs(POIo(t),t)] = Rpcv(POIo(t),t) dotPRod -Vonv(PART) / |Rpcv(POIo(t),t)| = |Rpcv(POIo(t),t)| *cos(Aθpc(POIo(t),t))*|-Vonv(PART)|/ |Rpcv(POIo(t),t)| = -Vons(PART) *cos(Aθpc(POIo(t),t)) (1) ∂[∂(t): Rpcs(POIo(t),t)] = ∂[∂(t): |Rpcv(POIo(t),t)|] = -Vons(PART)*cos(Aθpc(POIo(t),t)) /*CONFIRMATION : Show Figure "∂[∂(t): Rpcs(POIo(t),t)]" /%(2) |Rpcv(POIo(t),t)| = Rpcs(POIo(t),t) = { [(Rpcs(POIo(t),t)*sin(Aθpc(POIo(t),t))]^2 + [Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t))]^2 }^(1/2) (3) ∂[∂(t): Rpcs(POIo(t),t)] = 1/2*{ [(Rpcs(POIo(t),t)*sin(Aθpc(POIo(t),t))]^2 + [Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t)) ]^2 }^(-1/2) *∂[∂(t): {(Rpcs(POIo(t),t)*sin(Aθpc(POIo(t),t))]^2 + [Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t))]^2}] (4) ∂[∂(t): {(Rpcs(POIo(t),t)*sin(Aθpc(POIo(t),t))]^2 + [Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t))]^2}] = ∂[∂(t): [(Rpcs(POIo(t),t)*sin(Aθpc(POIo(t),t))]^2] + ∂[∂(t): {Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t))}^2] /*But for all t, the following are constants, as Vod(POI) is parallel to the coordinate axis [rO0och, rO0pch] : /% Rpcs(POIo(t),t)*sin(Aθpc(POIo(t),t)) = Rocs(POIo)*sin(Aθoc(POIo)) = constant over t for any (POIo), (POIp) therefore ∂[∂(t): {(Rpcs(POIo(t),t)*sin(Aθpc(POIo(t),t))]^2 + [Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t))]^2}] = ∂[∂(t): [Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t))]^2] = 2 *[Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t)) ] *∂[∂(t): Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t))] /*Where from "∂[∂(t): Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t)) ]" below : /% ∂[∂(t): Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t))] = -Vons(PART) therefore (5) ∂[∂(t): {(Rpcs(POIo(t),t)*sin(Aθpc(POIo(t),t))]^2 + [Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t))]^2}] = -2*Vons(PART) * Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t)) Repeating (3) ∂[∂(t): Rpcs(POIo(t),t)] = ∂[∂(t): |Rpcv(POIp)|] = 1/2*{ [(Rpcs(POIo(t),t)*sin(Aθpc(POIo(t),t))]^2 + [Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t)) ]^2 }^(-1/2) *∂[∂(t): [(Rpcs(POIo(t),t)*sin(Aθpc(POIo(t),t))]^2 + [Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t))]^2] Substituting (5) into (3) : = 1/2*{ [(Rpcs(POIo(t),t)*sin(Aθpc(POIo(t),t))]^2 + [Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t)) ]^2 }^(-1/2) -2*Vons(PART) * Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t)) = -Vons(PART) * Rpcs(POIo(t),t)*cos(Aθpc(POIo(t),t)) /Rpcs(POIo(t),t) *{ sin(Aθpc(POIo(t),t))]^2 + cos(Aθpc(POIo(t),t)) ]^2 }^(-1/2) But 1 = { sin(A0oc(POIp(t),t))^2 + cos(A0oc(POIp(t),t))^2 }^(-1/2) therefore : (6) ∂[∂(t): Rpcs(POIo(t),t)] = -Vons(PART)*cos(Aθpc(POIo(t),t)) /*This is the same as (1) and (expr) above, confirming that result. Actually, there is NO essential difference other than sign between the derivations for : /% ∂[∂(t): Rpcs(POIo(t),t)] = ∂[∂(t): |Rpcv(POIo(t),t)|] = -Vons(PART)*cos(Aθpc(POIo(t),t)) ∂[∂(t): Rocs(POIo)] = ∂[∂(t): |Rocv(POIp(t),t)|] = Vons(PART)*cos(Aθoc(POIp(t),t)) /*which surprises me a bit, but it shouldn't be a surprise!! /********************* OBJECTIVES : Where convenient, express variables as functions of FIXED variables : (POIp) -> -Vodv(PART),t,Rpcv(POIp),Aθpc(POIp),Aφpc(POIp) (POIo) -> Vodv(PART),t,Rocv(POIo),Aθoc(POIo),Aφoc(POIo) /*From "Relating [Rpcs,Rθ0pcs,RθPI2pcs,Aθpc,Aθpc]@t to [Rocs,Rθ0ocs,RθPI2ocs,Aθoc,APo] for (POIo)" /% (2) Rpcs(POIo(t),t)) = { Rocs(POIo)^2 - 2*Rocs(POIo)*cos(Aθoc(POIo)) *Vons(PART)*t + [Vons(PART)*t]^2 }^(1/2) Therefore ∂[∂(t): Rpcs(POIo(t),t)] = ∂[∂(t): {Rocs(POIo)^2 - 2*Rocs(POIo)*cos(Aθoc(POIo))*Vons(PART)*t + [Vons(PART)*t]^2 }^(1/2) ] = 1/2* { Rocs(POIo)^2 - 2*Rocs(POIo)*cos(Aθoc(POIo))*Vons(PART)*t + [Vons(PART)*t]^2 }^(-1/2) *∂[∂(t): Rocs(POIo)^2 - 2*Rocs(POIo)*cos(Aθoc(POIo))*Vons(PART)*t + [Vons(PART)*t]^2 ] = 1/2* { Rocs(POIo)^2 - 2*Rocs(POIo)*cos(Aθoc(POIo))*Vons(PART)*t + [Vons(PART)*t]^2 }^(-1/2) *{ ∂[∂(t): Rocs(POIo)^2] + ∂[∂(t): - 2*Rocs(POIo)*cos(Aθoc(POIo))*Vons(PART)*t] + ∂[∂(t): [Vons(PART)*t]^2] } = 1/2* { Rocs(POIo)^2 - 2*Rocs(POIo)*cos(Aθoc(POIo))*Vons(PART)*t + [Vons(PART)*t]^2 }^(-1/2) *{ 0 ] - 2*Rocs(POIo)*cos(Aθoc(POIo)) *Vons(PART) + 2*Vons(PART)*t*Vons(PART) } = {- Rocs(POIo)*cos(Aθoc(POIo))*Vons(PART) + Vons(PART)^2*t } /{ Rocs(POIo)^2 - 2*Rocs(POIo)*cos(Aθoc(POIo)) *Vons(PART)*t + [Vons(PART)*t]^2 }^(-1/2) = Vons(PART)*{- Rocs(POIo)*cos(Aθoc(POIo)) + Vons(PART)*t} /{Rocs(POIo)^2 - 2*Rocs(POIo)*cos(Aθoc(POIo))*Vons(PART)*t + [Vons(PART)*t]^2}^(-1/2) then : (mathH) ∂[∂(t): Rpcs(POIo(t),t)] = Vons(PART)*{- Rocs(POIo)*cos(Aθoc(POIo)) + Vons(PART)*t} /{Rocs(POIo)^2 - 2*Rocs(POIo)*cos(Aθoc(POIo))*Vons(PART)*t + [Vons(PART)*t]^2}^(-1/2) (endMath) /*+-----+ LIMIT CHECKS : Dimensional consistency - OK, as all terms reduce to (length/time). I haven't yet shown equivalence between the "-Vons(PART)*cos(Aθpc(POIo(t),t))" result and equation (7)... See "∂[∂(t): Rpcs(POIo(t),t)*sin(Aθpc(POIo(t),t))]" - note that the ?correct? result as obtained by the "Alternative Verification" provides a small degree of confirmation of the results for this sub-sub-section. As t -> +- infinity : As t -> +- 0 : /%As cos(Aθoc(POIp(t),t)) -> 0 : /*endsection