/*Approximate solution approach, here a,b >=0, element of integers : /%For integrals from Aθpc=0 to final, at Aθpc=0, sin(Aθpc(POIo(t),t))=0 and the expression is 0, producing a zero lower result for definite integrals. This was an attempt to [check, improve] results by look at Rpcs(POIo(t),t) as a variable of integration "with respect to" (wrt) Aθpc. However, that is not correct when following the circumference. /* General result from (5) below : /% ∫[∂(Aθpc),0.to.Aθpcf: Rpcs(POIo(t),t)^(-β)*cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^a} = 1/(a+β)/Rocs(POIo)*Rpcs(POIo(t),t)^(-β+1)*sin(Aθpc(POIo(t),t))^(a+1) /* List of special integrals /* 23Jun2016 not used in current versions as Rpcs(POIo(t)=0) is a "pseudo-constant" for integration wrt dAθpc 29Aug2019 - can switch from [∂(Aθpc),0.to.Aθpcf:, cos(Aθpc(POIo(t),t))] to [∂(Aθoc),0.to.Aθocf:, cos(Aθoc(POIp(t),t))] etc... /% (mathH) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t)) *Rpcs(POIo(t),t)^(-4)] = 1/ 4/Rocs(POIo)*Rpcs(POIo(t),t)^(-3)*sin(Aθpc(POIo(t),t))^1 (endMath) (mathH) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t)) *Rpcs(POIo(t),t)^(-5)] = 1/ 5/Rocs(POIo)*Rpcs(POIo(t),t)^(-4)*sin(Aθpc(POIo(t),t))^1 (endMath) (mathH) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^1*Rpcs(POIo(t),t)^(-3)] = 1/ 4/Rocs(POIo)*Rpcs(POIo(t),t)^(-2)*sin(Aθpc(POIo(t),t))^2 (endMath) (mathH) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^1*Rpcs(POIo(t),t)^(-5)] = 1/ 6/Rocs(POIo)*Rpcs(POIo(t),t)^(-4)*sin(Aθpc(POIo(t),t))^2 (endMath) (mathH) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^2*Rpcs(POIo(t),t)^(-4)] = 1/ 6/Rocs(POIo)*Rpcs(POIo(t),t)^(-3)*sin(Aθpc(POIo(t),t))^3 (endMath) (mathH) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^2*Rpcs(POIo(t),t)^(-5)] = 1/ 7/Rocs(POIo)*Rpcs(POIo(t),t)^(-4)*sin(Aθpc(POIo(t),t))^3 (endMath) (mathH) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^3*Rpcs(POIo(t),t)^(-4)] = 1/ 7/Rocs(POIo)*Rpcs(POIo(t),t)^(-3)*sin(Aθpc(POIo(t),t))^4 (endMath) (mathH) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^3*Rpcs(POIo(t),t)^(-6)] = 1/ 9/Rocs(POIo)*Rpcs(POIo(t),t)^(-5)*sin(Aθpc(POIo(t),t))^4 (endMath) (mathH) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^3*Rpcs(POIo(t),t)^(-7)] = 1/10/Rocs(POIo)*Rpcs(POIo(t),t)^(-6)*sin(Aθpc(POIo(t),t))^4 (endMath) (mathH) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^4*Rpcs(POIo(t),t)^(-5)] = 1/ 9/Rocs(POIo)*Rpcs(POIo(t),t)^(-4)*sin(Aθpc(POIo(t),t))^5 (endMath) (mathH) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^4*Rpcs(POIo(t),t)^(-6)] = 1/10/Rocs(POIo)*Rpcs(POIo(t),t)^(-5)*sin(Aθpc(POIo(t),t))^5 (endMath) (mathH) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^5*Rpcs(POIo(t),t)^(-5)] = 1/10/Rocs(POIo)*Rpcs(POIo(t),t)^(-4)*sin(Aθpc(POIo(t),t))^6 (endMath) (mathH) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^5*Rpcs(POIo(t),t)^(-6)] = 1/11/Rocs(POIo)*Rpcs(POIo(t),t)^(-5)*sin(Aθpc(POIo(t),t))^6 (endMath) (mathH) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^5*Rpcs(POIo(t),t)^(-7)] = 1/12/Rocs(POIo)*Rpcs(POIo(t),t)^(-6)*sin(Aθpc(POIo(t),t))^6 (endMath) (mathH) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^6*Rpcs(POIo(t),t)^(-6)] = 1/12/Rocs(POIo)*Rpcs(POIo(t),t)^(-5)*sin(Aθpc(POIo(t),t))^7 (endMath) (mathH) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^7*Rpcs(POIo(t),t)^(-7)] = 1/14/Rocs(POIo)*Rpcs(POIo(t),t)^(-6)*sin(Aθpc(POIo(t),t))^8 (endMath) /*-- First attempt : /% ∂[∂(Aθpc): sin(Aθpc(POIo(t),t))^(a + 1)*Rpcs(POIo(t),t)^( - β + 1)] = ∂[∂(Aθpc): sin(Aθpc(POIo(t),t))^(a + 1)] *Rpcs(POIo(t),t)^(-β+1) + sin(Aθpc(POIo(t),t))^(a+1) *∂[∂(Aθpc): Rpcs(POIo(t),t)^( - β + 1)] (1) = (a+1)*sin(Aθpc(POIo(t),t))^(a )*∂[∂(Aθpc): sin(Aθpc(POIo(t),t))] *Rpcs(POIo(t),t)^(-β+1) + sin(Aθpc(POIo(t),t))^(a+1) *(-β+1)*Rpcs(POIo(t),t)^(-β)*∂[∂(Aθpc): Rpcs(POIo(t),t)] From "∂[∂(Aθpc): Rpcs(POIo(t),t)] = ∂[∂(Aθpc): |Rpcv(POIo(t),t)|]" 2*) ∂[∂(Aθpc): Rpcs(POIo(t),t)] = (-1)*Rocs(POIo)*sin(Aθoc(POIo))*sin(Aθpc(POIo(t),t))^(-2)*cos(Aθpc(POIo(t),t)) Subbing (2*) into (1) : = ( a+1)*sin(Aθpc(POIo(t),t))^(a )*cos(Aθpc(POIo(t),t))*Rpcs(POIo(t),t)^(-β+1) + (-β+1)*sin(Aθpc(POIo(t),t))^(a+1)*Rpcs(POIo(t),t)^(-β)*(-1)*Rocs(POIo)*sin(Aθoc(POIo))*sin(Aθpc(POIo(t),t))^(-2)*cos(Aθpc(POIo(t),t)) = ( a+1) *Rpcs(POIo(t),t)^(-β+1)*cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(a ) + (-β+1)*(-1)*Rocs(POIo)*sin(Aθoc(POIo))*cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(a+1+1-2) = ( a+1) *Rpcs(POIo(t),t)^(-β ) *cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(a ) *Rpcs(POIo(t),t)^(-β+1) + ( β-1)*Rocs(POIo)*sin(Aθoc(POIo)) *cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(a-1) *Rpcs(POIo(t),t)^(-β ) (2) = cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(a)*Rpcs(POIo(t),t)^(-β) * [ ( a+1)*Rpcs(POIo(t),t) + ( β-1)*Rocs(POIo)*sin(Aθoc(POIo))*sin(Aθpc(POIo(t),t))^(-1) } From "Rocv(POIo), Aθoc(POIo), Aφoc(POIo) are constants" : but thisd is with respect to time!! With respect to Aθpc(POIo(t),t), these are NOT constants (i.e POIo changes along trajectory of particle?) 5*) Rpcs (POIo(t),t)*sin(Aθpc(POIo(t),t)) = Rocs(POIo)*sin(Aθoc(POIo)) At t=0, the observer & particle reference frames coincide, and 3a) sin(Aθoc(POIo))|t=0 = sin(Aθpc(POIo(t),t))^(-1)|t=0 3b) Rocs(POIo) |t=0 = Rpcs(POIo(t),t) Subbing (5*),(3a),(3b) into (2) : (4) ∂[∂(Aθpc): sin(Aθpc(POIo(t),t))^(a + 1)*Rpcs(POIo(t),t)^( - β + 1)] = cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(a) *Rpcs(POIo(t),t)^(-β) *[ (a+1)*Rpcs(POIo(t),t) + (β-1)*Rocs(POIo) } = cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(a) *Rpcs(POIo(t),t)^(-β) *[ (a+1) + (β-1) ]*Rpcs(POIo(t),t) = cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(a) *Rpcs(POIo(t),t)^(-β) * (a+β)*Rpcs(POIo(t),t) = (a+β)*cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(a) *Rpcs(POIo(t),t)^(-β+1) For t=0, a,β >=0, ∈ integers. Also, at Aθpc=0, the expression is 0. As the upper endpoint of the integration at time t=0, Aθpc(POIo(t),t)), Rocs(POIo) Therefore : (5) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(a)*Rpcs(POIo(t),t)^( - β)} = 1/(a+β)*sin(Aθpc(POIo(t),t))^(a+1)*Rpcs(POIo(t),t)^(-β+1) For t=0 when RFp & RFo coincide, a,β >=0, integers. POIo does NOT have to be on the perpendicular running through the origins. For integrals from Aθpc=0 to final, at Aθpc=0, sin(Aθpc(POIo(t),t))=0 and the expression is 0, producing a zero lower result for definite integrals. At Aθpc(POIo(t),t)) = 0, the expression is zero so the lower limit of integraion drops out. HOWEVER, at the upper limit of integration, @Aθpc(POIo(t),t)), Rpcs(POIo(t),t) = Rocs(POIo), so we cancel out their powers, result as Rpcs(POIo(t),t) (6) ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(a)*Rpcs(POIo(t),t)^( - β)} = 1/(a+β)*sin(Aθpc(POIo(t),t))^(a+1)*Rpcs(POIo(t),t)^(-β) For t=0 when RFp & RFo coincide, a,β >=0, integers. POIo does NOT have to be on the perpendicular running through the origins. For integrals from Aθpc=0 to final, at Aθpc=0, sin(Aθpc(POIo(t),t))=0 and the expression is 0, producing a zero lower result for definite integrals. At Aθpc(POIo(t),t)) = 0, the expression is zero so the lower limit of integraion drops out. /*-----+ Check on : /%∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(3)*Rpcs(POIo(t),t)^( - 7)} = sin(Aθpc(POIo(t),t))^(a+1)*Rpcs(POIo(t),t)^(-β+1)/(a+β)/Rocs(POIo) where a=3, β=7 = sin(Aθpc(POIo(t),t))^(3+1)*Rpcs(POIo(t),t)^(-7+1)/(a+β)/Rocs(POIo) (1) = sin(Aθpc(POIo(t),t))^(4) *Rpcs(POIo(t),t)^(-6) /(10 )/Rocs(POIo) Taking the derivative wrt Aθpc of (1) : (2) ∂[∂(Aθpc): sin(Aθpc(POIo(t),t))^(4)*Rpcs(POIo(t),t)^( - 6)/10/Rocs(POIo)] = [ 1/10/Rocs(POIo) }*∂[∂(Aθpc): sin(Aθpc(POIo(t),t))^(4)*Rpcs(POIo(t),t)^( - 6)] /*--+ Looking at the derivative dp[dAθpc : sin(Aθpc(POIo(t),t))^(4) *Rpcs(POIo(t),t)^(-6) ] = dp[dAθpc : sin(Aθpc(POIo(t),t))^(4) ] *Rpcs(POIo(t),t)^(-6) + sin(Aθpc(POIo(t),t))^(4)*dp[dAθpc : Rpcs(POIo(t),t)^(-6) ] = 4 *sin(Aθpc(POIo(t),t))^(3)*dp[dAθpc : sin(Aθpc(POIo(t),t)) ] *Rpcs(POIo(t),t)^(-6) + sin(Aθpc(POIo(t),t))^(4)*(-6)*Rpcs(POIo(t),t)^(-7)*dp[dAθpc : Rpcs(POIo(t),t) ] (3) = 4 *sin(Aθpc(POIo(t),t))^(3)*cos(Aθpc(POIo(t),t)) *Rpcs(POIo(t),t)^(-6) + (-6)*sin(Aθpc(POIo(t),t))^(4) *Rpcs(POIo(t),t)^(-7)*dp[dAθpc : Rpcs(POIo(t),t) ] /* From "dp[dAθpc : Rpcs(POIo(t),t) ] = dp[dAθpc : |Rpcv(POIo(t),t)|]" 2*) dp[dAθpc : Rpcs(POIo(t),t)] = (-1)*Rocs(POIo)*sin(Aθoc(POIo))*sin(Aθpc(POIo(t),t))^(-2)*cos(Aθpc(POIo(t),t)) Subbing into (3) : = 4 *cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(3)*Rpcs(POIo(t),t)^(-6) + (-6) *sin(Aθpc(POIo(t),t))^(4)*Rpcs(POIo(t),t)^(-7)*(-1)*Rocs(POIo)*sin(Aθoc(POIo))*sin(Aθpc(POIo(t),t))^(-2)*cos(Aθpc(POIo(t),t)) = 4 *cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(3)*Rpcs(POIo(t),t)^(-6) + 6 *cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(2)*Rpcs(POIo(t),t)^(-7) *Rocs(POIo)*sin(Aθoc(POIo)) (4) = cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(3)*Rpcs(POIo(t),t)^(-7) *[ 4*Rpcs(POIo(t),t) + 6*sin(Aθpc(POIo(t),t))^(-1) *Rocs(POIo)*sin(Aθoc(POIo)) } As in the previous sub-sub-section : From "Rocv(POIo), Aθoc(POIo), Aφoc(POIo) are constants" : 5*) Rpcs (POIo(t),t)*sin(Aθpc(POIo(t),t)) = Rocs(POIo)*sin(Aθoc(POIo)) At t=0, the observer & particle reference frames coincide, and 3a) sin(Aθoc(POIo))|t=0 = sin(Aθpc(POIo(t),t))^(-1)|t=0 3b) Rocs(POIo) |t=0 = Rpcs(POIo(t),t) Subbing into (4) : dp[dAθpc : sin(Aθpc(POIo(t),t))^(4)*Rpcs(POIo(t),t)^(-6) ] = cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(3)*Rpcs(POIo(t),t)^(-7)*Rocs(POIo)*( 4 + 6 ) = cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(3)*Rpcs(POIo(t),t)^(-7)*10*Rocs(POIo) Integrating both sides : ∫[dAθpc, 0 to Aθpcf : cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(3)*Rpcs(POIo(t),t)^(-7)*10*Rocs(POIo) } = sin(Aθpc(POIo(t),t))^(4)*Rpcs(POIo(t),t)^(-6) Removing constants from within the integral : ∫[dAθpc, 0 to Aθpcf : cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(3)*Rpcs(POIo(t),t)^(-7) } = sin(Aθpc(POIo(t),t))^(4)*Rpcs(POIo(t),t)^(-6)/10/Rocs(POIo) This is the same as the starting point at the start of this example : ∫[dAθpc, 0 to Aθpcf : cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(3)*Rpcs(POIo(t),t)^(-7) } = sin(Aθpc(POIo(t),t))^(4)*Rpcs(POIo(t),t)^(-6)/10/Rocs(POIo) confiming the general result for this example. /*-----+ Try this on expression missing a term : This example VIOLATES a condition for the general solution in that the sin(Aθpc(POIo(t),t))^(a) term is missing (a=0, when it should be >0 integer). However, I'm curious to try it out anyways. /* /% ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(a)*Rpcs(POIo(t),t)^( - β)} = sin(Aθpc(POIo(t),t))^(a+1)*Rpcs(POIo(t),t)^(-β+1)/(a+β)/Rocs(POIo) /*For t=0 when RFp & RFo coincide, a,b >=0, integers. POIo does NOT have to be on the perpendicular running through the origins. For integrals from Aθpc=0 to final, at Aθpc=0, sin(Aθpc(POIo(t),t))=0 and the expression is 0, producing a zero lower result for definite integrals. /%At Aθpc(POIo(t),t)) = 0 & π/2, the expression is zero. /* For this example : /% ∫[∂(Aθpc),0.to.Aθpcf: cos(Aθpc(POIo(t),t))*Rpcs(POIo(t),t)^( - 5)} = sin(Aθpc(POIo(t),t))^(a+1)*Rpcs(POIo(t),t)^(-β+1)/(a+β)/Rocs(POIo) where a=0, β=5 (1) = sin(Aθpc(POIo(t),t))^(1)*Rpcs(POIo(t),t)^(-4)/5/Rocs(POIo) /*--+ Taking the derivative of the solution : dp[dAθpc : sin(Aθpc(POIo(t),t))^(1) *Rpcs(POIo(t),t)^(-4)/5/Rocs(POIo) ] = 1/5/Rocs(POIo)* { dp[dAθpc : sin(Aθpc(POIo(t),t))^(1)] *Rpcs(POIo(t),t)^(-4) ] + sin(Aθpc(POIo(t),t))^(1) *dp[dAθpc : Rpcs(POIo(t),t)^(-4) ] } (2) = 1/5/Rocs(POIo)* { (1) *sin(Aθpc(POIo(t),t))^(0)*dp[dAθpc : sin(Aθpc(POIo(t),t))] *Rpcs(POIo(t),t)^(-4) + sin(Aθpc(POIo(t),t))^(1) *(-4)*Rpcs(POIo(t),t)^(-5)*dp[dAθpc : Rpcs(POIo(t),t) ] } /* From "dp[dAθpc : Rpcs(POIo(t),t) ] = dp[dAθpc : |Rpcv(POIo(t),t)|]" 2*) dp[dAθpc : Rpcs(POIo(t),t)] = (-1)*Rocs(POIo)*sin(Aθoc(POIo))*sin(Aθpc(POIo(t),t))^(-2)*cos(Aθpc(POIo(t),t)) Subbing (2*) into (2) : = 1/5/Rocs(POIo)* { sin(Aθpc(POIo(t),t))^(0)*cos(Aθpc(POIo(t),t))*Rpcs(POIo(t),t)^(-4) + sin(Aθpc(POIo(t),t))^(1)*(-4)*Rpcs(POIo(t),t)^(-5)*(-1)*Rocs(POIo)*sin(Aθoc(POIo))*sin(Aθpc(POIo(t),t))^(-2)*cos(Aθpc(POIo(t),t)) } = 1/5/Rocs(POIo)* { cos(Aθpc(POIo(t),t))*Rpcs(POIo(t),t)^(-4) + (-4)*(-1)*cos(Aθpc(POIo(t),t))*sin(Aθpc(POIo(t),t))^(-1)*Rpcs(POIo(t),t)^(-5)*Rocs(POIo)*sin(Aθoc(POIo)) } Factor out = 1/5 /Rocs(POIo)*cos(Aθpc(POIo(t),t))*Rpcs(POIo(t),t)^(-5)* { Rpcs(POIo(t),t) + 4 *sin(Aθpc(POIo(t),t))^(-1)*Rocs(POIo)*sin(Aθoc(POIo)) } = 1/5 /Rocs(POIo)*cos(Aθpc(POIo(t),t))*Rpcs(POIo(t),t)^(-5)* { Rpcs(POIo(t),t) + 4*sin(Aθpc(POIo(t),t))^(-1)*Rocs(POIo)*sin(Aθoc(POIo)) } From "Rocv(POIo), Aθoc(POIo), Aφoc(POIo) are constants" : 5*) Rpcs (POIo(t),t)*sin(Aθpc(POIo(t),t)) = Rocs(POIo)*sin(Aθoc(POIo)) At t=0, the observer & particle reference frames coincide, and 3a) sin(Aθoc(POIo))|t=0 = sin(Aθpc(POIo(t),t))^(-1)|t=0 3b) Rocs(POIo) |t=0 = Rpcs(POIo(t),t) = 1/5/Rocs(POIo) *cos(Aθpc(POIo(t),t))*Rpcs(POIo(t),t)^(-5)*{ Rpcs(POIo(t),t) + 4*Rocs(POIo) } = 1/5/Rocs(POIo) *cos(Aθpc(POIo(t),t))*Rpcs(POIo(t),t)^(-5)*Rocs(POIo)*{ 1 + 4 } = { 1/5/Rocs(POIo)*Rocs(POIo)*5 } *cos(Aθpc(POIo(t),t))*Rpcs(POIo(t),t)^(-5) = cos(Aθpc(POIo(t),t))*Rpcs(POIo(t),t)^(-5) Summarizing : (3) dp[dAθpc : sin(Aθpc(POIo(t),t))^(1)*Rpcs(POIo(t),t)^(-4)/5/Rocs(POIo) ] = cos(Aθpc(POIo(t),t))*Rpcs(POIo(t),t)^(-5) /*Which is the same as the integral term of (1), so the solution is correct.