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Abstract In this paper, the analytic three-soliton solu-
tion for a high-order nonlinear Schrödinger equation is
obtained by theHirota’s bilinearmethod. The transmis-
sion characteristics of three solitons are discussed. By
selecting relevant parameters, soliton interactions are
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presented, and themethod of generating new solitons is
suggested. The influences of corresponding parameters
on soliton transmission and interactions are analyzed.
Results of this paper are helpful for enriching the soli-
ton theory and studying the signal routing system.
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1 Introduction

Soliton, which is one of three branches of nonlinear
science, has been developing vigorously since the dis-
covery of solitons [1–12]. And so far, some nonlinear
evolution equations have been studied to obtain soliton
solutions [13–17], and some soliton phenomena have
been observed in such fields as nonlinear optics and
optical communications [18–22]. For the optical soli-
ton, it was first predicted theoretically in 1973 [23]. In
1980, it was successfully generated by a color-mode-
locked soliton laser experimentally [24]. Since then,
optical solitons have rapidly became a rising star and
attracted some researchers to conduct in-depth explo-
ration [25–38].

Optical soliton is a pulse-modulated wave with the
coherent optical carrier frequency. The optical soliton
in an ideal lossless single-mode fiber satisfies the non-
linear Schrödinger (NLS) equation:

iuz ± 1

2
utt + |u|2u = 0. (1)
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However, in reality, this ideal state cannot be easy to
implement. Therefore, some other equations are inves-
tigated when considering the effects of loss, higher-
order disturbances, etc. An integrable NLS hierarchy
can be used to describe the soliton transmission in the
reality optical fibers as follows [39–42],

iux + α2(utt + 2u|u|2) − iα3(uttt + 6ut |u|2)
+ α4(utttt + 6u∗u2t + 4u|ut |2
+ 8|u|2utt + 2u2u∗

t t + 6|u|4u) − iα5(utttt t

+ 10|u|2uttt + 30|u|4ut + 10uutu
∗
t t

+ 10uu∗
t utt + 10u2t u

∗
t + 20u∗ututt )

+ α6{utttt t t + u2[60|ut |2u∗ + 50utt (u
∗)2

+ 2u∗
t t t t ] + u[12utttt u∗ + 8utu

∗
t t t

+ 22|utt |2 + 18uttt u
∗
t + 70u2t (u

∗)2]
+ 20u2t u

∗
t t + 10ut (5utt u

∗
t + 3uttt u

∗)
+ 20u2t t u

∗ + 10u3[(u∗
t )

2 + 2u∗u∗
t t ]

+ 20u|u|6} + · · · = 0. (2)

Here, u(x, t) denotes the normalized complex ampli-
tude of the optical pulse envelope, and ∗ represents the
conjugation. αl(l = 2, 3, 4 . . .) are all real constant
parameters. x and t are the propagation variable and
transverse variable, respectively. As far as we know, the
first-order and second-oder solutions of Eq. (2) have
been obtained by the Darboux transformation (DT)
[39]. In this paper, we set αm = 0 (m = 4, 5, 6 . . .)

and consider the real situation of soliton transmission in
optical fibers. The variable coefficients third-orderNLS
equations investigated here can be presented as [43]

iux+α2(x)(utt+2u|u|2)−iα3(x)(uttt+6ut |u|2) = 0.

(3)

In Eq. (3), utt , uttt , |u|2u and |u|2ut represent the
group velocity dispersion (GVD), third-order disper-
sion (TOD), self-phasemodulation and self-steepening
effects, respectively. α2(x) and α3(x) are both real
functions and representGVDandTODcoefficients [44,
45]. Equation (3) can be used to describe the opti-
cal soliton propagation in inhomogeneous optical
fibers [43]. In this paper, based on Hirota’s bilinear
method [46], “Mathematica 9.0” is used to solve Eq. (3)
and plot the corresponding figures. Third-soliton solu-
tions of Eq. (3) will be derived. Optical soliton interac-

tions based on Eq. (3) will be studied to generate new
solitons.

The structure of this paper is as follows. In Sect. 2,
analytic three-soliton solutions for Eq. (3) will be
derived by the Hirota’s bilinear method. In Sect. 3, soli-
ton interaction will be discussed, and the phenomenon
of new soliton generation is analyzed. In Sect. 4, con-
clusions will be given.

2 Analytic three-soliton solutions for Eq. (3)

Next, we will use Hirota’s bilinear method to obtain
the analytical three-soliton solution of Eq. (3). At first,
through introducing the rational dependent variable
transformation [46]

u = G(x, t)

F(x, t)
, (4)

where F(x, t) is a real differentiable function and
G(x, t) is a complex one, we can obtain the follow-
ing bilinear forms of Eq. (3) after some operations and
simplify,

(i Dx + α2(x)D
2
t − iα3(x)D

3
t )G · F = 0, (5)

D2
t F · F − 2|G|2 = 0. (6)

Here, the D operator is defined as [47,48],

Dk
x D

l
tG(x, t) · F(x, t)

=
( ∂

∂x
− ∂

∂x ′
)k( ∂

∂t
− ∂

∂t ′
)l
G(x, t)F(x ′, t ′)

∣∣∣∣
x ′=x,t ′=t

(7)

with k and l as any integer.
In order to obtain three-soliton solutions for Eq. (3),

G(x, t) and F(x, t) are assumed to be the series form
of the formal parameters,

G(x, t) = εG1(x, t) + ε3G3(x, t) + ε5G5(x, t) + · · · ,

(8)

F(x, t) = 1 + ε2F2(x, t) + ε4F4(x, t) + ε6F6(x, t) + · · · .

(9)

Substituting expressions (8) and (9) intoEqs. (5) and (6)
and setting ε = 1, we can obtain the analytic three-
soliton solutions as

u(x, t) = G1(x, t) + G3(x, t) + G5(x, t)

1 + F2(x, t) + F4(x, t) + F6(x, t)
, (10)
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where

G1(x, t) = eθ1 + eθ2 + eθ3 ,

F2(x, t) = A21e
θ1+θ∗

1 + A22e
θ1+θ∗

2

+A23e
θ1+θ∗

3 + A24e
θ2+θ∗

1

+A25e
θ2+θ∗

2 + A26e
θ2+θ∗

3

+A27e
θ3+θ∗

1 + A28e
θ3+θ∗

2

+A29e
θ3+θ∗

3 ,

G3(x, t) = B31e
θ1+θ2+θ∗

1 + B32e
θ1+θ2+θ∗

2

+B33e
θ1+θ2+θ∗

3

+B34e
θ1+θ3+θ∗

1 + B35e
θ1+θ3+θ∗

2

+B36e
θ1+θ3+θ∗

3

+B37e
θ2+θ3+θ∗

1 + B38e
θ2+θ3+θ∗

2

+B39e
θ2+θ3+θ∗

3 ,

F4(x, t) = C41e
θ1+θ2+θ∗

1 +θ∗
2 + C42e

θ1+θ2+θ∗
1 +θ∗

3

+C43e
θ1+θ2+θ∗

2 +θ∗
3 + C44e

θ1+θ3+θ∗
1 +θ∗

2

+C45e
θ1+θ3+θ∗

1 +θ∗
3 + C46e

θ1+θ3+θ∗
2 +θ∗

3

+C47e
θ2+θ3+θ∗

1 +θ∗
2 + C48e

θ2+θ3+θ∗
1 +θ∗

3

+C49e
θ2+θ3+θ∗

2 +θ∗
3 ,

G5(x, t) = D51e
θ1+θ2+θ3+θ∗

1 +θ∗
2

+D52e
θ1+θ2+θ3+θ∗

1 +θ∗
3

+D53e
θ1+θ2+θ3+θ∗

2 +θ∗
3 ,

F6(x, t) = E61e
θ1+θ2+θ3+θ∗

1 +θ∗
2 +θ∗

3 .

Here, θ j (x, t) = σ j (x) + η j t + ϕ j . We assume
σ j = σ j1(x) + iσ j2(x), η j = η j1 + iη j2, and ϕ j =
ϕ j1 + iϕ j2 ( j = 1, 2, 3). σ j1(x) and σ j2(x) are real
differentiable functions. The values of η j1, η j2,ϕ j1 and
ϕ j2 are real constants. After some calculation, σ j1(x)
and σ j2(x) can be derived as

σ j1(x) =
∫ (

− 2η j1η j2α2(x) + (η3j1 − 3η j1η
2
j2)α3(x)

)
dx,

σ j2(x) =
∫ (

(η2j1 − η2j2)α2(x) + (3η2j1η j2 − η3j2)α3(x)
)
dx .

The other corresponding parameters can also be cal-
culated as

A21 = 1

4η211
, B31 = ζ 2

31A21A24,

C41 = κ2
11

16η211η
2
21κ

2
12

,

A22 = 1

ζ 2
21

, B32 = ζ 2
31A22A25,

C42 = ζ 2
31ζ

2
42

4η211ζ
2
11ζ

2
22ζ

2
23

,

A23 = 1

ζ 2
22

, B33 = ζ 2
31A23A26,

C43 = ζ 2
31ζ

2
43

4η221ζ
2
21ζ

2
23ζ

2
23

,

A24 = 1

ζ 2
11

, B34 = ζ 2
32A21A27,

C44 = ζ 2
32ζ

2
41

4η211ζ
2
21ζ

2
12ζ

2
13

,

A25 = 1

4η221
, B35 = ζ 2

32A22A28,

C45 = κ2
21

16η211η
2
31κ

2
22

,

A26 = 1

ζ 2
23

, B36 = ζ 2
32A23A29,

C46 = ζ 2
32ζ

2
43

4η231ζ
2
21ζ

2
22ζ

2
13

,

A27 = 1

ζ 2
12

, B37 = ζ 2
33A24A27,

C47 = ζ 2
33ζ

2
41

4η221ζ
2
11ζ

2
12ζ

2
13

,

A28 = 1

ζ 2
13

, B38 = ζ 2
33A25A28,

C48 = ζ 2
33ζ

2
42

4η231ζ
2
11ζ

2
23ζ

2
12

,

A29 = 1

4η231
, B39 = ζ 2

33A26A29,

C49 = κ2
31

16η221η
2
31κ

2
32

,

D51 = κ2
11ζ

2
32ζ

2
33

16η211η
2
21ζ

2
11ζ

2
21ζ

2
12ζ

2
13

,

D52 = κ2
21ζ

2
31ζ

2
33

16η211η
2
31ζ

2
11ζ

2
22ζ

2
23ζ

2
12

,

D53 = κ2
31ζ

2
31ζ

2
32

16η221η
2
31ζ

2
21ζ

2
22ζ

2
23ζ

2
13

,

E61 = κ2
11κ

2
21κ

2
31

64η221η
2
11η

2
21η

2
31ζ

2
21ζ

2
22ζ

2
11ζ

2
32ζ

2
12ζ

2
13

.

with

ζ11 = η∗
1 + η2, ζ21 = η1 + η∗

2,

ζ31 = η1 − η2, ζ41 = η∗
1 − η∗

2,

ζ12 = η∗
1 + η3, ζ22 = η1 + η∗

3,

ζ32 = η1 − η3, ζ42 = η∗
1 − η∗

3,
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Fig. 1 Three-soliton
transmission process. The
corresponding parameters
are choosen as
ϕ1 = 0.27 − 0.17i, ϕ2 =
− 0.98 − 0.41i, ϕ3 =
0.31 + 0.42i . a
η1 = − 0.5 + 0.83i, η2 =
−0.26 − 0.75i, η3 =
−0.13 + 0.42i . b
η1 = −0.5 + 0.83i, η2 =
− 0.15 − 0.75i, η3 =
− 0.13 + 0.42i . c
η1 = −0.22 + 0.83i, η2 =
− 0.15 − 0.75i, η3 =
− 0.13 + 0.42i . d
η1 = −0.22 + 0.83i, η2 =
0.4 − 0.75i, η3 =
− 0.13 + 0.42i

ζ13 = η∗
2 + η3, ζ23 = η2 + η∗

3,

ζ33 = η2 − η3, ζ43 = η∗
2 − η∗

3,

κ11 = (η11 − η21)
2 + (η12 − η22)

2,

κ21 = (η11 − η31)
2 + (η12 − η32)

2,

κ31 = (η21 − η31)
2 + (η22 − η32)

2.

κ12 = (η11 + η21)
2 + (η12 − η22)

2,

κ22 = (η11 + η31)
2 + (η12 − η32)

2,

κ32 = (η21 + η31)
2 + (η22 − η32)

2.

3 Discussion

Before analyzing soliton interactions, it may be desir-
able to assignα2(x) andα3(x) to the determined values.
Here, we assignα2(x) = sech(x),α3(x) = cos(x) and
discuss the effect of η j1 and η j2 on soliton interactions.
Firstly, keeping the value of ϕ j as constant, we can see
from Fig. 1a, b, and when η21 changes from −0.26 to
−0.15, some new visible waveforms appear on the left
side of Fig. 1b. And in Fig. 1c, when the value of η11
increases from−0.50 to−0.22, the number of multiple
solitons has been increasedon thebasis of Fig. 1b.How-
ever, when we adjust the value of η21 again and take
η21 = 0.4, the number of solitons is obviously reduced
in Fig. 1d. Therefore, we can see from Fig. 1 that the

value of η j1 has an effect on the number of multiple
solitons. Also, when η j1 are numerically close to each
other, the number of multiple solitons will be more.

Next, we change η22 to observe the effect of param-
eter η j2 on the number of multiple solitons. In turn,
the value of η22 is taken as −1.3, −0.88, 0.063 and
1.5 in Fig. 2. In the process of taking different val-
ues of η22, the number of solitons decreases first and
then increases. Therefore, the imaginary part of η j is
also an important reason for adjusting the number of
multiple solitons. Not only that, we observe that the lat-
eral vibrations of Fig. 2b, c are relatively weak, while
Fig. 2a, d are more intense. So the larger the value of
|η22| is, the wider the lateral amplitude of the pulse
formed. It makes the interaction between solitons be
more severe and distorts the information transferred in
optical fibers. Therefore, when considering more soli-
ton numbers, we must also think over that increasing
the lateral amplitude is equivalent to increase the width
of the pulse, which is more likely to cause interactions
and lead to pulse deformation. Thus, the value of η j2

should be controlled within a reasonable range.
In one-soliton solutions, ϕ j just control the position

of the pulse and have no effect on peaks andwaveforms.
Similarly, in the three solitons, ϕ j dominate the ini-
tial phase of the corresponding pulses. And the relative
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Fig. 2 Three-soliton
transmission process. The
corresponding parameters
are choosen as
ϕ1 = 0.27 − 0.17i, ϕ2 =
− 0.98 − 0.41i, ϕ3 =
0.31 + 0.42i ,
η1 = − 0.22 + 0.41i, η3 =
− 0.13 + 0.66i . a
η2 = − 0.11 − 1.3i . b
η2 = − 0.11 − 0.88i . c
η2 = − 0.11 + 0.063i . d
η2 = − 0.11 + 1.5i

Fig. 3 Three-soliton
transmission process. The
corresponding parameters
are choosen as
ϕ2 = − 0.98, ϕ3 = 0.31,
η1 = − 0.22 + 0.83i, η2 =
− 0.11 + 1.5i, η3 =
− 0.13 + 0.42i . a ϕ1 = 2.8.
b ϕ1 = 0.56

distance between solitons directly affects the genera-
tion of interactions, so ϕ j can command the strength
of the interaction by adjusting the transmission posi-
tion of solitons. In Figs. 3a, b, when the value of ϕ j

changes from2.8 to 0.56, the pulsewith the higher peak
obviously moves to the negative direction of t , and the
number of multiple solitons decreases. Therefore, ϕ j

are also an important parameter affecting the genera-
tion of multiple solitons. Moreover, when the values
of ϕ j are close to each other, the interval between the
pulses is reduced, and the number of multiple solitons
generated by the interaction is increased. Therefore, η j

and ϕ j determine the soliton phase, which is an impor-
tant reason for determining the generation of multiple
solitons. The more the phases tend to be consistent, the
more number of solitons are produced.

The influence of α2(x) and α3(x) on solitons will be
discussed in the next. As shown in Fig. 4a, b, when
α2(x) takes different values, the period of interac-
tion between solitons is adjusted. Therefore, the region
where the soliton interaction occurs can be achieved by
changing the function of α2(x) as needed. As shown in
Fig. 4c, d, α3(x) can determine the propagation path of
solitons; when α3(x) = cos(x), the propagation path
of the soliton is a periodic vibration wave in Fig. 4c.
When α3(x) = x , it is a parabolic soliton in Fig. 4d.

4 Conclusion

In this paper, Eq. (3) has been solved by the Hirota’s
bilinearmethod, and analytic three-soliton solution (10)
has been obtained. Three solitons have been split into
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Fig. 4 Three-soliton
transmission process. The
corresponding parameters
are choosen as ϕ1 = 1, ϕ2 =
3 − 0.41i, ϕ3 = −5, η1 =
0.3, η2 = 0.4, η3 = 0.5. a
α2(x) = 1, α3(x) = 0.1. b
α2(x) = 15, α3(x) = 0.1. c
α2(x) = 1, α3(x) =
10cos(x). d
α2(x) = 1, α3(x) = x

multiple solitons under certain conditions. Moreover,
the number of solitons in multiple solitons has been
affected by the relevant parameters. During the process
of three-soliton transmission, the smaller the difference
in η j1 ( j = 1, 2, 3) to each other, the larger the num-
ber of multiple solitons is. η j2 are important parame-
ters that determine the direction of soliton transmission.
The lateral amplitude of the soliton has been decided
by η j2, and the pulse width has been reduced. Besides,
η j2 have the significant effects on the number of multi-
ple solitons. ϕ j have been used to adjust the transmis-
sion position of solitons and alter the intensity of inter-
actions between solitons. When the distance between
solitons is considerable, the interaction between soli-
tons has decreased, and the number of the generation
of solitons has been reduced. In summary, η j and ϕ j

are decisive parameters for controlling the number of
multiple solitons, which together determine the phase
of solitons. When the soliton phases are approximated,
multiple solitons can be generated. α2(x) plays the role
of adjusting the interaction period, and α3(x) can con-
trol the transmission path of solitons.
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