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Manual equation manipulation is labor intensive, time 
consuming, and notoriously prone to error. Simply put, 
doing algebra by hand is expensive.

When faced with expensive processes, engineers find 
ways to mechanize and cut costs. Math should be  
no different.

Computer algebra systems mechanize equation 
manipulation, reducing the need for human involvement 
and hence eliminate a source of risk. Pioneered originally 
by mathematicians and physicists, two trends have 
influenced their popularity with engineers.

• Human-centered design principles have vastly 
improved usability. Tasks such as equation 
manipulation, differentiation and ODE solving 
are now much easier to do, reducing the need for 
specialized training.

• Computer algebra systems now also offer tools for 
numerical math, plotting, connectivity, data analysis, 
documentation and deployment. This means that 
algebraic computations can be fully integrated into 
the entire engineering design process.

Better usability and broader capability have, in effect, 
democratized computer algebra systems. They are now a 
pragmatic tool for engineers of all skills and disciplines.

This white paper first describes the benefits of computer 
algebra systems. Then, many different engineering 
applications are described.

Benefits of Computer Algebra Systems

Fewer Errors, and Faster than Manual Equation 
Manipulation

Manual equation manipulation requires intense cognitive 
effort. If that level of concentration is not maintained, 
errors will invariably pollute the equations. 

Computer algebra systems, however, eliminate the errors 
that invariably accompany manual equation manipulation, 
and are much faster.

Additionally, removing the cognitive overhead associated 
with manual equation derivation enables engineers to 
concentrate on higher-level, higher-value tasks.

Engineers – Stop Doing Algebra by Hand!
Save Time and Reduce Risk with  

Computer Algebra Systems
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Model More Sophisticated Systems

As the size of engineering systems increase linearly, the 
size of the equations that describe those engineering 
systems increases exponentially. 

A key example is the modeling of multiple degree of 
freedom (DOF) robotic systems. As the number of 
joints increases, the transformation matrices required 
to describe joint motion exponentially increase in 
size. At some point, equation manipulation by hand is 
impractical; software support is hence needed. 

A corollary is that computer algebra systems can be used 
to model more sophisticated engineering systems than is 
possible by hand.

Computationally Faster than Numeric Computation

Numerical computation refers to the iterative solution 
of equations using software; this is computationally 
time-consuming.

In many cases, computer algebra systems can be used 
to rearrange equations to an explicit formulation; this 
eliminates the need for time-consuming  
iterative approaches. 

Preserve Information about Model Structure

By delaying numeric evaluation until only strictly 
necessary, computer algebra systems preserve 
information about model structure and parameter 
relationships. This information can be used for code 
generation, parameter-based optimization, model 
simplification and more.

How Do Engineers Use Computer  
Algebra Systems?

Introduction

We will now, through an exploratory application-based 
approach, illustrate how computer algebra systems are 
typically used by engineers. 

Maple, a math tool with a hybrid symbolic-numeric 
math engine, is used to illustrate each example. Maple’s 
broader calculation management features are used to 
document each example with natural math notation, 
images and text.

 

Transformation Matrices for a Multi-DOF Robot

The modeling of robotic arm manipulators involves the 
derivation of transformation matrices; these matrices 
grow in size as the degrees of freedom increase. Deriving 
these matrices by hand would take hours, with a high 
probability of introducing errors. However, computer 
algebra systems will derive transformation matrices for 
an arbitrarily complex robot in a matter of seconds, while 
eliminating the risk of error.

Figure 2 demonstrates how Maple can be used to 
generate the Denevit & Hartenberg matrices, which 
assist in determining the coordinate transformations 
between joints in a robotic manipulator.

 

Figure 1. Maple provides a complete calculation 
management environment in which engineers can record and 
reuse the underlying reasoning, data and derivations
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Inverse Kinematics

Inverse kinematics involves finding the joint parameters 
to move a robot arm to a desired position. Figure 3 
demonstrates how the position constraints of a double 
pendulum can be rearranged to give the joint angles.

Code Translation of Joint Angles to C

This equation in Figure 3 is now converted to C code. 

Computer algebra systems can identify and factor out 
common subexpressions; this makes the code far more 
numerically efficient than hand-written code.

 

Figure 2. Denavit and Hartenberg formulation for  
robotic manipulators

Figure 3. Rearranging inverse kinematics equations
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Rearranging Photovoltaic Diode Equation

Figure 5 gives the equation that describes the behavior 
of a photovoltaic diode. Using standard mathematical 
functions, the equation cannot be rearranged to give an 
explicit value for the forward current, Id.

 

However, the equation can be rearranged using 
special functions. These functions are normally only 
encountered in advanced mathematical analysis; a few 
examples are LambertW, Fresnel, Bessel, and Appell. 

Special functions are increasingly implemented in 
computer algebra tools, allowing engineers to use 
these functions without any specialized training. This is 
spurring the appearance of special functions in many 
advanced modelling applications.

Figure 6 demonstrates how Maple uses special functions 
to give an explicit equation for Id. The resulting equation 
uses the LambertW function.

 

Convolution

Convolving a square wave with itself is mathematically 
simple, as illustrated in Figure 7; the resulting equation 
is a triangle wave. This process uses the concept of 
symbolic integration.

 

Figure 4. Translating equations to C code

Figure 5. Photovoltaic diode equation

Figure 6. Rearranging the photovoltaic diode equation using 
the LambertW function
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This is a simple example that could be easily processed 
by hand; larger systems, however, are not as amenable to 
manual derivation. Figure 8, for example, demonstrates 
the convolution of a cosine under a Hann function with 
itself; the result is very large and is only partially shown.

  

Translating a Netlist to a Transfer Function

A netlist is a textual description of an electric circuit, and 
describes component connections and their parameter 
values. These are typically used by SPICE-based circuit 
simulation tools, such as Saber®. 

However, these dedicated tools do not provide tools for 
advanced analysis (such as extreme value analysis) or 
customized report generation. Hence the circuit must 
be analyzed in a math tool, but the equations would first 
need to be derived; an electrical engineer might do this 
by hand by applying the principles of nodal analysis and 
mesh analysis. 

However, translating a netlist into as equation is a well-
defined problem that can be implemented in a symbolic 
math tool. Figure 9 demonstrates how Maple translates a 
netlist describing a one-pole filter into a transfer function 
(using a free add-on called Syrup).

 

 

Translate the Transfer Function of a Biquad Filter to a 
Differential Equation

AC analyses of analog electrical circuits involve simulating 
time-domain algebraic or differential equations.

Figure 10 demonstrates how Maple translates the transfer 
function of a biquad filer to a time-domain equation.

 

Figure 7. Symbolic Convolution

Figure 8. Convolution of a cosine under a Hann Function 
with a cosine under a wider Hann function

Figure 9. One Pole Filter

Figure 10. Convert a transfer function to the time domain
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Rearranging Heat Balance Equations

The thermal efficiency of a thermodynamic cycle is a 
function of the heat and mass flows around a system. 
Deriving the heat and mass balances require a 
lgebraic manipulation.

Consider the Rankine cycle with two-stage regeneration 
in Figure 11. 

 

A heat balance on the two pre-heaters H1 and H2 gives 
these equations,

where X1 and X2 are the mass fractions of the working 
fluid extracted in the high and low pressure turbines, and 
hn is the specific enthalpy at points n = 1 .. 6.

Figure 12 illustrates how Maple is employed to rearrange 
these equations to give X1 and X2. If two states at points 
1-6 are known (e.g. temperature and pressure) then 

•  enthalpy values can be determined,

•  and X1 and X2 can then be calculated.

Integrating an Empirical Equation for Heat Capacity

The specific heat capacity of many chemicals is often 
described by empirical polynomials in temperature.

These polynomials can be integrated (as illustrated in 
Figure 13) to give an expression that can be used to 
calculate changes in enthalpy.

 

Beam Deflection with Distributed and Point Load

 

Students of structural and civil engineering encounter 
the Euler-Bernoulli beam deflection equation early in 
their education:

This equation connects the deflection of the beam w(x) 
to the applied load q(x). With the appropriate initial and 
boundary conditions, the equation can be solved to give 
explicit expressions describing the deflection.

Figure 11. Rankine Cycle with Two-Stage Regeneration

Figure 12. Heat Balance on Preheaters and Symbolic 
Manipulation of Equations

Figure 13. Integrating Empirical Equation for Specific  
Heat Capacity

Figure 14. Beam with distributed and point load
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For simple load cases, such as a simply supported beam 
with a distributed load, the Euler-Bernoulli equation can 
be solved manually. 

However, more complex load cases would take significant 
amounts of time to solve by hand. For example, consider 
the simply supported beam in Figure 14; the beam has a 
uniform load (across part of the beam) and a point load.

Mathematically, the distributed load can be described by 
a Heaviside step function, and the point load described 
by a Dirac function. q(x) hence becomes

Figure 15 describes how Maple is used to solve the 
Euler-Bernouilli equation with this loading.

 

 

Closed Loop Transfer Function

Consider the closed loop control system in Figure 16. 
Typically, an engineer may want to calculate the closed 
loop transfer function for such a system. 

 

Figure 17 illustrates how the closed loop transfer 
function is derived using Maple. The steps, while 
mathematically straightforward, are tedious to do by 
hand for non-trivial systems.

 

Controllability Matrix of a DC Motor

In Figure 18, we extract the symbolic controllability 
matrix of a DC motor described by differential equations.

 

Figure 15. Solving the Euler-Bernoulli Beam Bending Equation 
with a Distributed and Point Load

Figure 16. Closed Loop Control System

Figure 17. Closed Loop Transfer Function for a Control Loop
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Terminal Settling Velocity

Consider a spherical particle falling in a fluid. Figure 19 
gives the equations for the drag force and the buoyancy 
force; the terminal settling velocity is reached when both 
are equal.

The equations are rearranged to give an explicit 
expression for the settling velocity.

 

Balancing Chemical Equations

Monomethylhydrazine (CH6N2) and Dinitrogen Tetroxide 
(N2O4) are typically used in rocket propulsion as a fuel 
and oxidizer. In determining the theoretical rocket 
performance, the adiabatic flame temperature of the 
combustion products needs to be calculated; this partly 
involves balancing the carbon, hydrogen, oxygen and 
nitrogen atoms in the feed and combustion products.

Assuming the combustion products contain CO, HNO, 
H2O, NO2, O, CO2, HO2, H2O2, N2, OH, H, H2, NO, N2O and O2, the 
overall balance equation for the combustion of CH6N2 and 
N2O4 can be written thus.

a CH6N2 + b N2O4 = n1 CO + n2 HNO + n3 H2O + n4 NO2 + n5 O + n6 
CO2 + n7 HO2 +n8 H2O2 + n9 N2 + n10 OH + n11 H + n12 H2 + n13 NO + 
n14 N2O n15 O2

Generating the individual atom balances from the overall 
balance is painstaking because of the sheer number of 
chemical species. As illustrated in Figure 20, the process 
can be mechanized with computer algebra.

 

Figure 18. Symbolic Controllability Matrix

Figure 19. Terminal Settling Velocity of a Settling Particle
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Figure 20. Balancing the Combustion Reaction of Monomethylhydrazine (CH6N2)  and Dinitrogen Tetroxide (N2O4)

Combustion can produce many more species than 
used in this example; generating the atom balance 
equations by hand would be laborious, but is easy with 
computer algebra.

Battery Modeling and Model Reduction

Electrochemical battery models derived from porous 
electrode theory are described by partial differential 
equations. While being physically accurate, these models 
are computationally intensive to simulation. 

Several techniques are used to simplify these models 
while retaining physical accuracy. These techniques 
include collocation and Galerkin’s method; both 
transform non-linear PDEs into a set of ODEs and are 
described elsewhere (Dao et al, 2012).

Conclusion

The 1950s and 1960s saw the birth of the first computer 
algebra systems. Due to the skills and training of their 
creators, these innovative tools were first designed for 
the needs of mathematicians and physicists.  

Initially, a few forward-thinking engineers exploited 
symbolic math for advanced research applications. The 
benefits, however, remained out of reach for the vast 
majority of engineers.

This started to change in the early eighties with the 
advent of cheap computing power. The next 30 years 
also saw the evolution of the human-centered design 
principles that radically improved the usability of 
computer algebra systems. 
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Moreover, a maturing feature set, including tools for 
managing calculations as well as doing calculations, made 
integrating mechanized algebra into the engineering 
design process much simpler

Computer algebra systems thus gradually entered the 
mainstream consciousness of engineers, and have grown 
in popularity year-on-year. Moreover, the applications 
discussed in this white paper clearly demonstrate the 
benefits of mechanized algebra across the entire breadth 
of engineering.
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