
Appendix A. Transmission Line Fundamentals in Space
and Cosmic Plasma s

A.1 Transmission Lines

The high conductivity of cosmic plasma pennits electric currents to flow that constrict the plasm a
to filaments. These current-carrying filaments form transmission lines which allow electric energ y
to be transported over large distances .

Transmission lines consist of an assemblage of two or more conducting paths . Transmission
lines on earth, used for communications and the transport of electric energy, employ conductor s
that are usually arranged parallel to a common axis . This need not be the case in space and is often
not the case in filamentary current-conducting plasma in pulsed-power generators . Nevertheless,
a simplification in analysis results if we assume parallel conducting paths . The generalization to
nonparallel transmission lines, such as radially converging lines, is a straightforward extension o f
the theory . For the case at hand, the geometric and physical parameters of the line (the nature o f
the conductors and of the dielectric) are assumed to be constant everywhere along the line; this
is the hypothesis of homogeneity of the line. This assemblage of conductors comprises two groups
of at least one conductor each, one group being the forward conductors, and the other the return
conductors.

The simplified theory of lines that is to be treated here assumes that the lateral dimension s
of the line are negligible, or, more precisely, that the time of propagation of the electromagnetic
field between the forward and return conductors in a plane perpendicular to the axis of the line i s
negligible with respect to the duration of the briefest of the phenomena to be studied. This
restriction leads to the second fundamental hypothesis, that of the conservation of current across
a plane is zero, which is to say that the current through the forward conductors is equal, but in th e
opposite sense to the current through the return conductors .

These two fundamental hypotheses reduce the theory of transmission lines to a problem of
partial differential equations in two variables (time and one space variable taken along the axis o f
the line) . The general case would lead to partial differential equations in time and three spac e
variables .

With no loss of generality, it can be assumed that the line is composed of only two conductors.
This considerably simplifies the definition of per unit length parameters of the line . Frequently the
additional hypothesis of symmetry ofthe line is made, motivated by the two-wire line having tw o
identical cylindrical conductors. This hypothesis is by no means necessary, and most lines in space
do not have this symmetry and may not even be everywhere cylindrical. Nevertheless, we will
appeal to this simplification in establishing the general line equations .

A.2 Definition of the State of the Line at a Poin t

Let us consider an ideal two-conductor transmission line, having forward and return conductors
reduced to straight lines (Figure A .1) . Let MN be the intersection of the transmission line with a
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Figure A.1. A two-conductor transmission line .

plane perpendicular to the line and located a distance x along an axis Ox parallel to the line. Ar-
bitrarily choose AB to be the forward conductor and A'B' to be the return conductor .

The current in the line at the abscissa x is defined to be the current flowing in conductor AB
at pointM. It is taken to be positive if it is directed in the sense Ox, i .e ., if it flows from M toward
B. By the hypotheses of conservation of current, the current atNis equal and opposite to the curren t
atM.

If TM and Os are, respectively, the potentials of pointsM and N with respect to some reference
potential, the line voltage at the abscissa x will b e

Ox = OM — ON

A3 Primary Parameters

We will use the termparameter for the quantities to be defined below, rather than the term constant
often used. The latter term arises from the fact that discussions of transmission lines on earth mos t
often consider only sinusoidal waves of a given frequency. On the contrary, we will be especially
interested in the pulse regime, which corresponds to a large band of frequencies . (The pulse may
be measured in seconds, minutes, or hours; or in days, years, centuries, millinia, or megayears o r
more, but its duration is & = &dc < < 11c, where I is the total length of the transmission line). At
least two of the parameters of interest are strong functions of frequency : the resistance per unit
length, affected by the skin dept h

& _

and the conductance per unit length, affected by the variations of dielectric losses with frequency .
Nevertheless, in deriving the equations of interest, we will suppose that these parameters ar e
constants .

Since the line is homogeneous, the total resistance of the conductors is proportional to th e
length of the line . A resistance per unit length R can thus be defined.
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In the same way a self-inductance per unit length L can be defined, which is the result of th e
true self-inductance of the conductors and the mutual inductance between the two conductors .

Because of the imperfect properites of the plasma dielectric between conductors (losses i n
the dielectric that separates the conductors), auniforrnly distributed transverse conductance appears .
It is thus possible to define a transverse conductance per unit length G.

This is the ratio of the charge on a unit length conductor element to the voltage between the
two conductors at the element considered . The capacitance per unit length is denoted C.

A.4 General Equations

A.4.1 The General Case

Consider a line element of length ix (Figure A.2). This element can be compared to a four com-
ponent discrete circuit (AA' , BB') with elements Rix, Lix, Gix, and CAx.' The voltage rise from
AtoBwill b e

A0=0B -=Rdxi–LAx

	

(A.1 )

The current Ai flowing into B from B' is

Ai = –G ix(0+ A0) - CAxat + A~

2
=–Gix0-Cdr a+Gix 2 (Ri+La

t
+CAx 2 R at+La

2

--)
at

	

(A .2 )

Dividing the terns of Eq .(A .1) by ix and letting ix go to 0, we obtain the first basic equation :
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Figure A.2. An infmitesimal line element .
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which results in the second basic equation:

Inn IALI ai = -GO-C a d
X

	

Oi

Differentiating Eq.(A.3) with respect to x yields

a2
=—R

ai +L !(211
axe

	

ax

	

at a

Replacing ai/ax by its value in Eq.(A .4) leads, finally, to

a2
= RG0 +(RC + LG)L+ LCa2~

ax e

	

t

	

at 2

The last relation is the telegrapher's equation. It can be integrated in certain special cases, e .g . ,
if the voltage 4 is sinusoidal or in the transient regime using operational calculus. The current
equation is of the same form as Eq.(A .5) and can be obtained by differentiating Eq .(A .4) with
respect to x .

A .4.2 The Special Case of the Lossless Line

If the parameters G and R can be neglected, the fundamental Eqs.(A .3) and (A.4) simplify to

a~ = a i
ax

—L
ai

	

a ~
ax =—,at

These relations lead to the equation for the propagation of plane waves, whichcan also be obtained
from Eq.(A.5) by setting R = 0 and G = 0 :

(A.3 )

(A.4)

(A .5)

(A.6)
(A.7)
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ago
=LCaZ~

ax2

	

at 2

Setting

u= 1

in which u is thepropagation constant, or the delay per unit length, this equation takes the for m

a2 o

ax 2 u 2 at 2

	

(A .10 )

The solution of Eq.(A.10) is of the form

~(x,t)= 0 + (x-ut)+¢ (x+ut)
I	 	 (A .11 )

in which O + and tit are arbitrary functions. The current in the line can now be found from relation s
Eqs .(A .6), (A.7), and (A.11), which yield

i(x,t)=R [0+(x—ut)—(P (x+ut)]

	

(A .12)

where

Rc =
(A .13 )

is by definition the characteristic resistanceof the line.
Formulas forces for a number of transmission-line geometries and configurations are availabl e

in the literature [Westman 1960].

A.5 Heaviside's Operational Calculus (The Lapace Transform )

A.5 .1 The Propagation Function

Consider a transmission line such as defined above, having per unit length parameters L,C,R, and
G, and of length /, as shown in Figure A3 .

At the instant t= 0, an electromotive force C(t) arising from a voltage source with interna l
impedance Zg, is applied to the left end, or input, of the line. The right end, or load, is terminated

(A.8 )

(A .9)
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Figure A .3. Transmission line circuit under study with current i(x,t) and voltage 0(x,t)=V(x,t) .

in an impedance ZL. The currents and voltages at each point along the line are assumed to be zer o
prior to the initial time t = O. The problem is to calculate the voltage 0(x,t) between the two con-
ductors of the line, and the current i(x,t) flowing in each of these conductors, at each point x and
at each instant t. The distance xis taken to be positive in the direction to the left of the origin, or
generator side of the line.

Equations (A.3) and (A.4) can be rewritten in terms of the Laplace transforms of the current
and voltage waveforms . To that end consider

(P(x,$)

	

((x,t) ; I(x,$) q i(x,t)

Using the conditions

am(x,t)

	

a i(x,t)
gat

	

sds(x,$)–~cx,o+> ;

	

at

	

sI(x,$)–i(x,0+)

Since the Laplace transform is defined b y

(p(x, $ ) =

		

e- st 40,0 dt
0

we have

a,$)

	

e_st a
a

xt)
	 dt

<4, afi(x,t)
ax

	

mix

Z

(A .14)

and Eqs.(A.3)-(A .4) in the transform domain become
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a'(x,$) +(R +Ls)0(x,$)=o
(A .15 )ax

ai(x,$)
+ (G + Cs)1(x,$)=0

(A .16)ax

DifferentiatingEq .(A.15) with respect toxandusing Eq.(A.16)toeliminateal(x,$)/ax from
the result, we obtain

a2 0(x, s)
0(x,$) = 0- YZ

(A.17)ax 2

An analogous relation can be found for the current :

(A.18)

a21(x,$)

	

I (x,$) = 0- y2
ax 2

where

y (s) _ ~(R +Ls) (G+ Cs

) is called the propagation function . Note that y is independent of x, but not of s .

A.5 .2 Characteristic Impedance

The differential equation Eq .(A .17) has solutions of the form

rlh(x,$) = I 1 (s) a-Tr + fiz (s) e7x

	

(A .19)

where ay (s) and 02 (s) are arbitrary functions of s only, which will be simply written as nTnl and

02 .
From Eq .(A.19) there follows

aC0(x,$)
=-y (~1 e-Yx - x err)

ax

which together with Eq.(A.14) yields

I(x,$) R+Ls

	

e-Yx

	

eYx)=( R+Ls~
l/2

	

e-rx -

	

e)'x )
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It is conventional to define

Zc(s) - /R +Ls

	 V G+Cs ,

This last quantity, which has the dimensions of an impedance, is called the characteristic im-
pedance of the line. It is related to the physical properties of the line, i .e., to its dimensions and to
its conductive and dielectric properties . It is a function of s, and hence of time. We will write Z(s)

simply as Zc.
The general solutions of Eqs .(A.17) and (A .18) are thus

'h(x,$)= ~h a — Yx +

	

eYX

1(x,$)=Z-(a-Yx—

	

et%)

	

(A.21 )

A.5 .3 Reflection Coefficient s

The complete solution to Eq.(A.21) is obtained by determining the functions d and 4)2 using the
boundary conditions at the ends of the line. In space plasmas, the "end" of a transmission line ma y
be a planetary ionosphere or wherever else the conductivity between conducting paths become s
large. Are discharges across dielectrics (Section 4 .6 .1) make excellent terminations.

Let s) .4=:> Oft) be the transform of the generator voltage . At the input to the line (x = 0)

df(s)=Zg1(0,$)+0(0,$)=Zg(o–

	

++

	

(A.22)

From Egs.(A.21) -(A.22), and the definition of the voltage reflection coefficient at the input to th e
line

Zg – Zc
rg—

Zg+Zc

we obtain

01–rgdii=0(s)z + zg

	

c

In the same way, at the output of the line (x = 1), we find

e-Y'T,– eY' =0

(A.20)

(A.23 )

(A.24)

(A.25)
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where

= Z,+Zc

	

(A .26 )

is the voltage reflection coefficient at the output of the line. Solving Eqs .(A .24)-(A.25) yield s

= 0 (s)	 Zc 	 erl	 = 0(s) Z	 1	
Zg+Zc erl —r're — rl

	

Zg+Zc 1—rgre —2yl

=rl ~l e- 2 r1 =0(s)	 Z`	 rle—2y
l

Zg + Zc 1-rgre—2yl

which, when substituted into Eq .(A.21) gives

0(x s) =~(s)

	

Zc e-rx +re-7(21-x)
Zg+Zc 1 — rgre—2 7'1 (A .27 )

I (x, s)
= 0 (s)

e —yx — r e-r(2 1 — x)

(A.28 )Zg+Zc 1 -rg re-2 rl

With the aid of the convergent series expansion

	 1	 = 1+rgre- 2 r 1 + . . .+rg rn e- 2nyl + . . .

=

		

rg rn e—2n yl
n= 0

we arrive at

	

0 (x, s) = 0(s)
Z

+C

Z
	 [e — rx + r e — y( 21 — x )]

	

rg rn e—2n yl
g

	

c

	

n= 0

i

	

m

I(x,$) =0(s)

	

[e—rx—re—y(2l—x)] ± rg rn e— 2n y l

	

Zg+Zc

	

n = 0

	

(A .29)

Z,-Zc

1—rgre —2 rl
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A.6 Time-Domain Reflectometry

Consider the case of alosslesslineR=G=O .Forthis case y= al" s =u- 1 s andZ, = R c.Taking
the inverse Laplace transform of Eq.(A.29) by using the translation identity

L[ (s)e-r(s)]=L 1[in(s)e-us]=(p(t- 4
gives, as parameters for Egs.(A.11) and (A .12)

Equations (A.11), (A .12), and (A.30) give waveforms in remarkably good agreement wit h
waveforms measured by probes placed within the transmission line . For example, very lo w
resistances caused by dielectric surface flashover in pulsed-power transmission lines can b e
determined to an accuracy of less than 1% if waveforms are available for at least two spatia l
locations in the line. The problem reduces to iterating Eq.(A.30) in IC andR,until a best fit between
calculated and measured waveforms is obtained. Losses in the propagating current and voltage
pulses are of course determined by this procedure .

Example A.1 Cosmic transmission-line. Consider for illustration a hypothetical planetary
ionosphere-magnetosphere transmission line model (Figure A.4) that might be applied to the

Figure A.4. An ionosphere coupling model . The north and south pole transmission lines need not be symmetri c
(adapted from Sato, 1978) .

0+ =	
R,	 F, 1'g I tn (Xt—U[x+21n])

Rg+R, n=
0

0-
-RgRcRc

	

j•8

	

tp(t -

n (A .30)
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Figure A.5 . Current and voltage waveforms associated with a – 40 kV and 250 ms source perturbation on a
6 x 10' m, 0.412 transmission line . The source impedance is 212 and the ionosphere (load) impedance is 0 .112 .
The probe is located 1 x 10' m from the source .

geometry of Figures 1 .9 and 4.24 . Assume a -40 kV and 250 ms perturbation at the source . We
arbitrarily take a source impedance of 2 S2, a characteristic transmission line impedance of 0.4 S2 ,
and an ionosphere (load) impedance of 0 .112 . The transmission line length is 6 x 1 08 m . With thes e
parameter values a probe (spacecraft) located at a distance 10 8 m flout the source would measure
the current and voltage transients depicted in Figure A.5 . After a time 3.3 s following the peak
voltage spike from the perturbation, the probe would measure the first ionospheric reflection
signal and, if the source impedance differs from the transmission line impedance, it would also
measure areflected signal from the source 0 .7 s later . Since the amplitude of the reflections depend
on the reflection coefficients Eq .(A.23) and Eq .(A .26), an accurate determination of the sourc e
and ionospheric impedance can be made . If probe measurements are available at two spatia l
locations, the waveforms from Eq .(A .30) are uniquely determined and can be used to ascertai n
the impedances and their locations. In laboratory application, precise determination of the im-
pedances and positions of high-voltage surface flashovers (Section 4 .6.1) has been achieved .

Notes

' In rationalized MKS units the acutal values of the line constants for a differential lengt h
of line are LA x henrys, RA x ohms, CA x farads, and GA x siemens .



Appendix B. Polarization of Electromagnetic
Waves in Plasma

A wave equation is derivable from Maxwell-Hertz-Heaviside's equations Egs.(1 .1)-(1 .4)

VxH=j-iweoE=-iweo[E+ (0E0
j]=-iweoK• E

(B .1 )

where K, the relative dielectric tensor, is given by

S ' -i D 0
K= iD S

	

0

	

(B .2)
0 0 P

and derives from the solution to the current density j [Stix 1962] . For cold plasma, the matrix
elements are

S=2(R+L )

D=2(R-L)

2

P=-E 2
k w

	

(B .3)

2
M

R=1—

	

nk CO

k co' w— wb

2

L=1-~
wpk w

k CO w+ G)b

The vector fields have been taken to be the sum of a zero (external field) and a first order fiel d
(e.g . B = Bo+ B, E = E0+ E l) where the first-order quantities vary as e i (k r -wt). Setting
O -+ i k in Eq.(B .1) give s

kxB=-u)/toeoK- E=-K- E

	

(B .4 )
c

Likewise, setting a / at - - i win Eq.(1 .1) gives
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kxE=w B

	

(B .5)

Crossing Eq .(B.5) with k, then substituting into Eq.(B .4) yields a wave equation

kx(kxE)+ftK• E=0

	

(B .6 )
c

At this point it is convenient to introduce the dimensionless vector n which has the direction
of the propagation vector n and the magnitude of the refractive index

The magnitude n = ~ n i is the ratio of light to the phase velocity. The reciprocal of n is the wave
phase velocity divided by the velocity of light. The wave normal surface is the locus of the tip of
the vector n -I n/n 2 .

Figure B .1 is a plot of phase,velocity surfaces for electromagnetic waves. The ordinate i s
a / w2 while the abscissa is (0 / co'. The symbols L, R, X, and 0 denote left-hand circularl y
polarized (LHCP), right-hand circularly polarized (RHCP), extraordinary, and ordinary wav e
types, respectively . This figure is called a Clemmow—Mullaly—Allis or CMA diagram [Allis,
Buchsbaum, and Bers 1963] and is to be interpreted as a "plasma pond" for a two componen t
plasma where cross-sections of the allowable wave normal surfaces are shown. The surfaces are
typically in the form of spheres, ellipsoids, and wheel and dumbbell lemniscoids . The diagram is
divided up into 13 regions, each of which supports two independent modes.

The significance of the different regions is due to "boundaries" where the refractiv e
indices go either as n 2 -a 0 (vph —>*o) called a "cutoff" condition, or n 2 -4 oo (vph —Al) called
a "resonance" condition (Table B .1). Waves are reflected at cutoffs and absorbed at resonances.
The cross-sections in Figure B .1 are not to scale, but the speed of light in relation to the velocitie s
lies generally between the two cross-sections in each region . This divides the wave normal
surfaces into "fast" and "slow" modes . The various wave types and their locations in Figure B . 1
are delineated in Table B.2.

Substituting Eq.(B .7) into Eq.(B .6) gives a wave equation in terms of n

nx(nxE)+K . E=0

	

(B .8)

Table B.1 Nomenclature for cutoffs and resonance s

P = 0

	

plasma cutoff

S = 0

	

plasma resonance, 0 = rt/Z

L = 0

	

ion cyclotron cutoff

R = 0

	

electron cyclotron cutoff

L = av

	

ion cyclotron resonance

R =

	

electron cyclotron resonance

(B .7)
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(co pi 2 +c)
pe

)/co 2

Figure B.1. CMA diagram for a two-component plasma with mi /me = 4. Bounding surfaces appear as lines
in the two-dimensional parameter space. Cross sections of wave-normal surfaces are sketched and labeled for
each region. For these sketches the direction of the magnetic field is vertical .

which, when used for the orientation of the vectors shown in Figure B .2, becomes

S—n 2 cos2 0

	

—iD

	

n 2 cos0sin 0

iD

	

S—n 2

	

0

	

(Ey)=0
( B,n 2 cos 0sin 0

	

0

	

P—n 2 sin 2 0 /
E)

	

(B .9)



320

	

Appendix B . Polarization of Electromagnetic Waves in Plasma

Table B.2 . Regions of plasma wave types

type

	

region

Ordinary

	

1,2,3,4,6,7,12,1 3

Extraordinary

	

1,2,3,4,6,7,10,11,12,1 3

RHCP

	

1,6,7,8,9,10,11,12,1 3

LHCP

	

1,2,3,4,6,7,12,1 3

Whistler

	

8

Electron Cyclotron

	

7, 8

Quasi-Transverse Ordinary

	

1,2,3,6,7,8

Alfven-Astrom waves,

	

1 3

Ion Cyclotron wave s

The condition for a nontrivial solution to Eq .(B .9) is that the determinant of the square matrix be
zero . This condition gives the dispersion relation, or the equation for the wave normal surface

An 4 —Bn 2 +C = 0

	

(B.10)

A = S sin2 9+Pcos 2 9
B = RL sin2 9 + PS (1 + cost B)

z

Figure B .2. The propagation vector kin relation to the static magnetic field B,.
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C = PRL

The solutions of Eq.(B .10) reduce to simple expressions when 9= 0 and 9 = n2 :

n 2=R,L 9= 0

n 2=RL/S,P 9 = irR

	

(B .11 )

The polarization relations between the Cartesian field components of E follow from Eq .(B .10)

EX:Ey :EZ =(S–n 2)(P–n 2 sin 2 9) :–iD(P–n 2 sin 2 9) :–(S–n 2~n 2cos9sin0
(B .12 )

If 9= 0, Eq.(B .12) shows that E = 0 (E 1 Ba and, if n2 = R, thenE /E = –i. This means that E
is 90° ahead of E and, by convention, the polarization is right-hand circular . If n2 = L, E /E = i
and the polarization is left-hand circular . Figure B .3a illustrates these modes of propagation .

For the case 9= rr/2 and n 2 = P,E = E = 0 (E II Bo). When n 2 = RUS, E = 0 (E 1 Bq).
For this case the electric field circumscribes an ellipse in a plane of y. The modes n 2 = P and n 2
= RUS are called the "ordinary" and "extraordinary" waves, respectively . These tenns have been
taken from crystal optics ; however the tenns have been interchanged in plasma physics, since th e
"extraordinary" mode is affected by Bo whereas the "ordinary" mode is not. Figure B .3b illustrates
these modes of propagation .

Expressed in spherical coordinates Eq.(B .12) is

Ek : E B : Eo = (S – n2) (P – n 2) sin 9 : – (S – n 2) P cos 9 : – iD (P – n2 sin2 0) (B .13 )

which shows that Ek and EB are in phase while E0 is out of phase by 90°. Figure B.4 shows the
orientation of the field vectors. The vector E is elliptically polarized in a plane containing th e
y direction and the resultant of Ek and Eo.

Example B .1 Faraday rotation. The magnitudes of the RHCP and LHCP propagation vector s
are kR = (c o/ c) a and k L = (c o/ c) 1E. Faraday rotation is given by

T= k L –kR)

At high frequencies where w» cop , a ,, leading to the approximations ,

2

kL,R=a) 1– 20)2 (1±fib)
CO

Hence, the rotation angle of the linearly polarized wave as it propagates through magnetized
plasma is
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Z

Bo

0= 0

k R

	

k L

(a)

(b )

Figure B3. Polarization of independent mode types . (a) Right-hand circularly polarized mode (RHCP) and
left-hand circularly polarized mode (LHCP) . The electrons (ions) rotate in the same sense as the RHCP (LHCP )
mode. (6) Ordinary and extraordinary modes .

2

Qx=T[_wpwb=	 e 3

	

ne B ll
2cw2 2m 2 ce0 w2 (B .14)

whereB,is themagnitude ofBalong the direction ofwave propagation through aplasma of length



Appendix B . Polarization of Electromagnetic Waves in Plasma

	

32 3

o.- w
c
as

.a

W

N

cC

n.
W I

Figure B .4. Orientation of wave fields in spherical coordinates .



Appendix C. Dusty and Grain Plasmas

In general, the motion of a solid particle in a plasma obeys Eq.(2.11 )

dim =mg +q(E+vxB)—mv, v + f

where m andqare the mass and the electric charge of the particle, respectively, g = ~G m(r) / r 2
is the gravitational acceleration, — m v~ v is due to viscosity, and f is the sum of all other forces ,
including the radiation pressure.

Depending on the size of the particle, four cases are delineable :

(1)Very small particles. Theteimq(E+vxB)inEq .(C.1) dominates over rng and the particl e
is part of a dusty plasma (Section C.1). Under cosmic conditions this is true if the size of the particle
is less than 10 nm. In the case of large electric charges the limiting size may rise to 100 nm .

(2)Small Grains. For this case, q/m=16 . Plasma effects still play a major role in syste m
dynamics (Section C .2).

(3) Large Grains. If the size of the particle is so large that the electromagnetic term is
negligible, we have an intermediate case dominated by viscosity and gravity. The particles in this
regime are referred to as grains . Their equation of motion is

mv,v=mg

	

(C .2)

Under conditions in interstellar clouds this may be valid for particles of the order of 10 pm .
(4) Large solid bodies. For "particles" of the size of kilometers or more, the inertia an d

gravitational terms dominate . Electromagnetic forces are negligible, and viscous forces can be
considered as perturbations which may change the orbit slowly . Depending on the properties o f
the cosmic cloud, viscous forces become important for meter or centimeter sizes. The equation
of motion Eq.(C.1) is then,

dv
m dt =mgv

	

(C .3 )

The transition of plasma into stars involves the fonnation of dusty plasma, the sedimentation o f
the dust into grains, the fonnation of stellesimals, and then the collapse into a stellar state [AlfvB n
and Arrhenius 1976, Alfvdn and Carlqvist 1978] .

C.1 Dusty Plasma

An important class of cosmic plasmas are those which are "dusty" (i .e., plasmas that contain solid
matter in the form of very small dust grains) . These grains are electrically charged and ifq/m i s

(C.1)
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large enough, the dynamics of the dust grain is controlled by electromagnetic forces [Mendis 1979,
Hill andMendis 1979,1980, Houpis 1987, Azar and Thompson 1989, Horanyi and Goertz 1990] .

The temperature of the dust in a cosmic plasma may differ by orders of magnitude from the
temperature of the plasma. For example, the temperature of the dust radiating into space through
a transparent plasma may be 10 K, the molecular temperature 100 K, the ion temperature 10' K ,
and the electron temperature 104 K.

Dusty plasma is characterized by solid particles of mass m, chargeq, and a charge-to-mass
ratio that is much greater than the square-root of the gravitational constant, q/m» tom . The dust
grains are charged negatively by impacts from streams of electrons . The loss of negative charge
can be due to the photoeffect, field emission, and ion impacts. Normally, the potential of a dus t
grain may be 1–10 V, positive or negative . However, if the electron stream responsible for the
charge is relativistic, the grain can charge up to several kilovolts [Deforest 1972, Reasoner 1976 ,
Mendis 1979] .

C.2 Grain Plasma

Consider a plasma whose dust may have accreted into macroscopic solid matter . For simplicity,
the plasma is taken to consist of two components : grainswithmass mg and chargeq,andparticles
with mass rnm and charge qP The grains are assumed to be weakly charged with qg/mg --1C.'Ihe
particles may be electrons, ions, dust, or some other unspecified charge mass with the propert y
mp << m g [Wollman 1988, Gisler and Wollman 1988] .

Consider a spherically symmetric gravitational condensation of the plasma, so that th e
parameters depend only on the distance r from the center . The dynamics of the grain fluid are
specified by Eqs .(2.13) and (2 .15) where ng(r) is the number density, and N(r) and M(r) are the
total grain number and grain mass insider,respectively. The total mass and net charge inside radiu s
rare

M T aMi(r)=mgNg+mpN p

QT= Qi( r) =ggNg–gpN p

If the plasma is tenous and in thermal equilibrium, dv/dt = 0; the electrostatic potential at qg i s

4 = Q7./4zeo r , and the gravitational potential at mg is OG = –G M T /r . Substituting these
parameters into Eq.(2.13) while (momentarily) neglecting B, gives the following, for grains and
particles, respectively:

0 = n gggQT ngmgG MT
kTg

dn g

4treor2

	

r2

	

dr

–np qp

0 4s
eoQTnp(2GMT –kTp

d r

The particles may be relativistic with mean Lorentz factor (q .

(C.4 )

(C.5)
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Equations (C.4) and (C.5) have as solutions

r0 2
ng(r) =no g (r )

/r0) 2
np(r) =nop11 r

Some insight into the meaning of Eqs.(C .4) and (C .5) is possible by considering the special cas e

T= T =T, and scale lengths n g t d n g / d r= nP l d np / d r, for the grain plasma and particle
plasmas, respectively. For these conditions, Eqs .(C .4) and (C.5) reduce to

9gQTm GMT=

	

Q T—

	

G M
4neo

	

g

	

r-
- 4neo

	

p

	

T

If the grain thermal speed is much less than c, then (Y'+np << m g and Eq .(C.6) may be written,

	 qg	 QT	 _	 qg
V4neoG m g V4neoG M T qg+qp

	

(C.7 )

Now consider the behavior of the particle scale height relative to the grain scale height . The particl e
scale height parameter rop is defined by the relation

gp N p(rop) = qg N g (ro )

Now write, ignoring the particle mass with respect to the grain mass ,

	 QT	 gg Ng(r) —gp Np(r) __	 qg	 i l— gpNp(r)
1l4neoG M T V4ne0 G m g Ng (I)

	

V4neoG m g

	

ggNg(i)

The ratio of particle numbers is

Np(r) =. N p (ro) _ Np( r op ) Np(ro)_ q g r o
Ng (r) Ng (ro) Ng (ro) Ng (rop) qp rop

The last identity is due to the fact that for a r- 2 density distribution, N (r) r. Hence ,

	 QT	 qg	 1_ ro
14neoG M T 114neoG m g I rop

Combining Eqs.(C .7) and (C .8) yields,

(C.6)

(C .8)
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ro =

	

4neoG m8	 qg1-	
rop

	

qg

	

qg + q P

For an atomic plasma,

	 q g	 	 q g>>
4x. E0 G mg

	

qg+qp

and the radial electrical polarization, due to the separation I ro -rop I, is negligible. The condition
for maximum polarization (i.e ., when the particles are removed to infinity so that rop -* '), i s

	 4g	 =^/	 q g
114neoG m g

	

V qg + qp

	

(C .9)

or, since q = Ze,

m g = 	 = 1 .9x 10 -9 V Zs(Zg + Z
P

) k g
~l 4nE0 G

The grain mass, then, is of the order of micrograms .
It is possible to state the condition for significant large-scale separation . The Jeans wave

number k ., = 2 n/A, is from Eq.(2.75),

2 _ 4nG mgpm Zp
k~

	

kT

	

Z g +Z p

The particle Debye length is given by

A, 2 = kTp/mP	 kT	 4neoG m 8
P

nP qp2/mpa0 14NG m8pml qpq g

Hence, Eq.(C.9) is equivalent to

k1 ).p= 1

Thus, the condition for maximum polarization can be written

Jeans length= 2it
De bye length (C.10)
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This analysis is valid insofar as thennalization is efficient, so that the formation of condensation
heats the plasma and TT = T. This increases the Debye length. Then the condition for charge
separation is equivalent to the condition for poor shielding of Jeans mass concentrations.

The inclusion of B causes a Ex B drift of the low mass component around the axis at the
center of the spherical condensation . If the grain plasma is in the presence of a strong magneti c
field, the Jeans mass may be radically altered (Section 2.7 .1) .



Appendix D . Some Useful Units and Constants

Length

meter

	

m = 100 cm
kilometer

	

km = 105 cm = 103 m
millimeter

	

mm = 10-1 cm = 10-3 m
micron

	

µ = tm = 10-4 cm = 10-6 m
angstrom

	

A= 10- 8 cm = 10- 10 m
fermi (femtometer)

	

fm = 10-13 cm = to--15 m
astronomical unit

(= mean sun-earth distance) AU = 1 .49598 x 10 11 m
light year

	

ly = 9 .46053 x 10 15 m =63240 AU
parsec

	

pc = 3.08568 x 10 16 m =3 .26163 ly
solar radius

	

RS = 6 .9599 x 10 8m
earth equatorial radius

	

Re = 6.3782 x 106 m = 6378 km

Volum e

cubic meter

	

m3 = 106 cm3
cubic parsec

	

pc 3 = 2 .938 x 1049 m 3 = 34 .7 1y3
cubic kiloparsec

	

kpc3 = 2 .938 x 1058 m3 = 3 .470 x 10 10 1y3

Time

minute

	

min = 60 s
hour

	

h=3600s=60min
day

	

d=86400s=24 h
sidereal year

	

y = 365 .256 d = 3 .15581 x 107 s
aeon

	

109 y

Mass

solar mass

	

Ms = 1 .989 x 1030 kg
earth mass

	

Me = 5 .976 x 1024 kg
atomic mass uni t

(12C = 12 scale)

	

amu = 1 .66056 x 10-27 kg
electron mass

	

me = 9.10953 x l0-31 kg = 5 .4858 x 10-4 amu
proton mass

	

mp = 1 .67265 x 10-27 kg = 1 .00728 amu
(mplme = 1836.15)

mass of 1H atom

	

my = 1 .67356 x 10-27 kg = 1 .00783 amu
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Energy

joule

	

J, 1 kg m2 s-2
erg

	

1 erg = 10-7 J
calorie

	

cal = 4 .1868 J
electron volt

	

eV = 1 .60219 x 10-19 J = 10-3 keV = 10-6 MeV =
10-9 GeV

mass energy of 1 amu

	

1 .49243 x 10-10 J =931 .502 MeV
rest mass energy of electron

	

mec2 = 511 .003 keV
wavelength associated

with 1 eV

	

1 .2398 µm = 1239.8 nm
frequency associate d

with! eV

	

2 .4180 x 10 14 Hz
temperature associated

with 1 eV

	

11,604 K
detonation energy of 1 kiloton

of high explosive

	

4 .2 x 10 12 J = 4 .2 TJ

Power

watt

	

W = J s-1
solar luminosity

	

Ls = 3 .826 x 1026 W = 2.388 x 1039 MeV s- 1
jansky

	

Jy = 10-26 W m-2 Hzl

Velocity

velocity of light

	

c = 2.997925 x 108 m s-1 = 2.997925 x 104 cm µs- 1
= 2.997925 x 105 km s-1

(10 cm µs- 1 = 100 km s-1 )

Pressure

pascal

	

Pa, kg m- 1 s-2
bar

	

105 Pa
atmosphere

	

atm = 1 .01325 bar = 760 torr
millimeter of mercury

	

mm Hg =133 .322 Pa =1 .315 x 10 -3 atm = 1 .298 mbar

Temperature

temperature comparisons

	

0°C = 273 .150 K
100°C = 373 .150 K

Angle, SolidAngle

degree

	

deg = 1° = right angle/90 = 60 minutes of arc (60
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arcmin) = 3600 seconds of arc (arcsec = 3600" )
radian

	

rad = 57° .2957 8
steradian

	

sr = 3282.8 deg2

Angular momentum

quantum unit

	

h = 1 .0546 x 10-34 J s = 6.5822 x 10- 16 eV s
Planck's constant

	

h = 2nir = 6.6262 x 10-34 J s

Electric charge

Coulomb

	

C = -6 .24145 x 1018 electrons
electron charge

	

e = 1 .60219 x 10- 19 C

Magnetic field

tesla

	

T = 104 gauss
gauss

	

G = 10-4 T = 1 oersted = 79.58 amp-turn m-1
gamma

	

y = 10-9 T = 1 nT = 10-5 G
earth's nominal magnetic field 0 .5 G = 50,000 nT

Some physical constants

Boltzmann constant

	

k = 1 .3807 x 10-23 J K- 1
gravitational constant

	

G = 6 .6726 x 10- 11 m2 s-2 kg-1
gravitational acceleration, earth g = 9 .8067 m s-2
permittivity of free space

	

ep = 8 .8542 x 10- 12 F m- 1

permeability of free space

	

= 4n x 10-7 H m- 1
Stefan-Boltzmann constant

	

a= 5.6705 x 10-8 W m-2 K-4
Avogadro number

	

NA = 6.0221 x 1023 mo1- 1
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C TRldimensional STANford code, TRISTAN, fully electromagnetic ,
C with full relativistic particle dynamics . Written during sprin g
C 1990 by OSCAR BUNEMAN, with help from TORSTEN NEUBERT an d
C KEN NISHIKAWA .

real me,mi
common /partls/x(8192),y(8192),z(8192),u(8192),v(8192),w(8192 )
common /fields/exl(8192),eyl(8192),ezl(8192),bxl(8192) ,

ebyl(8192),bzl(8137 )
&,sm(27),q,ge,gi,qme,qmi,rs,ps,os, c
6,ms(27),mx,my,mz,ix,iy,iz,lot,maxptl,ions,lecs,nstep

C The sizes of the particle and field arrays must be chosen i n
C accordance with the requirements of the problem and the limitatio n
C of the computer memory . The choice '8192' (with thebzl array
C curtailed to accommodate the remainder of the fields common) wa s
C made to suit the segmented memory of a PC . Any changes in thes e
C array sizes must be copied exactly into the COMMON statements o f
C the "surface", "mover" and "depsit" subroutines .
C Fields can be treated as single-indexed or triple-indexed :
C For CRAY-s, the first two field dimensions should be ODD, as here :

dimension ex(21,19,20),ey(21,19,20),ez(21,19,20) ,
sbx(21,19,20),by(21,19,20),bz(21,19,20 )
equivalence(exl(l),ex(1,1,1)),(eyl(l),ey(1,1,1)),(ezl(1),ez(l ,

s1,1)),(bxl(1),bx(1,1,1)),(byl(1),by(1,1,1)),(bzl(1),bz(1,1,1) )
maxptl-819 2
mx-2 1
my-1 9
mz-2 0

C Strides for single-indexed field arrays :
ix- 1
iy-m x
iz-iy*my
lot-iz*mz

C Miscellaneuos constants :
qe-- .062 5
qi- .062 5
me- .062 5

qme-qe/me
qmi-qi/mi
c- . 5

C Our finite difference equations imply delta_t - delta_x -
C delta_y - delta_z - 1 . So c must satisfy the Courant condition .
C The bx,by and bz arrays are really records of c*Bx, c*By ,
C c*Bz : this makes for e <	 > b symmetry in Maxwell's equations .
C Otherwise, units are such that epsilon_0 is 1 .0 and hence mu_0
C is 1/c**2 . This means that for one electron per cell (see exampl e
C of particle initialisation below) omega-squared is qe**2/me .
C For use in the boundary field calculation :

rs-(l .-c)/(l .+c )
tsq- .166666 7
ps-(l .-tsq)*c/(l .+c )
os- .5*(l .+tsq)*c/(l .+c )

C Data for smoothing : the currents fed into Maxwell's equation s
C are smoothed by convolving with the sequence .25, .5, .25 i n
C each dimension . Generate the 27 weights ("sm") and inde x
C displacements ("ms") :

n- 1
do 1 nz--1, 1
do 1 ny--1, 1
do 1 nx--1,1
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sm(n)= .015625*(2-nx*nx)*(2-ny*ny)*(2-nz*nz )
ms(n)=ix*nx+iy*ny+iz*n z

	

1

	

n-n+1
C In the particle arrays the ions are at the bottom, the electrons
C are stacked against the top, the total number not exceeding maxptl :
C The number of ions, "ions", need not be the same as the number o f
C electrons, "lees" .
C The code treats unpaired electrons as having been initially
C dissociated from infinitely heavy ions which remain in situ .
C Initialise the particles : Place electrons in same locations as ion s
C for zero initial net charge density . Keep particles 2 units away from
C the lower boundaries of the field domain, 3 units away from the uppe r
C boundaries . For instance, fill the interior uniformily :

ions= 0
do 80 k=l,mz- 5
do 80 j=l,my- 5
do 80 i=l,mx- 5
ions=ions+ l
x(ions)= 2 .5+ i
y(ions)= 2 .5+ j

80

	

z(ions)= 2 .5+k
C Put electrons in the same places :

lecs=ion s
do 4 n=l,lec s
x(n+maxptl-lees)=x(n )
y(n+maxptl-lees)=y(n )

	

4

	

z(n+maxptl-lecs) = z(n )
C Initialise velocities : these'should not exceed c in magnitude !
C For thermal distributions, add three or four random numbers fo r
C each component and scale .
C Initialise random number generator :

lk-1234 5
1p=2 9
do 85 n=l,ions
u(n)=0 .046875*(rndm(lk,lp)+rndm(lk,lp)+rndm( lk , lp) )
v(n)=0 .046875*(rndm(lk,lp)+rndm(lk,lp)+rndm(lk,lp) )
w(n)=0 .046875*(rndm(lk,lp)+rndm(lk,lp)+rndm(lk,lp) )
u(maxptl-lees+n)=0 .1875*(rndm(lk,lp)+rndm(lk,lp) +rndm ( lk , lp ) )
v(maxptl-lets+n)=0 .1875*(rndm(lk,lp)+rndm(lk,lp) +rndm ( lk , lp ) )

85 w(maxptl-lees+n)=0 .1875*(rndm(lk,lp)+rndm(lk,lp) +rndm ( lk , lp ) )
C Initialise the fields, typically to uniform components, such a s
C just a uniform magnetic field parallel to the z-axis :

do 5 k=l,mz
do 5 j-1,my
do 5 i=l,mx
ex(i,j,k)=0 .
ey(i,j,k)=0 .
ez(i,j,k)=0 .
bx(i,j,k)=0 .
by(i,j,k)=0 .

	

5

	

bz(i,j,k)=c*1 . 5
C (Remember that bx,by,bz are really c*Bx, c*By, c*Bz . )
C Initial fields, both electric and magnetic, must be divergence-free .
C Part of the Earth's magnetic field would be ok . If the Earth is include d
C in the field domain, its magnetic dipole field is readily establishe d
C by maintaining a steady ring current in the Earth's core .

	

C

	

Begin time steppin g
last=3 2
nstep= 1

C Before moving particles, the magnetic field is Maxwell-advanced
C by half a timestep :

	

6

	

do 7 i=l,mx- 1
do 7 j-1,my- 1
do 7 k=l,mz- 1
bx(i,j,k)-bx(i,j,k) + ( .5*c) *

(ey(i,j,k+l)-ey(i,j,k)-ez(i,j+l,k)+ez(i,j,k) )
by(i,j,k)=by(i,j,k) + ( .5*c )

s

	

(ez(i+l,j,k)-ez(i,j,k)-ex(i,j,k+l)+ex(i,j,k) )

	

7

	

bz(i,j,k) =bz(i,j,k) + ( .5*c) *
e

	

(ex(i,j+1,k)-ex(i,j,k)-ey(i+l,j,k)+ey(i,j,k))
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C Now move ions :
call mover(l,ions,qmi )

C and electrons :
call mover(maxptl-lecs+l,maxptl,qme )

C The Maxwell-advance of the fields begins with another half-step
C advance of the magnetic field since for Maxwell's equations th e
C B - information and the E - information must be staggered in time .
C In space, their information is also staggered . Here we show th e
C locations where field components are recorded :

Ex(i,j,k)

	

= value of Ex at x=i+ .5, y=j, z=k
Ey(i,j,k)

	

- value of Ey at x-i, y=j+ .5, z= k
Ez(i,j,k)

	

- value of Ez at x-i, y=j, z-k+ . 5

Bx(i,j,k)

	

- value of Bx at x=i, y=j+ .5, z-k+ . 5
By(i,j,k)

	

- value of By at x=i+ .5, y-j, z-k+ . 5
Bz(i,j,k)

	

= value of Bz at x=i+ .5, y-j+ .5, z=k
C
C

	

Maxwell's laws are implemented (to central differenc e
C

	

accuracy) . in the form :
C
C

	

Change of flux of B through a cell face
C

	

= - circulation of E around that face
C
C

	

Change of flux of E through a cell face of the offset gri d
C

	

- circulation of B around that face - current through it
C
C
C
C

z

C
C
C
c

C
C

c
c
c
C

	

E x
C

	

/
C

	

/
C

	

/
C
C
C
c

	

I

	

I

	

I
C

	

Ez

	

Bx

	

Ez
C

	

I

	

I

	

I

C
C
C

	

By
C
C
C

	

I
C

	

E z
C

	

I
C
C

	

*	 Ey	 *	 ) y

	

/

	

/
C

	

I

	

/

	

/
C

	

I

	

/

	

/

C

	

I

	

Ex

	

Bz

	

Ex
C

	

1 /

	

/

C

	

1/

	

/

C

	

I/

	

/

C

	

*	 Ey	 *
C

	

/
C

	

/
C

	

/
C

	

x
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C
C
C Second half-advance of magnetic field :

do 8 i-1,mx- 1
do 8 j=l,my- 1
do 8 k-1,mz- 1
bx(i,j,k)=bx(i,j,k) + ( .5*c) *

& (ey(i,j,k+l)-ey(i,j,k)-ez(i,j+l,k)+ez(i,j,k) )
by(i,j,k)=by(i,j,k) + ( .5*c) *

e (ez(i+1,j,k)-ez(i,j,k)-ex(i,j,k+1)+ex(i,j,k) )

	

8

	

bz(i,j,k)-bz(i,j,k) + ( .5*c) *
s

	

(ex(i,j+1,k)-ex(i,j,k)-ey(i+l,j,k)+ey(i,j,k) )
C Front,right and top layers of B must be obtained from a specia l
C boundary routine based on Lindman's method :

call surface(by,bz,bx,ey,ez,ex,iy,iz,ix,my,mz,mx,l )
call surface(bz,bx,by,ez,ex,ey,iz,ix,iy,mz,mx,my,l )
call surface(bx,by,bz,ex,ey,ez,ix,iy,iz,mx,my,mz,l )
call edge(bx,ix,iy,iz,mx,my,mz,l )
call edge(by,iy,iz,ix,my,mz,mx,l )
call edge(bz,iz,ix,iy,mz,mx,my,l )

C Full advance of the electric field :
do 9 i-2,m x
do 9 j=2,my
do 9 k-2,m z
ex(i,j,k)=ex(i,j,k) + c *

s

	

(by(i,j,k-l)-by(i,j,k)-bz(i,j-1,k)+bz(i,j,k) )
ey(i,j,k)=ey(i,j,k) + c *

& (bz(i-1,j,k)-bz(i,j,k)-bx(i,j,k-1)+bx(i,j,k) )

	

9

	

ez(i,j,k)ez(i,j,k) + c *
& (bx(i,j-1,k)-bx(i,j,k)-by(i-1,j,k)+by(i,j,k) )

C Boundary values of the E - field must be provided at rear, lef t
C and bottom faces of the field domain :

call surface(ey,ez,ex,by,bz,bx,-iy,-iz,-ix,my,mz,mx,lot )
call surface(ez,ex,ey,bz,bx,by,-iz,-ix,-iy,mz,mx,my,lot )
call surface(ex,ey,ez,bx,by,bz,-ix,-iy,-iz,mx,my,mz,lot )
call edge(ex,-ix,-iy,-iz,mx,my,mz,lot )
call edge(ey,-iy,-iz,-ix,my,mz,mx,lot )
call edge(ez,-iz,-ix,-iy,mz,mx,my,lot )

C The currents due to the movement of each charge q are applied to th e
C E-M fields as decrements of E-flux through cell faces . The movement
C of particles which themselves cross cell boundaries has to be split
C into several separate moves, each only within one cell . Each o f
C these moves contributes to flux across twelve faces .
C Ions and electrons are processed in two loops, changing the sig n
C of the charge in-between . These loops cannot be vectorised :
C particles get processed one by one . Here is a good place t o
C insert the statements for applying boundary conditions t o
C the particles, such as reflection, periodicity, replacement
C by inward moving thermal or streaming particles, etc .
C Split and deposit ions currents :

q=q i
nl= l
n2-ion s

52 do 53 n=nl,n 2
C Previous position :

x0-x(n)-u(n )
y0=y(n)-v(n )
z0-z(n)-w(n )

C Reflect particles at x-3, x-mx-2, y-3, y-my-2, z-3, z-mz-2 :
u(n)-u(n)*sign(l .,x(n)-3 .)*sign(l .,mx-2 .-x(n) )
x(n)-mx-2 .- abs(mx-5 .-abs(x(n)-3 .) )
v(n)-v(n)*sign(l .,y(n)-3 .)*sign(l .,my-2 .-y(n) )
y(n)-my-2 .- abs(my-5 .-abs(y(n)-3 .) )
w(n)-w(n)*sign(l .,z(n)-3 .)*sign(l .,mz-2 .-z(n) )
z(n)=mz-2 .- abs(mz-5 .-abs(z(n)-3 .))
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C Alternatively, apply periodicity to particles :

	

CC

	

x(n)=x(n)+sign( .5*(mx-5 .),mx-2 .-x(n))-sign( .5*(mx-5 .),x(n)-3 . )

	

CC

	

y(n)=y(n)+sign( .5*(my-5 .),my-2 .-y(n))-sign( .5*(my-5 .),y(n)-3 . )

	

CC

	

z(n)-z(n)+sign( .5*(mz-5 .),mz-2 .-z(n))-sign( .5*(mz-5 .),z(n)-3 . )
53 call xsplit(x(n),y(n),z(n),xO,yO,zO )

C The split routines call the deposit routine .
if(n2 .eq .maxptl)go to 5 4

C Split and deposit electron currents :
q=qe
nl=maxptl-lees+ l
n2=maxpt l
go to 52

C Countdown :
54 nstep=nstep+ l

if (nstep .le.last) go to 6
C The user must decide what information is to be written out a t
C each timestep, what only occasionally, and what only at the end .
C It may be wise to write out both COMMONS before stopping : the y
C can then be read in again for a continuation of the run .

stop
en d

	

C	
subroutine surface(bx,by,bz,ex,ey,ez,ix,iy,iz,mx,my,mz,mOO )

C (Field components are treated as single-indexed in this subroutine )
dimension bx(l),by(l),bz(l),ex(1),ey(l),ez(l )
common /fields/exl(8192),eyl(8192),ezl(8192),bxl(8192) ,

&byl(8192),bzl(8137 )
&,sm(27),q,ge,gi,gme,qmi,rs,ps,os, c
&,ms(38 )

mO=mOO+iz*(mz-1 )
assign 5 to next

6 m=mO
do 2 j-1,my- 1
n=m
do 1 i=l,mx-1
bz(n)=bz(n)+ .5*c*(ex(n+iy)-ex(n)-ey(n+ix)+ey(n) )

	

1

	

n=n+i x
2 m-m+i y

go to next (5,7 )
7 return
5 m=mO+ix+i y

do 4 j-2,my-1
n=m

C Directive specifically for the CRAY cft77 compiler :
cdir$ ivde p

do 3 i=2,mx-1
bx(n)=bx(n-iz)+rs*(bx(n)-bx(n-iz))+ps*(bz(n)-bz(n-ix))-os* (

&ez(n+iy)-ez(n))-(os-c)*(ez(n+iy-iz)-ez(n-iz))-c*(ey(n)-ey(n-iz) )
by(n)=by(n-iz)+rs*(by(n)-by(n-iz))+ps*(bz(n)-bz(n-iy))+os* (

&ez(n+ix)-ez(n))+(os-c)*(ez(n+ix-iz)-ez(n-iz))+c*(ex(n)-ex(n-iz) )

	

3

	

n=n+i x
4 m=m+i y

assign 7 to next
go to 6
en d

C
subroutine edge(bx,ix,iy,iz,mx,my,mz,mOO )
dimension bx(l )
lx=ix*(mx-l )
ly=iy*(my-1 )
lz=iz*(mz-l )
n=mOO+iy+l z

cdir$ ivde p
do 1 j =2,my- 1
bx(n)-bx(n+ix)+bx(n-iz)-bx(n+ix-iz )
bx(n+lx)-bx(n+lx-ix)+bx(n+lx-iz)-bx(n+lx-ix-iz)
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n=n+i y
n=m00+ly+i z

cdir$ ivde p
do 2 k-2,mz- 1
bx(n)=bx(n+ix)+bx(n-iy)-bx(n+ix-iy )
bx(n+lx)=bx(n+lx-ix)+bx(n+lx-iy)-bx(n+lx-ix-iy )

2

	

n-n+i z
n-mOO+ly+l z

cdir$ ivdep
do 3 i-1,mx
bx(n)=bx(n-iy)+bx(n-iz)-bx(n-iy-iz )
bx(n-ly)=bx(n-ly+iy)+bx(n-ly-iz)-bx(n-ly+iy-iz )
bx(n-lz)=bx(n-lz-iy)+bx(n-lz+iz)-bx(n-lz-iy+iz )

3 n=n+ix
return
end

C	
subroutine mover(nl,n2,gm )
common /partls/ x(8192),y(8192),z(8192),u(8192),v(8192),w(8192 )

C (Field components are treated as single-indexed in this subroutine )
common /fields/ ex(8192),ey(8192),ez(8192) ,

cbx(8192),by(8192),bz(8137 )
&,sm(27),q,ge,gi,qme,qmi,rs,ps,os, c
&,ms(27),mx,my,mz,ix,iy,iz,lot,maxptl,ions,lecs,nste p

do 1 n-nl,n 2
C Cell index & displacement in cell :

i=x(n )
dx=x(n)- i
j-Y(n )
d Y=Y( n )- j
k-z(n )
dz=z(n)-k
1=i+iy*(j-1)+iz*(k-1 )

C Field interpolations are tri-linear (linear in x times linear in y
C times linear in z) . This amounts to the 3-D generalisation of "are a
C weighting" . A modification of the simple linear interpolation formul a
C

	

f(i+dx) = f(i) + dx * (f(i+l)-f(i) )
C is needed since fields are recorded at half-integer locations in certai n
C dimensions : see comments and illustration with the Maxwell part of thi s
C code . One then has first to interpolate from "midpoints" to "gridpoints "
C by averaging neighbors . Then one proceeds with normal interpolation .
C Combining these two steps leads to :
C

	

f at location i+dx - half of f(i)+f(i-1) + dx*(f(i+l)-f(i-1) )
C where now f(i) means f at location i+1/2 . The halving is absorbe d
C in the final scaling .
C E-component interpolations :

f-ex(l)+ex(l-ix)+dx*(ex(l+ix)-ex(l-ix) )
f-f+dy*(ex(l+iy)+ex(1-ix+iy)+dx*(ex(l+ix+iy)-ex(1-ix+iy))-f )
g-ex(l+iz)+ex(l-ix+iz)+dx*(ex(l+ix+iz)-ex(l-ix+iz) )
g-g+dy *

& (ex(l+iy+iz)+ex(1-ix+iy+iz)+dx*(ex(l+ix+iy+iz)-ex(l-ix+iy+iz))-g )
ex0-(f+dz*(g-f))*( .25*qm )

C -°	
f-ey(1)+ey(l-iy)+dy*(ey(l+iy)-ey(l-iy) )
f-f+dz*(ey(l+iz)+ey(1-iy+iz)+dy*(ey(l+iy+iz)-ey(1-iy+iz))-f )
g-ey(l+ix)+ey(1-iy+ix)+dy*(ey(l+iy+ix)-ey(l-iy+ix) )
g-g+dz *

& (ey(l+iz+ix)+ey(l-iy+iz+ix)+dy*(ey(l+iy+iz+ix)-ey(1-iy+iz+ix))-g )
ey0-(f+dx*(g-f))*( .25*qm )

C -"	
f-ez(1)+ez(l-iz)+dz*(ez(1+iz)-ez(1-iz) )
f-f+dx*(ez(l+ix)+ez(1-iz+ix)+dz*(ez(1+iz+ix)-ez(1-iz+ix))-f )
g-ez(l+iy)+ez(1-iz+iy)+dz*(ez(l+iz+iy)-ez(l-iz+iy) )
g-g+dx *

& (ez(l+ix+iy)+ez(l-iz+ix+iy)+dz*(ez(l+iz+ix+iy)-ez(l-iz+ix+iy))-q )
ez0-(f+dY*(g-f))*( .25*qm)
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C	
C B-component interpolations :

f =bx(1-iy)+bx(l-iy-iz)+dz*(bx(1-iy+iz)-bx(l-iy-iz) )
f=bx(l)+bx(1-iz)+dz*(bx(l+iz)-bx(1-iz))+f+dy *

6 (bx(l+iy)+bx(l+iy-iz)+dz*(bx(l+iy+iz)-bx(l+iy-iz))-f )
g=bx(l+ix-iy)+bx(l+ix-iy-iz)+dz*(bx(l+ix-iy+iz)-bx(l+ix-iy-iz) )
g=bx(l+ix)+bx(l+ix-iz)+dz*(bx(l+ix+iz)-bx(l+ix-iz))+g+dy *

6 (bx(l+ix+iy)+bx(l+ix+iy-iz)+dz*(bx(l+ix+iy+iz)-bx(l+ix+iy-iz))-g )
bxO=(f+dx*(g-f))*( .125*qm/c )

C
f=by(l-iz)+by(1-iz-ix)+dx*(by(1-iz+ix)-by(l-iz-ix) )
f=by(l)+by(1-ix)+dx*(by(l+ix)-by(1-ix))+f+dz *

6 (by(l+iz)+by(l+iz-ix)+dx*(by(l+iz+ix)-by(l+iz-ix))-f )
g=by(l+iy-iz)+by(l+iy-iz-ix)+dx*(by(l+iy-iz+ix)-by(l+iy-iz-ix) )
g=by(l+iy)+by(l+iy-ix)+dx*(by(l+iy+ix)-by(l+iy-ix))+g+dz *

6 (by(l+iy+iz)+by(l+iy+iz-ix)+dx*(by(l+iy+iz+ix)-by(l+iy+iz-ix))-g )
byO=(f+dy*(g-f))*( .125*qm/c )

C
f=bz(1-ix)+bz(1-ix-iy)+dy*(bz(1-ix+iy)-bz(1-ix-iy) )
f=bz(l)+bz(l-iy)+dy*(bz(l+iy)-bz(1-iy))+f+dx *

6 (bz(l+ilC)+bz(l+ix-iy)+dy*(bz(l+ix+iy)-bz(1+ix-iy))-f )
g=bz(l+iz-ix)+bz(l+iz-ix-iy)+dy*(bz(l+iz-ix+iy)-bz(l+iz-ix-iy) )
g=bz(l+iz)+bz(l+iz-iy)+dy*(bz(l+iz+iy)-bz(l+iz-iy))+g+dx *

6 (bz(l+iz+ix)+bz(l+iz+ix-iy)+dy*(bz(l+iz+ix+iy)-bz(l+iz+ix-iy))-g )
bz0=(f+dz*(g-f))*( .125*qm/c )

C
C First half electric acceleration, with relativity's gamma :

g=c/sgrt(c**2-u(n)**2-v(n)**2-w(n)**2 )
u0=g*u(n)+ex O
vO=g*v(n)+ey O
w0=g*w(n)+ez O

C First half magnetic rotation, with relativity's gamma :
g=c/sgrt(c**2+u0**2+v0**2+w0**2 )
bxO=g*bx 0
byO=g*by O
bz0=g*bz O
f=2 ./(l .+bxO*bxO+byo*by0+bzO*bzO )
ul-(u0+v0*bzO-wO*byO)* f
vl-(v0+w0*bxO-uO*bzo)* f
wl=(w0+u0*byO-vO*bxO)* f

C

	

Second half mag . rot'n 6 el . acc'n :
u0=u0+vl*bz0-wl*byO+ex O
vO-vO+wl*bx0-ul*bzO+ey O
wO-w0+ul*by0-vl*bxO+ez O

C

	

Relativity's gamma :
g=c/sgrt(c**2+u0**2+v0**2+w0**2 )
u(n)=g*u 0
v(n)=g*v 0
w(n)=g*w 0

C Position advance :
x(n)-x(n)+u(n )
y(n)-y(n)+v(n )

1

	

z(n)-z(n)+w(n )
return
en d

C	
subroutine xsplit(x,y,z,xO,yO,zO )
if(ifix(x) .ne .ifix(xO))go to 1
call ysplit(x,y,z,xO,yO,zO )
return

1

	

xl= .5*(l+ifix(x)+ifix(xO) )
yl-yo+(y-y0)*((xl-x0)/(x-x0) )
zl=z0+(z-z0)*((xl-x0)/(x-x0) )
call ysplit(x,y,z,xl,yl,zl )
call ysplit(xl,yl,zl,xO,yO,zO )
return
end
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C	
subroutine ysplit(x,y,z,xO,yO,zO )
if(ifix(y) .ne .ifix(yO))go to 1
call zsplit(x,y,z,x0,y0,zO )
return

1

	

yl= .5*(l+ifix(y)+ifix(yO) )
zl=z0+(z-z0)*((yl-y0)/(y-y0) )
xl=x0+(x-x0)*((yl-y0)/(y-y0) )
call zsplit(x,y,z,xl,yl,zl )
call zsplit(xl,yl,zl,xO,yO,zO )
return
en d

C	
subroutine zsplit(x,y,z,xO,yO,zO )
if(ifix(z) .ne .ifix(zO))go to 1
call depsit(x,y,z,x0,y0,z0 )
retur n

1

	

zl- .5*(l+ifix(z)+ifix(zO) )
xl=x0+(x-x0)*((zl-z0)/(z-z0) )
yl-yO+(y-y0)*((zl-z0)/(z-z0) )
call depsit(x,y,z,xl,yl,zl )
call depsit(xl,y1,z1,xO,yO,zO )
retur n
end

C	
subroutine depsit(x,y,z,xO,y0,z0 )

C (Field components are treated as single-indexed in this subroutine )
common /fields/ex(8192),ey(8192),ez(8192),bx(8192) ,

&by(8192),bz(8137 )
s,sm(27),q,ge,gi,qme,qmi,rs,ps,os, c
&,ms(27),mx,my,mz,ix,iy,iz,lot,maxptl,ions,lecs,nstep

C

	

cell indices of half-way point :
i= .5*(x+x0 )
j- .5*(y+y0 )
k- .5*(z+z0 )

C

	

displacements in cell of half-way point :
dx- .5*(x+x0) - i
dy- .5*(y+y0) - j
dz- .5*(z+z0) - k
1=i+iy*(j-l)+iz*(k-1 )

C current elements :
qu-q*(x-x0 )
qv -q*(y-y 0 )
qw-q*(z-z0 )
delt- .08333333*qu*(y-y0)*(z-z0 )

C Directive specifically for the CRAY cft77 compiler :
cdir$ ivde p
C (This will make the compiler use the "gather-scatter" hardware . )
C If one desires NO smoothing (risking the presence of alias-prone
C high harmonics), one can replace the statement "do 1 n-1,27" by
C

	

n-1 4
C and boost the value of q by a factor 8 .

do 1 n-1,2 7
ex(ms(n)+l+iy+iz)-ex(ms(n)+l+iy+iz)-sm(n)*(qu*dy*dz+delt )
ex(ms(n)+l+iz)-ex(ms(n)+l+iz)-sm(n)*(qu*(l .-dy)*dz-delt )
ex(ms(n)+l+iy)-ex(ms(n)+l+iy)-sm(n)*(qu*dy*(1 .-dz)-delt )
ex(ms(n)+1)-ex(ms(n)+l)-sm(n)*(qu*(1 .-dy)*(1 .-dz)+delt )
ey(ms(n)+l+iz+ix)-ey(ms(n)+l+iz+ix)-sm(n)*(qv*dz*dx+delt )
ey(ms(n)+1+ix)-ey(ms(n)+l+ix)-sm(n)*(qv*(1 .-dz)*dx-delt )
ey(ms(n)+l+iz)-ey(ms(n)+l+iz)-sm(n)*(qv*dz*(1 .-dx)-delt )
ey(ms(n)+1)=ey(ms(n)+1)-sm(n)*(qv*(l .-dz)*(1 .-dx)+delt )
ez(ms(n)+l+ix+iy)-ez(ms(n)+l+ix+iy)-sm(n)*(qw*dx*dy+delt )
ez(ms(n)+l+iy)=ez(ms(n)+l+iy)-sm(n)*(qw*(l .-dx)*dy-delt )
ez(ms(n)+l+ix)-ez(ms(n)+l+ix)-sm(n)*(qw*dx*(1 .-dy)-delt )

1

	

ez(ms(n)+l)-ez(ms(n)+1)-sm(n)*(qw*(l .-dx)*(1 .-dy)+de1t )
return
end
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C	
C Generator of randoms uniformily distributed between - .5 and .5 :

function rndm(lucky,leap )
C On CRAY-s, the next 5 statements should be replaced by :

	

C 1

	

lucky=and((lucky*261),32767) - and((lucky*261),32768 )
C and "mini(l)" in statement labelled 2 replaced by "lucky" .

integer*2 mini(2 )
equivalence (maxy,mini(l) )

	

1

	

maxy=lucky*26 1
mini(2)- O
lucky=maxy
leap-leap- 1
if(leap.ne .0)go to 2
leap-3 7
go to 1

	

2

	

rndm=(l ./65536 .)*float(mini(1) )
return
end




