
8. Particle-in-Cell Simulation of Cosmic Plasm a

8.1 "In-Situ" Observation of Cosmic Plasmas via Computer Simulation

While it is thinkable that our ability to make in situ measurements can perhaps be extended to the
nearest stars, most of the universe beyond a few parsecs will be beyond the reach of our spacecraft

forever.
From one's unaided view of the clear night sky, it is tantalizing to believe that the physic s

of the universe can be unfolded from the observable stars, which may be up to kiloparsecs away ,
or from the fuzzy "nebula" such as the galaxy M31, nearly a megaparsec away . Our experience
in unfolding energetic events in our own solar system suggests otherwise .

The inability to make in situ observations places a severe constraint on our ability to understand
the universe, even when the full electromagnetic spectrum is available to us . As outlined in Chapter
1, only after satellites monitored our near-earth environment and spacecraft discovered an d
probed the magnetospheres of the planets, could we begin to get a true picture of the highly -
energetic processes occurring everywhere in the solar system . These processes included large-
scale magnetic-field-aligned currents and electric fields and their role in the transport of energ y

over large distances . The magnetospheres of the planets are invisible in the visual octave (400 –
800 nm) and from earth cannot even be positively identified in the X ray and gamma ray regions ,
which cover 10 times as many octaves and have more than 1,000 times the bandwidth as the visua l
octave . Only in the low frequency radio region is there a hint of the presence of quasi-static electric
fields which accelerate charged particles in the magnetospheres of the planets.

As the properties of plasma immediately beyond the range of spacecraft are thought not t o
change, it must be expected that plasma sources of energy and the transport of that energy via field -
aligned currents exist at even larger scales than that found in the solar system . How then are we
to identify these mechanisms in the distant universe ?

The advent of particle-in-cell (PIC) simulation of cosmic plasmas on large computer system s
ushered in an era whereby in situ observation in distant or inaccessible plasma regions is possible .
While the first simulations were simple, with many physics issues limited by constraints i n
computer speed and memory, it is now possible to study the full three-dimensional, fully-elec-
tromagnetic evolution of magnetized plasma over a very large range of sizes . In addition, PIC
simulations have matured enough to contain Monte Carlo collisional scattering and energy loss
treatments, conductor surfaces, dielectric regions, space-charge-limited emission from surfaces
and regions, and electromagnetic wave launchers . Since asimulationinvolvesthemotionofcharge
or mass particles according to electromagnetic or gravitational forces, all in situ information i s
available to the simulationist .

Ian
Text Box
Contents

Ian
Text Box
Physics of the Plasma Universe
(1992) Anthony L. Peratt



286

	

8. Particle-in-Cell Simulation of Cosmic Plasma

If the simulation correctly models the cosmic plasma object under study, replication o f
observations over the entire electromagnetic spectrum should be expected, to the extent that th e
model contains sufficient temporal and spatial resolution .

8.2 The History of Electromagnetic Particle-in-Cell Simulation

After the early success of astronomers in rigorously solving the problem of two gravitationall y
interacting bodies it became quite a disappointment that the notorious "probleme de trois corps"
could never be solved by elegant, nineteenth century mathematics.' Computations were practical
(and respectable) only for the evaluation of a series. Finite difference calculus made its way ver y
slowly during the first few decades of this century. StSrmer struggled hard calculating orbits of
charged particles in the earth's magnetic field (not even a self-consistent field!) [Sttirmer 1955] .

Strangely, it was a change in physics which brought the next advance : quantum theory
changed particle dynamics from ordinary differential equations to partial differential equations,
thus putting field and particle dynamics on the same footing. The combination of Schroedinger's
equation for electron density with Poisson's equation for the electric potential results in couple d
nonlinear partial differential equations. As a first step, taken in the 1920's, one eliminated the angl e
variables and reduced the problem to two nonlinearly coupled ordinary differential equations i n
the radial variable.

This meant that an efficient integrating machine or procedure was called for and D .R.Hartree
built his first "differential analyzer" from an erector set. It used a continuously variable gear and
with this device Hartree could solve mechanically self-consistent problems dealing with atomi c
wave functions and atomic energy levels.

The "magnetron", a now very familiar microwave generator, had been invented by Boot ,
Randall, and Sayers in Birmingham. It was of paramount importance to Britain's defense : its high
frequencies could not be jammed . The magnetron (Section 1 .7 .3) isafine example of "swords into
plow-shares ." It is replacing man's tradition of many millennia to cook food with incandescen t
heat.

Initially it was something of a mystery exactly how and why the magnetron worked and the
scientific staff at the British Admiralty realized that in order to unravel the workings of th e
magnetron one would have to solve a self-consistent field problem, namely, that of motion o f
electrons in the electric field which the electrons themselves produce, in addition to the externall y
applied electric and magnetic fields .

Hartree was given the problem and he initiated classical particle simulation by integrating,
numerically, the orbits of a number of particles in a field which was either revised in accordanc e
with the instantaneous charge density at each step, or only occasionally, in the hope of reaching
a steady field by iteration . Both one- and two-dimensional simulations were performed by Hartree
and his team: Phyllis Nicolson, Oscar Buneman, ; and David Copley [Nash 1991] . "Parallel-
processing" was employed by sharing out the several hundred orbits between the three tea m
members.

Operating as human central processing units (CPUs), the team made a number of discoverie s
including the Crank–Nicolson iteration procedure and the Buneman–Hartree threshold criterion
for magnetron operation. The one-dimensional simulations yielded a steady-state but could not
account for magnetron operation, or for the observed currents which flow across the magnetic
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bather. Only when the technique was taken to two-dimensions did Buneman find an instability ,
not unlike the Kelvin–Helmholtz in fluid flow . In the transition from one- to two-dimensional
simulation, iterative methods were abandoned (in 1944) and Hartree changed to the direct Fourier
method (Section 8 .4 .3) . It turned out that only a few harmonics were needed for simulation ; the
fast-Fourier-transform (1-1-' I) was not yet known . Success came in the numerical observation of
the four- and six-wheel spokes of electrons that rotate in the magnetron exciting the high frequencie s
in the resonators .

The numerical simulation by particles of plasma physics began in the 1950s by Dawson a t
Princeton and Buneman at Stanford, where various plasma phenomena were identified and
studied. It should be mentioned that, in the beginning, it was not at all apparent that the technique
developed to study pure electron beam propagation in microwave devices could be applied to th e
plasma state of matter. Unlike the cold electron beam with charges of all one sign, plasmas often
consist of thermal distributions with essentially equal density of charges of opposite sign and
greatly different masses . In studying cold electron beams, a few dozen particles sufficed t o
reproduce the essence of the experiment . However, in laboratory plasmas one has scale length
greater then the Debye length (L >> A D) and the number of particles in a Debye cubeND = n A

Dis much greater than one (N D >> 1) . For example, the earth's ionosphere has ND = 10 4 and the
literal simulation of it over its scale length appears unfeasible . However the general character of
plasmas can often be found by studying the collective behavior of collisionless plasmas at
wavelengths longer than the Debye length, A zA.D . It was found that another characterization of
a plasma is that (1) the thermal kinetic energy is much greater than the microscopic potential
energy, and (2) the ratio of collision to plasma frequencies is much less than one . Both requirement
can be met with rather low values of N D [Birdsall and Langdon 1985] . Conditions 1 and 2 may
be met for finite sized particles called clouds . Clouds occur naturally in simulations which use a
spatial grid for interpolation, as well as in simulations which employ spectral methods where th e
particle profile (usually gaussian) is specified ink space .

The term "particle-in-cell" derives from Frank Harlow and his group's work at Los Alamo s
in the 1950s in investigating the fluid nature of matter at high densities and extreme temperatures .
Modem descriptions of the particle-in-cell technique as related to plasma physics are found in th e
twotextsComputerSimulation UsingParticles [Hockney andEastwood 1981] andPlasmaPhysics
via Computer Simulation [Birdsall and Langdon 1985] .

83 The Laws of Plasma Physics

The challenge of plasma physics is this : We know with certainty the precise and simple laws of
nature that govern the particle and fields in plasmas, yet we are unable to deduce from them ho w
a nontrivial plasma configuration will evolve, nor can we "explain" many of the complicate d
plasma phenomena which are observed in the laboratory.

Mathematical manipulation of the laws, and intuitive additional assumptions or approxima -
tions, have been exploited with only partial success, and often the computer has had to be calle d
upon to "finish the job" in such attempts . The message to be presented here is that one might try
to let the computer take us all the way from the basic laws to their macroscopic manifestations .
Rather than maximizing intuition and shortcuts which might help the computer get there quicker ,
let us program the basic laws in their rawest, simplest form and leave all the synthesizing to the
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computer. Given a big enough computer, this philosophy would justify itself by the demonstratio n
that the computer could not only reproduce all the plasma phenomena which have been observed
but also all known theoretical results and, of course, those obtained from more modest simulation s

on more primitive computers.
In practice, it would be foolish to relinquish theoretical tools, intuition, insight, and past

experience entirely in favor of "brute force" computing. Even given a computer that could handle
billions of particles with a resolution of one in a thousand for each dimension at reasonable speed,
there would still be some "e" of imperfection to be checked for, and the pressure to get more result s
per computing dollar would motivate physicists back toward a compromise between traditional

theory and highest-power computing .
What is suggested here is a start from the far end: suppose we had that ultracomputer, then

how would we do physics with it? And since we haven't got that ultracomputer, what can we d o

as the next best approximation to that ideal ?
We begin our approach by stating the laws of plasma physics in more or less the form whic h

it has been found convenient to program : the equation of motion for the particles with the Lorent z

force Eq.(1 .5), andthe Maxwell—Hertz—Heaviside laws for theelectric andmagnetic fieldsEgs .(1 .1)—

(1 .4) .

8.4 Multidimensional Particle-in-Cell Simulation

8.4.1 Sampling Constraints in Multidimensional Particle Code s

The particle-in-cell technique for the analysis of complex phenomena in science has evolved from

1D through 11D, 103, 2D, VP, to 3D particle simulations. While at first one has to face certain
limitations of an analytic nature, ultimately the limits are set by data management problems th e
resolution of which depends critically on the available hardware .

A trivial reason for the increasing difficulty of higher dimensional particle simulations is
their demand for substantially greater particle numbers. With each added dimension the numbe r
of sampling particles has to be multiplied by a certain factor .

This also applies to "half-dimensions." It is customary to denote the inclusion of extra
velocity components by referring to them as "half-dimensions ." Typically, a pure 1D simulation
simulates the plasma as rigid sheet particles, all parallel to the y-z plane, say, and moving in th e

xdirection. It ignores y and z motions of the planes. A 1-D simulations keeps a record of possibl e
y motions, uniform within each plane. Then the x-ward Lorentz force in the presence of a z-directed
magnetic field can be taken into account, as well as the y-wards Lorentz force due to x motions .

In a l P simulation, dz/dt would be recorded as well . In a 22D simulation, x, y, dx/dt, and dz/dt are

tracked (but not z); the particles are rigid straight rods whose motion along their axis is taken int o

account. One-and-a-half dimensional and 1--D simulations have recently found application in space

plasma work, namely for simulating the critical ionization phenomenon .
It is reassuring that relatively few samples can often give very good statistics . In many

applications the velocity distributions stay close to maxwellian and a modest factor (typically four )
in the sample number may suffice to deal with an added half-dimension . One exploits the favorable
feature of statistics when initializing thermal velocity distributions : each velocity component is
made up as the sum of four random numbers (each uniformly random in a certain interval) . The
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resulting distribution (the "four dice curve," or cubic spline) is almost indistinguishable from th e
Gaussian.

However, when incrementing by a full dimension, sampling requirements jump dramati-
cally. It is easily checked that the statistical potential energy fluctuations in a granular plasma
compete with thermal energies when the particles are spaced on the order of a Debye length apart .
Such a plasma would be essentially collision dominated . One is mostly interested in collective
effects, since fluid codes are adequate for collision-dominated phenomena . Obviously, one need s
several particles per Debye length ; again, a modest number suffices. Now, most of the interesting
phenomena to be resolved by simulation are on the scale of many Debye lengths (hundreds or
thousands). Therefore, the addition of each full dimension calls for an increase of the number o f
particles by, typically, two orders of magnitude . In 1990 a 1D (electrostatic) simulation can barel y
be squeezed onto a personal computer, a 2D simulation calls for a minicomputer or workstation ,
and a 3D simulation needs a supercomputer' (Figure 8 .1) .

8.4.2 Discretization in Time and Space

One-dimensional, l2D,and 1--Dsimulationscan be done withoutdiscretizinginspace .Theelectrical
interaction of sheets is independent of distance and one only needs to order the sheets to calculat e
their accelerations . Even if the sheets are of finite thickness or if they are "soft" (i .e., they have a
smooth density profile across), only a few operations per sheet are needed to move them one time
step. This is an effort of order N where N is the number of sheets .

However, in all simulations, time must be discretized . By studying the simulation of a simple
1 D problem, namely, electrostatic oscillations in a cold plasma, and by Fourier transforming one' s
numerical procedure in time, one finds that while a time step S t = w t yields the plasma fre-
quency to 5% accuracy, for S t > 2 co one runs into an instability.

To get over this severe limitation of the speed of simulation in cases where the phenomen a
of interest are much slower than electrostatic oscillations (typically ion responses), one can eithe r
use implicit methods, or one can make one's ions lighter than real ions . Much has been learned
from simulations with ion-electron mass ratios as low as 16 :1 .

The big analytical problems in simulation arise when one advances to two dimensions .
Interactions between rods of charge depend on distance, and the many remote rods are as importan t
as the few near ones. ForNrods, one has tocalculate NM interactions andN itself might be typically
two orders of magnitude larger than for a 1D simulation.

In order to get back to an effort of orderN per step in the particle advance, one tabulates th e
field over a spatial grid and calculates the self-consistent field from agrid record of the charge an d
current-densities that each particle contributes .

The permissible coarseness of the grid mesh becomes a critical issue and the problem o f
integrating the finite difference version (now in both space and time) of the field equation is far
from trivial. Fortunately, both these subjects have been advanced to a state of relative completio n
and are exhaustively covered in two texts .

Very briefly and broadly, one can state that the grid should be fine enough to resolve aDebye
length, and that smoothing or filtering of high spatial frequencies should be practiced in order t o
minimize "aliassing." This is the stroboscopic phenomenon of high frequencies parading as lo w
frequencies (long wavelengths) . Many physical instabilities set in preferentially at long wavelengths
and can thus be excited numerically through aliassing. Grid effects can often be studied and
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checked in 1D where grids are optional . Smoothing can be achieved by particle shaping (i .e .,
spreading point particles into softballs with a smooth bell-shaped intemal density profile) . Likewise ,
splines and finite-element techniques help .

Regarding the field update from the charge-current record, fast noniterative methods fo r
solving Poisson's equation over an L-by-M mesh have been developed. These include cyclic
reduction in rows and columns, or Fourier transforming in one of the two dimensions (say, tha t
ofM). This is an effort to the order LM logz M. Two-dimensional simulations go back historically
toHartree who initiated the simulation of the pure electron plasma which circulates in the magnetron .

Hartree; also pioneered the time-centered update of the particles from Lorentz's equatio n
Eq .(1 .5 )

dv+ m xv=±
m

E
dt

using (v new + V 0 1d)/2 in the second (Lorentz) term and solving the linear equation for v''w

explicitly . No limitation of cob s t = (e B / m) S t arises from this method except that for large
values of ak S t the phases of the gyromotion are misrepresented . For small cob S t one gets the
same results as with cycloid fitting (Section 8 .5), i .e., joining solutions of the type

vl = E x B/B 2 + gyration at frequency cob

	

(8 .2)

for the components of the velocity transverse to B . As regards this particle update, there is no
significant increase in effort when advancing from 1 ZD to 2D and 3D .

A further time-step limitation is encountered when one wants to integrate the full electromag -
netic equations over the grid. Because the Maxwell—Hertz—Heaviside equations (not includin g
Poissons's) are hyperbolic (i.e., they contain a natural a/at or "update" term), they can be solved
in an effort which is of the order of magnitude of the number of grid points,LM in the 2D example
discussed earlier . Essentially, one solves the wave equation Eq.(B .1) . However, this process
becomes unstable unless one observes the Courant speed limit (St < 3x lc in 1D, S t < S x Ic a
in 2D, and S t < S x /ca in 3D for square and cubic meshes of side Sr . In many applications,
scales chosen from other considerations are such that c is a large number and this restriction of &
results in a severe slowdown.

8.43 Spectral Methods and Interpolation

The Courant condition can be overcome by doing the entire field update in the transform domain .
The Maxwell—Hertz—Heaviside laws for the electric and magnetic fields Egs .(1 .1) 1 .4) can b e
conveniently combined into one equation for the complex field vector F = D + iiH/c. When Fourier
transforming, this equation become s

dF —ckxF=—j

	

(8 .3 )

(8 .1)
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for the spatial harmonic which goes like exp (i k. r). This field equation is surprisingly similar
to that for the particle velocities Eq.(8.1) andhasthe corresponding solution for the transverse par t
of F:

F1 = j x k/k 2 (magnetostatic field)
+ circularly polarized wave rotating at angular frequency ck

	

(8 .4)

The time intervals at which one joins successive solutions of this form are dictated by the rate a t
which j changes, not by the magnitude of ck.'

To Eq .(8 .1) we should add an initial condition, namely, Poisson' s

ik- F k = pk

	

(8 .5)

Fourier transforming all fieldlike quantities has many advantages . For instance, the longi-
tudinal part of F (which is just D) can be obtained from Poisson's equation as k p/k 2 .Of course ,
transforming in two dimensions rather than only one (as in the fastest Poisson solvers) makes for
an effort of the order LM(log2 L + loge M) . On the other hand, the ready availability of well-
programmed FFTs and the additional benefits of spect ral methods make up for this increase i n
effort .

In the transform domain one can perform the filtering, the particle shaping, an optimizatio n
for the spline fitting process, and the tnrncation of the interaction to be discussed in the section on
boundary conditions. One does not have to use any spatial finite difference calculus for the
field equations . However, a grid is still necessary since we have only discrete numerical Fourier
transfonns between r space and k space.

This leaves the problem of interpolation in the mesh. By using high-order interpolation, one
can greatly reduce aliassing and improve accuracy . Quadratic and cubic splines have been used ,
but this soon becomes expensive. '

Linear interpolation is most commonly used . Interpolation is also needed when the particles
contribute their charge and current to the p, j arrays. Linear interpolation is then, in 2D, equivalent
to "area weighting." " For 3D, we have cut down the data look-up (or deposit) effort for linear
interpolation by using a tetrahedral mesh. Each particle references only the four nearest mesh-
point data. The tetrahedra result from drawing the space diagonals into a cubic mesh and intro-
ducing cubic center data Interpolation of currents must be done twice in each step of each practice ,
once at its old position and once at its new position, since the current is that due to the movemen t
between the two .

8.5 Techniques for Solution

The crucial equations, Eqs.(8.1) and (8 .3), are in the "update" form, ideally suited to computers
which are themselves devices whose function it is to update the state of their memory continually ,
albeit not continuously. If the time interval St between updates is so chosen that during this interval
changes of E and B, as seen by any particle, can be ignored in Eq.(8 .1) and changes of j can be
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Figure 8.2 . Leap-frogging particles and fields : At time n, cycloids with drifts and gyrations due to E and B

are fitted through r,, and ro_ ,, to be continued through r, .,. Displacements tiro+ , determine currents j + , 2 from

which the transverse fields E n , Bo are advanced to Eo,r , BM, . The longitudinal EM, is obtained from the row Then ,

at time n+1, new cycloids (dotted) with drifts and gyrations due to E 1 and Bar are fitted through r 1 and ro,

to be continued through rMZ, etc.

ignored in Eq.(8 .3), each equation can be solved exactly for the entire interval no matter how lon g

this interval is : The Lorentz equation Eq.(8 .1) then produces cycloidal motion in a plane per-

pendicular to B, composed of a drift and a gyration Eq.(8 .2) . This may be accompanied by fre e

fall parallel to B, generated by a parallel electric field component . Given the initial velocity and
position, or given the position and displacement during the preceding time interval, the displacemen t
during any subsequent interval, and the new position, can be computed precisely .

8.5 .1 Leap-Frogging Particles Against Field s

The average value of the fields E and B for Eq .(8 .1) or the current j to be used in Eq .(8 .3) is taken
to be the actual value at the middle of the time interval . Figure 8.2 shows how the updating fro m
average values proceeds at equal intervals along a time axis. This involves the following

(1)Construct the cycloidal orbit of a particle from tom, through to to tn+ , using the known mean

values of En and B. at to (the middle of the interval) and the known particle positions at t ,1 and n .
(2)This gives the displacement of the particles from n to n +,, and their final positions at n+i .
(3) The harmonic jk of the mean current flowing during the last interval is obtained by

summing all the displacements Sr with phase factors exp ik • r given by their mean positions ,
times q /St.

(4) The transverse fields Fk are now advanced by j k Eq.(8.3) from n to n +,(Section 8.5 .3) .
(5)The longitudinal fields Fk are obtained from Pk at n +, by summing q etk r with the ne w

positions r at n +, .

(6)The process is repeated from to through n+, and then to n+2.
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Each time interval is covered by two cycloids for each particle, one with drift and gyrofre-
quency as given by the fields at the beginning of the interval, the other as given by the fields at th e
end of the interval. Both cycloids pass through the same points at the termini (Figure 8.2).

8 .5.2 Particle Advance Algorithm

The time interval S t must be smaller than -top for proper resolution of electrostatic plasm a
oscillations, and O. S t <- 1 to account for synchrotron radiation or for V B drifts . The steps in
the solution algorithm are given by Hockney [1966] and Buneman [1967] . The interpretation and
implementation of this as an electric acceleration followed by a magnetic rotation and anothe r
acceleration is due to Boris [1970] . The updating of the particle positions and velocities is done
using a time-centered second-order scheme, valid for relativistic particle velocities ,

V new —V old =

(8 .6)St
[E+(vnew+vold)XB]

yin o l

With the scaling'

E+- q8t E ,
0

B<—2moB,
(8 .7)

Eq.(8 .6) is solved by the following sequence6,

Yl =(1-(v/c)2)-l/
2

U l = Yl V ol d

u2= ul+ E (first half of electric acceleration)

/
Y2 = ( l t(U2/C)2

+1/2

U3 = u2 + (Y22 +
B

2)(12U2+U2XB)XB
(rotation through angle arc tan 42mt)

u4 = u3 + E

v new =U4( 1+ (u4/c) 2 )+l/2

X new =X old+St vnew

(second half acceleration)

(8 .8)
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This process is equivalent to rotating the deviation from the gyrocenter drift through the angl e
2 arc tan (qB St / 2m)—the "cycloid fitting"—combined with uninhibited electric acceleratio n
along the magnetic field. It is second-order and time reversible .

Since this algorithm now properly accounts for the effects of relativity, particles are auto-
matically restrained from exceeding the speed of light and need not be artificially braked at c . Thi s
limit on the distance traveled by a particle during a single time step plays an important role i n
particle data management.

8 .5.3 Field Advance Algorith m

The advance of the fields through one time step of arbitrary length (subject to jk = constant) is
mathematically just like that of the particles. According to Eq.(8 .4), Fk consists of a constant
componentplus arotatingcomponent.Theconstantpartrepresentsthemagnetostaticfieldgenerated
by the currents ; the rotating part represents a circularly polarized electromagnetic wave . Again,
the advance through any time interval S t is straightforward. The longitudinal (purely electric)
component of the field is updated from the record of p at the end of the time step using Eq .(8.5).

We note, so far, we have not invoked finite difference calculus either in the space or tim e
domain and, typically, the advance of the fields from Maxwell–Hertz–Heaviside's equations i s
not restricted by any "Courant condition ." However, S t is constrained by the fact that E and B
should not change across the range of the orbit excursions during St.

Equation (8 .3) is used to trace the evolution of the transverse field only . The longitudinal,
electrostatic field is constructed "from scratch" at the new time, using the charge density records :

Fk -s= ikpk/k 2

	

(8 .9)

The longitudinal field, then, need not be held over through the particle move phase: it can be
generated directly by Fouriertransfomning the charges accumulated during that phase . The transverse
field is calculated as follows . A particular solution is constructed from j k using

Fr' = k x j k /k2 (8 .10)

To Fk -s one has to add the rotating "electromagnetic" componen t

Fk - 'n(new) = Fk -t(old) cos k St – (k/k) x F:'(old) sink St (8 .11 )

The new fields are then reconstructed from the updated pieces according to

Fk(new) = Fk-s + Ft'n(new) + Fk-s
(8 .12)

and this iskept on record for the next field update.
The field seen by a particle must then be obtained by summation over the entire availabl e

spectrum
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F(r) = D(r) + i H(r)/c = (2n) - 3 1 Fk a- i k r d k

4,k

= (270-3 E E F k e-i k r

k, k, k .

	

(8.13)

To calculate F, we must introduce a grid over which field values are generated from the spectru m
by FFTs, and we must interpolate the local field from the grid record. Likewise, charge and current
harmonics must be built up by interpolation into a grid and subsequent FFTs.

Having avoided spatial grids and spatial finite-difference calculus so far, the introductionof
a grid to obtain the electromagnetic fields from the spectrum Fk leads to difficulties associated with
grids : inaccuracies and stroboscopic effects . These problems are reduced using higher-order
interpolation methods [Buneman et aL 1980].

8.6 Issues in Simulating Cosmic Phenomena

8.6 .1 Boundary Conditions

A major problem in space applications is to simulate free-space conditions outside the compute r
domain. Complex Fourier methods [with exp (i k• r)] imply periodic repeats of the computed
domain in all dimensions. If the simulation is to rcpresent phenomena in a rather larger plasma ,
such repeats are acceptable, but for an isolated plasma of limited extent they become unrealistic .
This problem can be overcome by keeping a generous empty buffer zone around the domai n
containing particles and tnmcating the interaction between charges beyond acertain radius so that
the nonphysical repeats introduced by the Fourier method cannot influence the central plasma .
This was first applied to gravitational simulations .

The most elusive boundary problem for space plasmas is the radiation condition . To decide
what part of the field in the charge-current-free space outside the plasma is outgoing and what is
incoming presents no problem in 1D and the incoming part can be suppressed .

In 2D the decision is more difficult . It requires information not only in the source-free
boundary layer at any time but also over its past history. It almost seems as if, in principle, the entir e
past history is needed for the decision. However, Lindman found that a fairly short history (such
as three past time steps) of the boundary suffices for an algorithm which will suppress all but 1 %
of the incoming radiation at all but the shallowest angles of incidence . However, just carrying an
absorption layer in an outer envelope seems quite successful. This method, due to Green, simply
multiplies the electric and magnetic field by a factor which smoothly approaches zero away from
the plasma. A method employing spherical harmonics which should be 100% effective has been
reported [Buneman 1986] .

8.6.2 Relativity

A reason for keeping the mass coupled with the velocities in the update steps is that under
relativistic conditions one really updates momenta rather than velocities . Note, however, that in
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the q B St /2 m tens one needs m-1 = (m + p 2/c 2)-112 where p = mv . During the rotation, this
magnitude of the momentum does not change, but in the electric acceleration it does . After the full
update of momenta, one must again divide by m in order to get v = S r/St . In practice, v rather
than the momentum is stored for each particle which means that at the beginning of the update one
must calculate m = 41 - ftr2 Thus, there are three separate calls to a reciprocal square root in
the relativistic advance of each particle . As system supplied square roots are time consuming an d
more accurate than needed for particle pushing, aPade-type rational first approximation, followe d
by a Newton iteration, is used instead .

8.6.3 Compression of Time Scales

The number of steps required to simulate a significant epoch in the evolution of a real plasm a
configuration would be many million, typically, if t has to be of the order wp I or cob- I. In order to
bring this down to,the more acceptable range of several thousand steps, one must compress the
time scales. Compressing time scales can be achieved by (1) decreasing the ions' rest mass i n
relation to the electrons' rest mass, and(2)increasingtemperatures so that typical particle velocitie s
get closer to the velocity of light.

For an ion (proton) to electron simulation mass ratio of 16, iongyrofrequenciestoe ; = eB /m ;

will be high by a factor of 1836/16 =115, ion plasma frequencies cop ; = Vn ; Z 2 e2 / m ; Eo, ion

thermalvelocities vr ; = ilk T i /mi,theAlfvtsnvelocity vA ='3B 2 /Ito n i m ;,andtherelative

velocity in Biot-Savart attraction v =1 Z 'N/ 20 L / 21r

	

m i will be high by factor of

'1836/16=10.7.
The exaggeration of temperatures provides one of several motivations for incorporating

relativity into our codes . Note, incidentally, that even a 10-kV electron, a temperature typical o f
many space plasmas, already moves at 1/5 c.

The exaggeration of "temperatures" of beam or current electrons can also be achieved b y
exaggerating the external electric field E , responsible for accelerating the particles. This technique
greatly reduces the number of time steps required to study a phenomenon such as Birkeland curren t
formation and interaction in cosmic plasma. Since the current density is proportional to the electri c
field(i .e.,jZ =I, /A = n e e v Z ^-(ne e 2 /me)E 2 t),boththetime requiredforthepinch condition
Eq .(1 .9) to be satisfied, and the relative velocity between parallel currents [Eq .(3.49)], are linearly
related to E

Of course, when economy necessitates time compression, the time-scales must be "un-
folded" upon simulation completion .

8 .6.4 Collisions

Just as in real plasmas, there are encounters between particles and these give rise to collisiona l
effects which influence the physics of the model . Since computer models are limited to some 10 6
particles whereas a laboratory plasma may have 10 18-1020 particles and a galaxy, 1065 particles,
each particle in the model is a "superparticle" representing many plasma electrons or ions . Thus
the forces between model particles are much larger than in a real plasma and the collisional effect s
are much greater. Fortunately there is a way to reduce the model collisions to rates comparable
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withrealplasmas . This involves thefinite-sizeparticlemethod [Okuda and Birdsall 1970,Langdon
and Birdsall 1970] .

The 3D codes discussed in this chapter use a gaussian profile for particles . The shaping is
done in k-space. This is achieved b y f i r s t building up p k andjk fort k I <k max (truncation of har-
monics at maximum k), as if each computer particle were a point and then applying a gaussian filter
in k-space [Sunman et al. 1980] . The particle shape is then of the form exp (-r 2 kid 2), where
the particle profile factor kp is left as a users option: many simulations have used a profile which
keeps the spectrum flat up to a fairly large k and then makes a rapid but smooth slope-off to zero
at some desired L.

A limit to the maximum acceptable radius of the finite-sized particles is set by the collectiv e
properties of the plasma. If the effective radius of a gaussian particle is increased much beyon d
the Debye length, it takes over the role of the Debye length, causing collective effects to be altered .

In simulating a physical system, plasma or gravitating, it is usually sufficient to determin e
if the system models a collisionless one over the simulation time span . Experimental detennina-
tionoftheeffectivecollisionalfrequency v in 2D models closely follows the empirical law [Hoclmey
and Eastwood 1981 ]

	 =No-t 1+

	

2

/27r

	

l A D ~

where w is the width of the particle and N D = n AZ is the number of particles in a Debye square.
In 3D simulations, the reduction of v is achieved, without increasing ND, by "softening the blow"
of collisions—making the particles into fuzzy balls . Okuda [1972] has calculated value s

/ (0p / 2 r = 10- 3 for gaussian profile particles for ND of order unity. This value is consistent
with most plasmas, in laboratories or space .

So far we have only considered collisions between particle species that are charged . How-
ever, in weakly ionized plasmas where the number of uncharged particles may be hundreds or
thousands of times more prevalent, it is often the collision between the massive ions and the
massive neutral atoms that cause a redistribution of energy, and concomitant effects, such a s
plasma heating. Collisions in wealy ionized plasmas have been successfully treated by melding
PIC algorithms with MCC—Monte Carlo Collision—algorithms [Kwan, Snell, Mostrom, Mack,
and Hughes 1985; Snell, Kwan, Morel, and Wine 1990; Birdsall 1991].

PIC codes involve deterministic classical mechanics which generally move all particle s
simultaneously using the same time step . The only part left to chance is usually limited to choosin g
initial velocities and positions and injected velocities . The objective for highly-ionized space
plasma is usually seeking collective effects due to self and applied fields . On the other hand, MC C
codes are basically probabilistic in nature, seeking mostly collision effects in relatively wea k
fields. Forexample, let a given charged particle beknown by its kinetic energyW k in and its velocity
relative to some target particles . This information produces a collision frequenc y
Vco 11 = n t arg et 6(Wkin) V relative and a probability that a collision will occur . This information
is then used to describe electroncollisions with neutrals (elastic scattering, excitation,andionization)
and ion collisions with neutrals (scattering and charge exchange) .

The method is to use only the time step of the PIC field solver and mover, St , and then to
collide as many particles as is probable P in that St separately . The actual fraction of particles in
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collision is P = 1 — ex p (— v, o i l St) . Note that we have slipped into treating our computer particle s
as single electrons, not as superparticles ; the implication is that with a sufficient number o f
collisions, the resultant scatter in energy and velocity will resemble that of the single particles.

The end result of current efforts at including collisions in PIC codes due to Monte Carl o
methods is the change in velocities of the particles . Thus, the only change from a collisionless run
is that the particle velocities are varied in a time step. The last task at the end of a time step is to
determine the new (scattered) velocity, and new particle velocities if ionization occurs (if ionizatio n
and/or recombination processes have been included in the MCC model) . Each process is handled
separately. Elastic collisions change the velocity angles of the scattered electrons ; charge exchanges
decrease ion energy and change velocity angles; ionizations do these and create an ion-electro n
pair, with new velocities. The effect on the neutral gas is not calculated because the lifetimes of
the excited atoms are generally less than a time step.

When recombination rates are high, and if the source of energy to the plasma is terminated ,
gravitational effects must soon be included in the particle kinematics .

8.7 Gravitation

The transition of plasma into stars involves the formation of dusty plasma (Appendix C), th e
sedimentation of the dust into grains, the formation of stellesimals, and then the collapse into a
stellar state . While the above process appears amenable to particle simulation, a crude approxi-
mation of proceeding directly from charged particles (actually a cloud of charged particles) to
mass particles is made.

The transition of charge particles to mass particles involves the force constant, that is, the ratio
of the coulomb electrostatic force between two charges q separated a distance r,

Fq(r) = q 2 /47reo r 2

to the gravitational force between two masses m separated a distance r,

FG(r) =—Gm 2/r 2

In the particle algorithm this change is effected by the following :

(1)Changing all particles to a single species.
(2)Limiting the axial extent of the simulation to be of the order of less than the extent or

the radial dimension (i .e., about the size of the expected double layer dimension) .
(3) Setting the axial velocities to zero .
(4)Setting the charge-to-mass ratio equal to the negative of the square-root of the gravita-

tional constant (times 4nso).

This last change produces attractive mass particles via the transformation tpjr) = tp4(r) in
the force equation F = — V q , where

rpq(r) = q 2/47r eo r

	

(8 .16 )

(8 .14)

(8 .15)
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and

PG (r) _ —G rn 2 /r

	

(8 .17 )

are the electrostatic and gravitation potentials, respectively .

8.8 Scaling Laws

The scaling of plasma physics on cosmical and laboratory scales generally involves estimates of
the diffusion in plasma, inertia forces acting on the currents, the Coriolis force, the gravitationa l
force, the centrifugal force, and the jxB electromagnetic force [Bostick 1958, Lehnert 1959] .

Specification of plasma density, geometry, temperature, magnetic field strength, accelera-
tion field, and dimension set the initial conditions for simulation . The parameters that delineate
the physical characteristics of a current-carrying plasma are the electron drift velocity

A= vZ/c

the plasma thermal velocity

Nth
=Vth/C=(AD/A)((Op St)

(8 .18)

c St/d

and the thermal/magnetic pressure ratio

(8 .19 )

_nekTe+ni kT; – [(2D/AX(vpOt)] 2 4(1+Ti /Te)
~n —

	

B 2 / 2/2o

	

(c St/d) 2 (wCo/wp) 2 (8 .20)

where n is the plasma density, T is the plasma temperature, k is Boltzmann's constant, and the
subscripts e and i denote electron and ion species, respectively. The parameter Stis the simulation
time step, d is the cell size, and c is the speed of light . All dimensions are normalized to d and all
times are normalized to S t.

The simulation spatial and temporal dimensions can be changed via the transformatio n

c Sr = c St '

A

	

d'

	

(8 .21 )

whered'=adand St'=a Or, for the size/time multiplication factor a The values of n, T, B, and
E remain the same regardless of whether the simulations are scaled to d and St or to d' and St'.

One immediate consequence of the rescaling is that, while the dimensionless simulatio n
parameters remain untouched, the resolution is reduced, that is ,
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are the electrostatic and gravitation potentials, respectively .

8.8 Scaling Laws

The scaling of plasma physics on cosmical and laboratory scales generally involves estimates of
the diffusion in plasma, inertia forces acting on the currents, the Coriolis force, the gravitationa l
force, the centrifugal force, and the jxB electromagnetic force [Bostick 1958, Lehnert 1959] .

Specification of plasma density, geometry, temperature, magnetic field strength, accelera-
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where n is the plasma density, T is the plasma temperature, k is Boltzmann's constant, and the
subscripts e and i denote electron and ion species, respectively. The parameter Stis the simulation
time step, d is the cell size, and c is the speed of light . All dimensions are normalized to d and all
times are normalized to S t.

The simulation spatial and temporal dimensions can be changed via the transformatio n

c Sr = c St '
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(8 .21 )

whered'=adand St'=a Or, for the size/time multiplication factor a The values of n, T, B, and
E remain the same regardless of whether the simulations are scaled to d and St or to d' and St'.

One immediate consequence of the rescaling is that, while the dimensionless simulatio n
parameters remain untouched, the resolution is reduced, that is ,
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coOt=co'St'

	

(8 .22)

where w' = co / a rad/s is the highest frequency resolvable .
To convert simulation results to dimensional form, it is sufficient to fix the value of on e

physical quantity (e .g., Bo ) .

8.9 Data Management

The management of data is a contemporary problem only for 3D simulations . Using a modest
factor of 4 in the total particle number for each velocity dimension and a factor 64 for each spatia l
dimension, one concludes that 3D simulations ought to employ some 2'^, that is, 16 millio n
particles, each requiring six data (x, y, z, u, v, w) to be recorded (i .e ., 100 million data) .

Obviously, there is no hope for doing a plausible 3D simulation without (1) introducing some
economies, and (2) storing the particles outside core and calling them in only small batches .

Similarly, the 64' linear scale range calls for over 1 million field data : Fields cannot reside

in core . "Layering" is therefore practiced in 3D codes . In the tridimensional code TRISTAN a grid

of 2x1283 points (cubic mesh, plus cube centers) is used for recording field data, and particles are

kept ordered into 128 layers. At present, the number of particles is 41/2 million. This is currently

being increased to 50 million . Only two field layers are in core at any time, and four charge current
layers (the latter because after moving, particles can have dropped below or risen above thei r

original layers). Triple buffering is used when the particles of each layer are passed through core

for processing, in batches of about 5,000 . Images of the batches that straddle layer borders are kep t
in core, for depositing particles that have dropped or risen. Some sorting of the particles i s

necessary here .
Fields of the next layer above are brought in when a layer of particles has been complete d

and the lowest of the four charge-current layers is put out to disk . These two moves are accompanied
by Fourier transforming within the layer dimensions (e .g ., x and y, when layering is in z, to k to

k). Filtering of high harmonics at this stage helps with input/output economy .
When all layers have been processed, the original field record on the disks is converte d

into a charge-current record, indexed in a hybrid manner, namely according to kX, ky , and z .
At this point, field solving can begin, but it will require prior Fourier transforming in z. The

j, p data have to be read back into core, but in different order, from scattered disk areas. Again,

layering must be used, but now according to k (say) . TRISTAN uses 16 sectors at this point.

Fourier transforming cannot begin until all reading of a sector is complete : Input/output (I/O)

cannot be overlapped with computation . A similar bottleneck occurs after the field update when
the FFTs in z have to be completed before the new fields of a sector can be written to disk .

It is difficult to assess the cost of waiting for I/O completion ; this depends strongly on the

operating system. A time step overall (particle plus field update) in TRISTAN takes about 2 m o n
a CRAY-1 .
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8 .10 Further Developments in Plasma Simulation

As pointed out in Section 8.9, data management problems dominate the subject of 3D plasm a
simulation using particles-in-cell . In the novel computer architectures, with their high degree of
parallelism, data transport becomes an even more important issue . Computing efficiency depends
critically on (topological or physical) data proximity in the basic procedure of a problem . "Local "
algorithms, such as finite-difference equations, have preference over "global" algorithms, such
as Fourier transforms (Note that the calculation of each single Fourier harmonic requires the entir e
data-base) .

With this in mind, new 3D plasma codes have been constructed. In these the particles are
advanced just as in Eqs.(8 .6)-(8.8), but Maxwell-Hertz-Heaviside's equations are integrate d
locally over a cubic mesh in the form :

change of B-flux through a cell-face = - circulation of E around it

change of D-flux through a cell-face = circulation of H around it - charge flow
through it

The E- or D- data mesh is staggered relative to the B- or H- data mesh both in space and time .
This method has the advantage that V D = p needs to be satisfied only at the beginnin g

of a run (where it becomes a triviality of initialization) : it is automatically carved forward in time
by consistent determination of the charge flow between cells . Thus Poisson's equation does not
have to be solved. Poisson's equation is "global" : The solution anywhere depends on the data
everywhere.

The algorithms fora simplified version of TRISTAN, a fully three-dimensional, fully elec-
tromagnetic, and relativistic PIC code, are given in Appendix E .

Note s

' The problem of two gravitationally interacting masses was solved when Kepler proved that
relative to the center-of-mass the orbits are ellipses or hyperbolae (i .e ., "conic sections") . This is
exact—and elegant! But this elegance is lost when a third body is added. Only approximate
methods exist, all rather ugly. For centuries mathematicians have sought to find an elegant solutio n
to the problem of three gravitationally interacting bodies—without success.

2 The approximate relationship of supercomputer performance and performance of those i n
other catagories can be shown proportionately . If the performance of contemporary supercomputers
is assigned a value of 100, the values in proportion to supercomputers are : minicomputers 0.1 to
5, workstation 0.1 to 1 .0, and personal computers 0.001 to 0.1 .

3 The wavevector k,,,,, = rr/&, ;nl-2-/dr, or r /Sx• according to the number of dimensions.

In a 3D, EM code,cubicsplines wouldrequire each particle to look up 3R4 data to interpolate
the E and the B that acts on it !

S E describes half the electric acceleration and the magnitude of B is half the magnetic rotatio n
angle during the time step .
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6 The sequence is mathematically concise when y= 1 . The quantity u is velocity in the sense
ofmomentumperunit restmass. Therelativistic yis obtained from it as the square rootofi + (u / c) 2.

The equation for u3 is executed by first dividing B by y and then using "1" in place of y2. This
accounts for the m rather than mo in the angle.




