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7. Transport of Cosmic Radiation

The theory of electromagnetic radiation was first derived by James Clerk Maxwell in 1873. He
showed that both magnetic and electric fields propagate in space and the velocity of propagation,
from purely magnetic and electrical measurements, was very nearly 3x10® m/s. Within the limits
of experimental error, this was equal to the velocity of propagation of light. Within fifteen years
of Maxwell’s discovery, Heinrich Hertz succeeded in producing electromagnetic radiation at
microwave frequencies by installing a spark gap (an oscillating high-potential arc discharge across
two conductors separated by a short gap) at the center of a parabolic metal mirror. While the
induction field was significant in Hertz’s measurements (1.5 m transmitter-receiver separations),
Gugliemo Marconi succeeded in demonstrating true electromagnetic energy transport, first at
separations of 9 meters, then 275 meters, then 3 kilometers, and then, in 1901, across the English
Channel. Finally, in 1901, Marconi’s transmissions bridged the Atlantic Ocean—a distance of
3,200 kilometers.

Like radiation at optical wavelengths, that can be decomposed into a spectrum of constituent
components (reds to violets) by a prism or grating, radiation at other wavelengths is alsoresolvable
into a spectrum, another discovery by Hertz who showed that electromagnetic waves possessed
all the properties of light waves—they could be reflected, refracted, focused by a lens, and
polarized.

The electromagnetic spectrum corresponds to waves of various frequencies and wave-
lengths, related by the equation A f=c, where c = 3x10® m/s is the free space velocity of light. In
principle, it was found that knowledge of the radiation pattern recorded by an antenna system, and
the distribution of the radiation in a frequency spectrum, could give precise information about the
distant source of the radiation—its location, size, mechanism, energy, etc.

However, a complication arises when the propagation medium is no longer free space, but
instead is plasma. The plasma may be dilute—such as the interstellar or intergalactic medium
(Chapter 1), or it may be dense—for example, pinched plasma filaments that may even be the
source of the radiation (Section 6.5). In both cases the properties of the radiation are altered, in the
dilute case overlong propagation distances and in the dense case over short propagation distances.!

The first complication results from a modification of the wavelength-frequency relation,
Af=c/n, where n s the refractive index of the plasma (Appendix B). Since 1 depends on the wave
frequency, magnetic field strength and orientation, plasma temperature, plasma constituency, and
collision frequency, these parameters must be taken into account when an attempt is made to
unfold the nature of the distant sources such as those responsible for the spectrum shown in Figure
1.24. Additionally, linearity is no longer preserved if the wave field E is intense enough to modify
the physical properties of the medium through which it propagates, by accelerating the plasma
electrons and ions which may then collide with neutrals to heat the medium (e.g., Section 1.2.5).
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254 7. Transport of Cosmic Radiation

This chapter starts with an outline of the mathematical description of energy transport in
plasma. This is followed by a description of geometrical optics in radiation transfer—its appli-
cations and limitations. Blackbody radiation, the source function, and Kirchoff’s law are covered
for the case of Maxwellian particle velocity distributions, and the classical definition of radiation
temperature is given. The absorption of radiation by plasma filaments, the large-scale random
magnetic fieldapproximation, and the generalization of radiation transport to anisotropic velocity
distributions, finish the chapter.

7.1 Energy Transport in Plasma
A power-energy conservation relationship may be developed by expanding the divergence of the

vector product E x H, and using the Maxwell-Hertz—Heaviside curl equations (1.1) and (1.2) to
obtain

V- (ExH) =-E (j+%%)+n. (_aa_?)

e E. i L9 (o p2 2
=-E-j 2a:(£E +uH) a.n

Equation (7.1) is in the form of a conservation theorem and can be recast in the form

d
where
S=ExH is the Poynting vector,

WE . j =J E-jdt is the particle energy density in the fluid approximation,
1

wg=_¢E 2 is the electric field energy density, and
1

wp=_H H? is the magnetic field energy density.

By applying the divergence theorem to Eq.(7.2), it is seen that the outward flux of the vector S from
a volume V is accounted for by a time rate of change within that volume of the electromagnetic
to mechanical energy conversion term plus the electromagnetic field energy density wg + wg

d
is.ds_—EIV(WE.j+WE+WB)dV (7.3
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AlthoughEq.(7.2)isrigorous atevery instant of time, our interest will only be in the averaged
quantities. Following a procedure outlined by Bekefi [1966, p. 10] utilizing the time and space
Fourier transforms of Egs.(1.1)(1.4), we obtain

ki -[S+T]= o (ws +wgsp) +P£; (7.4)

where k; and @; are the imaginary components of

k=k,+ik 1.5)
0=+ 10 (7.6)
and
S = l. *
§ 2 Re (E xH ) is the time-averaged flux, (7.7a)
= 1 JoK . . .
T=- T g E*- el E is the nonelectromagnetic energy flux of particles
flowing coherently with wave, (7.7b)

wg = 1 o |HP is the time-averaged magnetic energy density,

4 (1.7c)

WE+p = 1 & E* - Sa E is the time-averaged electric energy density plus

kinetic energy of particles coherent with wave, and
(7.7d)

PE. ;= zlt_go E*- (0 Ka)- E is the time-averaged rate of power absorption.

(1.7e)

The time-averaged Poynting vector S represents the flux of electromagnetic energy. The
quantity T is the nonelectromagnetic energy flux due to the coherent motion of the charge carriers.
In acold plasma, where the charge carriers oscillate about fixed positions, T = 0. In a hot plasma,
bodily transport of density, velocity, and energy fluctuations by the free-streaming particles lead
to finite values for T.

The dissipation of energy from the wave enters through the anti-Hermitian part of the
equivalent dielectric tensor Ky = (K - K*) /2i. When the medium is not time-dispersive,

W4 p takes on a more familiar form Wg+ =i—€0E*' K- E.

Example 7.1 Total energy density of a transverse electromagnetic wave propagating in an
isotropic medium. From Eq.(B.2), since B, = 0, all diagonal tensor elements reduce to
K=P=1- @}/’ and Eq(7.7d)is

wevp =& |ER(1 462/ o) (7.8)
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Since H = &g/ pto n X E, where n is given by Eq.(B.7) and #* = P Eq.(B.11),

1 2
wg =4—eo|EF (1 -a) /a)z)
The total energy density is therefore

— —— 1
wp+Weep =38 |EP (7.9

Example 7.2 Total energy density of a longitudinal wave in warm magnetized plasma near
thesecond electron cyclotron harmonic. A transverseelectromagneticwave E = Ei™ i (k - r-o1)
is incident on a warm magnetized plasma slab (Figure 7.1). The propagation vector is
k=X ky+§ ky,andk / ky= sin &, where &iis the angle of incidence, and the plasma extends in
the xdirection. Since the electric field of the longitudinal wave is predominantly along its direction
of propagation, it follows from a simple geometrical consideration that in the plasma

____£ Ky EL

osing ’ (7.10)

so that | EL| >> | EL| Neglecting EZ, Eq.(7.7b) can be written

Ty =~(weo /40 Kex /3 k) EH .11

Theelement Ky x of the dielectric constant in warm magnetized plasma s [Peratt and Kuehl 1972]

o3 sz{ @ Vi 2 V3V
K1 % L c2kZ| @ (__ 3vi 7.12
X TR @\ wl) e -wt) o (7.12)

Differentiating Eq.(7.12) and inserting in Eq.(7.11) gives the final result

- 1 & cky a),f \\ »° \ 3 vf
Te= s\ — 2 2) 2 2) 2
Ho o0 \@" - [ON 4 . — O ¢ (7.13)

where the sign of Eq.(7.13) has been reversed since the phase velocity is in the opposite direction
from that assumed in the derivation of Eq.(7.11).

7.1.1 Group Velocity

The velocity at which energy in the wave propagates, the group velocity, is defined as
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F'lglire 7.1. Incident, reflected, and transmitted wave vectors for a transverse electromagnetic wave obliquely
incident upon a magnetized plasma.

total time-averaged flux

§= time-averaged energy density (7.14)
or, from Eq.(7.7),
Vo= do_ S+T
FTOk wp+WEp (7.15)
where

0 _ o 0w 00 00
& Yor Yar, tEox 716

The group velocity vector v, associated with the wave has a magnitude v, and a direction given
by the angles & and 7 (Figure 7.2). In spherical coordinates

o=olk, 6, 9) 1.17)
and Eq.(7.16) is

d0 0 , 2190 T 1 do

90 RS2 +9l%0 41 22

ok ok k39 ksing 3¢
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Figure 7.2. Coordinate system showing the propagation vector k and the associated group-velocity vector v,.

='lEvgk+0 Voot 9V (7.18)
and
Vok = a—k—I
* \ow
_ ok [9k\-1!
-1 2N
06 \dw, (7.19)
_ 1 Ok [dk\!
g~ . o5
k sin 6 9¢ 0w

The transformations Eq.(7.19) can be simplified if an axis of symmetry Bg = ;Bo is chosen.
Thus, d k / d¢ =0 and

Vek = Vg COS (6-¢

Veg=—Vg Sin(e—é) (7.20)
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WHEEL LEMNISCOID
ONE SHEET HYPERBOLOID —— ™~

Figure 7.3. Wheel lemniscoidal normal surface and partial construction of its one sheet hyperboloidal ray
surface. These shapes are representative of the compressional Alfvén wave.

Veo=0

From Eqs.(7.19) and (7.20)

__Veo_1(3k
m(o‘g)“vgk‘k(aow (721

where(e - 45) is the angle between the direction of wave propagation k and the direction of energy
propagation Vg / V¢ . The differentiation of k in Eq.(7.21) is done at fixed frequency .
Consider, for example, a wheel lemniscoid wave-normal surface (which is representative of
the compressional Alfvén wave) as shown in Figure 7.3. One may use wave-normal surfaces to
find the direction of Vg. Let the origin represent an instantaneous constructive interference maxi-
mum for a group of waves which are of the same frequency but which differ slightly in direction.
At a later unit time, the wave fronts which had passed through the origin will lie on the surfaces
which are perpendicular to and which contain the tip of the «k radius vector. The new point of
constructive interference occurs where these wavefronts again coincide. The coinciding wave
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fronts form an envelope for a second surface, which is called the ray surface when the medium
is nondispersive.

For dispersive media, only the direction of the wave is given correctly by the construction
of Figure 7.3. One must then consider the constructive interference of waves not only with
different directions, but also with different frequencies, and the length of the V¢ vector is changed
acordingly.

Example 7.3 Whistler mode propagation through the ionasphere. A famous example of
group velocity relations in anisotropic dispersive plasma is furnished by the whistler mode,
Whistlers, which were first reported in 1919 by H. Barkhausen, are electromagnetic disturbances
initiated by lightning discharges in the upper atmosphere, particularly the electromagnetic radia-
tion with frequencies of 300 Hz to 30 KHz. The waves cannot be heard directly but are converted
into audible sound waves of the same frequency by an audioamplifier. They are propagated from
one hemisphere to another in the ionosphere and follow the earth’s dipole magnetic field lines. In
propagation through the ionosphere the group velocity is proportional to the square-root of the
frequency so that the received signal is a descending tone lasting a few seconds.
We write Eq.(B.10) in the form

2(A-B+0)

24 -B +/B7-4AC (7.22)

Using the “quasi-longitudinal” approximation

n2=1-

2 .4 2, 92 2
@, sin 9<<4w2(1—wp/w) cos” 6 (7.23)
in addition to the approximation
m,,zsin20<<|2w2(l—w,,2/w2,‘ (7.24)

we arrive at the quasi-longitudinal right-hand index of refraction equation

2
ple=]—— @ /o
- Wycos B (7.25)

In his analysis of this mode, Storey [1953] simplified Eq.(7.25) to obtain the approximate form

2
@p

n=1-—"2
® Wpcos : (7.26)

which is valid where |, cos 8| >>|@| and when n2>> 1. Thus, the frequency and group
velocity are
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c?k? Wy
=2 o (7.262)
P
2
20 B o 6= 2 eon 0V 7266
ok o’ (7.26b)
p P
From Eqgs.(7.21) and (7.26), tan (8- &) = % tan 8. Solving for & gives
tan-1{sin 6 cos 0)
¢= 1+ cos26 (7.27)

The maximum possible value of & is found by differentiating Eq.(7.27) with respect to @ and
setting it equal to zero. After some manipulation we find that

= tan12-3/2= 19° 29’

where § is the angle between the ray direction and the earth’s dipole magnetic field lines. This
angular limitation on the group-velocity direction accounts for the tendency of whistlers to follow
the lines of force of the earth’s magnetic field. The frequency dependence of the group velocity
accounts for the whistler’s characteristic descending tone since the higher frequency components
of the disturbance arrive first.

An example of a 500 Hz whistler-mode ray path obtained using a ray tracing program is
shown in Figure 7.4 [Kimura 1966].

500Hz Whistler-Mode
Ray Paths

Plasmapause

Figure 7.4. Example of 500 Hz whistler-mode ray paths, obtained from a ray tracing program, that illustrates
how wave energy generated in the outer region of the plasmasphere can propagate across magnetic field lines
50 as to fill the plasmasphere with waves.
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7.1.2 Time Rate of Decay of Wave Oscillations

The time-averaged rate of power absorption divided by the time-averaged electromagnetic energy
density in the waves gives the time rate of decay of the oscillations, that is,

—
T= [__pE—’_} s (7.28)

An alternate way of expressing the time rate of decay and spatial absorption of a plane wave
is through the complex values of @ [Eq.(7.5)] and k [Eq.(7.6)]. The relaxation time for the
oscillations is (—@;)~!; therefore the relaxation time for energy is

7=(2w)! s (7.29)
Likewise, the spatial damping is (k)™ !; therefore the absorption is
Ap=2k m1 (7.30)

However, the absorption coefficient must be corrected to include the direction of wave propaga-
tion k with respect to its group velocity 0@/ k. This correction is (Figure 7.2)

a,=2kcos (9 - .’,‘) m-1 (7.3D)

7.2 Applications of Geometrical Optics

Geometrical optics assumes that the medium varies slowly with position and the scale length of
the variations is much longer than the wavelength of the radiation in the medium. The radiation
canthenbeconsidered as being transported along bundles of curves orrays (Figure 7.5). Inplasma,
the various bundles may belong to the different characteristic plasma modes of propagation.
Nevertheless, unlike the mode conversion processes described in Appendix B, in geometrical
optics the bundies do not interact with one another.

7.2.1 Basic Principle and Limitations of Geometrical Optics
Consider for a moment a loss-free plasma (P - j = 0) under steady state conditions (@ = 0,
V & iK) so that Eq.(7.4) may be expressed as

V. Fu=0 ’ (7.32)

The quantity F, is called the spectral flux and consists of both the electromagnetic flux and the
flux of particles
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Figure 7.5. Bundles of rays emanating from a small source crossing an element of area da.

Fu=Slo) + T(o) | (7.33)

Since Eq.(7.32) is valid for each possible mode supported by the plasma separately of any other
mode, the flux F, is the total flux for a single mode.

The problem of flux flow is handled as follows. Let da be a small area in plasma whose
outward normal is along B . Each element of the source sends through da a tube of rays, and the
central rays of the tubes fill a cone of solid angle d2. For a sufficiently small cone angle the fluxes
from the individual elements travel essentially in the same direction. If the sources are assumed
to radiate incoherently with respect to one another, the total flux is the scalar sum of the individual
fluxes. The magnitude of this flux is then

dF, - Z =dF, cos &= I,(s) cos £dQ2 (1.34)

where I is a constant of proportionality. The time-averaged power P in the spectral range do,
crossing the elementary area da and confined to the cone dQ2is

dPy, =Ifs)cos EdQ dade W m2 ster-! (7.35)
The scalar quantity I is known as the specific intensity of radiation or, simply, the intensity.
¥ 1 at a point is independent of direction, the radiation is isotropic.

To obtain the total flux crossing unit area da (Figure 7.6), Eq.(7.34) must be integrated over
4n steradians:

Fy, =j 1 ,(s) cos £EdQ2
0<&<nm (7.36)
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Figure 7.6. Vector diagram for radiation flowing across a small area da.

In radio astronomy the measurement of the flux takes place at a large distance from the radiating
body and, since the body subtends a sufficiently small solid angle at the position of the observer,
Eq.(7.36) can be approximated by

F, =j 1,(s)dQ
0<é<rm

Consider an infintesimal volume element of the plasma in the form of a pillbox as shown in Figure
7.7. A pencil with radiation intensity /_and solid angle d<2, enters one face at an angle &, to the
normal Z. The radiation in the outgoing beam of intensity /_+ dI_ leaves within a solid angle d<2,.
If the plasma s simple and slightly inhomogeneous, it causes a bending of the rays, sothat &1 = &£z
If the medium is also loss-free then, in accordance with Eq.(7.35)

(I + dly)cos £2d€2; dadw~—1,c08 £,dS2) dadw=0 (.37

which is the energy conservation equation for radiation propagating along a bundle of rays. For
a simple plasma, Snell’s law of refraction may be employed which states

n sin € = constant along the ray : (7.38)

where 7 is the real part of the refractive index Eq.(B.7). We then find that

n2dacos & d2= constant (7.39)



7. Transport of Cosmic Radiation 265

Figure 7.7. Radiation entering a small volume of plasma and leaving it after having suffered a small amount
of refraction due to a difference in refractive indices on the two sides of the elementary pillbox.

and from Eq.(7.37) that
I,/ n2 = constant along the ray (7.40)

In magnetized, anisotropic, and inhomogeneous plasma, the rigourous solution of the ray
trajectory problem is beset with the same basic difficulty of geometrical optics: the wavelength
must be short compared to the distance over which the refractive index changes appreciably. This
requirement is often violated in cosmic plasma, where transistion regions define abrupt changes
in plasma density, temperature, and magnetic field strength. In addition, plasma wave theory
shows that the refractive index may change rapidly even though the plasma density or magnetic
field changes gradually (Figure B.1).

Example 7.4 Absence of a Brewster’s Angle in anisotropic plasma. Referring to Figure 7.1,

where E L B,, the sum of the incident and reflected waves at the plasma boundary may be written
as

Ey=(1+ p)cos & - (7.41)



266 7. Transport of Cosmic Radiation

A/ B H=(1-p)
€9 (7.42)

Within the plasma half-space, E L B , so that the field is extraordinary and consists of components
both perpendicular and parallel to k

EX<E) cos &+ Eysin &, (7.43)

where &; is given by Snell’s law sin &; = n®) sin &, A relationship between E, and E,may be
obtained by briefly considering the case &;= 0. In this case E =E,and E =E, . From the vector
wave equation Eq.(B.9), S E,-i DE,=0,0r

P wp/los- o) E

® wp/lw3- @)1 (7.44)

Since Eq.(7.44) is independent of coordinate rotation, it is valid at angle &, Substituting Eq.(7.44)
into Eq.(7.43)

Wp wﬁ /(wi _ 0,2) ‘l el [(n x)z—sinz&]”z%x

) ; ;
E'=FE; cosgt_,_.__.__—smgt

y ® o (02— a?) -1 J (1.45)
HO =X gy i8] (7.46)

The two unknowns p and 7= E, are obtained by matching Eq.(7.41) and Eq.(7.42) to Eq.(7.45)
and Eq.(7.46) at the vacuum-plasma interface. We obtain

_cos (& + &) sin(& - &) +i(w/ ap)[a/(a—D]sin® &

sin(&; + &) cos (& — &) + i(@/ aw) [a/(a—- V] sin® & (747
= 2 cos &; sin &
sin (& + &) cos (& — &) + i(w/ wp)[a/(a— V]sin & (7.48)

wherea = @7 /{0~ ©3). When 1, =0, Eq.(7.47) reduces to the well-known Fresnel equation for
reflection from a dielectric with E in the plane of incidence [Slater and Frank 1947]. For e, =0,
we may therefore have p=0 at the “Brewster angle,” but if @y # 0, Eq.(7.47) shows that pnever
vanishes, so there is no “Brewster angle”” for anisotropic plasma.

Example 7.5 Absorption due to collisions. Collisional effects such as wave damping caused by
particle interactions can play an important role in the propagation of electromagnetic waves
through cosmic plasma. For example, collisions are particularly important for longitudinal wave
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propagation because of their slow group velocity. Collisional processes become important for the
propagation of an extraordinary wave near a resonance.

Theeffect of collisions can be included in the formulation of Example 7.4 with the frequency
replacement Eq.(7.6) (this is usually carried out in the derivation of the current density j). The
quantity a; is considered a “collisional frequency” [Kuehl, O’Brien, and Stewart 1970] whose
magnitude is determined by the type of particles in collision. With this substitution, the absorption
is

ap=1-|pP-|tf (7.49)

None of the wave conversion, wave matching, or collisional damping carried out in Examples 7.4
and 7.5 exist in geometrical optics. Nevertheless, in spite of the inadequacies of the procedure,
especially at longer wavelengths, we shall continue to confine ourselves to applications of geo-
metrical optics. '

7.2.2 Equation of Transfer

In the presence of dissipation, Eq.(7.32) takes the form

V- Fu= (P o (7.50)

where (pg. ;) represents the spectral density of p . (t). The effect of dissipative processes is the
appearance of absorption which, in the geometrical optics formalism, is described by

— Qgpds I, cos Ed2 dadw (7.51)

The pillbox is also a source of radiation. For an emission coefficient j Eq.(6.85), the power
generated is

Jwds cos £dQ dadw (752)

Summing Eqs.(7.51) and (7.52), placing the sum on the right-hand side of Eq.(7.37), and using
Eq.(7.39), leads to the Equation of Transfer®

—z) == %olatio (1.53)

All quantities of Eq.(7.53) refer to one mode of propagation and there are as many first-order
differential equations like Eq.(7.53) as there are characteristic modes in the plasma.
The following are special cases where the solution to Eq.(7.53) is simple:

(1) Emission only: ;= 0
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pife), 0 0 [,
50

ds {2 n2(s) nZ(so) n?
(7.54)
(2) Absorption only: j, =0
n2 -d—(l—w)_'a I -—Iw(S) - Lols) €x {— s Ogds
ds {n2 wlgy n2(s) nZ(sp) p\ 50 ? ( (7.55)

(3) Thermodynamic equilibrium: For complete equilibrium of the radiation with its sur-
roundings, the intensity is described by the Planck function at equilibrium temperature T.

I I (s
n2 i{_“’)zo, of$) =Bolw, 7)
ds \p2 n2(s) (7.56)
where Bo (@, T) is the Planck law (Section 7.3).
In general, to solve Eq.(7.53) we define two quantities. The first
Lo
" 200 .57
is known as the ergiebigkeit or source function. The second is the optical depth 7
d’[a)= - aw ds (7.58)
In terms of these quantitites, Eq.(7.53) becomes
d I_"’. = fﬂ_ 0y
dtp\ny n% ° (1.59)

The solution of Eq.(7.59) is obtained by first multiplying by e~ *» and then partially integrating
overT,,

2
n
Jo de
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I I 1000
n—a;‘ra,(O)e"‘"(o—n—a;Ta,(sd ed=— ] Spe e dt,

or, finally,

I”’(s) I”’(O) e~Fal0 4 [ 0 S e Todr
0

n2(s) n2(0) (7.60)

Because of the definition Eq.(7.58), 7, decreases as s increases as shown in Figure 7.8. Thus if /
is the length of the ray,

5
T =—] Qgpds
! (7.61)

Equation (7.60) expresses the fact that the intensity is the sum total of the emission at all interior
points, reduced by the factor e ~*»that allows for the absorption by the intervening plasma, to which
must be added the intensity of radiation incident on the back side of the plasma, reduced by the
absorption in traversing the plasma.

The emission at a given frequency has two characteristic regimes, depending on the value
of the total optical depth 7,

1, (s +0s)

Iy ©)

Figure 7.8. A ray passing through plasma. The optical depth 7, is measured from s,,, the point of emergence of
the ray.
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(1) When 7, << 1, the radiation seen by the observer suffers negligible absorption during
its passage through the plasma. The plasma is said to be transparent to the radiation.

(2) When 7,,>> 1, then I, — n% 5, and the intensity depends on the refractive index and
the source function. The plasma is opaque. If the plasma is isotropic and in thermal equilibrium
such that T, =T, where T'is the true temperature of the radiators, the plasma emits as a black body
(Section 7.4).

For a plasma of sufficiently large optical depth, most of the radiation seen by the external
observer Eq.(7.60) comes from the outer layer of thickness 7 ~ 1.
7.3 Black Body Radiation

The spectral distribution of the radiation of a black body in thermodynamic equilibrium, for a
single polarization, is given by the Planck formula

3
ho 1

Bo(w, T)= 3
87 c? et @/ kT_ (7.62)

which is plotted for various temperatures T in Figure 7.9. On integrating Eq.(7.62) over all
frequencies @ (see e.g., Reif [1965 Section A. 11]), and multiplying by 2 to include both polar-
izations, we obtain Stefan’s law for the total brightness of a black body

2a5 k4T
Bo(T)="""—_=0oT*
o(T) 15¢2 k3 (7.63)

where 0= 5.67 x 1078 W mr? Kis the Stefan-Boltzmann constant. The frequency at which the
intensity reaches its maximum is found by solving the equation 9 Bo(w, T)/ 9@ = 0. The final
result is

(39) =2.822
kT max (7.64)
or

(9) =3.69x 10!! rad s~! °K-!

T |max (7.65)

which is known as Wien’s displacement law. Approximations to Eq.(7.62) can be found in the _
following limiting cases.
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-a——— Wavelength, m

1 102 1 10% 10* 0% 0P 0™ 10 o™
T T T T T T T T T L]
N
105 " T T T T T T T T T 10 40
- H10%
o 10 F 10 million K I RN
B 3 1 million K g
‘75:‘ 1 100,000 K 410® '-'E
3 - 10,000 K w0 o
‘= 10_4 R ), - 10 1]
,‘9. <)
£ | 1,000 K 7/, 10t B
= ot 100K / i
= . 10 ~
I BT /// : 102
® 2] %0, 5 ®
» 10 <10 P2
& 1K / 1]
@ - / 2
£ 107l // 11 =
2 // 2
S - -10°% @
102t
i -l 1010
10'2‘ 1 b N 1 l ! L 1
104 108 108 10'0 1012 10% 10 10'8 4020 102
B (v) Frequency, Hz —
) , 1‘m 1elrnlcm ! 1mi§:mn N 1arn§m R

Figure 7.9. Planck-radiation-law curves at various temperatures with frequency increasing to the right (adapted
from J.D. Krauss 1986).

(1) # @<< kT : Rayleigh-Jeans law (long wavelength case)

2

O T
873 c2 (7.66)

Bo ((0, T) =

This is the classical limit since it does not contain Planck’s constant.

@)k w>> kT . Wien’s law (short wavelength case)

ho?
Bo(w,T)= eho/kT
8 3 c? 7.67)
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7.4 The Source Function and Kirchoff’s Law

From the theory of spontaneous and stimulated emission [Bekefi 1966], the absorption coefficient
finds yet another definition:

3.2
L 63’ Polp e )-f@))ap

n?h (7.68)

where pisthe momentum correspondingtoenergy W - # @ . Substituting Eq.(7.68) and Eq.(6.85b)
into Eq.(7.57), gives

[Pa,(p') foHd3p

L P ) [f0)-f@n]a3p
) (7.69)

Equation (7.69) is a form of Kirchoff’s law for anisotropic, nonthermal plasma. When the particle
distribution is Maxwellian, f{p) is given by Eq.(6.89) and

[f(p) 'f(P')} = Cpe _(w-ﬁw)/kT—Cpe‘W/kT

= fp)lem@/*T _ 1) (7.70)

Hence, Eq.(7.68) becomes

(aa))Maxwelhan 8” c? (hw/kT 1)[1’ (p f(p) d3

nzha)

(71.11)
or, from the definition Eq.(6.85b)
873¢% ( sk ).
(@w)Maxwellian = FEFR (e 0/kT 1) Jo .72

Using Eqs.(7.57) and (7.62), the source function for a Maxwellian distribution is

) = Bolo, 7)
Cp)Maxwellian (7.73)

1
(S PMaxwellian= ==
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Thus, when the particle distribution is Maxwellian, the source function equals the vacuum black-
body intensity Bo(a, T). The quantity T refers to the temperature of the emitting electrons; neither
the energy nor the distribution function of any other species of plasma particles enters into
Eq.(7.73). For example, the velocity distribution of streaming electrons or background (or collec-
tively accelerated ions) within the plasmamay be non-Maxwellian and theirmeanenergy different
from the value 3 kT / 2.

For tenuous plasma n — 1 and Eq.(7.73) reduces to what is generally considered to be the
classical form of Kirchoff’s law.

By analogy with vacuum black-body radiation we may write that

Sp= (n hw’/8 7 cz) (enwrer _ ) , where the radiation temperature T now plays the role of
the true temperature T of equilibrium radiation. Equating this to Eq.(7.69) defines T :

-1

'[Pm(p')f(p)d%'
/ Polp) o) a3p’

kT,=ho|ln

(7.74)

Ttisnoted that T is a fictitious temperature and depends on the particle distribution, the frequency
of observation, and the direction of propagation.

7.4.1 Classical Limit of the Emission, Absorption, and Source Functions

This book is primarily concemed with the classical range of frequencies # @ << particle energy,
and this limit is applied to the previous equations. We first consider the case in which f (p) is
isotropic (i.e., a function only of p2 = pf + py2 + pz2 ).

At our low frequencies of interest, we shall use the fact that the energy states of the particle
are closely spaced. Writing that p * = p + Ap and using Eq.(6.90) with the energy conservation
equation,

W' -W=ho (775)
gives

WAW hoW
Ap: = 3

c?p c?p

We now expandf (7 ") =f (p + Ap) in a Taylor series and keep only the leading terms. It follows
that

of
5 ho
feN=fP)+hosy 776
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Substitution into Eqs.(6.85b), (7.68) and (7.69) gives the desired equations:

jw= wa(p )f(p)d3p
(1.77)

3
_ 8 (.‘2 af(P) 3
Oy =— 2 w2]Pm(P)a—W'd 14

(7.78)
This equation was derived by Trubnikov (1958) for n= 1 for the study of cyclotron radiation from

fusion plasmas. Often, Eqs.(7.77) and (7.78) are expressed in terms of the distribution of energy
rather than through the distribution of momenta. The two are related as follows:

dN =flp) 4 p2dp =N (W) dW

(7.79)
with the result that

jo= (P WYN W)dWw  Tm3 s ! rad! ster!

@ J @ (7.80)

_ s’ [1ad Nw W2P. Wy dW o
o el ) W w2 @ m (7.81)
From the definitions of S, and T, we also obtain from Eqs.(7.77) and (7.78)
] P,(p)fip)d’p
kT,=—
] P, (p) (3 (p) /W) 23p (7.82)
s,.,=§7—f:3%2 kT, (1.83)

When fis a Maxwellian distribution; 7, equals the electron temperature T and S is the Rayleigh-
Jeans limit of the Planck function.
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s=L+4 s=2L+4

Figure 7.10. Radiation intensity seen by an observer through two successive Birkeland currents of width L and
distance 8 apart. .

7.5 Self Absorption by Plasma Filaments

Cosmic plasma is often filamentary, caused by the electrical currents it conducts. Since these
currents are the source of synchrotron radiation, it is of interest tc determine the absorption caused
by the filaments themselves. The problem at hand is illustrated in Figure 7.10.

We first consider the absorption of a single filament. Applying the initial condition
1,(0)=0to Eq.(7.60), we obtain

Ifs) § (1 - e-(0)
n2(s) (7.84)

Making the simplifying assumption that #° ~ 1 and using Eq.(7.58),

le = s(l)(l - e“sz) (7.85)

where / ,, is the intensity of a single filament of width L. If there are now two filaments a distance

S apart the radiation intensity seen by an observer is

Lyo= Sw(l - e-ZaUL) (7.86)

We have used the initial conditions for the second filament / a,z(s =L+ 8) =] ;. Similarly, for
M filaments a distance J apart, the radiation intensity can be shown to be equal to

Tom = Sm(l —eM a"'b)' (7.87)
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Note that the radiation intensity increased for larger M because of each additional filament current
source. If the plasma electrons in a current filament are in equilibrium with a Maxwellian distri-
bution, the absorption coefficient o, is given by Eq.(7.78) with n? = 1. Substituting Eqs.(6.66),
(6.89), and (6.92) into Eq.(7.78), the absorption coefficient at 8 = 772 is [Trubnikov 1958]

2
gy = L 2 <I>,,,(a)/ wb,u)
Dp € m (7.88)
The quantities @, = Oy (CD/ a)b.u) are defined by

52
O =27 L2 7 aff eslri(019)) A /(0 0]

o/ o (7.89)

where j = mg c2 / k T . The quantities A = A,{?) are given by Eq.(6.80).
The optical depth for M Birkeland currents is T = agML or

2
Tw= (wp £ M‘ 2 LY
WpC j "
m (7.90)

The spectral characteristics of the emission are contained in the function ®. Figure 7.11 shows a
plotof Z®_ for the first one hundred harmonics as a function of @/, for T=30keV. This value
is typical of the thermal temperatures in a plasma filament but is appreciably less than the energies
of particles in a relativistic beam. Only the extraordinary wave is considered; the contributions
from the ordinary wave are usually small.

The broadening of the individual lines is due to the relativistic change of mass. A given line
contributes only to frequencies @ < m @ with the highest energy electrons being responsible for
the emission at the lowest frequency. The smearing of the successive harmonics produces an
almost monotonically decreasing spectrum at higher frequency. For T = 30 keV, m ~ 5 is the
harmonic above which smearing prevails.

To a fair approximation, the total intensity leaving the filaments is

w* 3
1(9:1:/2)5[ Bo(w,ndw=&’§—T2(m*)3
o Ur’c .91

where m* = @* / e is the harmonic number beyond which the emission effectively ceases to be
black-body. An empirical relation for m* for mildly relativistic plasma has been derived by
Trubnikov [1958); and modified to the case of M filaments,
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Figure 7.11. Calculated spectrum of radiation emitted by a plasma with electron temperature of 30 keV. Self-
absorption effects are included.

2

20w
(m*)® =0.57 PILMT
3wyc

(7.92)

Equation (7.92) is valid under the approximation m c2 >> k T

Example 7.6 Number of filaments required to produce a blackbody spectrum up to 100
GHz. Consider filaments of density #, =2 x 10~ cm, magnetic field B, = 2.5 x 10* G, temperature
T,=30KeV,and width L= 10*! m. From Eq.(7.92), m* = 1.8 x 10%, hence M =3.4x 10* filaments
(Figure 7.12). This geometrical optics calculation neglects, of course, all possible reflections and
resonant absorption effects.

7.6 Large-Scale, Random Magnetic Field Approximation

Magnetic fields in cosmic plasmas are generally ordered on a global scale, possessing an overall
axis of alignment with components that are delineable into recognizable metrics, such as toroidal
and poloidal. Nevertheless, cosmic magnetic fields often present atangled, almost random appear-
ance on the size scale of interest for synchrotron radiation. Figure 1.2 illustrates this situation in
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Figure 7.12. Number of filaments of average density n_cm required to produce a blackbody spectrum to 100
GHz versus magnetic field. The graph pertains to mildly relativistic electron temperatures.

alaboratory plasma where current filaments generally flow in a preferred direction but flare, twist,
and kink to produce a total magnetic field which, for all practical purposes, is “random.”

In the following analyses, a particularly convenient assumption is that the magnetic field
lines are essentially uniform on a scale length which is large with respect to the radiating electron
gyroradii r,, but randomly distributed on scales which are small compared to the size of the
filament itself.

Previously we considered the case of a single magnetic field orientation Bg= Z B(. For this
case the spectral power radiated by relativistic particles was simply a sum of the different mode
polarizations. In a completely random magnetic field, polarization is absent. The spectral power
is calculated by averaging the total spectral power for a homogeneous magnetic field Eq.(6.71)
over all possible azimuthal and polar (helical-pitch) angles, ¢ and ¥, respectively.

2r . 4 -
P lo9= L] d¢[ Pylo 0, fsindd o

47[0 0
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2 ¥ -
= —ez—-“’-z[ dz?sinﬁ] dy Ksy)
V38n°eoc v Jo x/sin®

2 2w

e
—1 1
3 wbyz) J s~! rad- (7.93)

®c
ﬁgﬂ EoC y2

where C (x)is the Crusius—Schlickeiser function, defined by

C(x) =Wo, 43x) Wo,1/3(x) =~ W 112, 51x) W 112, 516 x) (7.94)

where W, ,(x)dénotes the Whittaker function. Based of the properties of W ; (x)for small and
large arguments {Abramowitz and Stegun 1970], assymptotic expansions of C(x) are

1 x<<1
c (x) - apX P
xle* x>>1 (7.95)

where ap= 243 I‘2(1/3) /51 = 1.151275. Figure 7.13 is a plot of Egs.(7.93) and (7.95).
7.6.1 Plasma Effects
The influence of a background plasma on synchrotron emission enters via the refractive index .

Consider, for simplicity, the case of a transverse electromagnetic wave propagating in an isotropic

10 T T T

10-2i 1 { { j
103 10°2 10! 1 10

w

Wc

Figure 7.13. Emissivity function as a function of normalized frequency @@ . The dashed curves show the
asymptotic results [Crusius and Schlickeiser 1986).
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plasma (Example 7.1), n2=P=1- wp/ ®’ Since n is less than unity the phase velocity
Vpr = @[k n = c/n ofthewaveisgreaterthan the speed of light. All yfactors in the synchrotron
formulae that are due to retardation effects undergo the following transformation:

. 2 V172 2 1/2
v =(1-v2 v =l-n2 v ey (7.96)

For relativistic particles v = ¢ and Eq.(7.96) becomes

( i
=yft, t= 1+y a)p/w 97

The influence of an isotropic background plasma is manifested by the fact that }” can be much
smaller than the usual Lorentz factor ¥ In the plasma Eq.(6.70) has to be changed

‘.3 3,-3 -3
o= 0,731 3=t
<27 < (7.98)

Substituting Eq.(7.98) into Eq.(7.93) leads to

313/
PP = m%{u(y%ic{ﬁf’y—z[n(y% ]2} Islradl (7.99)

7.6.2 Monoenergetic Electrons
Consider the case of a monoenergetic distribution of relativistic electrons
N (W)dW =N ()dy=Noé (- vody (7.100)

Substituting Eqs.(7.99) and (7.100) into Eq.(7.80), we find

,a,:IPa,(W)N (W)dw =Ny f PY 8(y-rddy

H—Zgir_eeo_c-—,%[ (70 ]/_%[H(yo—)r/?} (7.101)
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iw_%f[l +f oLl 3

VT8 ey (7.102)
where
@
f=
Yo Wp (7.103)
go= i(-w—b Yo
2\ w, (7.104)

Figure 7.14 illustrates the behavior of the emissivity j,, versus frequency f for various values of
g,- The emissivity can be characterized according to the magnetic field/plasma density parameter
g, - Formost cosmic plasma @ < @ so that g, >> 1 corresponds to highly relativistic of electrons
Yo >> 1. The spectra of Figure 7.14 for large frequencies is typical of that generated by relativistic
electrons in the absence of plasma effects (c.f., Figure 7.13). This vacuum behavior extends down
to a lower frequency f ~£; '~ . The logarithmic bandwidth of j,, is [Crusius 1988]

Alogf=15loggo (7.105)

The larger g, the larger the logarithmic bandwidth with its characteristic anisotropy around
f=1

When go< 1 (@,> @ Y9, Figure 7.14 shows an exponential surpression for all frequen-
cies when compared to the case of go >> 1.

The parameter g, may also be written as

_Y
go=-—
7R (7.106)
where
e=2 % 21X 10°/n, (md
R=30, B (T) (7.107)

is called the Razin—Lorentz factor in a random magnetic field.

7.7 Anisotropic Distribution of Velocities

Only the energy conservation equation was used in the derivation of Eq.(7.77) to Eq.(7.83).
However, for an anisotropic distribution function, momentum conservation equations are also
needed.



282 7. Transport of Cosmic Radiation

T T T T T T T T T
10 — -
10°
10?
10

107"
1072
1073

10°*

ij"/3—167t€oc)’o/Noezwp

108
10°°

1077

0] 0205
031 10 107 10° 10°

:z“ ‘u; iy }

[
10731072107 1 10 102 10° 10* 10° 10°
w
Yo wp

Figure 7.14. Emission coefficient j, as a function of the normalized frequency ffor g,=0.2,0.3,0.5, 1, 10, 107,
10°, and 10* [Crusius 1988].

Let f (7 p1) be the distribution of particle momenta where pjand p, are the components
of p parallel and perpendicular to B, respectively. We assume for simplicity that f (ps, p,) is
symmetrical about the B, direction, namely, that there is no dependence of f (py, p ) on azimuthal

angle ¢.
Again expanding f (p;, p,) in a Taylor series, we obtain
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f(p,,,pl) =f@np)+5 - ¥ Apu+a£ Apy (7.108)

The determination of A py, A p, requires use of Eq.(7.75) and the momentum conservation
equation for P

. o
p,—pi=n{6) cos § 72 (7.109)

TheparametersA p1, A p, are obtained from the conservationequations Eq.(7.108) and Eq.(7.109)
with the result

Apy= n(e) cos 9’-1—‘0

w—pm(e) cos 0 hTa)

A _Wh
pLAap,y (7.110)

Using Eqs.(7.108) and (7.110) and the factthat d3 p" > dp =2 % p, dp, dp, the emis-
sion and absorption coefficients Eq.(6.85b) and Eq.(7.68) reduce to

fo):! [ Polpu, p)flon, p1)2 mp, dp, dpu

(7.111)
87:30
Op=— Pylpi, p1)
n2w?
W of pu of PL of
x{ 28 ™ n((-))cose(c Bpn - Bp )}anldpLdp“ (7.112)

It should be noted that Eq.(7.112) contains both the ray refractive index 7 and the wave index n(6).
When fis isotropic Eq.(7.111) and Eq.(7.112) reduce to Eq.(7.77) and Eq.(7.78), respectively.

Equation (7.111) has found application in the study of radio bursts of synchrotron radiation
at decameter wavelengths from Jupiter for the special case n — 1, @ = /2 [Hirshfield and
Bekefi 1963].

Notes

!Thediscovery thatradio waves could “follow” the curvature of the earth caused O. Heaviside
and A. Kennelly to simultaneously suggest, in 1901, the existence of a plasma ionosphere which
would cause the waves to reflect or “skip” between the earth and this layer.

The operator d/ds represents § - V where § is a unit vector along the ray direction s.





