
3. B ίot—Savart Law ίη Cosmίc Plasma

3.1 History of Magnetism

Our knowledge of magnetism and magnetic phenomena is as old as science itself . According to
the writings of the Greek philosopher Aristo ίl e (384-322 B .C.), the attractive power of magnets
was known by Thales of Miletus, whose life spanned the period 640?-546 B .C. It was not until
the sixteenth century, however, that any significant experimental work on magnets was performe d
During this century the English physician Gilbert (15441603) studied the pι^el ties of magnets ,
realized that a magnetic field existed around the ea rth, and even magnetized an iron sphere and
shοωed that the magnetic field around was similar to that around the ea rth . Several other workers
also contιibuted to the knowledge of magnetism during this same pe fiod.

The eighteenth century was a period of considerable growth forthe theory and understanding
of electrostatics . It is thereforenot suιprising to find that in the eighteenth century the theory o f
magnetism developed along lines parallel to that of electrostatics. The basic law that evolved was
the inverse-square law of attraction and repulsion between unlike and like magnetic poles. Indeed,
it would have been difficult for the theory to develop along anγ other path since batteries for
producing a steady current werenonexistent. With the development of the voltaic cell by Volta
(1745-1827), it was not long before the magnetic effects of currents were discovered by Oersted
in 1820. This was followed by the formulation by Biot (1774-1862) and Savart (1791-1841), o f
the law for the magnetic field from a long straight cur rent-carrying wire . Further studies by
Ampάre (1775-1836) led to the law of farce between conductors carrying currents . In addition,
Amρ έre's studies on the magnetic field from current-carrying loops led him to postulate that
magnetism itself was due to circulating currents on an atomic scale. Thus the gap between the
magnetic fields produced by currents and those produced by magnets was e ffectively closed

Today it is expedίent to base our entire theory of magnetism and static magnetic fields on
the work of Biot, Savart, and Amp&e. A formulation in terms of fields produced by currents o r
charges in motion can account for a ll knο wn static magnetic effects. The magnetic effects of
material bodies is accounted forby equivalent volume and surface cu πeηts. The main effort of the
followίng sections willbe deνοted to the magnetic effects of currents, since this provides us with
a general foundation for the understanding of all static magnetic phenomena Amρδre's law of
force between twο closed current-carrying conducting loops w ill be elevated to the position of the
fundamental law or postulate from which we shall proceed .
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Figure 3.1 . Illustration of Ampere's law of force.

3 .2 The Magnetic Interactίon of Steady Line Currents

The magnetic interaction of currents is best described in terns of an experimentall y established
interaction in vacuum that is analogous to the elec trostatic Coulomb's law . The mathematical
generalization of the results of Ampdre's experiments, which gave the force between twο c urrent-
carrying elements, as shown in figure 3 .1, is

The vector forceF2 , (newtons) is the force exerted on the conducting loop C2 by C,, as caused
by the mutual interactiοn of the currents 1, and 12. The vector distance from dl, to d12 is
rz– r 1 = R r, where i is a unit vector directed from x,, y,, z, to x2 , y2 , z2 an d
R = [(χ2 –xi)+(yz- yι)+(z2-

Ζ 1)] 11 z

Equation (3.1) reveals the inνerse- square-law relationship. The differential element of force
' 2 Ι betweeη J, dl, and 12 d12 may be regarded as g ί νen by the integrand in Fq.(3 .1) and i s

d~ 21 = μοΙι
-

d1zχ (d1 1 χ Α)
4πR2

The triple-vector product may be expanded to giv e
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One shouldnote thatΕgs .(3 .2) or (3.3) do not correspond to aphysically realizable condition sinc e
a steady-cuπent element cannot be isolated. All steady cumms must flow around continuous
loops or paths sftice they have a zero divergence .

A further difficulty with relation (3.2) or (3.3) is that it is not symmetrical in It dl, and l2 d12.
This superficially appeaτs to contradict Newton's third law, which states that every action must
have an equal and opposite reaction (i .e., the forceexerted on!2 dl2 by!, dl, is not necessarily equal
and opposite to the form exe rted on!, dl, by !2 dl2 ) . However, if the entire closed conductor, such
as C, and C2, is considered, no such difficulty arises and Newton's law is satisfied .

3 .3 The Magnetίc Induction Fiel d

Equation (3.1) can be seρarated into a field fore and a field ,

F 2ι = φ Ι2 d1 2 χΒ 2 1
Jc2
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Equation (3 .1) may be thought of as evaluating the force between current-caπ ying conductors
through an action-at-α-distance formulation. In contrast, Eq .(3 .4) evaluates the fore on a current
looρ in terms of the interaction of this curr ent with the magnetic field B, which in turn is set up
by the remaitιiτιg current in the system. The current-field interaction that producesF2 , in Eq.(3 .4)
takes place over the extent of the current looρ C2 , while the magnetic field Β21 depends only on
the current and geometry of C, which sets up the field.

One of the advantages of the field fοrmulation of Eq.(3 .5) is that wheη Β is known, this relation
permits one to evaluate the force exerted on a current-carrying conductor placed in the field Β
withoutconsiderationof the system of currents which give rise toB . Equation (3 .5) is the law based
on the experimental and theoretical work of Biot and Savart and is therefore usuallγ called the
Biot-Savart law. Since this law may also be extracted from Ampere's law of force, it is sometime s
refeπed to as Ampere's law as well.

Achargeq moving with avelocity v is equivalent to an element of currentldl = qv and henc e
in the presence of a magnetic field experiences a force F gi νen by

F = qv χ Β

	

(3 .6)

This for ce is called the Lorentz force, and Εq.(3 .6) is often taken as the defining equation for Β .
In practice, one does not always deal with currents flowing in thin conductors, and hence it

is necessary to generalize the defining Eq.(3 .5) for B so that it will apply for anγarbitrary volume
distributioη of current. The steady-εuπent flow field does not diverge, and all flow lines fοrm

(3 .4)

(3 .5)
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closed loops . If the direction is associated with a current density j, ratherthan a short lengthdl, the n

the total current is j dS, where dS is the differe ntial cross-sectional area through which the curren t

flows . The total current contained in a volume V wi ll therefore produce a field Β giνen by

Β=
'0

'

4π R 2
Υ

where the integration is over all source coordinates x, y, and z and dV is an element of volume dS

dl . For a surface currentjs amperes per meter fl owing on a surface S, a similar derivation shows
that the field produced is given by

Ι
5

Β_ m js χ r z
4π

	

R 2

The use of Egs.(3 .4), (3 .5), (3 .7), or (3 . 8) is mathematically cumbersome for all but the simplest

geometries . For this re ason, three-dimensional computer codes utilizing Fgs .(3.4) and (3 .5) are
generally called upon tο detemιine the forces and magnetic fields associated with complex conducto r

geometries .
Α particularly useful technique for solving magnetostatic problems having cylindrical ge-

ometry makes use of Α mpβre 's circuital law,

ιΟχΒ• dS = j μ c ^•

	

s ίι Β d l

Thisequationstatesthatthe fine integralofB • dl rem^ αnυ clοsedcοreοurC ίsequαlre μ ψ fimes
the total net current passing through the contour C.

3 .3 .1 Field from an Infinite Conductor of Finite Radius

Consider an infinite conductor of radius a with total current I (Figure 3 .2). The current density ]

is equal to 1/ ira2 and is uniform over the cross section of the conductor . From symmetry consid -

emtions the field Β only has a component Βψ , which is a function of r only . Using Α mpβre' s

circuital law Εq.(3.9) and integrating around a circular contour of radius r give s
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Figure 3.2. An infinitely long wire with a curre nt Ι and self-consistent field B * .

^3,1 rΒ=

	

r^ α
2π α2

For r<a , the total curr ent enclosed is 1, so

(3 .10)

or

ο

Ι2π
Βφ rdφ=μο 1

Βφ= μο1
r> α

2π r

	

(3 .11 )

Α plot of the intensity of Β φ as a function of r is given in Figure 3 .3 .

3.3.2 Force Between Twο Infinite Conductors

Consider two thin infinite conductors which are par allel and spaced at a distanced. The currents
flowing in the conductors are 1, and 4 as in Figure 3.4 . From F.q .(3 .11) the magnetic field at C2
due Μ C, has a ψ component onlγ and is given by

= μο1 ι
2z d (3 .12)



98

	

3 . Biot- Savart Law in Cosmic Plasma
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Figure 3.3. Magnetic field variation across a plasma filament of radius 2a.

The force exerted on C2 per unit length is given by Eq.(3 .4) and is

F 21 = 12 τ χ Βφ+ 	 144 1112 Ρ= 2π d

When Ι, and 12 are in the same direction, the two conductors experience an attractive force. When
Il and 12 are oppositely directed, the conductors repel each other.

The fact that tw ο straight parallel conductors exert forces of attraction or repulsion on one
another is made the basis of the defmitίοη of the ampere in the mks system . The ampere is defined
as follows:

12

C
d

Figure 3.4. Two parallel current-carrying filaments .

(3 .13 )
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One ampere is that unvarying current whίch, if present in each of tw ο parallel conductors
of te length andοne meter apart in empty space, causes each conductor to exper ίence a force
of exactly 2 x 1 Ο ' newtons per meter of length.

It follows from this definition that the numerical value of μ o in the rationalized mks system,
is exactly 4n x 10-' or, to four significant figures, μ 0 = 12.57 x 10' webers/amp-m.

3.4 The Vector Potential

If, in Eq.(3.7), we replace r /R 2 by -0(1/R), the integrand becomes j x V(1/R ). The vector
differential operator 0 affects only the variables x, y, and z, and since j is a function of the source
coordinαtex',y', τ ' only,thislatterrelationmay αlso be^Wen αs fοΗοωs^j x 0(1 /R )= V x (j/R )
[and 0 x (j/R) _ (1/R)V x 0(1/R) = j x V( 1/R)] since V x j = 0. Thus, in place of
Εq.(3 .7) we may write

'
Β (x ,y z ) = Ο χ Νο j(χ 	

τ 	 ) d V
4π

Equation (3 .14) expresses the fieldΒ at the point (x,y,z) as the curl of a vecτοr potential functio n
given by the integral. From Eq .(3 .14), the definition of the vector potential function, denoted b y
A, is

Ι

Υ

Α(χ,γ z) = / n]n j χ ', Υ ',z')d,
4π

	

R

The integral for A is a vector integral and must be evaluated by decomposing the integrand into
components along the coordinate axis . Having computed A, the field Β is obtained by taking the
curl of A :

Β=ΟχΑ

	

(3 .16)

The integral for Α is easier to evaluate than the or ίginal expression Eq .(3 .7) for B, and since the
curl operation is readilγ ρerfοπ ned, the use of Εq.(3.15) as an inteπnediate step provides us with
a simpler procedure for finding Β.

3.4.1 Field from a Circular Looρ and Force Between Two Circular Loops

Consider acircularconducting loop carrying a current! . The radius of the loop is a and it is located
in the xy plane at the origin, as in Figure 3 .5. Of course a seat of electromotive force (emf) is
necessary to maintain the current, and one maγeither imagine the turn cut and a small seat of emf

(3 .14 )

(3 .15)
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Figure 3 .5. Α circular current loop .

inserted, or considerthat current is led into and out of the tum through tw ο wires side by side. U sing
Eq.(3 .15), we must evaluate the fo llowing integral:

4Α –
μοΙ dl'

π
Τ

r ι

ε

where in this base

dl ' =φα dφ' =

	

s Ιn ψ' + Ϋ c οs ψ') αdψ'

	

(3 .18 )

r ι = ή ίχ – αεοs φ· )+ Ϋ (y- asin φ')+£τ

	

(3 .19 )

The exρression for rι i s

rι = [ίx – α εσs φ') 2 +(y– α sίrιφ') 2 +τ 2j ι/
2

= ίx 2 + υ 2 + z 2 + α 2 – 2σx cos 0' – 2αυ sin 011/ 2

I

	

11 1/ 2
=r'1– r	 cos ψ '–' sin ψ'I

since r2 » a2 Forr1-' we have approximatelγ

χ

(3 .17)

(3 .20)
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by using the binomial expansion and retaining only the leading terms . The integral for A becomes

2c
A=µ°Ina(

	

–xsin 0' +ycos01(1+ aX cos0' + ay sin 0)dO'
4~c r

	

o

	

r2

	

r 2 (3 .22)

and integrates to give

A=µ°na (–Sί'y+9x) (3 .23 )4rc r 3

(3 .24 )

Referred to a spherical coordinate system, A is given by

A = (A . r) i + (A . ) + + A . Ae = µo 1 n a2
sin (1'4= A 04

4n r2

so that, from Eq.(3 .16)

(3 .25 )µo t
rt.

a2 ( rB =

	

2cos 0 + 9 sin 6)
4n r3

3.4.2 Force Between Two Circular Loops Lying in a Plane

In the plane of the loops, 9= rd2, so that B 21 = 9µo 1 a2 / 4 r 3, and Ampere's law of force gives

Fn=I2xBn =+12x (8µola2)
=r

µoftl2a2

4r 3

	

4r3

3.5 Quasi—Stationary Magnetic Field s

To complete a discussion of magnetostatics, it is necessary to derive an expression for the stored
magnetic energy in a cosmic network . This will then make a full discussion of inductance and als o
a more powerful technique for determining forces between current-carrying circuits, possible . In
order to determine an expression for stored magnetic energy due to time-stationary currents, it i s
necessary to know something about time-varying currents and time-varying magnetic fields .
Consequently, this section starts with a statement about Faraday's law of induction.

(3 .26)
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B

Figure 3.6. Illustration of Faraday's law.

35.1 Faraday's Law

If we consider any closed stationary path in space which is linked by a changing magnetic field ,
it is found that the induced voltage around this paths is equal to the negative time rate of chang e
of the total magnetic flux through the closed path. Let C denote a closed path as in Figure 3 .6. The
induced voltage around this path is given by the line integral of the induced electric field aroun d

C and is

C
(3 .27 )

The magnetic flux through C is given by

where S is any surface with C as its boundary . Thus the mathematical statement of Faraday's law

is

E . dl=-- B .. dS
s

	

(3 .29 )

Basically, the law states that a changing magnetic field will induce an electric field . The induced

electric field exists in space regardless of whether a conductor exists or not . When a conducting
path is present, a current will flow, and we refer to this current as an induced current . Faraday' s
law is the principle on which most electric generators operate. Note that the electric field set up
by a changing magnetic field is nonconservative, as Eq.(3.29) clearly indicates. The changing
magnetic field becomes a source for an electric field .

yi= r B • dS
5

	

(3 .28)
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3.5 .2 Motion Induced Electric Fields

Whenever a conductor moves through a static magnetic field, a voltage is induced across th e
conductor . This voltage is in addition to that calculated by Eq .(3.29) . The magnitude of this voltage
may be found from the Lorentz force Eq .(3 .6) . The force is seen to act in a direction perpendicula r
to both v and B . The interpretation of the Lorentz force gives rise to the concept that an observe r
moving through a static magnetic field also sees, in addition to the magnetic field, an electric field .
A unit of charge moving with the observer appears to be stationary, and any force experienced b y
that charge is ascribed to the existence of an electrostatic field . But a force is experienced and i s
given by Eq .(3 .6) . Consequently, in the moving reference frame, this fact is interpreted as revealing

the existence of an electric field E given by

(3 .30)

Equation (3.30) gives an alternative and more general method of evaluating the induce d
voltage in a moving conductor.

As an example consider a a cylindrical conductor moving with a velocity v through a unifor m
field B, as in Figure 3.7, where B is orthogonal to v . Each electron in the conducting medium
experience a force F = -evB which tends to displace the electrons along the conductor in th e
direction shown. When an equilibrium state is reached, the process stops, and the conductor is lef t
polarized as shown with an electrostatic force equal and opposite to the Lorentz force . In this case,
E = –vB . The induced voltage between the ends of the conductor is defined b y

= 1

P2

E• dl

	

(3 .31 )

The induced voltage caused by motion of a conductor through a magnetic field is called motiona l

emf .

r

	

1

PI

P2

v

Figure 3.7. Induced voltage (potential drop between PZ and P,) in a conductor moving across a magnetic field .
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Figure 3.8 . The Faraday disk dynamo. A potential ip = V is produced at the terminals .

3.53. Faraday Disk Dynamo

The Faraday disk dynamo is illustrated in Figure 3 .8 . It consists of a circular conducting disk
rotating in a uniform magnetic field B . Brushes make contact with the disk at the center and along
the periphery. The magnitude of the induced voltage is found flout the Lorentz force, Eqs .(3 .30)
and (3 .31). An electron at a radial distance r from the center has a velocity co r and hence expe-
riences a force eut rB directed radially outward. The electric field acting on the electron at equi-
librium is also cwr B but is directed radially inward. The potential from the center to the outer ri m
of the disk is thu s

d

	

rd
w	

2

=
J

E(r)dr=–coB ! rdr=–
2

o

	

0

The value computed from Eq .(3 .32) is the open-circuit voltage of the Faraday disk dynamo and
therefore also represents the emf of the generator .

3.6 Inductance

Consider a single current-carrying loop in which a constant current has been established. This
current produces a magnetic field. If the current is caused to change, so will the magnetic field .
But this means that the total flux linking the loop also changes and, by Faraday's law, a voltage
is induced in the loop . The self-induced voltage always has a polarity that tends to oppose th e
original change in current. For example, if the current begins to decrease, the induced voltage act s
in a direction to offset this decrease . This property of a single circuit is known as self-inductance .

(3.32)
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Figure 3 .9. Illustration of two circuits and their relative displacement (L 12 negative) .

The similar effect of a changing current in one circuit producing an induced voltage in another
circuit is known as mutual inductance .

Mathematically, inductance may be defined in terms of flux linkages . If y/12 is the magnetic
flux linking circuit C2 due to a current!, flowing in circuit CI (Figure 3.9), the mutual inductance
L12 between circuit C / and C2 is defined by

flux linking C2due to current in C l ti/1 2
L12 _ current in C I i 1

The self inductance LII of circuit CI is defined in a similar way; that is ,

flux linking Cl due to current in Cl tVl l
L 11 _

	

__

current in C I

	

I 1

The mutual inductance between C / and C2 may be defined by

ti'2 1
L 21 = 2

It can be shown that L
12 = L2,

so that Eqs .(3 .33) and (3 .35) are equivalent. This is a statement of
the reciprocity theorem.

The above definition of inductance is satisfactory only for quasi-stationary magnetic field s
where the current and the magnetic field have the same phase angle over the whole region of th e
circuit . At high frequencies the magnetic field does not have the same phase angle over the whole
region of the circuit because of the finite time required to propagate the effects of a changin g
current and field through space. A more general definition in terms of the magnetic energ y
associated with a circuit will be given in the following section.

1 2
—C2

(3 .33)

(3 .34)

(3 .35)
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3.7 Storage of Magnetic Energy

3 .7 .1 Energy in a System of Current Loop s

The energy W8 stored in the magnetic field of N current filaments is given b y

N N

WB

= 2

E 1 Lij I1 J3
, .1 j= 1

or, in terms of the magnetic flux, b y

N

WB = 2

	

IVi I i
i= 1

where I, is the can ent flowing in the ith filament and ny, is the flux linking the ith filament due to
all the other current filaments in the current loop. This in turn is given by

N

tV = j= 1

jm i

In terms of field energy, the inductance may be defined by the equation

WB = 1L1 2

so that

L = 2WB
1 2

This definition is often easier to apply in practice in order to evaluate L than the original definition
in terms of flux linkages . The quality of acircuit that allows the storage of magnetic energy is calle d
inductance. In terms of the field integral the magnetic energy Eq.(3.39) is

WB =
2

J B• H dV =21
J

H . H dV

v

	

µ

(3 .36 )

(3 .37 )

(3 .38 )

(3 .39 )

(3 .40)

(3 .41)
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3.7 .2 In Situ Storage in Force Free Magnetic Field Configurations

The storage of energy in the force-free magnetic field (Section 1 .7 .2) can be thought of as a slo w
process where the field evolves through a sequence of force-free configurations, each time endin g
up in ahigherenergy state [Tandberg-HanssonandEmslie 1988] . An example of this slow proces s
is in the photosphere and lower chromosphere of the Sun, where the energy of the plasma motio n
dominates the magnetic energy and, therefore, the field is swept passively along with the plasma .
This situation is characterized as a high-/3 plasma ; i .e., the parameter

gas pressure

	

2µ 0 nkT

magnetic pressure

	

B 2

	

(3 .42)

is large (/3» 1). Higher up in the corona where the density is so small that the magnetic pressur e
dominates, we have a low-# plasma, and the magnetic field must take on a force-free characte r
[Gold 1964] as it slowly evolves . This magnetohydrodynamic (MHD) process is possible sinc e
the timescale for the "wind-up" is days or weeks, while the field adjustment at any stage takes plac e
with the Alfven speed Eq.(2 .19), leading to timescales of the order of seconds .

If a is constant in time and space, we can take the curl of Eq .(1 .12) and find

V2B + a 2 B = 0

	

(3.43)

which is the vector Helmholtz equation . This linear problem then is completely solvabl e
[Chandrasekhar and Kendall 1957, Ferraro and Plumpton 1966, Nakagawa and Raadu 1972] .

Using Eq.(3.43) and the observed boundary conditions in the form of the value of th e
longitudinal magnetic field (flu'u magnetograph observations), we can compute the stricture o f
the force-free field and the resulting stored magnetic energy . In these cases, a is adjusted unti l
reasonable agreement is obtained with observations . With the availability of complete vecto r
magnetic field observations, the field calculations have improved sinceacan be determined with
higher precision from Eq.(1 .12) with the expression

a_ (VxB)• B
B 2

In general, the parameter a is not constant in space and time, that is

a = a(r,t)

	

(3 .45 )

so that Eq.(3 .43) is nonlinear, and the problem must be solved by computer simulation.

(3 .44)
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3.8 Forces as Derivatives of Coefficients of Inductanc e

The force between separate current-carrying loops or circuits may be evaluated by Ampere's law
of force. However, an alternative method that is much easier to apply in many cases may also b e
used. hisalternativemethodessentiallyconsistsofevaluatingthederivativesofmutual-inductance
coefficients with respect to arbitrary virtual displacements of the circuits with respect to each other
(see, e .g., Figure 3.9). When circuits are displaced relative to each other, the mutual inductance,
and hence the energy stored in the magnetic field, changes . The change in the magnetic energy
is in turn related to the work done against the forces of the field in displacing the circuits .

If we have Ncircuits and displace the jth circuit by an amount dr, the forceF . exerted on C.
by all the other circuits is given by

N
F J =

	

1jI
dL1 nJIn
drj

n= 1

n sj

	

(3 .46)

where F. is the component of force along dr acting on the jth circuit .

Example 3.1 Force on two parallel filaments . Consider two thin infinitely long conducting
filaments as in Figure 3.4 . The filaments are separated by a distance D . The currents in the tw o
filaments are II and I2 . The flux linking C2 due to the current 11 in Cl is

Po l lE dx
~~ 2r

!i
p x

	

per unit length

From Eq.(3 .46) the force per unit length exerted on C 2 by C, is

F=1112 dL1z
J=constant =

lZ d ,y 12 = — P0 1 1 12

dD

	

dD

	

2n D

in accord with Eq .(3 .13) obtained using Ampere's law .

3 .9 Measurement of Magnetic Fields in Laboratory Plasma s

B-Dot Probes. The simplest way to measure the magnetic field in the vicinity of a point in space
is to use a small coil of wire (Figure 3 .10). In a uniform, time-varying magnetic field, the voltage
induced in the coil i s

0=NAB
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Figure 3.10. B—Dot probe and integrating circuit.

where N is the number of turns in the coil of area A and the dot denotes the time derivative of B .
IfB, rather thanB , is the desired quantity, an integrating circuit may be used to obtain a voltag e
proportional to the field

_ NA B
RC

where RC is the time constant of the integrator .

Rogowski Coil. Many different variations of the B-dot probe are available. One of the most
widespread is the Rogowski coil. This is a solenoidal coil whose ends are brought around togethe r
to form a tones as shown in Figure 3 .11a. Consider a coil of uniform cross sectional area A with
a constant number of turns per unit length n. If the magnetic field varies little over a one-tur n
spacing, i.e .,1VB B << n ,thetotal flux linkage bythecoil Eq .(3 .28) can bewritten as an integral
over the individual turns:

yi=n
1
.1 B . dldA

A

where d 1 is the line element along the solenoidal axis as depicted in Figure 3 .11b. The purpose
of the return wire threading the loops is to exclude the contribution of flux passing through the toru s
center. Changing the order of integration and using Eq .(3 .9) gives

/1= nAFio I

The signal voltage from the Rogowski coil is then
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f\ ,

Figure 3.11 . (top) Rogowski coil . (bottom) Equivalent geometry for the integral form of flux through a
Rogowski coil.

=dW/dt=nAµo /

The Rogowski coil provides a direct measurement of the total current, particle and displacement ,
flowing through its center . Its signal is independent of the distribution of the current within the
loop . The merit of the Rogowski coil is that it need not come into contact with the current whose
field it measures. This is an important consideration for intense relativistic electron beams .

Internal Magnetic Field Probes . It is often possible to use internal sensing coils in tenuou s
nonenergetic plasmas . Stenzel and Gekelman (1981) have used such probes with great succes s
to measure the time evolution of magnetic fields in all three dimensions in plasmas contained in
large vacuum chambers.

3.10 Particle-in-Cell Simulation of Interacting Currents

The basic geometry under study is shown in Figure 3.12 . This figure depicts two current-conduct -
ing plasma filaments aligned along a magnetic field Bo and separated by a distance comparable
to the diameters of the filament. The plasma is charge neutral ne = ni and initially thermalized at
a temperature vth = wi th y = wi th z for both ions and electrons. The density distribution across a
column may either be a flat profile, a Bennett profile, a Gaussian profile, or any arbitrary profil e

A

A



3 . Biot-Savart Law in Cosmic Plasma

	

11 1

J

Figure 3.12 . Basic geometry under analysis: two parallel Birkeland currents formed by the tendency of charge d
particles to follow magnetic lines of force B and to pinch due to their own induced magnetic field.

n e,.(r) . The conduction of current is initiated by placing an electric field E = Eo along each column.
This then produces a current which increases with time. Whether or not a filament pinches, or i s
simply confined by the self-consistent azimuthal magnetic field Bo, depends on the strength ofEo .

Solution of the relative motion of the two filaments and their reconfiguration by the Biot -
Savart forces requires a 3D particle-in-cell treatment . The codes SPLASH and TRISTAN hav e
been applied to this geometry (Chapter 8) .

3.10.1 Simulation Setup

We choose a temperature typical of cosmic Birkeland filaments, a few kiloelectronvolts, by setting
the initial dimensionless simulation parameters (Section 8 .8) to cop dt = 0.25, AD / 4 = 0.25, and
c dt / 4=1 .0. A field-aligned Birkeland filament is established by means of the parameter co c / cup
= 1 .5 . For this choice of parameters, /3d, = 0.0625 [Eq.(8.19)] and, for T, = T, $ = 0.0069v
[Eq.(8.20)] . Current flow within the filaments is initiated by setting EZ /B Z = 0 .01 c, so that
0

	

1 [Eq .(8 .18)] .
For SPLASH, the radius of each filament is 34 and the center-to-center separation is 11 4

while for TRISTAN the radius and separation are 124and444,respectively . (Because of the spline
interpolation technique, the particle space-time resolution is approximately eight times better tha n
the cell width 4. )

3.10.2 Initial Motion of Current Filaments

Initially, the Biot-Savart force between filaments conducting I z currents can be approximated by
Eq.(3 .13). However, because of the axial magnetic field Bo, the particles spiral as they drift or
accelerate in the z-direction, thereby producing a generalized current I = zi,+qi Im . The force
between the I0 cu ents can be approximated by Eq.(3.26). Figure 3 .13 illustrates the total Biot-
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Figure 3.13 . The forces between two adjacent Birkeland currents . The parallel components of current (dark
gray lines) are long-range attractive, while the counter-parallel azimuthal currents (light gray rings) are short -
range repulsive . A third force, long range electrostatic repulsion, is found if the electrons and ions are not presen t
in equal numbers. These forces cause the currents to form sheets, filaments, or "magnetic ropes" and they can
be found far from the source region . A projection of the current-induced magnetic fields is shown above the
graph .

Savart force as a function of the spacing between helical current filaments . As shown, the elec-
tromagnetic forces between filaments are ordered as R i2 (long-range attractive) and R 2 (short
range repulsive) .

During long-range attraction, the motion of either filament may be approximately describe d
by the equation

dzr
M—=

Fto1Z L

dt 2 4,r(a-r)

whose velocity solution is

(3 .47)
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where L is the length of the filament region involved in Biot-Savart attraction, M is the total mass,
2a is the distance of separation between filaments. If the filaments are sufficiently separated s o
that the logarithmic correction is of order unity, Eq .(3 .48) is approximately given by
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(3 .49 )

In dimensionless gaussian simulation units, Eq.(3.49) is

I:o 2lL
v 2 V M

where M = Ale (ne/d 3 ) (mi /m e + 1)rcrI L and A lc the total simulation mass and number of
interacting simulation filaments, respectively. The parameter d = did is the distance between
filaments and rc = re/d is the radius of a filament, both given in cell widths .

3.10.3 Polarization Forces

In the presence of an axial field Bo, the electrons gyrate in a counter clockwise direction while th e
ions gyrate in a clockwise direction . The relationship between the ion and electron gyroradii is
r ,j = (m ; / me ) r~,e >> r1 .Inadditiontothegyration,thechargedparticlesexperienceapolarizing
force caused by the net motion of the plasma filaments across the guide field Bo. The net motion
derives from Eq. (3.49) which causes a v x B force,primarily in they-directions in adjacent filament s
as shown in Figure 3 .14a. Asa result, the electrons in columns 2 and 1 are accelerated in the ±y-
directions, respectively. This leaves a net excess of the heavier ions in the original filamen t
positions, and thereby produces, via Eq.(1 .3), an electric field which opposes a further diffusion
of electrons . The electrons can separate from the ions about a Debye length .'AD = II eo kT / ne e 2
before they are restrained by the ions. The ions then follow the electrons in a process known as
ambipolar diffusion [Rose and Clark 1961] . It is evident that the dimensions of the plasma be muc h
larger than the Debye length for ambipolar diffusion to take place. Figure 3 .14b depicts the
displacement of the currents in the filaments (because of excess of axial current-conductin g
electrons at they surfaces) caused by the inward motion of the filaments across Bo. The net result
of the juxtapositioned currents 1, is a clockwise torque on the plasma filaments (Figure 3 .14c).

3.10.4 Magnetic Energy Distribution and Magnetic Isobars

The two parallel axial currents produce the magnetic energy isobars [through Eq.(1 .2)] shown in
the time sequence of Figure 3 .15 . At T=9, the contours ofB2 are very nearly symmetric about each
filament. Since the currents increase with time (because of the constant field E,), the B2 isobars
move out from each filament until a linear superposition of isobars produce a magnetic minimu m

(3 .48)

(3.50)
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(a)

(b)

R ~ C +
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Figure 3.14. Net motion between adjacent Birkeland currents. (a) Polarization fields E due to V X B forces.
(b) Net forces at early time (c) Net forces during filament distortion .

("sump") or core between the two filaments (Figures 3 .15 and 3.16) . The core has the shape of
anellipse.Theeffectofthenetinwanlmotionisalready seen attimestep 16 with the jwctapositioning
of the Bz isobaric peaks associated with the axial currents.

In addition to the magnetic peaks and core, two narrow magnetic channels form on either side
of the core (Figure 3 .17). At T=255, the field strength squared in the vicinity of the core is B 2 =
0.33 . The field induced pressure is

PB = (2uo) -

	

2

	

(3 .51 )

At time T=255, a channel exists only on the right-hand-side of Figure 3 .17 with length 9 d' and
width 0.5 d' to 2.0 d ' (The channel alternates from right to left with the passage of time [Peratt
1986]. The velocity of the isobars toward the core is, approximately, 0.032 cells per timestep, or
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Figure 3.15 . Contours of magnetic energy B 2 about two adjacent filaments at the simulation cross-section .
T = 9–20 in 1 AT steps. The contours at the locations of the two filaments correspond to energy maxima whil e
the central ellipse is an energy minimum. "Hot spots" in azimuthal field energy feeding synchrotron radiatio n
are beginning to become noticeable in later time frames .
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Figure 3.16. Isometric view of magnetic energy contours of Figure 3 .15 . Time increases from top to bottom.

v comp =0.032 d' /dt'

	

(3 .52)

Because of the inward traveling isobars, plasma external to the two conducting currents is swep t
into both the channel and the core . Part of this external plasma derives from unpinched plasma
which conducts the current before the Bennett relation Eq .(1 .9) is established.

The phenomena described in the simulation is observed in the laboratory . Figure 3 .18 shows
laser Schlieren photographs taken at two different times of two interacting Z pinches . The Z
pinches were created by stringing two 2 cm long wires between an anode and cathode of a pulse d
power generator (Figure 2.9), which then exploded into plasma pinches with the conduction of
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Figure 3.17. Isometric and planar views of self-consistent magnetic fields at T = 255 showing elliptical cor e
and one-sided isobaric channel between energy maxima. Peak field squared = 1 .5 units, 0 .1 units/contour.

250 kA current. Figure 3 .18a (1=40 ns) shows that the Bennett relation has been established an d
the conducting paths are confined to circular (but filamentary) cross-sections . At timet aO ns, the
second frame shows that, in addition to the plasma flowing off the filaments, plasma external to
the pinches has been compressed into the central core and also into a channel on the right-hand-
side of the core. For the parameters of this experiment, v comp = 100 km / s (10 cm /µs) . Figure
3 .18b shows the time evolution (of wire midsections) as they explode into Z pinched plasmas.
Each filament undergoes about a dozen pinch oscillations the first 40 ns [Felber and Peratt 1980] ,
followed by the appearance of inward` jets" of plasma toward the core . The jets of plasma coalesce

0

32
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distance, mm
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X ray
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. . . . . . .

formation

Figure 3.18. (a) Schlieren photographs ' .lasma light from of two interacting current-carrying plasm a

filaments (Z pinches) at times 40 and 60 n : , .espectively (end view) . The pinches are produced by explodin g
two parallel, 15 mm diameter, stainless steel wires with 250 kA of current . The two space frames show that

plasma from the right-hand side filament has been channeled towards the central core, by the magnetic fiel d

isobars, at a velocity of about 100 km/s. The process is slightly asymmetrical : Plasma from the right-hand side

filament has reached and filled the core at time 60 ns, whereas the plasma from the left-hand side filament ha s

not yet started to move inward. (b) Streak camera photograph showing time evolution of interacting Z pinche s

conducting 667 kA (side view) . A slit focused the midsections of the wires onto the film (cf, Figure 6.21) . Three

distinct regions are recorded: A radiation burst lasting about 5 ns, a "jet" region lasting about 50 ns, where

plasma from the exploded wires is channeled inwards [as well as change in the circular cross sections (Figure

3 .19)j and then, a spiral region, where the filaments rotate about each other . Reference is made to Figure 1 .1 5

for a similiar radiation pattern in astrophysical plasma.

in the core at about 80 ns . However, with regard to radiation in the axial direction : This continue s
to come from the intense electron currents in two hot spots at the outer locations . This phase is
followed by the rotation of the filaments into a spiral structure . A half-rotation is observed to take

about 100ns, corresponding to a rotation velocity of about 15 km/s .
The radiation burst is an extremely transient phenomena, lasting for only about 5 ns . Thi s

appears to be correlated with the constriction of the single Z pinches to very small diameters, but
is intense only when when two Z pinches are present .
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3.10.5 Net Motion

The long term motion between the filaments is nonlinear and involves a reconfiguration of their
cylindrical cross-sections . This motion is shown in Figure 3 .19 for simulation time up to T=1,700 .
As shown, the initially circular cross-sections are deformed into ovals that then take on a "jelly-
bean-like" profile prior to forming embryonic spiral amts . Once formed, the arms become thin a s
they trail out behind the rotating center .' Not shown in this sequence is plasma confined in the core ,
onto which the outer plasmas converge, which tends to obscure the nuclear region .

Since E II B is out of the plane of the page, the column electrons spiral downward in counter -
clockwise rotation while the column ions spiral upward in clockwise rotation . The current density
is i= n e q ev e + n i q i v i . A polarization induced charge separation (Section 3 .10 .3) also occur s
in each arm, which, as it thins out, produces a radial electric field across the ann. Because of this
field, the arm is susceptable to the diocotron instability (Section 1 .7.3) . This instability appears as
a wave motion in each ann and is barely discernable in the single frame photographs in Figure 3 .1 9
at late times . However, the instability is readily apparent in the spiral rotational velocity curve.
Figure 3 .20 is the rotational velocity curve for the spiral configuration shown in the last frame o f
Figure 3.19.

The velocity essentially consists of a linearly increasing component due to a central bod y
undergoing rigid rotation, with two "flat" components on either side of r = 0 due to the trailin g
arms . The diocotron instability modulates the "flat" components at the strong-magnetic-field ,
low-density instability wavelength Eq.(1 .16).

3.10.6 "Doubleness" in Current-Conducting Plasma s

The r-' dependency of the Biot–Savart force law between current-conducting filaments leads t o
a curious phenomena : a pairing of filaments (c .f. Section 2.6). This pairing leads directly to a
"twoness" or "doubleness" when many filaments are present in plasmas in which the magneti c
field plays a major role.

As an example, Figure 3 .21 shows the evolution of three plasma filaments having parameters
identical to those of Section 3 .10.1 but spaced 3A' and 6d' apart. The two closest interact strongly
to form a spiral while the third filament remains relatively quiescent. Examples of pairing in the
filaments formed in the dense plasma focus (Section 4.6.2) is given by Bernard et al. (1975) and
Bostick (1986) .

3.11 Magnetic Fields in Cosmic Dimensioned Plasm a

3.11.1 Measurement of Galactic Magnetic Fields

Interstellar magnetic fields in spiral galaxies can be observed indirectly in the optical and radi o
range. In recent years observations of the linearly polarized radio continuum emission led to a
significant improvement of the data . Extensive reviews of the observational methods have been
published [Heiles 1976, Spoelstra 1977, Verschuur 1979, Sofue et al . 1986] and the results
reviewed by Wielebinski(1989) . The methods used to measure magnetic fields in galaxies includ e
the following:
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Figure 3.19. Single frame stills of plasma in the simulation of two adjacent Birkeland filaments:4 / OJp= 3 . 0,
Teo = Ti = 32 keV, T = 1-1700, and acceleration field = 62 mV/m. Not shown is the plasma trapped in the
elliptical core at the geometric center of the simulation . The plasma tends to obscure the coidesed region .
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Figure 3 .20. Rotational velocity of two adjacent Birkeland filaments. Note the fine scale structure due to the
diocotron instability (Section 1 .7 .3) on the "flat" portions of the velocity curves. The velocity is given in
simulation units .

Optical Polarization. Elongated paramagnetic dust particles become oriented perpendicular t o
the interstellar magnetic field lines by the effect of paramagnetic relaxation, first discussed by
Davis and Greenstein (1951) . Extensive observations of several thousand stars revealed regular
features of the magnetic field in our Galaxy with the distance range of the observed stars . The field
strength and the degree of uniformity of the field, however, can only be determined with limite d
accuracy because too little is known about the size, shape, temperature, and magnetic properties
of interstellar grains.

Zeeman Splitting of Radio Lines. Spectral lines are split up when the emitting atoms enter a
magnetic field. The amount of splitting in a longitudinal field is 2 .8 Hz/µG for the neutral hydrogen
(HI) and 3 .3 Hz/LG for the OH radio line and has been observed in several Galactic clouds
[Verschuur 1979] .

Faraday Rotation ofPolarized Radio Emission. Continuous radio emission is observed from

interstellar plasma clouds (HE regions) which radiate by interaction of thermal particles (free–fre e
emisssion), and/or by synchrotron emission . Thermal radio emission is unpolarized, and synchro -
tron radiation is partly polarized.

The plane of polarization of a linearly polarized radio wave is rotated when the wave
passes through a magnetized plasma according to Eq .(B .14) . For an electron plasma, positive
(counterclockwise) Faraday rotation occurs if the magnetic field is directed towards the observer,
negative (clockwise) Faraday rotation occurs if the field points away from the observer . For a
positron plasma, the situation is reversed. From Eq.(B .14), the rotation angle L1 increases with
the integral of[n e B 11] over the line of sight (where B 11 is the magnetic field component along the
line of sight) and with A3 (A = wavelength of observation). The quantity e x / A 2 is called the
"rotation measure" (RM).

An accurate determination of RM requires observations at (at least) three wavelength s
because the observed direction of the polarization vectors is ambiguous by ±n 180° .

Synchrotron Radiation. The average field strength B 1 can be estimated from the average syn-
chrotron intensity Eq.(6 .94) since the intensity depends on the field strength and the density o f
cosmic-ray electrons inthe relevant energy range.However, to make this estimation, anequipartition
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Figure 3.21 . Interaction of three Birkeland filaments . Same parameters as Figure 3 .19 .

between the energy densities or pressure equilibrium of the magnetic field and cosmic rays i s
assumed. Since the strength of the magnetic field and the local star formation rate are relate d
quantities, equipartition is not valid, and the field strengths estimated are too small [Beck 1990] .

3 .11 .2 Milky Way Galaxy

In the solar neighborhood, the strength of the magnetic field has been determined with rather high
accuracy, applying methods in both the optical and the radio range . From the rotation and dispersion
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Figure 3.22. Model of the magnetic field in our Galaxy (courtesy of R. Beck) .

measures of 38 pulsars within 2 kpc from the sun, the strength of the uniform field has been foun d
to be IB 11I = 2.2±0 .4 µG . The total synchrotron radiation radio emission in the anticenter direction
yields an effective total field strength of 6 ± 1 µG. A uniform field of 3µG plus a turbulent field
of a similar strength yields a total field str ength of -4 µG which is sufficient to account for th e
minimum Galactic radio emission between spiral arms, using the local cosmic-ray electron den-
sity [Phillips et al. 19811 The maximum effective field in spiral arms has to be stronger, its strengt h
depends on the clumpiness of the field along the line of sight. If magnetized plasma clouds occupy
5% of the line of sight, the mean strength in the plasma clouds must be -45 µG .
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The observations are roughly consistent with this value . Zeeman splitting of HI lines revealed
field strengths up to 50 ± 15 µG in Orion A [Harnett 1984] . The OH lines allow measurement s

with higher accuracy . In a molecular cloud in NGC 2024 the field stength is BH = – 38 ± 1µG

[Crutcher and Kazes 1983] . Faraday rotation of radio waves from background sources reveal fiel d
strengths of a few microgauss in HII regions and up to 50 µG in molecular clouds [Heiles, Chu

and Troland 1981] .
Measurements of the Zeeman effect have now been made in HI clouds [Verschuur 1987] ,

OH molecular clouds [Crutcher et al 1987], and in HZ O masers [Fiebig and Gusten 1988] . These
data indicate that the magnetic fields in the Galaxy are along the local spiral arm (i.e., azimuthal) .
For example, Vallee (1988) shows that any deviations of pitch angle of the field from the spira l

arm are slight, possibly less than 6° (Figure 3 .22) . Valee also deduces a field reversal in th e

Sagittarius arm. This could support claims that the galactic magnetic field is bisymmetric [Sofu e

and Fujimoto 1983] .
High resolution radio continuum VLA observations at 6 and 20 cm wavelengths [Yusef -

Zadeh, Morris, and Chance 1984] reveal numerous plasma filaments in the inner 60 pc (3 x 10 18
m or 317 light years) of the Galaxy, -0 .3 pc in diameter by 10–60 pc in length (Figure 1 .14). The
filaments are highly polarized, indicating a synchrotron origin for the radio emission . The filaments
are aligned roughly perpendicular to the galactic plane so that the magnetic field is poloidal in a

cylindrically force-free configuration . The polarization structure near the Galactic center has been
recorded with the Effelsberg 100 m telescope by Seiradakis et al . (1985) at 6 .3 cm (4.75 GHz) and

2 .8 cm (10.7 GHz) . Figure 3 .23 shows a radiograph of the intensity of polarized emission at 10. 7

if ARCMIt t

Figure 3.23 . Polarized intensity radiograph (linear scale) of Galactic center at 10.7 GHz. The peak polarized

flux density of components A, B and C is 690, 310, and 140 mJy, respectively (courtesy of R. Beck).
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Figure 3.24. Bisymmetric spiral structure in the linearly polarized radio emission from spiral galaxies. (above)
Flux density of M51 at 1 .66 GHz (18 .0 cm). The sensitivity is 30 mJy per beam area (p. 126) Flux density of
the linearly polarized emission of NGC 6946 at 4 .75 GHz (6.3 cm) superimposed on an optical photograph .
Contours are drawn at 0, 1, . . ., 5 mJy/beam area . The lengths of the E vectors are proportional to the degree
of linear polarization. The ellipses indicate radial distances of 6 and 12 kpc (courtesy of R. Beck) .

GHz and depicts two radio lobes on either side of a core . Seiradalds et al . note that the "core-lobe "
structure is the same as that of a classical double radio source. Seiradakis's results have been
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substantiated by 9nun (33 GHz) observations of Reich (1988), whofinds thatinthegalacticcente r
the magnetic field runs exactly perpendicular to the galactic plane [Wielebinski 1989] . The
strength of the field is 1 milligauss. An azimuthal (toroidal)/poloidal galactic field of about 1 mG
strength was observed earlier in plasma simulations of spiral galaxies [Peratt 19841

3.11 .3 Spiral Galaxie s

During the last decade, radio polarization observations have revealed large-scale magnetic field s
in spiral galaxies. For example, the Effelsberg radio telescope has collected polarization data fro m
about a dozen spiral galaxies at 6 to 49 cm wavelengths [Beck 1990] . Rotation measures show two
different large-scale structures of the interstellar fields : Axisymmetric-spiral and bisymmetric-
spiral patterns [Krause 1989] . Figure 3 .24 illustrates two cases of bisymmetric spiral structure in
the large-scale magnetic field of spiral galaxies [Hamett et al . 1989, Horellou et al. 1990] .

The orientation of the field lines is mostly along the optical spiral arms . However, the uniform
field is often strongest outside the optical spiral arms . In IC 342 two filamentary structures are
visible in the map of polarized intensity (Figure 3 .25). Their degree of polarization of -30 percent
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Figure 3.25. Orientation of the observed B vectors in IC 342 with an angular resolution of 2.'45, corrected for
Faraday rotation as derived from data at 6 .3 and 20 cm . The vectors have arbitrary lengths and are superimposed
onto a contour map of the linearly polarized intensity at 20 cm (courtesy of R. Beck) .

indicates a high degree of uniformity of the magnetic field on the scale of the resolution (—700 pc) .
These filaments extend over a length of -30kpc and hence are the most prominent magnetic-field
features detected in normal spiral galaxies so far .

A detailed analysis of the rotation measure distribution in a spiral arm southwest of the center
of the Andromeda galaxy M31 [Beck et al . 1990] shows that the magnetic field andahuge HI cloud
complex are anchored together. The magnetic field then inflates out of the plane outside the cloud .
The tendency for the magnetic field to follow the HI distribution has been noted in several recen t
observations. Circumstantial evidence has accumulated which suggests that there is a close con-
nection between rings of CO and Ha seen rotating in some galaxies and the magnetic fields in th e
nuclear regions. This is particularly apparent in observations of spiral galaxies viewed edge-on .
This scenario has also been invoked for our Galaxy [Wielebinski 1989] .

Neutral hydrogen is detected from galaxies via the van de Hulst radio-emission line at 21 .1 1
cm (1 .420 GHz), which arises from the transisition between the hyperfine-structure sublevels o f
the ground state of a hydrogen atom [Kaplan and Pikelner 1970] . This is the sole procedure for
the direct observation of neutral hydrogen in galaxies. High-resolution observation of neutral
hydrogen in irregular and spiral galaxies usually reveal extended HI distributions . Contour maps
of the HI typically show a relative lack of HI in the cores of spiral galaxies but high HI content in
the sunounding region, usually in the shape of a "horseshoe" [Rogstad et aL 1974. Bosma et al .
1977; 1981, Hummel and Bosma 1982, Van Woerden et aL 1983] . This region is not uniform but
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may have two or more peaks in neutral hydrogen content . Figure 3 .26 shows several examples of
HI distributions in spiral galaxies .

Example 3.2 Bisymmetric magnetic field distribution in a simulated spiral galaxy . For the
simulated galaxy we choose d' =1 .66 x 1020 m, dt"= 5 .87 x 10" s, a mass per unit length of 10 41
kg/1021 m (10 44 g/35 kpc), and Bo = 2.5 x 10$ T (c.f., Example 6.3, Section 6.7 .2) . Figure 3.27
shows the plasma spiral formed in this simulation overlayed on its magnetic field line (squared )
isobars . The diameter of the spiral is about 50 kpc with a mass of 104' kg, i.e ., a size and mass of
that observed from spiral galaxies . A direct comparison to observations is made by superimposin g
the HI distribution in NGC 4151 on its optical photograph [Figure 3 .27b] . The observation show s
two peaks in neutral hydrogen surrounding a void . The void is orientated towards one of the arms .
The simulation allows the two peaks to be traced back to their origin . Both are found to be the
remnants of the originally extended components (i .e., cross-sections of the original Birkeland
filaments) . As discussed in Section 4 .6.3, the accumulation and neutralization of hydrogeni c
plasma is expected in strong magnetic field regions . The hydrogen deficient center is the remnant
of an elliptical galaxy formed midway between the filaments, in the magnetic null (Section 3 .11 .4) .

3 .11 .4 Rotational Velocities of Spiral Galaxies

Rotational velocities of spiral galaxies are obtained by measuring the doppler shift of the H . line
emitted by neutral hydrogen in the spiral alms. If the galaxy is canted toward earth, the emission -
line in the arm moving away from earth is red-shifted while the line in the ann moving toward s
earth is blue-shifted. Figure 3.28 shows six radii velocity versus radius curves typical of spiral
galaxies. These data show 1) a nearly linear solid-body rotation for the galaxy center (the first fe w
arcminutes from center), 2) a nearly radially independent velocity profile in the spiral arms, and
3) distinct structure in the spiral arms that appears on the so-called flat portion of the velocity curv e
(beyond the first few arcminutes or, equivalently, the fast few kiloparsecs) .

Example 3 .3 Rotational velocity of a simulated spiral galaxy. Using the scaling of Example
3 .2, the rotational velocity given in Figure 3 .20 can be converted to physical units . The average
velocity for the flat portion of the curve is v = 0.0213 d ' / de,or, in time-compressed units, 6 x
10' km/s. Applying the mass correction factor 10 .7 (Section 8 .6.3) and the electric field correction
factor 2.5,2 the rotational velocity is 226 km/s . This curve is replotted in the last frame of Figure
3 .28 and is in good agreement with the observations . Concomitant with the lengthening of the arms
is a thinning of the arms as shown in Figure 3 .19. As discussed in Section 3 .10.5, a diocotro n
instability is produced. This instability shows up in both the cross-sectional views of the spira l
amts and in the velocity profile, where a distinct vortex "saw-tooth" pattern is measured . Goo d
examples of this instability are found in the Sc-type galaxies M101, NGC 253, and NGC 2998 [Ar p
1986] . Figure 3 .29, NGC 3646, is an example of a very large diocotron instability, similar to that
observed in auroras, in the spiral arms .

Figure 3.26. (opposite) HI distributions superimposed on optical photographs of galaxies . (left column) NGC
4736, NGC 5033, and NGC 4151 . (right column) NGC 3198 and M83 [Peratt 1986] .
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Figure 3 .27. (top) HI distribution superimposed on an optical photograph of NGC 4151 . (bottom) Simulatio n
magnetic energy density superimposed on simulated spiral galaxy . The resolution of the magnetic energy
density is insufficient to resolve the magnetic field structure in the simulation spiral arms .
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Figure 3.28. Spiral galaxy rotational velocity characteristics. The bottom right-hand-side curve is the

simulation result taken from Figure 3 .20.

3.11.5 Elliptical Galaxies

Elliptical (E) galaxies, as distinct from peculiars, irregulars, and spirals, are characterized by a ver y
smooth texture, a bright nucleus, and a tenuous outer envelope of large extent (sensitive photo -
graphic plates show that the visible envelope maybe 20 times the diameter of the nucleus, Figure

3 .30).
Ellipticals are most often found midway between the extended radio components of doubl e

radio galaxies and radioquasars . Figure 331 is an example of this geometry. Like SO galaxies
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Figure 3.29 . Optical photograph of NGC 364-6 . Note the well-defined diocotron instability in the spiral's ann .

Figure 3.30. Isodensitometer tracing of the elliptical galaxy M87, made from a 60 min exposure with the 1 . 2
m Palomar Schmidt telescope . The inner circle is the diameter given in the Shapely–Ames catalogue, while th e
outer ellipse spans as much as 70 arcmin. The horizontal extent of the image frame is 500 arcmin . Note that the
inner isophotes have vertical major axes, but the outer isophotes show noticeable clockwise twisting .
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Figure 3.31. (a) Optical photographs of the elliptical galaxy NGC 1316 and the spiral galaxy NGC 1317 .
(b) Radio and optical structure of NGC 1316.

(galaxies with little or no evidence of star-forming activity) E galaxies are found most frequentl y
in regions characterized by high galaxy density (i .e., areas most susceptible to interactions).

Diffuse elliptical galaxies are also found midway between the synchrotron emitting galacti c
simulation filaments. These galaxies are characterized by a twisting of their outer isophotes.
Elliptical galaxies have weak or no magnetic fields.
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Figure 3.31. (b).

Example 3 .4 Simulated elliptical galaxy. Figures 3 .15 and 3 .17 depict the elliptical core formed
in a plasma galaxy simulation . In physical units, the bottom frame of Figure 3 .16 corresponds to
an elapsed time of 20 Myr from the start of the filament interaction. At this time, the field strength
squared in the vicinity of the core (approximately midway up the figure) is Bo = 0 .592 x 10-82 T.
The field induced pressure defining the boundary of the core at this time is pB = ( 2 N0)- 1B =

1 .4 x 10-" Pa (1 .4 x 10-10 dyn/cm2) . This isobar extends some 50 kpc and can balance the
thermokineticpressure ofa 1 04m'(10-2 cm-3 )6keV plasmacompressed into thecore . The magnetic
field is null at the core center .

As is the case with elliptical galaxies, the simulated elliptical plasma galaxy shows only a
slight twist of rotation (Figure 3 .17), caused by the start of a clockwise rotation of filament s
beginning a Biot-Savart force law interaction (Section 3 .10 .3) .

Radio and Optical Structur e
of NGC 1316

West
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3.11 .6 Intergalactic Magnetic Fields

A large-scale intercluster magnetic field with an estimated strength of 0.3—0.6µG located between
the Coma cluster of galaxies and the Abell 1367 cluster was discovered in 1989 [Kim, Kronberg ,
Giovannini, and Venturi 1989] (Section 2 .6 .6) .

Notes

' Bostick (1957) was the first to observe the fonnation of spiral structures produced by
interacting plasmoids crossing magnetic field lines.

2 To reduce the computation time to spiral fonnation, the acceleration field E, was increased

2 .5 times, from 12 mV/m to 30 mV/m. A field strength — 1—10 mV/m is consistent with that
associated with double layers in the near-earth plasma (Section 4 .4). It should be noted that over
the axial extent ofa spiral galaxy, — 10 kpc, a millivolt per meter field strength corresponds to a
potential of 3 x 10" V (Section 5.6 .4) .




