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2. Birkeland Currents in Cosmic Plasma

2.1 History of Birkeland Currents

An electromotive force ¢ =] v x B-dl giving rise to electrical currents in conducting media is
produced wherever a relative perpendicular motion of plasma and magnetic field lines exist
(Section 3.5.2). An example of this is the sunward convective motion of the magnetospheric
plasma that cuts the earth’s dipole field lines through the equatorial plane, thereby producing a
Lorentz force that drives currents within the auroral circuit. The tendency for charged particles to
follow magnetic lines of force and therefore produce field-aligned currents has resulted in the
widespread use of the term “Birkeland Currents” in space plasma physics. Their discovery in the
earth’s magnetosphere in 1974 has resulted in a drastic change of our understanding of aurora
dynamics, now attributed to the filamentation of Birkeland charged-particle sheets following the
earth’s dipole magnetic field lines into vortex current bundles. In anticipation of the importance
of Birkeland currents inastrophysical settings, Filthammar (1986) states: “A reason why Birkeland
currents are particularly interesting is that, in the plasma forced to carry them, they cause anumber
of plasma physical processes to occur (waves, instabilities, fine structure formation). These in turn
lead to consequences such as acceleration of charged particles, both positive and negative, and
element separation (such as preferential ejection of oxygenions). Both of these classes of phenom-
ena should have a general astrophysical interest far beyond that of understanding the space
environment of our own Earth.”

Birkeland currents have a long and colorful history. Inspired by his famous terrella experi-
ments at the beginning of the twentieth century (Figure 2.1) and by his extensive studies of
geomagnetic data recorded during magnetic storms, the Norwegian scientist Kristian Birkeland
(1867-1917) suggested that the aurora was associated with electric ““corpuscular rays” emanating
from the sun and deflected to the polar regions of the earth by the geomagnetic field. Birkeland
recognized that the magnetic disturbances recorded on the earth’s surface below the auroral region
were due to intense currents flowing horizontally above. He suggested that these currents, now
called “auroral electrojet”’ currents, were coupled to vertical currents that flowed along geomagnetic
fieldlines into and away from the lower ionosphere. The system of field-aligned currents suggested
by Birkeland is shown in Figure 2.2a.

The existence of magnetic field-aligned “Birkeland” currents was disputed because it is not
possible to distinguish unambiguously between current systems that are field-aligned and those
that are completely ionospheric from a study of surface magnetic ficld measurements. Sydney
Chapman, the noted British geophysicist, developed mathematically elegant models of currents
that were contained completely within the earth’s ionosphere that could adequately account for


Ian
Text Box
Contents

Ian
Text Box
Physics of the Plasma Universe
(1992) Anthony L. Peratt


44 2. Birkeland Currents in Cosmic Plasma

Figure 2.1. Birkeland (left), the founder of experimental astrophysics, is shown here with his assistant, K.
Devik, and his “terrella,” a magnetized globe representing the earth.

ground-based magnetic field observations obtained during magnetic storms. Figure 2.2b shows
the “atmospheric current system” developed by Chapman in 1927.

Hannes Alfvén, the Swedishengineer and physicist, advocated the idea of Birkeland currents
and developed a theory for the generation of these currents by the solar wind [Alfvén 1939]. Figure
2.2c shows Alfvén’s diagram for these currents.

The first satellite measurements of Birkeland currents were provided by Zmuda et al. (1966,
1967) with a single axis magnetometer on board the navigation satellite 1963-38C at an altitude
of ~1100 km. The magnetic disturbances observed were initially interpreted as hydromagnetic
waves, but it was soon realized that their latitudinal extent was not appropriate for waves and they
were interpreted as being due to Birkeland currents [Cummings and Dessler 1967]. Today,
Birkeland currents are routinely measured by a variety of rocket and satellite instruments.

Thelocation, flow direction, and intensity of Birkeland currents have been studied by several
satellites, and a statistical map is provided in Figure 2.3. This distribution, plotted on an invariant
(magnetic) latitude and geomagnetic local time polar dial, was determined from hundreds of orbits
of the TRIAD satellite over the polar regions [Iijima and Potemra 1976]. It shows that there are
well defined patterns of these currents, and these patterns coincide approximately with the auroral
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Figure 2.2. Historical diagrams of auroral current systems from: (a) Birkeland (1908), (b) Chapman (1927),
(c) Alfvén (1939).
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- Currents into lonosphere
m Currents Away from lonosphere

Figure 2.3, Distribution of Birkeland currents at earth’s north pole as determined by TRIAD satellite magnetic
field observations. The dark areas denote curtents into the ionosphere while the shaded areas denote currents
away from the ionosphere. The hatched area near noon indicates confused current directions (courtesy T.
Potemra).

zone. The inflowing currents are at latitude 70° and the outflowing currents are at 74°-78° from
about noon to midnight, then reverse directions from midnight to noon.

The magnitude and flow direction of Birkeland currents are determined from the magnetic
field observations with Maxwell’s equation Eq.(1.2), j =(1/to)VXAB (where AB is the
magnetic perturbation). For currents flowing parallel to the geomagnetic field and in sheets
aligned in the east—west direction (with infinite extent), this vector formula reduces to the scalar
gradient,j; = 1/100 (ABy) / 9x where;, isthecurrent flowing along the main geomagnetic field
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Figure 2.4. A glowing beam of electrons spirals upwards along the earth’s magnetic field. This television image
was taken during the Echo 7 sounding-rocket experiment. The view shows a portion of the corkscrew beam
several hundred meters long from top to bottom and 17 meters across. The small, bright glow at the lower end

- of the beams is the accelerator that produced the energetic particles (courtesy John R. Winckler, University of

Minnesota).

(in the z direction), ABy is the perturbation in the eastward (y) direction, and x is the northward
direction.

Birkeland currents not only heat the upper atmosphere, increasing the drag on low altitude
earth circling satellites, but cause substantial density depletions. Electric fields along the dipole
magnetic field lines can give rise to field-aligned currents that reduce the ionospheric topside
electron and ion densities [Block and Filthammar 1969]. In the topside there is then an excess of
ionization in contrast to low altitudes where recombination dominates. The net effect is an upward
flux of neutral particles that are ionized at high altitudes. Auroral primary particles are charged
particles with the proper sign that have been accelerated downward. Closure of the global circuit
is accomplished by particles with the opposite sign, that move out of the magnetosphere and
Precipitate in another region of the ionosphere with reversed polarity. Current measurements
suggest that the supply of plasma from the solar wind is negligible in relation to the supply of
plasma from the closed loop ionospheric/magnetospheric system.

As an example of a manmade “Birkeland current.” a ~harged-particle bear in space under-
going a helical motion along the Earth’s magnetic field is shown in Figure 2.4. The physics of this
beam behavior are examined in Sections 2.5.3 and 2.9.7.

2.2 Field-Aligned Currents in Laboratory Plasma

In the laboratory, filamentary and helical structure is a common morphology exhibited by ener-
getic plasmas. X ray pinhole photographs, optical streak and framing camera photographs, and
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laser holograms often show a filamentary, magnetic *“rope-like” structure from plasmas produced
in multi-terawatt pulse power generators or in dense plasma focus machines (Figure 1.2). Often,
the cross-sectional patterns from filamentation in hollow electron beams are recorded onto ob-
serving screens or witness plates. Regardless of size or current, the patterns are those of vortices
(Figures 1.20-1.21). In the dense plasma focus the vortices have dimensions of a few microns
while in laboratory electron beams the vortices may be a few centimeters in diameter. This size
variation of 4orders of magnitude is extended to nearly 9 orders of magnitude when auroral vortex
recordings are directly compared to the laboratory data. With regard to actual current magnitudes;
filamentation occurs over nearly 12 orders of magnitude while coarser resolution experiments
show that the phenomena probably transcends at least 14 orders of magnitude, from microampere
to multi-megaampere electron beams.

2.3 Field-Aligned Currents in Astrophysical Plasmas

As far as we know, most cosmic low density plasmas also depict a filamentary structure. For
example, filamentary structures are found in the following cosmic plasmas, all of which are
observed or are likely to be associated with electric currents:

(1) In the aurora, filaments parallel to the magnetic field are often observed. These can
sometimes have dimensions down to about 100 m (Figure 1.21).

(2) Inverted V events and the in-situ measurements of strong electric fields in the magneto-
sphere (10°-10° A, 10°m) demonstrate the existence of filamentary structures.

(3) In the ionosphere of Venus, “flux ropes”, whose filamentary diameters are typically 20
km, are observed.

(4) In the sun, prominences (10" A), spicules, coronal streamers, polar plumes, etc., show
filamentary structure whose dimensions are of the order 10’-10° m (Figure 1.10).

(5) Cometary tails often have a pronounced filamentary structure (Figure 1.8).

(6) In the interstellar medium and in interstellar clouds there is an abundance of filamentary
structures [e.g., the Veil nebula (Figure 1.13), the Lagoon nebula, the Orion nebula, and the Crab
nebula).

(7) The center of the Galaxy, where twisting plasma filaments, apparently held together by
a magnetic field possessing both azimuthal and poloidal components, extend for nearly 60 pc
(10"*m) (Figure 1.14).

(8) Within the radio bright lobes of double radio galaxies, where filament lengths may exceed
20 kpc (6 x 10®m) (Figure 1.15).

Regardless of scale, the motion of charged particles produces a self-magnetic field that can
acton other collections of particles or plasmas, internally orexternally. Plasmas in relative motion
are coupled via currents that they drive through each other. Currents are therefore expected ina
universe of inhomogeneous astrophysical plasmas of all sizes.
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2.4 Basic Equations of Magnetohydrodynamics
2.4.1 General Plasma Fluid Equations

Fundamental equations for the plasma velocity, magnetic field, plasma density, electric current,
plasma pressure, and plasma temperature can be derived from macroscopic averages of currents,
fields, charge densities, and mass densities. In this “fluid” treatment, the Maxwell-Hertz—Heaviside
equations (1.1)-(1.4) are coupled to the moments of the Boltzmann equation for a highly ionized
plasma.

The evolution of the distribution function f{r,p.) for particles with charge ¢ and mass m is
described by the Boltzmann equation

d 0 d [
§+v- a_r+ q(E+va). a_iJf(r,p,t)—(sgmmsio“ @.1)

which is an expression of Liouville’s theorem for the incompressible motion of particles in the six-
dimensional phase space (r, p, 7).

Inthe fluid description the particledensity n (r, ), meanvelocity v (r, #),momentump (r, 1),
pressure P (r, 7), and friction R (r, 7) are defined by

n (r.t)sfd3pf(r,p,t) 2.2
n(r,t)V(r,t)E/er vf(r,p.) (23)
n.0p @0= [ d°p pf(r.p.9 24
P (r,t)sfd3p P-p@. 0 [V-v @, o)f(r,p.) 2.5)
p)
=1 g3 _
R (r’t)-Jd P [P p-] (ﬁcolliu‘onx (2.6)

where the momentum p and velocity v are related by

p=myv @7

The fields E(r, r) and B (r, r) in Eq.(2.1) are self-consistently solvad irom Eqs.(1.1)—(1.4) with

P (r,t)Eefd3pf(r,p,t) 2.8

j(r,t)Eefd3p vf(r,p.1) 2.9
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Taking the moments | 4 ’p andf d? p P of the Boltzmann equation yields the two-fluid
equations [Rose and Clark 1961, Thompson 1962, Alfvénand Carlgvist 1963,Chen 1984] forions
and electrons o = i, e,

ong _

ot +V (maVa) =0 2.10)
d

na B =qang(E+vaxB)-V Po+Ra-nama¥ oo @.11)

These are called the continuity and momentum equations, respectively. The continuity equation,
as written, is valid if ionization and recombination are not important.
Conservation of linear momentum dictates that

R;+R.=0 (2.12)

The two fluid equations are the moments, or averages, of the kinetic plasma description and
no longer contain the discrete particle phenomena such as double layers from charge separation
and synchrotron radiation. Nevertheless, this approach is useful in studying bulk plasma flow and
behavior.

A single fluid hydromagnetic force equation may be obtained by substituting o = i, e into
Eq.(2.11) and adding to get,

OV _ . _Vp-
Pm=5r=PE+jxB-Vp-pn Voo (2.13)

which relates the forces to mass and acceleration for the following averaged quantitites:

Pm =nemg +n;m; mass density

Jm=nemeVe+nmv; mass current

Vm =Jjm/Pm averaged velocity (2.14)
p=neqe+nigi charge density

J=neqeVe+niqi Vi current density

The first term in Eq.(2.14) is caused by the electric field, the second term derives from the motion
of the current flow across the magnetic field, the third term is due to the pressure gradient
{Eq.(2.14) is valid for an isotropic distribution V- P — Vp where p= nkT ], and the fourth
term is due to the gravitational potential @. The near absence ofexcesschargep = e(n; —n.)= 0,
forq;,. = t e ,isacharacteristic of the plasma state; however, this does not mean that electrostatic
fields [e.g., those deriving from Eq.(1.3)] are unimportant.!

Completing the single fluid description is the equation for mass conservation,



2. Birkeland Currents in Cosmic Plasma 51

P LY. (o V) =0

ot (2.15)

In addition to Eqgs.(2.13) and (2.15), we find it useful to add the equation for magnetic induction,

Q:Vx(vmth#VZB

at (2.16)

obtained by taking the curl of Ohm’s law

j= O’(E +v xB)
where 'is the electrical conductivity (Table 1.6).
2.4.2 Magnetic Reynolds and Lundquist Numbers
The significance of Eq.(2.16) in which (i 0)~! is the magneric diffusivity, is that changes in the
magnetic field strength are caused by the transport of the magnetic field with the plasma (as
represented by the first term on the right-hand-side), together with diffusion of the magnetic field

through the plasma (second term on the right-hand-side). In order of magnitude, the ratio of the
first to the second term is the magnetic Reynolds number

Rp=uov. .l 2.17)

interms of a characteristic plasma speed V - and a characteristic scale length /.. . A related quantity
is the Lundquist parameter

Ly=puoVul, (2.18)
where
V=B
7 (2.19)

is the Alfvén speed. It may be written as the ratio

=3
L Ta (2.20)
of the magnetic diffusion time
4= pol? @.21)

to the Alfvén travel time
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Figure 2.5. A current-carrying plasma pinch undergoing rotation at angular frequency .

Ta=1./V, (2.22)

2.5 The Generalized Bennett Relation

A generalized Bennett relation follows directly from Eq.(2.13) and Eqgs.(1.1)-(1.4). Consider a
current-carrying, magnetic-field-aligned cylindrical plasma of radius a which consists of elec-
trons, jons, and neutral gas having the densities n,, n;, and n,,, and the temperatures T, T}, and T),,
respectively. A current of density j, flows in the plasma along the axis of the cylinder which
coincides with the z—axis. As a result of the axial current a toroidal magnetic field By, is induced
(Figure 2.5). An axial electric field is also present. Thus, there exists the electric and magnetic
fields

E=(E,\, E¢, Ez)
B=(0,B, B,)

The derivation of the generalized Bennett relation for this plasma is straightforward, but lengthy
[Witalis 1981], and the final result is
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2
%a Jo =W gin+ AW g, + AW, + AW,
or?
8217 @ -L6m? N2 (@ + Lra2eo[E? @ - B} (@)
T (2.23)
where
2n
a
10=Ur2p,,,rdr d¢=I r2 pm 2mrdr
0 (2.24)

0

is the total moment of inertia with respect to the z axis. (As the mass m of a particle or beam is its
resistanceto linearacceleration, J o is the beam resistance to angular displacement or rotation). The
quantities AW are defined by

AW g: =W g; ~ 2 €07 (@) ma? (2.25)
AW, =Wp,—51B? (@ na?

3:=Wp:—5 B (a) ma (2.26)
AW =W, —p(a) nal (2.27)

where E, (a), B, (a), and p(a) denote values at the boundary r = a. The individual energies W are
defined as follows:

) a
Wikin= Ejo Pm(n) [vi N+ VE (r)]zur dr (2.28)

which is the kinetic energy per unit length due to beam motion transverse to the beam axis,

a
WB,=L] BX()2nrdr

2u0)0 self-consistent B, energy per unit length; 2.29)

a
W= —2’:9{ EX()2mrdr

o self-consistent E, energy per unit length; (2.30)
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a
W= J; p2nmrdr thermokinetic energy per unit length; (2.31)
a
Ha)= fo Jz 27rdr axial current inside the radius @ ; 2.32)
a
N (a)= L n2mrdr total number of particles per unit length; (2.33)

where n=n;+ne+ny, is the total density of ions, electrons, and neutral particles. The mean
particle mass ism = (n;m; + nom.+nymy) /n.
The self-consistent electric field can be determined from Eq.(1.13)

d(rE)
-12V = . _ ¢ —n
4 dr eo(ne m)
and is given by

E (= —___enez(éo—f e,  0<r<a

= —en.(1-f.) az

>
26 L r2a

Neglecting the displacement current, the self-consistent magnetic field can be determined
from Ampére’s law Eq.(1.2) (also see Section 3.3.1),

r—l d(rB¢) —
dr

and is given by

Holr
B,(r)= 0<r<a
o) 2ra?

= ol <
“2nmr r=a
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The positive terms in Eq.(2.23) are expansional forces while the negative terms represent
beam compressional forces. In addition, it is assumed that the axially directed kinetic energy is

_1! 2 2
Wikin=>5 ymN B c 2.34)

Since Eq.(2.23) contains no axially directed energy, it must be argued that there are conversions
or dissipation processes transferring a kinetic beam of energy of magnitude W i« ;» into one or
several kinds of energy expressed by the positive W elements in Eq.(2.23):

Wikin=W 14in +WE, +Wp, + W, (2.35)
2.5.1 The Bennett Relation

Balancing the thermokinetic and azimuthal compressional (pinch) energies in Eq.(2.23),

Ho 2 _
W, - 8_71'1 = 0’ (2.36)
yields the Bennett relation Eq.(1.9),
2
Bol” _onir
ar 2.37)

If there is a uniform temperature T = T, = T; and if the current density is uniform across the
current channel cross-section, Egs.(2.32), (2.33), and (2.37) yield a parabolic density distribution

12
)= B0 (1 _12)
4n2a2kT\ a?
2.5.2 Alfvén Limiting Current

Equating the parallel beam kinetic energy to the pinch energy

 _Hopn_
Wikin —gl =0 (2.38)
yields the Alfvén limiting current

Ix=4negm,c3 Byle=17 kiloamperes
h o m.c> By, By p (2.39)
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foran electron beam. This quantity was derived [Alfvén 1939]in order to determine at what current
level in a cosmic ray beam the self-induced pinch field would tum the forward propagating
electrons around. It should be noted that this limit is independent of any physical dimensions.

Lawson’s (1959) interpretation of Eq.(2.39) is that the electron trajectories are beam-like
when ] < I , and they are plasma-like when > ] 4 . Inlaboratory relativistic electron beam (REB)
research, Budker's parameter

Vgua=ma2 ny e2/mc2=N e2/mc? (2.40)

where n, is the electron density of the beam, finds wide application in beam and plasma accelera-
tors. Yonas (1974) has interpreted the particle trajectories as beam-like for Vg ,4 < ¥ and plasma-
like for Vpuq4> Y. The relationship between I, and vp 418

Vpual Y=1/14 2.41)

The Alfvén limiting current Eq.(2.39) is a fundamental limit for a uniform beam, charge-
neutralized (f, = 1), with no magnetic neutralization (f = 0, Section 2.5.4), no rotational motion
(v,=0),andno externally applied magnetic field (B, = 0). By modifying these restrictions, it is
possible, under certain circumstances, to propagate currents in excess of /.

2.5.3 Charge Neutralized Beam Propagation

Balancing the parallel kinetic, pinch, and radial electric field energies in Eq.(2.23) gives

. _Hoso 1 2(m =
Wikin —GI +E7t0280E,-(a)—0 (2.42)
which yields?
Imax=14 B2 1|2 2]
max=Ia B I|B"-(1-fJ?%, 0<fe<1 (2.43)

Depending on the amount of neutralization, the denominator in Eq.(2.43) can become small, and
I max canexceed [ 4-

However, the unneutralized electron beam cannot even be injected into a drift space unless
the space charge limiting current condition is satisfied. For a shearless electron beam this is
[Bogdankevich and Rukhadze 1971]

_ 17(7 2/3 1)3/2

Isc = 1+2mn(/d kiloamperes

(2.44)

where b is the radius of a conducting cylinder surrounding the drift space. Thus, in free space
I, — 0 and an unneutralized electron beam will not propagate but, instead, builds up a space
charge cloud of electrons (a virtual cathode) which repels any further flow of electrons as a beam.
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Moreover, the space charge limiting current is derived under the assumption of an infinitely large
guide field B ; no amount of magnetic field will improve beam propagation.

2.5.4 Current Neutralized Beam Propagation

For beam propagation in plasma, the electrostatic self-field £, built up by the beam, efficiently
drives a return current through the plasma, thus moderating the compressional term 1o/ 2 / 8 7
in Eq.(2.23), so that

Witkin— 521 (1= f) + L 702 & E2@ = 0 2.45)

where the magnetic neutralization factor is

Fn = rerurn 1 ' (2.46)

From Eq.(2.45) the maximum current is

2 ,[ 2 2}
Imax=1aB" 1B A ~fm)-(1-f)*, 0<fe<1l, O0Sfp<L. (2.47)

Thus, depending on the values of f, and f,,,, the denominator in Eq.(2.47) can approach zero and
the maximum beam current can greatly exceed/ 4. Theeffect of current neutralization is examined
further in Section 2.9.1.

2.5.5 Discussion

‘When acharged particle beam propagates through plasma, the plasma ions can neutralize the beam
space charge. When this occurs, E, — 0 and, as a result, the beam constricts because of its self-
consistent pinch field B . For beam currents inexcess of the Alfvén limiting current, B is sufficient
to reverse the direction of the beam electron trajectories at the outer layer of the beam. However,
depending on the plasma conductivity g, the induction electric field at the head of the beam [due
to dB/dt ~ dl/dt in Eq.(1.1)] will produce a plasma current /, = —1,. Hence, the pinch field

By()=3[ls (N +1,] (2.48)

can vanish allowing the propagation of beam currents [, in excess of / 4.

Because of the finite plasma conductivity, the current neutralization will eventually decay
inamagnetic diffusion time 74 givenby Eq.(2.21). During this time a steady state condition exists
in which no net self-fields act on the beam particles. While in a steady state, beam propagation is
limited only by the classic macro-instabilities such as the sausage instability and the hose (kink)
instability.

‘When the beam undergoes a small displacement, the magnetic field lags behind for times of
the order 7, . This causes a restoring force to push the beam back to its original position, leading
to the well-known m = 1 (for a e { ™ ¢ azimuthal dependency) kink instability.



58 2. Birkeland Currents in Cosmic Plasma

2.5.6 Beam Propagation Along an External Magnetic Field

An axially directed guide field B, produces an azimuthal current component / ¢ throughEq.(1.2).
This modification to the conducting current follows by balancing the energies

1 pgrga Moy 1o g2
Wiikin ZﬂoBzﬂa 87:1 +280E,7ra 0 (2.49)

In the absence of any background confining gas pressure p(a), the maximum current is

Imax =1¢ﬂ2/[ﬁ2 -1 —fe)z] (2.50)

For the case of an axial guide field, the axial current/_is not limited to /, and depends only on the
strength of the balancing I, (B,) current (magnetic field). In terms of the magnetic fields, the
current flows as a beam when

2 p2]t/2 .
Bz>>[(1—fe) —ﬂ] B¢
B (2.51)
Note that Eq.(2.44) still holds; that is, a cylindrical conductor around the electron beam is nec-
essary for the beam to propagate.

Equation (2.51) finds application in accelerators such as the high-current betatron [Hammer
and Rostocker 1970]. In spite of the high degree of axial stabilization of a charged particle beam
because of B ,, appreciable azimuthal destabilization and filamentation can occur because of the
diocotron effect (Section 1.7.3). This can be alleviated by bringing the metallic wall close to the
beam.

2.5.7 Schonherr Whirl Stabilization

The transverse kinetic energy term W , ; ;. in Eq.(2.23) explains an observation made long ago
[Schonherr 1909]. High-current discharges conduct more current if the discharge is subject to an
externally impressed rotation v .. This phenomena can also be expected in astronomical situations
if the charged particle beam encounters a nonaxial component of a magnetic field line that imparts
a spin motion to the beam or if a gas enters transversely to an arc discharge-like plasma.

2.5.8 The Carlqvist Relation

An expression having broad applicability to cosmic plasmas, due to Carlgvist (1988), may be
obtained from Eq.(2.23) if the beam is taken to be cylindrical and in a rotationless and steady-state
condition:
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Figure 2.6. The total current/ in a generalized Bennett pinch of cylindrical geometry as a function of the number
of particles per unit length N. The temperature of the plasma is T = 20 K while the mean particle mass is m=
3x 107 kg. It is assumed that the plasma does not rotate (= 0) and that the kinetic pressure is much smaller
at the border of the pinch than in the inner parts. the parameter of the curves is AW, representing the excess
magnetic energy per unit length of the pinch due to an axial magnetic field B, (courtesy of P. Carlgvist).

-é—%lz(a) + ;—Gm'zN 2(g)= AW, + AW

(2.52)

Thus, inastraightforward and elegant way, the gravitational force has been included in the familiar
Bennett relation. Through Eq.(2.52), the Carlgvist Relation, the relative importance of the elec-
tromagnetic force and the gravitational force may be determined for any given cosmic plasma
situation. This relation will now be applied to the two commonest pinch geometries—the cylin-
drical pinch and the sheet pinch.

2.5.9 The Cylindrical Pinch

Consider the case of a dark interstellar cloud of hydrogen molecules (7 =3 x 107 kgand T =T,
=T =T,=20K). Carlqvist(1988) has givena graphical representation of the solution t0Eq.(2.52)
forthese values andthisis showninFigure 2.6fordiscrete valuesof AW, . Several physically different
regions are identified in this figure.
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The region in the upper left-hand part of the figure is where the pinching force due to Tand
the magnetic pressure force due to B, constitute the dominating forces. Equation (2.52) in this
region reduces to

Hopz _ Awy,
87 (2.53)

representing a state of almost force-free magnetic field (Section 1.7.2).

Another important region is demarked by negative values of AW g, . In this region an out-
wardly directed Kinetic pressure force is mainly balanced by an inwardly directed magnetic
pressure force. Hence the total pressure is constant and Eq.(2.52) is approximately given by

NkT+AWpg,=0 (2.54)

For yet larger negative values of AW g_, the magnetic pressure force is neutralized by the
gravitational force so that Eq.(2.52) reduces to

0 (S-

;VT2N2 = AWB, (2‘55)
Another delineable region is where AW g, = 0, where Eq.(2.52) reduces to the Bennett relation,

Ho
glz =AWy (n,T) (2.56)

Another region of some interest is where the classic Bennett relation line tumms over into an
almost vertical segment. Here, the pinching force of the current may be neglected, leaving the
kinetic pressure force to balance only the gravitational force so that

lo—=2y2
EGm N*=NkT (2.57)
This is the Jeans’s criterion in a cylindrical geometry.
The size or radius of the cylindrical pinch depends on the balancing forces. For the Bennett

pinch Eq.(2.56) the equilibrium radius is

= L ] _Ho
4= 37 V2mT (2.58)

Kiippers (1973) has investigated the case of a REB propagating through plasma. Space charge
neutralization (E_=0) is maintained when n, + np = n;. For this case, the replacements 2 — 1,
andT — T — T are made to AW, (n,T), where T'j, is the the beam temperature and 7, is the
background plasma electron temperature. For the space charge neutralized REB,
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a=1b 4 / _ Mo
21V 2npk(Tp-To) (2.59)

Note that physically acceptable solutions for the equilibrium radius are obtained only when the
beam temperature (in the axial direction for acold beam) exceeds the plasma electron temperature.
From Eq.(2.53), the equilibrium radius of a pinch balanced by an intemnal field B, is

_ Mol

=3x8, (2.60)

2.5.10 The Sheet Pinch
The sheet pinch, which is the plane parallel analog of the cylindrical pinch, is a geometry of
considerable importance in astrophysical plasmas. A current of density j (x) flows in the z-di-
rectioninasymmetrical slablimited by the planesx = * d(orthogonalcoordinates x, y, zare adopted).
This current induces a magnetic field B (x). There also exists a magnetic field in the z—direction,
B (x), consistent with the current density j(x). All quantities are supposed to vary with the x—
coordinate only.

In a similar way as Eq.(2.52) was derived, Carlqvist (1988) uses the force equation (without
the centrifugal term) to obtain the relation

ol 2@d) + 4nGm2 N2(d) = 8(Apy + Apg) (2.61)
for the one-dimensional, charge neutral pinch where

d
/ (d)=2f Jzdx (2.62)
0

is the current per unit length of the slab, and

d
N@) = ZI (ne+n;+ny)dx (2.63)

is the number of particles per unit area of the slab. The kinetic pressure and magnetic pressure
difference terms in the slab are, respectively, given by

Apr =pir(0) —pr(d) (2.64)

Apg,=pp,(0)—pp.(d) (2.65)



62 2. Birkeland Currents in Cosmic Plasma

Equation (2.61) is the one-dimensional analog of (2.52) and Figure 2.7 is its graphical
solution using the same parameter values as in Figure 2.6. Comparison of Figures 2.6 and 2.7
reveals a striking similarity between the behavior of cylindrical and sheet pinches.

By means of the theory discussed in Section 2.5, inthe next section we shall study the physical
conditions in a few different, current-carrying, cosmic plasmas.

2.6 Application of the Carlqvist Relation
2.6.1 Birkeland Currents in Earth’s Magnetosphere

Magnetometer measurements from rockets and satellites show that Birkeland currents often exist
in sheets in the auroral zones, where the current density may be as large as jn = 10 A nr2. The
thickness of such sheets is found to range from a few kilometers to several hundred kilometers.
Often the sheets exist in pairs with oppositely directed currents.

Consider a model of a Birkeland current with a current density j, = 3 x 10° A m’* flowing
in a magnetospheric plasma slab of half-thickness d = 10* m {Carlqvist 1988]. The mean mass of
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p]=$0"°‘ \ ‘
il I E R B W
p, =102 \ 1
S o
ip, =107 ; ‘
i {
107 5 s 1’ |
> 1 |
107 / sl ll |
/ | 1 : |
1078 ! l l

1020 ‘021 ‘022 1023 1024 1025 1026 1027 1028 l(m-z)

Figure 2.7. The current per unit length / as a function of the number of particles N in a generalized Bennett pinch
of plane parallel geometry forming a slab. The temperature and mean particle mass are the same as in Figure
2.6.Itis assumed that n(0) = N/d. The parameter of the curves is p, = Ap, -p,(d) where p(d) is the kinetic pressure
at the border of the slab while Ap,_denotes the difference of the magnetic pressure due to B, between the center
of the slab and the borders (courtesy of P. Carlqvist).



2. Birkeland Currents in Cosmic Plasma 63

the electrons and protons in the slab is taken to be m- = 10-7 kg. At an altitude of a few thousand
kilometers above the earth, n, = 7.~ 10" m, T=2x 10°K, and B, =4 x 10~ T. Substituting these
values into Eqs.(2.62) and (2.63), gives

Hd)~6x10-1 Am!
N(d) = 4 x 1014 m~2

Under steady state conditions, Eq.(2.61) is applicable and its terms have the magnitudes:

Ho 1*(d)=5x10" Pa
4nGm? N2(d)=1x 103 Pa
8Ap; < 8p(0)~4x 1079 Pa
8App,<8pp.(0)=5x10-3Pa

Hence, the gravitational and kinetic pressure terms may be neglected with respect to the pinching
current and B, pressure. These values for Md) and Ap g, pertain to the lower far-left region in
Figure 2.7, corresponding to the force-free magnetic field configuration (Section 1.7.2).

For a strong circular aurora, 5,000 km in diameter (Figure 1.18a), the total current is
I=I(d)2rnr=7TMA.

2.6.2 Currents in the Solar Atmosphere

'The solar atmosphere consists of a highly conducting plasma in which vertical currents of about
10"-10" A are common in active regions where solar flares occur. For a current of / =3 x 10"
A flowing in a filament of radius 2 < 10° m, j; = 0.1 A m™. The length of the filament is / ~ 10°
m and passes mainly through the lower corona in a loop connecting two foot-prints in the pho-
tosphere. The coronal plasma density and temperature is taken tobe 2, = 7, <10'*m* and T'= 100
eV (10° K) (Table 1.3) and uniformly distributed across the filament so that differential kinetic
pressure term AW ; (a) is negligible. Hence,

I(@)=3x 101 A
N(a)=6x 1028 m-1

Applying Eq.(2.52), the magnitudes of the remaining terms are

Lo I2/8m=4x105
Gm2N2/2=3x108 m!
AWg (@< Wg,=1x10"7 !

foramagneticfield B ; = 0.1 T within the filament. Gravity is negligible and a force-free magnetic
field configuration exists.
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Figure 2.8. Heliospheric circuit. The sun acts as a unipolar inductor producing a current which goes outward
along both the axes and inward in the equatorial plane C and along the magnetic field lines B,. The current closes
at large distances B,.

2.6.3 Heliospheric Currents

The heliospheric current system [Alfvén 1981] consists of the sun as a unipolar generator with
axial currents flowing out of (or into, depending on the polarity of the sun) the solar polar regions.
These currents fan out and close at great distances from the sun, probably near the heliopause. The
return current flows back towards (or away from) the sun in a thin and wavy layer near the
equatorial plane, eventually dividing andterminating athigh latitudes on the northernand southern
hemispheres, where the currents are then conducted across the sun (Figure 2.8). The magnitude
of the total current in each of the polar regions is _ = 1.5 x 10° A.

Whether or not the polar current is diffuse or filamentary is an important problem for cosmic
plasmas.

Example 2.1 Polar currents balanced by axial magnetic fields. Consider the case of M fila-
mentary currents each containing an axial magnetic field B, = 30 X 10~4 T (Table 1.3). Each
currentconducts J/M amperes sothat, if M = 1000, a filamental currentis =1.5x 10° A. According
to Eq.(2.60), the radius of each filament is @ = 100 m. If the filaments are approximately equally
spaced a diameter’s distance from one another, they form a tube of radius of the order of 5 km,
each with a current density j; = 20 A/m2.If, on the otherhand M =1,/=1.5x 10° Aand a ~ 100
km, For this diffuse current case, j; = 0.05 A/m?.
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Example2.2 Polar currentsin anaxial magneticfield balanced by the thermokinetic plasma.
Consider the conducting path to be plasma with 7 =2 X 10" m™ and 7= 100 eV (10° K) (Table
1.3).Forthiscase, M = 1000filamentseachof whichconducts 1.5x 10° A and, according to Eq.(2.58),
each has a Bennett radius a = 1.5 km. The filaments fill a tube of radius of the order of 50 km and
each has acurrentdensity j; =0.2 A/m>. IfM=1,/=1.5x10° Aand a= 1500 km. For this diffuse
current case, j; = 2 X 10 A/m?.

2.6.4 Currents in the Interstellar Medium

Currents in the interstellar medium may be one or two orders of magnitude stronger than solar
currents. Consider first a single interstellar cloud of density n = 107 m, linear extent /.~ 10'* m,
and temperature T = 10 K. The total mass M. ~ 2 X 10* kg corresponds to a single solar mass.
Hence, representative values for current and number density per unit length are

I=10" A
N=10*m"

Under steady state conditions, the magnitude of the terms in Eq.(2.52) are

Hol2/8m=5x1018 y -1
GmIN2/2=3.3x1013 -1
AW<Wp=1.4%x1017Tm!

so that the Bennett relation Eq.(2.56) is applicable.

Consider now an interstellar cloud of density n = 10° m, linear extent /. ~ 10" m, and
temperature 7'~ 10 K. These values are typical of the Orion nebula, where the total mass M =2
% 10® kg corresponds to a hundred solar masses. Hence,

I=10%A
N=102m™

Under steady state conditions, the magnitude of the terms in Eq.(2.52) are as follows:
o I2/8m=~5x1020 ] 11

Gm2N2/2=3.3x10!% 7 -1
AW <Wip=1.4%1020Tm]

That is, the pinch, gravitational, and kinetic forces are approximately balanced. The two cases
illustrated above are representative of particular values found in Figure 2.6.
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2.6.5 Currents in the Galactic Medium

By extrapolating the size and strength of magnetospheric currents to galaxies, Alfvén (1977)
suggests a number of confined current regions that flow through interstellar clouds and assist in
their formation. For example, a galactic magnetic field of the order B~ 10°-107° T associated
with a galactic dimension of 10°-10*' m suggests the galactic current be of the order /= 10"~
10” A.

As a natural extension of the size hierarchy in cosmic plasmas, these currents are thought to
have an axial component parallel to an axial galactic magnetic field, in addition to the ring or
azimuthal current component, so that the galactic currents are galactic-dimensioned Birkeland
currents [Peratt and Green 1983]. From Section 1.2.6 (also see Example 6.3), ¢ = 2x 103 m-3,
T,=3 keV(3x10'K),andB,=2x 10-8 T. The radius is @ = 17 kpc (0.5 x 10?' m). Hence,

1=25x10" A
N=29%x10"m™

Under steady state conditions, the magnitude of the terms in Eq.(2.52) are

o I2/8m=3x103! -1
GritN2/2=2.6x102% j -1
AW <Wi=1.3x1030Tm!

where ithas been assumed that the galactic currents are imbedded in B, sothat AW g , is negligible.
Hence, the galactic pinch is balanced by the thermokinetic pressure of the plasma it contains and,
to a lesser extent, by gravity.

For a galactic field B ~ 10 T over a volume V ~ 10° m* (/ , ~ @, ~ 10" m), the magnetostatic
energy Eq.(3.41)is W, ~ 10®J.

2.6.6 Currents in the Intergalactic Medium

One of the most compelling pieces of evidence for the existence of supercluster-sized Birkeland
currents comes from the discovery of faint supercluster-scale radio emission at 326 MHz between
the Coma cluster of galaxies and the Abell 1367 cluster [Kim et al. 1989). The radiation’s
synchrotron origin implies the existence of a large-scale intercluster magnetic field with an
estimated strength of 0.3-0.6 x 10°T (0.3-0.6 uG). For the linear dimension / of the source, ~1.5
Mpc, thecurrent /= ”61 A IV x B |toproduce afieldof thismagnitudeis! ~ I B / Lig~0.5x 10"
A.
Further evidence for such currents is examined in Chapters 3, 6, and 7.
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2.7 Basic Fluid and Beam Instabilities
2.7.1 Jeans Condition for Gravitational Instability

Consider matter in the gaseous, rather than plasma, state. Further assume that the gas is
nonmagnetized, static, and uniform. Take the zero-order velocity v, to be zero, and the mass
density p  and pressure p, to be constant. Next assume a density perturbation of strength p1 / po
such that the mass density is Pm = Po + P1 and the velocity Vv = v1. Under these assumptions,
Eqgs.(2.15) and (2.13) may be linearized to obtain

ap1 —

7+p0V vy=0 (2.66)
avl _ -

Pos, = -Vp1-poVec: (2.67)

For an isothermal process in an ideal gas p1 = kT p1 / M, where M is the total mass of the mo-
lecular gas. From Poisson’s equation

V% 961 =4nGp, (2.68)

Equations (2.66) - (2.68) may be combined to form a wave equation

92py kT

2
Ly +4nG
ar M P1 PopP1 269

Equation (2.69) has the plane wave solution
p1=poeilkr—or) (2.70)

where k = 27/ A is the wavenumber and the frequency @is given by

2 2
0 =k2v,-4nGpg @71
where
v, = kT M 2.72)

is identified as the velocity of sound in the gas.
One of the roots of Eq.(2.71) is positive imaginary



68 2. Birkeland Currents in Cosmic Plasma

w=+iV 41Gpo-k2v? @73)

so that Eq.(2.70) is an exponentially growing perturbation with growth rate

r=v4zGpo-k2v? (2.74)

when

s

2
k22 =27 vi<4nGpo
A (2.75)

That is, the gas is unstable to density fluctuations with a wavelength A greater than the critical
wavelength [Jeans 1902]

Ar= nkT
7= N GMpy - (2.76)

The velocity of propagation V ; of the density perturbation is given by [Jeans 1902]

1- Gp()l 2
2
Vs 27

V1=k(l)= Vs

Based on the assumption leading to Egs.(2.66) and (2.67), Jeans found that a spherical gas
distribution whose diameter was largerthan 2, 5 would contract continuously due to G. The critical
mass of such a sphere of gas is My = % PoAs . It should be noted that these results are only ap-

plicable for a medium in which the Lundquist parameter Eq.(1.6) is of order unity or less.
2.7.2 Two-Stream (Buneman) Instability

Consider a plasma in which the jons are stationary v,; = 0 and the electrons have a velocity V,
relative to the ions. Let the plasma be cold, T = T, = T, = 0 and assume B = 0. Under these as-
sumptions, Egs.(2.15) and (2.13) may be linearized to yield

an;y o
gr tnoV:-vi=0 278)

3
;:1 +noV- v +(Vo- VIne1 =0 2.79)



2. Birkeland Currents in Cosmic Plasma 69

dvi v
=nom;
dt 0T

3 - emofi (2.80)

nom;

dv
nomed;:l =nome[ 8:1 +(Vo~ V)vel]=—en0E1

(2.81)
where n;q = 1.0 = no. Note that in Eq.(2.78) use has been made of Vng = v;o =0 while in
Eq,(Z,SO)?V i0- V)Vi1 = 0. Forelectrostatic waves E | = 7 E ¢i(kz - o), and Eqs.(2.78)~(2.81)
may be written as

—iwn;y +ikngviy =0 (2.82)
(Ciw+ ik V o)ney + ikngv, =0 ' (2.83)
—iwngm;vi1 =engE, (2.84)
nome (=i +ikV o) v, =—enokE, (2.85)

Solving Eqs.(2.82)—(2.85) for the velocities and densities gives

ie

Vil = E;

U ome (2.86)
v, =le _Ei

me (0—kVy) (2.87)

iengk
niy =—°7El

m;w (2.88)
et = —iengk E,
€ me (a)—kV())2 (2.89)

Because the unstable waves are high-frequency plasma oscillations, the plasma approximation
(Section2.4.1)cannotbeused, and the electrostatic field must be obtained from Poisson’s equation
(1.3):

&V-Ey=e(nj;—n.) 2.90)

Substituting V- E, = ik E,Eq.(2.88),and Eq.(2.89) into Eq.(2.90), yields the dispersionrelation,
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1= (0_3, + w_’?e
w? (w-kVo)? (2.91)

Equation (2.91) has four roots and, under certain conditions, two of these are complex conjugate.
The location of the complex root having a positive imaginary component is given by [Krall and .
Trivelpiece 1973]

[ (wpe/ co,,.-) o
o0, )?*+1 2.92)

o =kVy

The condition for instability is that the right-hand side of Eq.(2.91) be greater than 1 at ® =&’,
and is

3
kVo? < wpe {1 + (a’pi/wpe)zu] (2.93)

This is the two-stream, or Buneman, instability [Buneman 1959]. Since the sign of the charge does
not appear, Eq.(2.93) can be equally well applied to two electron streams in a fixed neutralizing
ion background, replacing @p;/@pe by Wpe1/Wpe2. The introduction of thermal effects be-
comes important only if the thermal velocities are of the order of V,, in which case the flow can
hardly be classified a beam.

The physical interpretation of Eq.(2.91) is that, because of the Doppler shift of the plasma
oscillations, the ion and electron plasma frequencies can coincide in the laboratory frame only if
kV ¢ has the proper value. The ion and electron density fluctuations can then satisfy Poisson’s
equation. The electron oscillations have negative energy; they draw energy from the kinetic
energy of the electrons.* Therefore, the negative energy electron waves and the positive energy
ion waves both can grow while the total energy of the system remains constant. This type of
instability finds application in high-power microwave generation in relativistic klystrons [Peratt
and Kwan 1990]. A REB is velocity modulated by an rf signal, thereby producing bunches of
acceleratedelectrons that pass through the slower velocity or deaccelerated electrons. This produces
a two-stream condition. As the bunches pass through a microwave resonator, they excite the
natural mode of the cavity to produce microwave power.

In space and cosmic plasmas, the two stream condition often exists to produce electromag-
netic radiation (albeit at efficiencies far less than laboratory devices), and may also be the source
of double layers in Birkeland currents (Chapter 5).

2.7.3 Sausage and Kink Instabilities

The simple pinch has a number of serious instabilities [Shrafranov 1957}. The sausage (m=0)
instability occurs periodically along the pinch where the magnetic pressure B? 0 / 21 becomes
greater. This causes bulges to appear which result in even greater inward pressure between them.
Uhtimately, if the axial current is strong enough, the pinch can collapse into force-free magnetic
plasmoids.
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The kink (7 = 1) instability produces a helical mode in the pinch. This most often occures
when a strong axial magnetic guide field is present, that is, the pinched plasma is a Birkeland
current. The simulated time evolution of the kink instability is discussed in Section 2.9.2.

2.8 Laboratory Simulation of Cosmic Plasma Processes

Therapid development of high-voltage pulsed power technology inthe 1970s and 1980s has made
it possible, for the first time, to investigate the intense currents, high voltages, and energetic
particles found in space and cosmic plasma. Megaamperes of current in pulsed beams of electrons
and ions with particle kinetic energies in the range from ~100 keV to several hundred MeV have
been achieved. Although this technology was originally developed for materials testing, X ra-
diography, and nuclear weapon effects simulation, it has found widespread use in such diverse
fields as thermonuclear fusion, high-power microwave generation, collective ion acceleration,
laser excitation, and laboratory astrophysics. :

A multi-terawatt pulsed-power generator may typically consist of an array of capacitor banks
(called a “Marx bank”), or many kilograms of high explosive on a magnetic-compression-gen-
erator, driving a coaxial pulseline (Figure 2.9).5 A diode consisting of an outer anode and a cathode
(terminating the inner coaxial conductor) is attached to the water pulseline through a coaxial
vacuum transmission line. The purpose of the pulseline is to shorten the microseconds-long-pulse

- generated by the Marx bank, which may contain megajoules of energy, to a 30-60 nanosecond-
long-pulse at the diode, thereby producing a power amplification (watts = joules per second). In
this way, space and astrophysical magnitude quantities are generated: megaamperes of current,
megavolts of potential differences, megaelectronvolt particle energies, and terawatts of power.

4

diode
SRR q i i (plasma load)
marx bank Goze: I ) XAt
< W)
water pulse line % m
vacuum il
transmission ’f
line

Figure 2.9. A multi-terawatt pulsed-power generator. The diode, that contains the plasma load, is located at the
end of the cylindrical, coaxial, pulse shaping line.
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Figure 2.10. Diagnostics setup on pulsed-power generator diode. Shown are the pulsed-laser holography and
framing camera setups.

2.8.1 High-Current Plasma Pinches

A plasma pinch can be created by attaching thin (few microns thick) wires or thin cylindrical foils
between the cathode and anode, or else injecting gas between the cathode and anode at the time
of pulse arrival.

Unlike most astrophysical pinches, the laboratory pinch is available to in sifu measurement
and study. The magnetohydrodynamic evolution is recorded using streak and framing cameras
to record the bulk plasma motion, pulsed-laser holography and shadowgraphy to study time
resolved morphology, and Faraday rotation measurements to plot magnetic field vectors (Figure
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Figure 2.11. Diagnostics setup to study microwave emission. The microwave horn is attached to the generator
diode.

2.10). The radiation history is recorded using X ray detectors, spectrum analyzers, pin-hole X ray
cameras, and microwave antennas (Figure 2.11).

Figure 2.12 shows the time history of a jet of argon gas injected through the cathode. At time
7 ns the gas is ionized by the arrival of the MV pulse. The images, recorded in soft X rays, show
the flaring out of the hollow gas towards the anode. At 14 ns the gas is fully ionized and the plasma
conduction current is nearly 4 MA, causing the plasma to pinch. The inward compression of
plasma is halted when the pinch undergoes a transformation to a force-free state, producing the
“plasmoids” recorded at 21 ns.® These plasmoids then pair together, sometimes producing spiral
configurations such as that (barely discerible) at 28 ns.

A detailed study of plasmoidinteraction was carried out by Bostick (1956, 1957). Figure 2.13
shows the time history of spiral formation from plasmoids produced by plasma guns (Section
4.6.2) fired at each other across a magnetic field.

The unique possibility of plasma pinches to create ultradense matter, such as that in the
interiors of stars, is investigated in some detail by Meirovich (1984).



74 2. Birkeland Currents in Cosmic Plasma

cathode

Figure 2.12. Evolution of a plasma pinch produced by fully ionized argon gas. These photos were recorded in
soft X rays by a framing camera. The cathode is at the bottom of each frame while the anode is at the top.

2.8.2 Laboratory Aurora Simulations

The magnetized sheet electron beam has been studied in some detail in a very careful set of
experiments carried out by Webster (1957). Webster was able to produce laboratory analogs of
the polar aurora in a small, vacuum, anode-cathode arrangement in which currents as low as 58
MA were conducted and detected (Figure 1.20). The experimental setup consisted of a smalt
vacoum tube (Figure 2.14) that launched a 0.1 cm x 1.2 cm flat sheet electron beam by means of
aslotted grid disk in front of the cathode. The beam traveled 9.2 cm parallel toa 71 Gaxial magnetic
field until it struck a fluorescent screen anode. The fluorescent screen was made of a thin coating
(1 mg/cm?) of ZnO phosphor.

Figure 2.15 depicts a series of single-frame photographs of the phosphor screen showing the
beam shape at the anode as the beam voltage was increased. Here we see that the sheet beam rotates
as arigid rod through an angle of about 30°. Beyond this angle, the beam begins to fold into charge
bunches, producing vortex patterns on the phosphorus plate. At a certain critical voltage, the
vortices disrupt, producing a violent oscillation. These oscillations have a complex waveform
indicating a rather broadband frequency distribution. The bandwidth increases rapidly with beam
voltage.
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Figure 2.13. The evolution of two plasmoids fired at each other across a magnetic field (courtesy W. Bostick).
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Figure 2.14. Vacuum electron tube used to simulate the aurora. The total length of the tube is about 20 cm
(courtesy of H. Webster).

2.9 The Particle-in-Cell Simulation of Beams and Birkeland Currents

Even before its application to plasmas, the particle-in-cell technique was applied to the study of
electron beams in vacuum (Chapter 8). This section is concerned with the particle-in-cell simulation
of electron beams, in the presence or absence of an external magnetic field, propagating through
plasma. The beam may be a solid or hollow cylinder, or a planar sheet, a geometry that happens
to be of particular interest to the study of the aurora or of vacuum devices. Thin sheet beams
produced by electrons ejected from cathodes along magnetic lines of force have found a multiple
applications on earth (e.g., in cross-field microwave generators, backward-wave amplifiers, and
inmulti-gapped particle accelerators). Furthermore, solid cylindrical beams of electrons traveling
a sufficient distance along a magnetic field line can become cylindrical-sheet beams due to a
hollowing instability [Ekdahl 1987]. For these applications, the particle-in-cell simulation (PIC)
technique has been often used to study the dynamics of sheets of charged particles [Hallinan 1976,
Jones and Mostrom 1981]. This offers an opportunity to benchmark the simulation against physical
data.

A simulation of complex phenomenon is generally given little credence until it is
“benchmarked” against physical measurements. For this reason, laboratory measurements and
the PIC approach often create a synergism in understanding the problem at hand. This approach
works best when high quality diagnostics methods are available to guide the simulation.

The beams and Birkeland filaments simulated in Section 2.9 will be found to exhibit a
number of properties which will be pursued throughout the remainder of this book: pinching of
plasma in the presence of a field-aligned electric field (Chapters 4 and 5), uniform bulk rotation
of the plasma particles indicative of force-free plasma interiors (when the external fields are turned
off orbecome negligible), and the release of electromagnetic radiation via the synchrotron process
(Chapter 6).
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Figure 2.15. Laboratory simulated aurora. Voltage (current) increases continuously from top to bottom in each
column.

2.9.1 Charge and Current Neutralized Beam Propagation in Plasma

Consider a cold plasma of electrons and ions of density n, = 0.28 cm™. A beam of electrons of
radius @ = 100 km at density n,/n_=0.003 andansetlmeof7mspropagatesfromthe leftina
simulation region of dimension 500 kmx300km This problem was simulated with the particle
codeISIS (Figure 2.16). (For this problem the plasmaskin depth parameter A g = ¢ / @, is 10km.)
The beam is mildly-relativistic with Sy= 0.2. Because of the background plasma, the beam is
charge neutralized so that f, = 1 and the beam propagates without diverging.

As the beam propagates, a return current is set up within the beam by the plasma electrons.
[The electron beam flow is to the right so the beam current is to the left, i.e., a negative value. The
return current has a positive value.] Because of the return current, the beam is very nearly current
neutralized, = 1. The nonneutralized part of the axial current j, and the nonzero azimuthal field
B , are largely localized within a few plasma skin depths A ¢ at the beam edge (Figures 2.16 ¢,d)
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Figure 2.16. (a) Electron beam profile along the axial dimension. The beam propagates from left to right
through a plasma background. (b) Current density versus radius. The ordinate is in units of 17 kA /4mA} =
1.35 x 10 A/m?. The return current is equal to the beam current out to a radius of 75 km. (c) Self magnetic field
profiles. (d) Self field versus radius. The ordinate is in units of @, / @p which corresponds to 0.17 nT. The
two curves (b) and (d) are slices at z = 100 km and 200 km, respectively, at t = 10 ms.

andthe beampinchesonly attheedge. Incontrast,coldbeams witharadius of afew A g arenoncurrent
neutralized and exhibit strong pinching.

2.9.2 Relativistic and Mildly Relativistic Beam Propagation in Plasma

Consider a cold plasma of electrons and ions of density 7, =1 cm3, A beam of electrons of radius
a= IOOlunatdensitynb/np=8x10"andaﬁsetime of 0.2 ms propagates from the leftina simulation
region of dimension 1,000 km x 300 km (Figure 2.17). The beam is mildly-relativistic with By=
0.2. For these values the beam current is / = 200 A, and since the Alfvén current /4 = 17 BYkA
= 2.5 kA, the beam propagates unhindered, electrically neutralized by the plasma ions (Figure
2.17a).

If the beamn current is increased to I = 6.4 kA ("b/",, = 0.1), it exceeds I, and no longer
propagates as a beam by time ¢ = 6.6 ms (Figure 2.17b).

If the beam is relativistic with y=2andnb/np=0.003,1=2.6kAand1A=34kA.'Ihebeam
propagates as shown in Figure 2.17c. A slight pinching of the beam front is seen as the current
builds up during risetime and before any retum current neutralization can be established.
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Figure 2.17. Electron beam propagating through a plasma background. The “comb” structure in the i incoming
- beam is an artifact of every 24th particle being plotted.

If the beam current is increased to / =86 kA (n,/n,=0.1), itrapidly pinches, converting axial
momentum intoradial momentum (Figure 2.17d). Some of the kinetic energy of the beam electrons
(Figure 2.18a) is transferred to the plasma electrons, causing the background to be heated. Some
of the initially cold plasma electrons attain energies as high as 1.5 MeV (Figure 2.18b).

2.9.3 Propagation of a Relativistic Beam Bunch Through Plasma

Consider a cold plasma of electrons and ions of density n,= 0.28 cm™. A pulse or bunch of y=
40 electrons of radius @ = 20 km, length / = 8 km, anddensnyn/n =0.02 propagates from the
left to right, as shown at time ¢ = 0.5 ms in Figure 2.19.

Thebeam pulse produces a““wake field” condition [Keinigs and Jones 1987): The production
of negative and positive plasma electron momenta with a concomitant alternating electric field in
the wake of the pulse. The peak strength of the induced fields E and E are 60 and 20 V/m, re-

spectively. The frequency spectrum of the wake field is sharply peaked at the plasma frequency
(4.8 kHz), as is also the case for much longer beam lengths.

2.9.4 Beam Filamentation

Large radius beams (a>> A ) propagating through plasma are susceptible to a filamentation
instability [Molvig, Benford, and Condit 1978, Shannahan 1981, Lee and Thode 1983]. The
filamentation instability most readily occurs for large currents. In addition, relativistic beams are
more susceptible to this instability since the time to filamentation scales as ¥ /> [Molvig 1975].
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Figure 2.18. (top) Kinetic energy of beam electrons at £ = 100 @, ! (bottom) Kinetic energy of plasma elec-
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Consider a relativistic beam (¥ = 20) of radius =20 A g and njn = 0.2. For this case, the beam
current is approximately the same as the Alfvén current (340kA) so that filamentation isexpected.

Figure 2.20 shows the evolution of the beam. As predicted, initially the pinching occurs only
near the beam edge. At later time the beam undergoes a strong filamentation instability. The solid
beam therefore pinches into current carrying filaments whose thicknesses are of the order of Ag.
The actual width is determined by the factors outlined in Eq.(2.23).

Strong magnetic fields can inhibit beam filamentation, however in most cosmic plasmas
@p < @, so that filamentation is expected.

2.9.5 Dynamical Evolution of a Narrow Birkeland Filament
Consider a columnar plasma filament with a Gaussian radial density profile [Nielsen, Green, and

Buneman 1979]. A large external magnetic field B,~ 0.1 Eq.(8.20) is applied uniformly
throughout the plasma column and the simulation region with the field lines parallel to the axis
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Figure 2.19. Particle, field, and frequency data for a pulsed beam propagating in a plasma.

of the column. Additionally, a strong uniform electric field is applied along the column so that
significant currents are generated (B o/B *°!f ~ 4.5), The simulation is periodic in space so that a
particle which moves outof one side of the simulation domain is returned at the opposite side with
its same velocity. Computer economy forces a time compression by setting m; / m, = 16 (Section
8.6.3). The number of superparticles per Debye cube is 72 Ap = 5.4, This problem was simulated
with the 3D code SPLASH (Chapter 8).

After an initial current buildup, accompanied by visible pinching, 2 sudden a dramatic helical
mode developed (Figure 2.21). At this point the ratio of externally applied magnetic field to self-
generated magnetic field was about 2.5:1. The effect of the instability was a transport of plasma
across B, resulting in a column of radius somewhat larger than the original radius. The magne-
tostatic energy W, reaches its peak at = 160 ! (Figure 2.22a). The onset of the instability
converts this into electrostatic energy W, (Figure 2.22b). The peak of W occursat? = 184 @, 1
This energy is subsequently radiated away (Figure 2.22c,d) as electromagnetic waves. The fre-
quency of radiation is the bulk rotation frequency which for this simulation is less than @, . Since
there are still relatively few Debye lengths across the column (@/ Ap = 12), it is probable that the
entire column, not just the surface, participates in a synchrotron radiation process.
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Figure 2.20. Filamentation of a thick (20 A g ), relativisitic (¥ = 20y, current neutralized beam in a plasma.

(a) (b)

Figure 2.21. Cross-sectional and axial views of the electron distributions in the simulated Birkeland filament
(5% of the electrons are plotted). (») Before instability, = 150 ay 1; (b) After helix formation, 7 = 164 (q;‘.
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Figure 2.23. Cross-sectional view of a 2.1 mA electron beam.

2.9.6 Vortex Formation in Thin Cylindrical Electron Beams Propagating Along a
Magnetic Field

Historically, vortex structure and vortex interactions in charged particle beams have been known
since the turn of the 19th century when Birkeland first photographed the passage of particle beams
through low vacuum in his terrella cathode experiments. Cutler (1956), starting with a perfectly
circular 2.1 mA electron beam was able to record the vortex structure shown in Figure 2.23 after
the beam had propagated for 300 cm along a 34 G field.

Thecircularbeamemployed by Cutler was simulated with SPLASH where g=0.04 Eq.(1.15),
and @,dt = 0.25 [Peratt 1985]. The simulation used 250,000 electrons, 1% of which are plotted
in Figure 2.24. This figure shows the time evolution of the diocotron instability over 190 plasma
periods and is in good agreement with the measured beam pattern.

The e-folding length for instability buildup is [Kyhl and Webster 1956, Pierce 1956)

where C is the beam circumference, B, is the magnetic field, V is the voltage, and / is the beam
current. Figure 2.25 plots the current required to initiate the instability, the formation of simple
vortex patterns, and the onset of vortex interactions as a function of the beam length L for anumber

Figure 2.24. (Opposite) Cross-sectional views of simulated beam corresponding to the experimental condi-
tions of Figure 2.23 at various time steps. 1% of the electrons are plotted. The vorticity is clockwise for the
outwardly directed B,
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Figure 2.25. Beam current vs distance for instability onset (circles), simple vortex patterns (squares), and vortex
interactions (triangles). Experiment (solid symbols), simulation (open symbols), and (2.94) (dark lines).
@¢=25x%x10%80V,/=10;(b)g=004,50V,/=4,1n,=0;(c) ¢g=73x10° 80V, =10,p=10"T;
(d) g=0.39,400kV,/=4,p=02T; (e) g =059, 19MV 1=10,p=03T;(f) ¢=0.11, 10 MV, [ =16,
n =n,

of experimental and simulation cases. Also plotted is the lincar-theory prediction for instability
onset Eq.(2.94). As shown, the linear theory underestimates the onset by a factor of 2 to 3.

As shown in Figure 2.24, the onset of instability occurs when 4 r = 10 Ap (after expansion
from an initial 2.5Ap beam thickness) for a beam of circumference 314Ap . Thus, the number of
vortices expected is | = C / A = 4, as found in the simulation.

Microwaves from the following radiation mechanism are observed in the simulations. The
initially concentric ring contours of the electrostatic field E (r) and the induced magnetic field
B ( ) form cross-sectional “islands” as the nonlinear state evolves (Figure 2.26, inset). The helical
electmn flow in a vortex can be generalized into axial and azimuthal current components, thereby
producing both long-range attractive and short-range repulsive forcesbetweenneighboring vortices
(Section 3.10.2), in addition to the electrostatic line-charge repulsive force

F=+n,e(1-f)/r (2.95)



2. Birkeland Currents in Cosmic Plasma 87

0.012

°
o
o
@

0.004

ELECTRIC RADIATION ENERGY
(ARBITRARY UNITS)

gurere il ] ]

SYAVAVAV IR R R

125 150 175 200 225
TIME (Wp~1)

re 2.26. Transverse electric fiel ation energy vs time in @, . Inset: Contours o an at .
i 26.T lectric field radiati gy vs ti 'q,’In C fE? and B2 at 175 @'|

These forces causes the most neighborly filaments to spiral together in coalescence (whenf, = 1)
and also produce microwaves from the rapid changes in the electromagnetic fields during this

process (Figure 2.26).

2.9.7 Charge-Neutralized Relativistic Electron Beam Propagation Along a Magnetic
Field

Consider the propagation of beam of 7.5 MeV electrons through a plasma of equal numbers of
electrons and ions in the presence of an axial magnetic field. To simulate this case, we choose
@p dt =0.25,Ap/ A=0.1,m; / m,=40,andT; / T .= 1.0,and an axial magnetic field of strength
@ = 1.0 w,. The beam radius is r, = 3 A and the beam density is n;, / A > = 3.0. For 7.5 Mev
electrons, y=1+7.5 MeV/0.511 MeV = 15.8 and 8, = 0.998.

For the background plasma we choose rp =54 and ion and electron densities
n; /A =n, /A =0.4. Both the beam and background plasmas are given Gaussian density
profiles.

Figure 2.27 shows the end and side views of the beam and plasma evolution versus timestep
number. The first frame (1 @} ') depicts the initial simulation setup. Because the background
plasma is tenuous and the beam is thin, the beam is not current neutralized and pinches to a
minimumradiusry, ~ A within25 @ !. Once this “steady state” is reached, small amplitude long
wavelength perturbation growth sets in, causing the beam to go unstable. This instability leads to
a well-defined helical mode shown in the last frame at 125 @; .



2. Birkeland Currents in Cosmic Plasma

88

e A e A o e e

Y
»

STV U SDNT SN |

1
[P P—— .hh».‘i!r::irrusam

ot b e At o s b

| FEUFRURUL T VRN WO S SN

]
§
|
i
M
|

L
; MO
il T PR SN DU S |

Figure 2.27. Evolution of a non-magnetically neutralized 7.5 MeV electron current in a plasma.
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Figure 2.28. Simulated aurora. Current increases continuously from top to bottom in each column. The
simulated beam is analogous to the experimental conditions leading to the data shown in Figure 2.15.

2.9.8 Numerical Aurora Simulations

A simulation of the laboratory aurora experiment of Section 2.8.2 is shown in Figure 2.28. The
parameters used in this simulation are g = 0.04, @, dr = 0.25, and w / Ax = 0.1, where w is the
width of the beam. To simulate the continuously increasing voltage applied to the beam, the
acceleration parameter E, / cB, was set to 0.05. The constant electric field causes the electrons
to accelerate in the —z direction and the ions to accelerate in the +z direction, thereby producing
atime-increasing beam current, in mimicry of increasing the voltage in the laboratory experiment.
The simulated beam patterns shown in Figure 2.28 are to be compared to Figure 2.15. Here we
again see an essentially rigid rotor rotation predicted by linear theory until vortices develop on the
beam.
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Figure 2.29. “Magnetic storm” produced by self-generated transverse magnetic field during beam vortexing.
The length of the arrows indicate relative field strength while direction gives the polarization. These frames
coincide with those of Figure 2.28.

The simulation allows an in-depth study of the other beam parameters and Fig 2.29 shows
the time evolution of the self-consistent magnetic field produced by the beam. The “magnetic
storm” shown corresponds to the beam profiles of Figure 2.28.
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Notes

! According to Chen (1985): “In aplasma, it is usually possible toassume n; = n.and V- E 20
atthe same time. We shall call this the plasma approximation. Itis afundamental trait of plasmas,
one which is difficult for the novice to understand. Do not use Poisson’s equation to obtain E
unless it is unavoidable!”

2 This equation differs from the Alfvén-Lawson limiting current, I nax = /4 ﬂz / [ﬂz -1+ f,]
because of the differing ways in describing charge neutralization [Witalis 1981].

3 The dispersion relation for a beam of electrons propagating through a plasma is simply
1=0lo’+ 0o -kV,)’. If the beam is relativistic w £ is replaced by @ 3/7 °.

4 In the prescription for Landau damping [Chen 1984}, if the electrons are traveling slower
than and in the same direction as the wave, they take energy from it.

5 The dielectric medium of the Marx bank may be 300,000 liters of transformer oil while the
pulseline may contain 400,000 liters of deionized water.

¢ The term “plasmoid” was coined by W. Bostick (1956) to describe the force-free self-
magnetic field carrying entities he experimented with.





