Anthony L. Peratt Physics of the Plasma Universe

Springer-Verlag

Anthony L. Peratt

Physics of the Plasma Universe

With 208 Figures

Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest Anthony L. Peratt Los Alamos National Laboratory Los Alamos, NM 87545 USA

Library of Congress Cataloging-in-Publication Data Peratt, Anthony L. Physics of the plasma universe/Anthony L. Peratt. p. cm. Includes bibliographical references. ISBN 0-387-97575-6 1. Plasma astrophysics. I. Title. QB462.7.P47 1991 523.01 - dc20 91-16637

Printed on acid-free paper.

© 1992 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Francine Sikorski; manufacturing supervised by Robert Paella. Photocomposed copy prepared using PageMaker. Printed and bound by Braun-Brumfield, Ann Arbor, MI. Printed in the United States of America.

987654321

ISBN 0-387-97575-6 Springer-Verlag New York Berlin Heidelberg ISBN 3-540-97575-6 Springer-Verlag Berlin Heidelberg New York

Preface

The purpose of this book is to address the growing recognition of the need for plasma physics in astrophysics. In fact, astrophysics has contributed to the growth of plasma physics, especially in the field of plasma waves. During the last decade, plasma physics, or more appropriately, plasma science, has witnessed an explosive growth in two areas: pulsed-power technology and space physics. Both have led to knowledge that is mutual and complementary, and the material in this book largely derives from these new discoveries and their application to astrophysics. With the passage of the Voyager spacecraft in 1989, Neptune was transformed from an astronomical object to a space science object. In our solar system, only Pluto remains unvisited. In this decade of exploration, the solar system has become recognized as the primary plasma laboratory in which plasma processes of great generality and astronomical significance can be studied in situ. By the 1960s, with the discovery of the earth's natural plasmas, the Van Allen radiation belts, and the solar wind, it was already clear that future understanding of the earth and sun would be expressed in terms of plasmas. Today plasma is recognized as the key element to understanding the generation of magnetic fields in planets, stars, and galaxies; phenomena occurring in stellar atmospheres, in the interstellar and intergalactic media, in radio galaxies, in quasars, and in active galactic nuclei; and the acceleration and transport of cosmic rays. There are convincing arguments for the view that the clouds out of which galaxies form and stars condense are ionized: The problem of the formation and structure of these clouds and bodies, therefore, naturally belongs to the field of cosmic plasmas as well as astrophysics. Each has traditionally been pursued independently. Only recently has there been a tendency to view them as a unified discipline.

Together these problems form what is called *The Plasma Universe*, the basis for this book. The material presented dwells basically on the known properties of matter in the plasma state. Some of the interesting topics in contemporary astrophysics such as discordant redshifts and other cosmological issues are not discussed here. The interested reader will be referred to the *IEEE Transactions on Plasma Science*, Special Issues on Space and Cosmic Plasmas (December 1986, April 1989, and February 1990), and *Laser and Particle Beams* (August 1988).

This book is organized into eight chapters. Chapter 1 is an introduction to the fundamental physics of cosmic plasmas. An attempt is made to review the known properties of plasmas from the laboratory scale to the Hubble distance. Chapter 2

starts the application of basic plasma theory to astrophysical plasmas in the study of magnetic-field-aligned (Birkeland) currents and charged particle beams. Chapter 3 covers magnetism in plasma and the Biot-Savart force law, while Chapter 4 concentrates on electric fields in space and cosmic plasmas. Chapters 5, 6, and 7 survey double layers, synchrotron radiation, and energy transport in plasmas, respectively. Chapter 8 covers the particle-in-cell simulation of astrophysical plasmas. Found throughout the book are examples that apply the material of the chapter or section to specific problems.

At the end of the book are appendixes highlighting topics that are often not covered in plasma physics or in astrophysics texts, or else are well-documented to the point that a short condensation suffices. Appendix A covers transmission line concepts in space plasmas. Appendix B is a condensation of the polarization properties of plasma waves. In Appendix C dusty and grain plasmas are discussed.

A list of references is given for each chapter. These are divided into parts: General references give a list of papers and books that cover the general aspects and that often give a more thorough treatment of the subjects covered, and special or specialized references document the sources for specific topics.

As far as possible, the equations are written to conform to SI regulations, but since this book deals with the plasma universe whose elements transcend many disciplines, from laboratory controlled fusion experiments to cosmology, a multitude of non-SI units are used. For example, it is customary in the laboratory to state densities in particles per cubic centimeter and magnetic induction in gauss, rather than in particles per cubic meter and tesla, as used in space plasmas. Likewise, units of light-years and parsecs are more meaningful to describe the dimensions of galaxies and clusters of galaxies than are meters. To aid visualization, both SI and familiar units are often given in the text.

This book could not have been written without the help and encouragement of many friends and colleagues. I am grateful to my collaborators at the Royal Institute of Technology, Stockholm, whose work I have freely drawn upon: Drs. C.-G. Fälthammar, P. Carlqvist, M. Raadu, L. Block, N. Brenning, S. Torvén, L. Lindberg, and M. Bohm. I am appreciative to my colleagues at Los Alamos: Drs. S. Gitomer, G. Nickel, R. Faehl, R. Shannahan, A. Greene, M. Jones, G. Gisler, B. Freeman, R. Keinigs, J. Borovosky, E. Lindman, A. Cox, and D. Lemons. Thanks are also due to Drs. H. Kuehl, A. Dessler, T. Potemra, G. Reber, R. Beck, P. Marmet, W. Bostick, V. Nardi, F. Gratton, B. Meierovich, A. Crusius-Wätzel, N. Rostocker, T. Eastman, J.-P. Vigier, E. Witalis, E. Wollman and N. Salingaros. I am especially indebted to O. Buneman, J. Green, C. Snell, W. Peter, E. Lerner, and H. Alfvén for their constant encouragement. Last, my wife, Glenda, and children, Sarah, Galvin, and Mathias, should not be forgotten for the time given to complete this book.

Los Alamos, New Mexico

Anthony L. Peratt

Contents

Pr	eface	• • • • • • •		v	
1.	Cosmic Plasma Fundamentals				
	1.1	Plasma		1	
	1.2	The Ph	ysical Sizes and Characteristics of Plasmas in the Universe	2	
		1.2.1	Plasmas on Earth	2	
		1.2.2	Near-Earth Plasmas	4	
			Plasmas in the Solar System	8	
			Transition Regions in the Solar System	10	
			Solar, Stellar, and Interstellar Plasmas	10	
		1.2.6	Galactic and Extragalactic Plasmas	16	
	1.3		s of Applicability of Plasma Physics	17	
	1.4		Generation and Transmission	20	
	1.5	Electric	cal Discharges in Cosmic Plasma	22	
	1.6		Acceleration in Cosmic Plasma	23	
		1.6.1	Acceleration of Electric Charges	23	
			Collective Ion Acceleration	23	
	1.7	Plasma	Pinches and Instabilities	26	
		1.7.1	The Bennett Pinch	26	
		1.7.2	The Force-Free Configuration	28	
		1.7.3	The Diocotron Instability	29	
		1.7.4	Critical Ionization Velocity	30	
	1.8	Diagno	osing Cosmic Plasmas	33	
		1.8.1	The Electromagnetic Spectrum	33	
		1.8.2	In Situ Space Probes	39	
2.	Birl	keland (Currents in Cosmic Plasma	43	
	2.1	Histor	y of Birkeland Currents	43	
	2.2	Field-A	Aligned Currents in Laboratory Plasma	47	
	2.3		Aligned Currents in Astrophysical Plasmas	48	
	2.4	Basic H	Equations of Magnetohydrodynamics	49	
		2.4.1	General Plasma Fluid Equations	49	
		2.4.2	Magnetic Reynolds and Lundquist Numbers	51	
	2.5		eneralized Bennett Relation	52	
		2.5.1	The Bennett Relation	55	
		2.5.2	Alfvén Limiting Current	- 55	

viii	Contents

		2.5.3	Charge Neutralized Beam Propagation	56
		2.5.4	Current Neutralized Beam Propagation	57
		2.5.5	Discussion	57
		2.5.6	Beam Propagation Along an External Magnetic Field	58
		2.5.7	Schönherr Whirl Stabilization	58
		2.5.8	The Carlqvist Relation	58
		2.5.9	The Cylindrical Pinch	59
			The Sheet Pinch	61
	2.6	Applic	ation of the Carlqvist Relation	62
		2.6.1	Birkeland Currents in Earth's Magnetosphere	62
		2.6.2	Currents in the Solar Atmosphere	63
		2.6.3	Heliospheric Currents	64
		2.6.4	Currents in the Interstellar Medium	65
		2.6.5	Currents in the Galactic Medium	66
		2.6.6	Currents in the Intergalactic Medium	66
	2.7	Basic I	Fluid and Beam Instabilities	67
		2.7.1	Jeans Condition for Gravitational Instability	67
		2.7.2	Two-Stream (Buneman) Instability	68
		2.7.3	Sausage and Kink Instabilities	70
	2.8	Labora	atory Simulation of Cosmic Plasma Processes	71
		2.8.1	High-Current Plasma Pinches	72
		2.8.2	Laboratory Aurora Simulations	74
	2.9		article-in-Cell Simulation of Beams and Birkeland Currents	76
		2.9.1	Charge and Current Neutralized Beam Propagation in Plasma	77
		2.9.2	Relativistic and Mildly Relativistic Beam Propagation in Plasma	78
		2.9.3	Propagation of a Relativistic Beam Bunch Through Plasma	79
		2.9.4	Beam Filamentation	79
		2.9.5	Dynamical Evolution of a Narrow Birkeland Filament	80
		2.9.6	Vortex Formation in Thin Cylindrical Electron Beams	84
			Propagating Along a Magnetic Field	04
		2.9.7	Charge-Neutralized Relativistic Electron Beam Propagation	87
			Along a Magnetic Field	89
		2.9.8	Numerical Aurora Simulations	09
3.	Bio	-Sava	rt Law in Cosmic Plasma	93
	3.1		y of Magnetism	93
	3.2	The M	lagnetic Interaction of Steady Line Currents	94
	3.3	The M	lagnetic Induction Field	95
		3.3.1	Field from an Infinite Conductor of Finite Radius	96
		3.3.2	Force Between Two Infinite Conductors	97
	3.4	The V	ector Potential	99
		3.4.1	Field from a Circular Loop and Force Between Two Circular Loops	99
		3.4.2	Force Between Two Circular Loops Lying in a Plane	101
	3.5	Quasi	Stationary Magnetic Fields	101
		3.5.1	Faraday's Law	102
		3.5.2	Motion Induced Electric Fields	103
		3.5.3	Faraday Disk Dynamo	104

	3.6	Inductance	104
	3.7	Storage of Magnetic Energy	106
			106
		3.7.2 In Situ Storage in Force Free Magnetic Field Configurations	107
	3.8	Forces as Derivatives of Coefficients of Inductance	108
	3.9		108
			110
			111
			111
		3.10.3 Polarization Forces	113
		3.10.4 Magnetic Energy Distribution and Magnetic Isobars	113
			119
			119
	3.11		119
	5.11		119
			122
			126
			128
			131
			135
4.	Elec	ctric Fields in Cosmic Plasma	137
	4.1	Electric Fields	137
	4.2	Micubaromont of Diobatic Frends for the first for the firs	138
	4.3	Magnetic I leia / Migned Electric I leias	143
		4.5.1 Comstemess Thermodelettic Entern	143
		4.3.2 Magnetic Mirror Effect	144
		4.5.5 Electrostatic Shoeks fifthere is the second state is the sec	145
		4.5.4 Electric Double Edgers	146
	4.4	Mugnetospherie Dieetrie Tields	146
		The I monitup more that the transmission of transmission o	146
		The I halfhalloot	147
		The reader biller to the test of t	149
		4.4.4 The Mugnetotun	149
		4.4.5 The Mugnetopulate The Mugnetopulate	149
		4.4.6 The Fuller in Receiver attention region for the first state of the state of t	149
			153
	4.5	Outstanding Quotions	154
	4.6		156
		Herr Survey Bisenan Bes Treater Treater Treater	156
			156
•		4.6.3 Marklund Convection and Separation of Elements	165
		4.6.4 Particle Acceleration and Runaway	168
		4.6.5 Field-Aligned Electric Fields as the Source of Cosmic Rays	170
_	D -	uhle Teasure in Alatana humian	171
э.		uble Layers in Astrophysics	171
	5.1	General Description of Double Layers	171

x Conte

	5.2	The Ti	ime-Independent Double Layer	173
		5.2.1	One-Dimensional Model	173
		5.2.2	Ratio of the Current Densities	175
		5.2.3	The Potential Drop	176
		5.2.4	Structure of the Double Layer	176
		5.2.5	Kinetic Description	176
	5.3	Particl	le-in-Cell Simulation of Double Layers	179
		5.3.1	Simulations of the Two-Stream Instability	180
		5.3.2	Simulations of Double Layers	182
	5.4	Doubl	e Layers in Current Filaments	183
	5.5	Basic 1	Properties of Double Layers	185
		5.5.1	Double Layers as a Surface Phenomena	185
		5.5.2	Noise and Fluctuations in Double Layers	186
		5.5.3	Exploding Double Layers	186
		5.5.4	Oblique Double Layers	188
	5.6	Examp	ples of Cosmic Double Layers	188
		5.6.1	Double Layers in the Auroral Circuit	188
		5.6.2	Solar Flares	191
		5.6.3	Double Radio Galaxies and Quasars	1 94
		5.6.4	Double Layers as a Source of Cosmic Radiation	195
4	C.m	ahratre	an Dadiction	197
о.	-		on Radiation	197
	6.1		y of Radiation from an Accelerated Charge	198
		6.1.1	The Induction Fields	201
		6.1.2	The Radiation Fields	201
	6.2		tion of an Accelerated Electron in a Magnetic Field	
		6.2.1	Angular Distribution of the Radiation	211
	~ ~	6.2.2	Frequency Distribution of the Radiation	213 219
	6.3		Polarization	219
		6.3.1	Polarization in the Plane of Rotation	219
		6.3.2	Polarization for Arbitrary Angles of Observation	220
	6.4		tion from an Ensemble of Electrons	222
		6.4.1	Velocity-Averaged Emissivity	222
		6.4.2	Emission from an Ensemble of Electrons	229
	6.5	•	rotron Radiation from Z Pinches	229
		6.5.1	X Ray Emission	230
		6.5.2	X Ray Spectroscopy	230
		6.5.3	Morphology of the Thermal X Ray Source	230
	6.6		le-in-Cell Simulation of Synchrotron Processes	233
		6.6.1	Simulated Z Pinches	233
		6.6.2 6.6.3	Synchrotron Bursts from Simulated Z Pinches	234
	6.7		Synchrotron Source Radiation Patterns	236
	0./	5yncn 6.7.1	Gross Radio Properties of Galaxies	236
		6.7.1 6.7.2	-	230
		6.7.2 6.7.3	Double Radio Galaxies	240
			"Jets" and Superluminosity Ouasars and Active Galaxy Nuclei	244 248
		6.7.4	X Ray and Gamma-Ray Sources	240
		6.7.5	A Ray and Gannila-Ray Sources	201

x

7.	Transport of Cosmic Radiation			253
	7.1		Transport in Plasma	254
		7.1.1	Group Velocity	256
		7.1.2	Time Rate of Decay of Wave Oscillations	262
	7.2	Applica	ations of Geometrical Optics	262
		7.2.1	Basic Principle and Limitations of Geometrical Optics	262
		7.2.2	Equation of Transfer	267
	7.3	Black E	Body Radiation	270
	7.4	The So	urce Function and Kirchoff's Law	272
			Classical Limit of the Emission, Absorption, and Source Functions	273
	7.5		osorption by Plasma Filaments	275
	7.6		Scale, Random Magnetic Field Approximation	277
			Plasma Effects	279
			Monoenergetic Electrons	280
	7.7	Anisoti	ropic Distribution of Velocities	281
8.	Part	icle-in-	Cell Simulation of Cosmic Plasma	285
	8.1	"In-Situ	u" Observation of Cosmic Plasmas via Computer Simulation	285
	8.2	The Hi	story of Electromagnetic Particle-in-Cell Simulation	286
	8.3		ws of Plasma Physics	287
	8.4		imensional Particle-in-Cell Simulation	288
	0.1		Sampling Constraints in Multidimensional Particle Codes	288
			Discretization in Time and Space	289
			Spectral Methods and Interpolation	291
	8.5		jues for Solution	292
	0.5			293
			Leap-Frogging Particles Against Fields	293 294
			Particle Advance Algorithm	
			Field Advance Algorithm	295
	8.6		in Simulating Cosmic Phenomena	296
			Boundary Conditions	296
			Relativity	296
		8.6.3	Compression of Time Scales	297
		8.6.4	Collisions	297
	8.7	Gravita	tion	299
	8.8	Scaling	z Laws	300
	8.9	Data M	lanagement	301
	8.10	Further	Developments in Plasma Simulation	302
۸.			Transmission Line Fundamentals in Space and	
n	ppen		•	305
			Cosmic Plasmas	305
			A.1 Transmission Lines	305
				305
			A.3 Primary Parameters	307
			A.4 General Equations	307
			A.4.1 The General Case	308
			A.4.2 The Special Case of the Lossiess Line	500

xii Contents

	 A.5 Heaviside's Operational Calculus (The Lapace Transform) A.5.1 The Propagation Function A.5.2 Characteristic Impedance A.5.3 Reflection Coefficients A.6 Time-Domain Reflectometry 	309 309 311 312 314
Appendix B.	Polarization of Electromagnetic Waves in Plasma	317
Appendix C.	Dusty and Grain Plasmas C.1 Dusty Plasma C.2 Grain Plasma	325 325 326
Appendix D.	Some Useful Units and Constants	331
Appendix E.	TRISTAN	335
References		345
Index		363