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We consider the problem of how to obtain the formula for the 
(constant) magnetization M vector field in the case of a large 
volume of a uniformly and permanently magnetized magnetic 
material that is everywhere magnetized parallel to a fixed vector
(we take the fixed vector [0, 0, 1] here for convenience sake) in
terms of the (constant) dipole density of a hypothetical space of
uniformly distributed electron dipoles with each dipole vector 
parallel to this vector [0, 0, 1] and pointing upward.  We also 
assume this space of dipoles is of (uniform) magnetization M.  
This means that we are considering the case where ALL (lined up) 
dipoles are of the same type (i.e. spinning electrons) and all 
dipole moments are parallel to this unit vector.  Of course, it 
is believed to be true that nuclei also have spin and dipole 
moments (in addition to electrons), but they are believed to be 
small and so we ignore them herein.  Further, we do NOT accept 
the idea that electrons orbit the nuclei of atoms since, if they 
did, they would have then to radiate all their energy.  
Copenhagen quantum mechanics postulates that this radiation 
cannot occur, but this sounds suspicious to us; and so we follow 
Dr. Charles (Bill) Lucas, Jr. here ... who shows in his excellent
recent book, "The Universal Force Volume 1," that this postulate 
is both unnecessary and unfortunate.

Now that this space of dipoles has uniform magnetization M then 
means that at any point P inside this space, if we consider a 
small sphere with center at P and the vector sum of the dipole 
fields inside this sphere divided by this sphere's volume, then 
in the limit when this sphere has its radius go to zero but still
having center at P.

We begin by assuming that we have a "dipole gas" instead of such 
a space of electron dipoles described above.  This means that we 
consider a space of infinitesimally small bits of dipole material
that all have the same infinitesimal dipole moment vector dm = 
([0, 0, 1] dmm), where dmm = ABS(dm) is the infinitesimal 
(scalar) dipole moment of of any such bit of dipole material.  
This dipole gas has uniform dipole density ¿ > 0 by assumption 
(where this density takes into account this infinitisimal dipole 
moment also, and so is not just a number that is dimensionless). 
This means that dmm = lim((¿ dV) / dV) as dV --> 0 and this limit
is evidently ¿, where dV is a volumn element containing the point
P at which the bit corresponding to dmm is located.

The classical formula for the A vector field inside magnetic 
field at point having position vector r2 [where the H field is 
assumed to vanish everywhere inside the magnet] is:

          A(r2) = (mu0 / (4 ¹))((m cross r2) / rr2^3),
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where rr2 = ABS(r2) is the scalar magnitude of the position 
vector r2 and where the origin of our coordinate system is very 
near the dipole center.  [In our dipole gas case, we take (in 
effect) the origin AT the bit of dipole gas in question.]  Here, 
we have M = ((1 / mu0) curl(A)) inside the magnet.  We use only 
mu0 here, NOT more generally mu, simply because we are assuming 
that we only consider a space of lined-up electrons and ignore 
nuclei entirely in our present magnetic modeling.

We assume this formula to govern the magnetization field A 
according to our remarks above concerning the derivation of A in 
terms of this our diplole gas, where we will (in view of our 
dipole gas having been assumed to be of constant density ¿ and 
each bit's diplole field being everywhere parallel to the vector 
[0, 0, 1]) assume that our origin having coordinates [xpr, ypr, 
zpr] and we will consider all the dipole gas contained in the 
cylinderical magnet (vith vertex at this origin) and of cylinder 
length Lt > 0 along the x-axis.  Further, we will integrate this 
diplole gas over this cylinder's interior to obtain A at a 
typical magnet point [xpr, ypr, zpr] in the cylinderical magnet. 

Then our formula becomes:

     A(xpr, ypr, zpr) = the volumn integral of (¿ mu0 / (4 ¹)) 
(CROSS(dmm [0, 0, 1], -[x - xpr, y - ypr, z - zpr] / (ABS(-[x - 
xpr, y - ypr, z - zpr]))^3

where (again) dmm = ¿ dV.  Here we use the minus position vector 
as we want it to be from the dipole (scalar) element dmm in 
question to our typical cylindrical magnet point [xpr, ypr, zpr] 
for a best approximation.  (See page 164 of Reitz and Milford.)

Finally, we use the value R = (3.87056242 10^-13) since this 
value does NOT involve the Copenhagen quantum theory factor of 
root3 that Beiser mentions, but only the angular spin of hbar/2, 
not (root3 hbar / 2) that is in Beiser.  (This latter fails to 
result in a working electron model of our ring type.)  This is 
because the only component of the spin vector that will not 
cancel in the lattice of ring electrons is the component along 
[0, 0, 1], that is, along the magnet B = curl(A) field, and this 
non-vanishing component is obtained by using this value of R as 
the ring magnetic moment is (e v R / 2), where e is the magnitude
of the electron charge and v is the velocity of the electron 
charge circuling the electron center.  (In our modeling, the free
electron in the ground state, v = c, the velocity of light in a 
vacuum.)  For more information concerning Bergman-Allen ring 
electron modeling, see David Bergman's web site.

#1: CaseMode := Sensitive
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#2: InputMode := Word

We can then write:

#3:

   µ0                                                      
 —————·CROSS(dmm·[0, 0, 1], - [x - xpr, y - ypr, z - zpr]) 
  4·¹                                                      
———————————————————————————————————————————————————————————
                                            3              
               ¦[x - xpr, y - ypr, z - zpr]¦               

Simplifying:

#4:

„                             dmm·µ0·(y - ypr)                         ~
¦——————————————————————————————————————————————————————————————————————~
¦       2              2              2                2      2      2 ~
… 4·¹·(x  - 2·xpr·x + y  - 2·ypr·y + z  - 2·zpr·z + xpr  + ypr  + zpr )~

      
————, 
3/2   
      

                             dmm·µ0·(xpr - x)                        ~
—————————————————————————————————————————————————————————————————————~
       2              2              2                2      2      2~
 4·¹·(x  - 2·xpr·x + y  - 2·ypr·y + z  - 2·zpr·z + xpr  + ypr  + zpr ~

        †
—————, 0¦
 3/2    ¦
)       ‡

This just above is our A field at [xpr, ypr, zpr] due to the 
dipole gas at [x, y, z].  We need to volume integrate over the 
cylinderical magnet with respect to x, y and z to obtain the A 
value at [xpr, ypr, zpr] in the magnet.

But first we must simplify as this integral is too complicated.  
We can begin simplifying by assuming that the magnet is doubly 
infinite in the z direction since the pole strength of a 
cylindrical magnet is its dipole moment divided by the length 
"Lt", and the dipole moment is just M multiplied by the pole area
that is (¹ Rt^2), where Rt is the cylinder radius.  Then we have 
that we may assume that zpr = 0 as the cylinder is assumed doubly
infinite and using z-axis symmetry.  We integrate from z = -z to 
z = z to pick up the whole cylinder volume:

#5:

 z  
ˆ   
¦   
¦   
‰   
 -z 



File: Dipole gas A field ver13.dfwDate: 9/30/2015 Time: 5:15:36 AM

Page: 4

                                                                     ~
„                             dmm·µ0·(y - ypr)                       ~
¦————————————————————————————————————————————————————————————————————~
¦       2              2              2                2      2      ~
… 4·¹·(x  - 2·xpr·x + y  - 2·ypr·y + z  - 2·zpr·z + xpr  + ypr  + zpr~
                                                                     ~

        
        
——————, 
2 3/2   
 )      
        

                                                                     ~
                             dmm·µ0·(xpr - x)                        ~
—————————————————————————————————————————————————————————————————————~
       2              2              2                2      2      2~
 4·¹·(x  - 2·xpr·x + y  - 2·ypr·y + z  - 2·zpr·z + xpr  + ypr  + zpr ~
                                                                     ~

            
        †   
—————, 0¦ dz
 3/2    ¦   
)       ‡   
            

Simplifying:

#6:

„                          2              2              2             ~
¦     dmm·µ0·(y - ypr)·(‹(x  - 2·xpr·x + y  - 2·ypr·y + z  - 2·zpr·z + ~
¦——————————————————————————————————————————————————————————————————————~
¦       2              2                2      2     2              2  ~
… 4·¹·(x  - 2·xpr·x + y  - 2·ypr·y + xpr  + ypr )·‹(x  - 2·xpr·x + y  -~

   2      2      2                 2              2              2   ~
xpr  + ypr  + zpr )·(z + zpr) + ‹(x  - 2·xpr·x + y  - 2·ypr·y + z  + ~
—————————————————————————————————————————————————————————————————————~
            2                2      2      2     2              2    ~
 2·ypr·y + z  + 2·zpr·z + xpr  + ypr  + zpr )·‹(x  - 2·xpr·x + y  - 2~

             2      2      2                  
2·zpr·z + xpr  + ypr  + zpr )·(z - zpr))      
————————————————————————————————————————————, 
          2                2      2      2    
·ypr·y + z  - 2·zpr·z + xpr  + ypr  + zpr )   

                          2              2              2            ~
     dmm·µ0·(xpr - x)·(‹(x  - 2·xpr·x + y  - 2·ypr·y + z  - 2·zpr·z +~
—————————————————————————————————————————————————————————————————————~
       2              2                2      2     2              2 ~
 4·¹·(x  - 2·xpr·x + y  - 2·ypr·y + xpr  + ypr )·‹(x  - 2·xpr·x + y  ~
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    2      2      2                 2              2              2  ~
 xpr  + ypr  + zpr )·(z + zpr) + ‹(x  - 2·xpr·x + y  - 2·ypr·y + z  +~
—————————————————————————————————————————————————————————————————————~
             2                2      2      2     2              2   ~
- 2·ypr·y + z  + 2·zpr·z + xpr  + ypr  + zpr )·‹(x  - 2·xpr·x + y  - ~

              2      2      2                   †
 2·zpr·z + xpr  + ypr  + zpr )·(z - zpr))       ¦
—————————————————————————————————————————————, 0¦
           2                2      2      2     ¦
2·ypr·y + z  - 2·zpr·z + xpr  + ypr  + zpr )    ‡

#7:

     
     
lim  
z˜+– 
     

„                          2              2              2           ~
¦     dmm·µ0·(y - ypr)·(‹(x  - 2·xpr·x + y  - 2·ypr·y + z  - 2·zpr·z ~
¦————————————————————————————————————————————————————————————————————~
¦       2              2                2      2     2              2~
… 4·¹·(x  - 2·xpr·x + y  - 2·ypr·y + xpr  + ypr )·‹(x  - 2·xpr·x + y ~

     2      2      2                 2              2              2 ~
+ xpr  + ypr  + zpr )·(z + zpr) + ‹(x  - 2·xpr·x + y  - 2·ypr·y + z  ~
—————————————————————————————————————————————————————————————————————~
              2                2      2      2     2              2  ~
 - 2·ypr·y + z  + 2·zpr·z + xpr  + ypr  + zpr )·‹(x  - 2·xpr·x + y  -~

               2      2      2                  
+ 2·zpr·z + xpr  + ypr  + zpr )·(z - zpr))      
——————————————————————————————————————————————, 
            2                2      2      2    
 2·ypr·y + z  - 2·zpr·z + xpr  + ypr  + zpr )   

                          2              2              2            ~
     dmm·µ0·(xpr - x)·(‹(x  - 2·xpr·x + y  - 2·ypr·y + z  - 2·zpr·z +~
—————————————————————————————————————————————————————————————————————~
       2              2                2      2     2              2 ~
 4·¹·(x  - 2·xpr·x + y  - 2·ypr·y + xpr  + ypr )·‹(x  - 2·xpr·x + y  ~

    2      2      2                 2              2              2  ~
 xpr  + ypr  + zpr )·(z + zpr) + ‹(x  - 2·xpr·x + y  - 2·ypr·y + z  +~
—————————————————————————————————————————————————————————————————————~
             2                2      2      2     2              2   ~
- 2·ypr·y + z  + 2·zpr·z + xpr  + ypr  + zpr )·‹(x  - 2·xpr·x + y  - ~

              2      2      2                   †
 2·zpr·z + xpr  + ypr  + zpr )·(z - zpr))       ¦
—————————————————————————————————————————————, 0¦
           2                2      2      2     ¦
2·ypr·y + z  - 2·zpr·z + xpr  + ypr  + zpr )    ‡

Simplifying:



File: Dipole gas A field ver13.dfwDate: 9/30/2015 Time: 5:15:36 AM

Page: 6

#8:

„                 dmm·µ0·(y - ypr)                  
¦—————————————————————————————————————————————————, 
¦       2              2                2      2    
… 2·¹·(x  - 2·xpr·x + y  - 2·ypr·y + xpr  + ypr )   

                 dmm·µ0·(xpr - x)                   †
—————————————————————————————————————————————————, 0¦
       2              2                2      2     ¦
 2·¹·(x  - 2·xpr·x + y  - 2·ypr·y + xpr  + ypr )    ‡

This is the A field at [xpr, ypr, 0] due to the dipole gas at [x,
y, z] assuming a doubly infinite cylinderal magnet.  And we may 
estimate at finite cylinder of length Lt using it if we ignore 
edge and end effects ... which we do.  And since the magnet is 
assumed above to be doubly infinite to simplify the integrals, 
this is also the A field at [xpr, ypr, zpr].  

We next need to calculate the total A field at [xpr, ypr, 0] that
is also the A field at [xpr, ypr, zpr] by our estimation, and so 
we introduce cylindrical coordinates:

#9: x = º·COS(²)

#10: y = º·SIN(²)

Substituting into #8:

#11:

„                               dmm·µ0·(º·SIN(²) - ypr)                ~
¦——————————————————————————————————————————————————————————————————————~
¦                2                                2                    ~
… 2·¹·((º·COS(²))  - 2·xpr·(º·COS(²)) + (º·SIN(²))  - 2·ypr·(º·SIN(²)) ~

                 
———————————————, 
     2      2    
+ xpr  + ypr )   

                               dmm·µ0·(xpr - º·COS(²))               ~
—————————————————————————————————————————————————————————————————————~
                2                                2                   ~
 2·¹·((º·COS(²))  - 2·xpr·(º·COS(²)) + (º·SIN(²))  - 2·ypr·(º·SIN(²))~

                   †
————————————————, 0¦
      2      2     ¦
 + xpr  + ypr )    ‡

Simplifying:

#12:

„                  dmm·µ0·(ypr - º·SIN(²))                   
¦——————————————————————————————————————————————————————————, 
¦                                         2      2      2    
… 2·¹·(2·º·xpr·COS(²) + 2·º·ypr·SIN(²) - º  - xpr  - ypr )   
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                  dmm·µ0·(º·COS(²) - xpr)                    †
——————————————————————————————————————————————————————————, 0¦
                                         2      2      2     ¦
 2·¹·(2·º·xpr·COS(²) + 2·º·ypr·SIN(²) - º  - xpr  - ypr )    ‡

Multiplying by º, the Jacobian:

#13:

„                  dmm·µ0·(ypr - º·SIN(²))                   
¦——————————————————————————————————————————————————————————, 
¦                                         2      2      2    
… 2·¹·(2·º·xpr·COS(²) + 2·º·ypr·SIN(²) - º  - xpr  - ypr )   

                  dmm·µ0·(º·COS(²) - xpr)                    †  
——————————————————————————————————————————————————————————, 0¦·º
                                         2      2      2     ¦  
 2·¹·(2·º·xpr·COS(²) + 2·º·ypr·SIN(²) - º  - xpr  - ypr )    ‡  

#14:

�„                  dmm·µ0·(ypr - º·SIN(²))                   
¦¦——————————————————————————————————————————————————————————, 
¦¦                                         2      2      2    
�… 2·¹·(2·º·xpr·COS(²) + 2·º·ypr·SIN(²) - º  - xpr  - ypr )   
                                                              

                  dmm·µ0·(º·COS(²) - xpr)                    †  ‚ 
——————————————————————————————————————————————————————————, 0¦·º¦ 
                                         2      2      2     ¦  ¦ 
 2·¹·(2·º·xpr·COS(²) + 2·º·ypr·SIN(²) - º  - xpr  - ypr )    ‡  ƒ 
                                                                 1

Simplifying:

#15:

                 dmm·µ0·º·(ypr - º·SIN(²))                
——————————————————————————————————————————————————————————
                                         2      2      2  
 2·¹·(2·º·xpr·COS(²) + 2·º·ypr·SIN(²) - º  - xpr  - ypr ) 

#16:

 Rt                                                                    
ˆ    2·¹                                                               
¦   ˆ                     dmm·µ0·º·(ypr - º·SIN(²))                    
¦   ¦    —————————————————————————————————————————————————————————— d² 
¦   ¦                                             2      2      2      
¦   ‰     2·¹·(2·º·xpr·COS(²) + 2·º·ypr·SIN(²) - º  - xpr  - ypr )     
‰    0                                                                 
 0                                                                     

  
  
  
dº
  
  
  
  

Simplifying:
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#17:

            ¦  2      2      2¦                   2      2      2  
 dmm·µ0·ypr·¦Rt  - xpr  - ypr ¦     dmm·µ0·ypr·(Rt  + xpr  + ypr ) 
———————————————————————————————— - ————————————————————————————————
               2      2                           2      2         
         4·(xpr  + ypr )                    4·(xpr  + ypr )        

This just above is the total A1 field at [xpr, ypr, 0].

#18:

�„                  dmm·µ0·(ypr - º·SIN(²))                   
¦¦——————————————————————————————————————————————————————————, 
¦¦                                         2      2      2    
�… 2·¹·(2·º·xpr·COS(²) + 2·º·ypr·SIN(²) - º  - xpr  - ypr )   
                                                              

                  dmm·µ0·(º·COS(²) - xpr)                    †  ‚ 
——————————————————————————————————————————————————————————, 0¦·º¦ 
                                         2      2      2     ¦  ¦ 
 2·¹·(2·º·xpr·COS(²) + 2·º·ypr·SIN(²) - º  - xpr  - ypr )    ‡  ƒ 
                                                                 2

Simplifying:

#19:

                 dmm·µ0·º·(º·COS(²) - xpr)                
——————————————————————————————————————————————————————————
                                         2      2      2  
 2·¹·(2·º·xpr·COS(²) + 2·º·ypr·SIN(²) - º  - xpr  - ypr ) 

This just above is A2, the second coordinate of A.

#20:

 Rt                                                                    
ˆ    2·¹                                                               
¦   ˆ                     dmm·µ0·º·(º·COS(²) - xpr)                    
¦   ¦    —————————————————————————————————————————————————————————— d² 
¦   ¦                                             2      2      2      
¦   ‰     2·¹·(2·º·xpr·COS(²) + 2·º·ypr·SIN(²) - º  - xpr  - ypr )     
‰    0                                                                 
 0                                                                     

  
  
  
dº
  
  
  
  

#21:

               2      2      2                 ¦  2      2      2¦ 
 dmm·µ0·xpr·(Rt  + xpr  + ypr )     dmm·µ0·xpr·¦Rt  - xpr  - ypr ¦ 
———————————————————————————————— - ————————————————————————————————
               2      2                           2      2         
         4·(xpr  + ypr )                    4·(xpr  + ypr )        

This just above is the total A2 field at [xpr, ypr, 0] and hence 
as [xpr, ypr, zpr].

We next calculate the B = curl(A) field, where by symmetry only 
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the third coordinate does not vanish:

#22:

      �               2      2      2     
  d   ¦ dmm·µ0·xpr·(Rt  + xpr  + ypr )    
————— ¦———————————————————————————————— - 
d xpr ¦               2      2            
      �         4·(xpr  + ypr )           

            ¦  2      2      2¦ ‚
 dmm·µ0·xpr·¦Rt  - xpr  - ypr ¦ ¦
————————————————————————————————¦
               2      2         ¦
         4·(xpr  + ypr )        ƒ

Simplifying:

#23:

           2     2      2       4        2    2      4         2      2~
 dmm·µ0·(Rt ·(xpr  - ypr ) + xpr  + 2·xpr ·ypr  + ypr )·SIGN(Rt  - xpr ~
———————————————————————————————————————————————————————————————————————~
                                      2      2 2                       ~
                                4·(xpr  + ypr )                        ~

      2                2     2      2       4      2       2      2   
 - ypr )     dmm·µ0·(Rt ·(xpr  - ypr ) - xpr  - ypr ·(2·xpr  + ypr )) 
————————— - ——————————————————————————————————————————————————————————
                                       2      2 2                     
                                 4·(xpr  + ypr )                      

This just above is d(A2)/d(xpr).

#24:

      �            ¦  2      2      2¦    
  d   ¦ dmm·µ0·ypr·¦Rt  - xpr  - ypr ¦    
————— ¦———————————————————————————————— - 
d ypr ¦               2      2            
      �         4·(xpr  + ypr )           

               2      2      2  ‚
 dmm·µ0·ypr·(Rt  + xpr  + ypr ) ¦
————————————————————————————————¦
               2      2         ¦
         4·(xpr  + ypr )        ƒ

Simplifying:

#25:

           2     2      2       4      2       2      2          2     ~
 dmm·µ0·(Rt ·(xpr  - ypr ) - xpr  - ypr ·(2·xpr  + ypr ))·SIGN(Rt  - xp~
———————————————————————————————————————————————————————————————————————~
                                       2      2 2                      ~
                                 4·(xpr  + ypr )                       ~

 2      2                2     2      2       4        2    2      4  
r  - ypr )     dmm·µ0·(Rt ·(xpr  - ypr ) + xpr  + 2·xpr ·ypr  + ypr ) 
——————————— - ————————————————————————————————————————————————————————
                                        2      2 2                    
                                  4·(xpr  + ypr )                     

This just above is d(A1)/d(ypr).
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Thus B3, the third coordinate of B, is d(A2)/d(xpr) - d(A1)/d
(ypr):

#26:

           2     2      2       4        2    2      4         2      2~
 dmm·µ0·(Rt ·(xpr  - ypr ) + xpr  + 2·xpr ·ypr  + ypr )·SIGN(Rt  - xpr ~
———————————————————————————————————————————————————————————————————————~
                                      2      2 2                       ~
                                4·(xpr  + ypr )                        ~

      2     
 - ypr )    
————————— - 
            
            

           2     2      2       4      2       2      2      
 dmm·µ0·(Rt ·(xpr  - ypr ) - xpr  - ypr ·(2·xpr  + ypr ))    
—————————————————————————————————————————————————————————— - 
                           2      2 2                        
                     4·(xpr  + ypr )                         

�           2     2      2       4      2       2      2          2  ~
¦ dmm·µ0·(Rt ·(xpr  - ypr ) - xpr  - ypr ·(2·xpr  + ypr ))·SIGN(Rt  -~
¦————————————————————————————————————————————————————————————————————~
¦                                       2      2 2                   ~
�                                 4·(xpr  + ypr )                    ~

    2      2     
 xpr  - ypr )    
—————————————— - 
                 
                 

           2     2      2       4        2    2      4  ‚
 dmm·µ0·(Rt ·(xpr  - ypr ) + xpr  + 2·xpr ·ypr  + ypr ) ¦
————————————————————————————————————————————————————————¦
                          2      2 2                    ¦
                    4·(xpr  + ypr )                     ƒ

Simplifying:

#27:

               2      2      2             
 dmm·µ0·SIGN(Rt  - xpr  - ypr )     dmm·µ0 
———————————————————————————————— + ————————
                2                      2   

This just above is B3, where B1 = B2 = 0.  But (Rt^2 - xpr^2 - 
ypr^2) is non-negative, so we have:

#28:
 dmm·µ0     dmm·µ0 
———————— + ————————
    2          2   

Simplifying:

#29: dmm·µ0
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This just above is B3.

But dmm = lim((¿ dV)/dV) as dV -->0 from above, so 

#30: µ0·¿

is the B field in the magnet, and so [CHANGING NOTATION (see just
below)]:

#31:

           Rt           
          ˆ     ¿       
 (2·¹)·Lt·¦   ————·º dº 
          ‰    µ0       
           0            
————————————————————————
            2           
       (¹·Rt )·Lt       

is the (Tesla) pole strength of the cylindrical magnet, first 
approximated by being assumed doubly infinite in the z 
integration above at #5 - #7 to avoid edge and end effects, where
we have CHANGED NOTATION (from #30) to ¿ being the B field 
density of the dipole [so that the M field is then (¿ / mu0)] to 
agree with Christian's and Hans' useage.  

We note that the late J.P. Wesley, in his "Scientific Physics" 
makes the point that the A field is actually basic to 
electromagnetic theory, NOT the B field; and we also note that we
tried for considerable time to work primarily with the dipole B 
field formula ... thereby avoiding the diplole A field formula 
above, but we did NOT succeed in this.  And the dipole gas idea 
used here was given to us by Dr. Thomas E. Phipps's idea of a 
"clock gas" in his critical analysis of Einstein's SRT that may 
be found on page 278 of his monumental "Old Physics for New", 
second edition (2012).   Further, we note that Dr. Phipps has 
also recently published a paper in the (now) AIP journal, 
"Physics Essays", in which he reports that he built and tested a 
version of the Marinov motor (in his home work shop) and that the
Lorentz law of force was found to FAIL in explaining this device 
of Marinov; and so he concludes that the A field is basic to EM 
theory, NOT the B field ... just as Dr. Wesley maintained.
 
We now realize that P.W. Bridgman was correct in his important 
book, "The Logic of Modern Physics" that to understand just what 
an experiment says, we must consider just what it measures and 
just how it measures it.  Christian's and Hans' magnetic data is 
in Tesla's, it must then follow that they are not actually 
measuring pole strength as magnetization times pole area, but 
rather the B field just off a pole since that is what a flux 
meter that gives its results in milli-Teslas must measure.  Thus,
to obtain the (magnetization) pole strength, one must convert the
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meter reading in milli-Teslas to the M field by dividing by 1000 
to obtain the B field in Teslas, and then convert to M by 
dividing by mu0 ... as just off the pole, M = 0, but then the B 
field then yields the M field in this way as H = 0 everywhere 
inside this cylindrical (permanent) magnet.  [This matter caused 
us to waste WEEKS of time trying to get our numbers to be 
correct.]

Simplifying:

#32:
  ¿ 
————
 µ0 

This just above is the (Tesla) pole strength of the magnet.

Christian's and Hans' data give this pole strength to be 0.5 
Tesla, so:

#33:
  ¿       
———— = 0.5
 µ0       

#34:
     �  ¿          ‚
SOLVE¦———— = 0.5, ¿¦
     � µ0          ƒ

#35:
     µ0 
¿ = ————
      2 

This just above is ¿, and it is equal to:

#36:
  e·v       2     
———————·(¹·R )·NUM
 2·¹·R            

where NUM is the number of dipoles in the (assumed) cubic lattice
(having sides of length "Le") that we use to approximate the 
actual uniformly magnetized material, not as a dipole gas [see 
Reitz and Milford's (1960) classical treatment of magnetic 
material and magnetization in their "Foundations of 
Electromagnetic Theory" (pages 182-5)].  And "v" is the charge 
velocity of the rings at the lattice points ... that is "c" in 
the ground state electron ring model.  But simplifying:

#37:
 NUM·R·e·v 
———————————
     2     

Since we assume a cubic lattice having sides "Le", we have 
approxmately:
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#38:
        -3
NUM = Le  

Substituting:

#39:
  e·v       2    -3
———————·(¹·R )·Le  
 2·¹·R             

#40:
     �  e·v       2    -3    µ0     ‚
SOLVE¦———————·(¹·R )·Le   = ————, Le¦
     � 2·¹·R                  2     ƒ

Simplifying:

#41:

                �    1/3           1/3 ‚         
       1/3  1/3 ¦   v        ‹3·î·v    ¦         
      R   ·e   ·¦- —————— - ———————————¦         
                �     2          2     ƒ         
Le = ———————————————————————————————————— ÷ Le = 
                       1/3                       
                     µ0                          

           �    1/3           1/3 ‚                         
  1/3  1/3 ¦   v        ‹3·î·v    ¦                         
 R   ·e   ·¦- —————— + ———————————¦           1/3  1/3  1/3 
           �     2          2     ƒ          R   ·e   ·v    
———————————————————————————————————— ÷ Le = ————————————————
                  1/3                               1/3     
                µ0                                µ0        

Taking the real root:

#42:

       1/3  1/3  1/3 
      R   ·e   ·v    
Le = ————————————————
             1/3     
           µ0        

This just above is "Le".

Christian's data and our ring model give Rt = 0.025 meter, Lt = 
0.077 meter, v = c, R = 3.87056242 10^-13, e = 1.602176487 10^-19
[absolute value], and 6000 rpm gives about a 9.8% effect.

#43:
              -13 1/3                -19 1/3        -7 - 
(3.87056242·10   )   ·(1.602176487·10   )   ·(4·¹·10  )  

1/3          1/3
   ·299792458   

Simplifying:

#44:
              -6
2.454888413·10  

This just above is "Le", the lattice spacing of the lined up 
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electrons in the assumed cubic lattice to get a Tesla pole 
strength of 0.5 Tesla assuming v = c for these ring electrons.  
Note that Le >> R = 3.87056242 10^-13, the ring electron large 
radius ... as it certainly must here ... because each cubic cell 
of side dx must contain just one (lined up) dipole electron, and 
this electron and the enclosing cell must both have the same 
point as centers ... as well.

We have that the magnetic moment of the ring is (I Area) which 
equals:

#45:
  e·c       2 
———————·(¹·R )
 2·¹·R        

Simplifying:

#46:
 R·c·e 
———————
   2   

Thus I = (e c / (2 ¹ R)), where e < 0 so I is negative as well.

Thus, by the right hand rule, if we consider a square in the x-y 
plane with (equal) sides dx and dy, then if there is current I 
flowing in the square, it is flowing clockwise viewed from the 
positive z-axis as that is in the negative direction.  And then 
the M vector of this current is pointing in the direction of the 
negative z-axis.  And (with the "v" below NOT the same as v = c 
of the electron ring above):

#47:
      e·v 
I = ——————
     4·dx 

We set the ring's magnetic moment equal to the square's magnetic 
moment (so they look the same from a distance), where we picture 
the ring center at the square center as well, and also the ring's
circle of symmetry in the x-y plane.  Thus, if we consider the 
square of side dx and the ring centered at the square center, 
they both look the same magnetically from a distance as they 
should.

#48:
  e·v    2     c·e       2 
——————·dx  = ———————·(¹·R )
 4·dx         2·¹·R        

#49:
     �  e·v    2     c·e       2    ‚
SOLVE¦——————·dx  = ———————·(¹·R ), v¦
     � 4·dx         2·¹·R           ƒ

Simplifing:
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#50:
     2·R·c         
v = ——————— ÷ e = 0
       Jx          

Selecting the first solution as e < 0:

#51:
 2·R·c 
———————
   dx  

This just above is v, the speed of the charge in the square of 
side dx to make the magnetic moments of the square and of the 
ring equal as vectors and the square's and the ring's centers 
being at the same point.

If we set dx = Le, we have:

#52:
 2·R·c 
———————
   Le  

Substituting:

#53:

                 -13            
 2·(3.87056242·10   )·299792458 
————————————————————————————————
                      -6        
        2.454797759·10          

Simplifying:

#54: 94.53857593

This just above is "v", the speed of current flow (clockwise) 
around the square of side dx.

Now, suppose that the square has center on the x positive axis at
distance º from the coordinate system origin and that the sides 
dy (equalling dx) are perpendicular to the x-axis while the sides
dx are parallel to this x-axis. Then, if the x-y plane is 
rotating at a constant angular velocity ÷ > 0 about the origin 
(i.e. counterclockwise viewed from the positive z-axis), we see 
that approximately we have that the velocity of charge around the
square of side dx is still v for the dx sides, but the near dy 
side (where dy = dx) has new (clockwise) speed ( v + (º - dx / 2)
÷) while the far dy side has new speed (-v + (º + dx / 2)÷) so 
that the speed sum is (where we add since we are going around):

#55:
�    �     dx ‚  ‚   �     �     dx ‚  ‚
¦v + ¦º - ————¦·÷¦ + ¦-v + ¦º + ————¦·÷¦
�    �      2 ƒ  ƒ   �     �      2 ƒ  ƒ

Simplifying:
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#56: 2·÷·º

Note that this is a function of ÷ and º.

This means that the new total average speed "vpr"(clockwise) 
around is:

#57:
 4·v + 2·÷·º 
—————————————
      4      

Simplifying:

#58:
 ÷·º     
————— + v
  2      

This just above is "vpr", the average (clockwise) speed of charge
around the square of side dx under rotation ÷.

But then the new current is "Ipr":

#59:
 e·vpr 
———————
  4·dx 

Substituting:

#60:

   � ÷·º     ‚ 
 e·¦————— + v¦ 
   �  2      ƒ 
———————————————
      4·dx     

Simplifying:

#61:
 e·(÷·º + 2·v) 
———————————————
      8·dx     

This just above is "Ipr", the new current (taking into account 
rotation) about the square at radius º having side dx = Le.

Thus the new magnetic moment is then:

#62:
 e·(÷·º + 2·v)    2
———————————————·dx 
      8·dx         

Simplifying:

#63:
 e·dx·(÷·º + 2·v) 
——————————————————
         8        

Substituting (with dx = Le):
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#64:

               -19                 -6                        
 (- 1.602176·10   )·(2.454797759·10  )·(÷·º + 2·94.53857593) 
—————————————————————————————————————————————————————————————
                              8                              

Simplifying:

#65:
                -26                     -24
- 4.916272567·10   ·÷·º - 9.295548148·10   

This just above is the square's magnetic moment under rotation.

Note that have the NUMERICALLY correct magnetic moment if ÷ = 0.

At #86 below we find (by definition of the magnetization) that we
must divide this just above magnetic moment by dx^3 to obtain 
"Mpr", the (rotational) magnetization of the cubic cell of side 
dx and at perpendicular distance º from the axis of the 
cylindrical magnet which has at the ring center as its center.   
Here we abuse notation slightly by using "Mpr" for the 
magnetization of the square at radius º instead of the weighed 
average magnetization as below.

#66:

                 -26                     -24 
 - 4.916272567·10   ·÷·º - 9.295548148·10    
—————————————————————————————————————————————
                       3                     
                     dx                      

Simplifying after setting dx = Le:

#67:

                 -26                     -24 
 - 4.916272567·10   ·÷·º - 9.295548148·10    
—————————————————————————————————————————————
                            -6 3             
             (2.454888413·10  )              

Simplifying:

#68:
                -9                     -7
- 3.323079142·10  ·÷·º - 6.283183396·10  

The value of ÷ according to Christian's and Hans's data is 6000 
rpm equalling in radians per second:

#69:
 6000       
——————·(2·¹)
  60        

Simplifying:

#70: 200·¹

Substituting into #71:
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#71:
                -9                           -7
- 3.323079142·10  ·(200·¹)·º - 6.283183396·10  

Simplifying:

#72:
                -6                   -7
- 2.087952203·10  ·º - 6.283183396·10  

This just above is the (rotational) magnetization of the square 
at cylindrical radius, and is a function of º.

We want to integrate from º = 0 to º = Rt (taking into account 
area), so we multiply by the Jacobian º:

#73:
                 -6                   -7   
(- 2.087952203·10  ·º - 6.283183396·10  )·º

Integrating:

#74:

 Rt                                               
ˆ                    -6                   -7      
‰   (- 2.087952203·10  ·º - 6.283183396·10  )·º dº
 0                                                

We cannot integrate with respect to ² from 0 to (2 ¹) in Derive 
as the integrand is not a function of ², so we multiply by (2 ¹) 
instead:

#75:

       Rt                                               
      ˆ                    -6                   -7      
(2·¹)·‰   (- 2.087952203·10  ·º - 6.283183396·10  )·º dº
       0                                                

Simplifying

#76:
                -6   3                 -6   2
- 4.372996863·10  ·Rt  - 1.973920278·10  ·Rt 

We divide by the pole face area to obtain our weighed average 
(taking into account cylinder surface area):

#77:

                 -6   3                 -6   2 
 - 4.372996863·10  ·Rt  - 1.973920278·10  ·Rt  
———————————————————————————————————————————————
                         2                     
                     ¹·Rt                      

Simplifying:

#78:
                -6                    -7
- 1.391968133·10  ·Rt - 6.283183388·10  

Substituting for Rt = 0.025:
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#79:
                -6                       -7
- 1.391968133·10  ·0.025 - 6.283183388·10  

Simplifying:

#80:
                -7
- 6.631175421·10  

This just above is "Mpr", the weighed average of the (rotational)
magnetization of a square of side dx = Le taking into account 
area.

We now pause to consider the relation between the (rotational) 
magnetization "Mpr" of an weighed average of a square and its 
current "Ipr" and also its magnetic moment (Ipr dx^2).

#81:
      3         2
Mpr·dx  = Ipr·dx 

The right side of the just above is the square magnetic moment, 
and so this magnetic moment must be divided by dx^3 to obtain the
averaged (rotational) magnetization of the square of side dx. 

#82:
            3         2      
SOLVE(Mpr·dx  = Ipr·dx , Mpr)

#83:
       Ipr          
Mpr = ————— ÷ dx = 0
        dx          

Taking the first root since dx > 0:

#84:
 Ipr 
—————
  dx 

This just above is "Mpr".  

The percent change in magnitization then is:

#85:
 100·(Mpr - M) 
———————————————
       M       

Sunstituting using M from #78 (since the second term is just the 
non-rotational magnetization) with ÷ = 0 and Mpr from #80:

#86:

                      -7                   -7  
 100·(- 6.631175421·10   - - 6.283183388·10  ) 
———————————————————————————————————————————————
                               -7              
               - 6.283183388·10                

Simplifying:
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#87: 5.538466912

This just above (being about 5.5%) is the weighed average of the 
percent change in magnetization of the cylindrical magnet of 
Christian's and Hans', where we weigh by area.  Their measured 
value is given as 9.8% ± 4.5%, and since 9.8 - 4.5 = 5.3, our 
theoretically (just above) calculated percent number is within 
this range.  We believe that the larger 9.8% figure is (probably)
due to the fact that while the non-rotating magnet is (assumed) 
uniformly magnetized, the rotating magnet NO longer is ... 
because the dipole moment change (due to rotation) becomes larger
[or smaller in the case of rotation in the other direction ... as
then ÷ < 0] as º (the distance from the magnet axis of symmetry) 
increases.  Thus, the flux meter probe used would tend to measure
the edge value as the magnet radius is just 2.5 centimeters, that
is, only about one inch.  

The interested reader is referred to the (free) e-book, "Central 
Oscillator and Space-Quanta-Medium" by O. Crane, J-M.Lehner, and 
C. Monstein on Hans Lehner's web site (where Hans is the late J-
C. Lehner's son) and the magnet used was a sophisticated NdFeB-
Magnet.  (See page 230 for an exact write-up of this experiment 
treated here theoretically.)  The central theoretical notion 
introduced in this book is "Magnetic Space Quanta Flux", but we 
do NOT use this notion here ... nor do we see why it is necessary
one.  Quantum theory must, in our view, be replaced by a semi-
classical electron (and proton) theory where a neutron is simply 
a ring electron and a ring proton in a certain close proximiity 
with each other (with the possible addition of a neutrino having 
no charge and very, very little mass ... that need not concern us
as far as basic atomic theory and chemistry are concerned).
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