Hydrogen Future Alberta

www.BillHowell.ca - for Perry Kincaid webinar 31Mar2022

- This short presentation seeks to :
 - avoid overlap with Alberta Associate Minister of Natural Gas Dale Nally
 - cover a few interesting points
 - stimulate discussions, rather than proclaim the answer
- Safety and hydrogen good news
- Economics and Risks (X)
- Alberta roadmap selected ideas (X)
- [random, scattered] concepts
- Fun, crazy stuff

A description of this video project, plus access to all files related to this video can be accessed through the link at the bottom of the slides. This includes [webPage, video, slideshow, image, reference list, selected reference, script, etc]s.

Personal bias - (*) marks concepts in following slides that I've come across in past jobs, projects slides to skip (X) - 10 min time constraint does not allow for presentation, but still in slide show

- At first glance hydrogen is pretty mean stuff
- Second glance do-able + some advantages?
- Big difference between [trained, professional] operations and the public - car companies are good at this
- Global [research, development, piloting, standards] (roadmap)
- Example Undergound hard-rock mining fuel cells (*)
- Example School bus pilot project in USA (X)

At first glance - hydrogen is pretty mean stuff

Safety properties of gases

	chemical	normal boiling	density NTP	flash point	autoignition T	velocity	explosiv	e limits
fuel	formula	point (°C)	(kg/m^3)	(°C)	(°C)	flame (m/s)	(% by vol	ıme in air)
							lower	upper
hydrogen	H2	-253	0.0838	<-253	585	2.83	4	75
methane	CH4	-162	0.668	-188	540	0.45	5	17
ammonia	NH3	-33.4	0.771	132	630		15	28
propane	C3H8	-42.1	1.87	-104	490	0.46	2.1	10.1
ethane	C2H6			-135	515		3	12.4
ethanol	C2H5OH	78.5	789	13	423	n/a	3.3	19
gasoline	n/a	27-225	751	-43	230-480	n/a	1.2	7.1
diesel fuel	n/a						0.6	7.5

methane ~= natural gas; octane ~= gasoline; cetane ~= diesel; (explosive = flammable) limit NTP = normal temperature & pressure, 20 °C and 1 atmosphere velocity flame (m/s) = maximum flame velocity in air (m/s) watch out for my [misread, typo]s!!

Mercaptan-like safety (stench)

is there an equivalent yet for high-purity fuel cell hydrogen? easy for hydrogen-fuel mixes? (15% mentioned by roadmap)

hydrogen "invisible flame" to naked eye asphixiant gas (like most other gaseous fuels) easy leakage, hydrogen embrittlement of metals

Demo explosion at a lab shocked me for sure - quite a bang! - danger of reactions

Second glance - do-able + some advantages?

high diffusivity - dissipates extremely rapidly no toxicity rating, as with many other fuels well-established safety protocols as a starting point new [research, pilot, demo, codes & standards] for new applications

I remember the comment of hydrogen safety experts:

• tests of firing bullets into pressurized hydrogen tanks failed to ignite any of them

There can be some safety advantages of hydrogen over [gasoline, diesel]?

- closed work environments : particulates, NOx, rapid dispersion of leak (when ventilated!)
- slow release from H2 storage materials (then again, possible BLEV-style release?)
- still they are BOTH dangerous. But we know how to live with gasoline.

Example - Underground hard-rock mining fuel cells (*)

Driving forces:

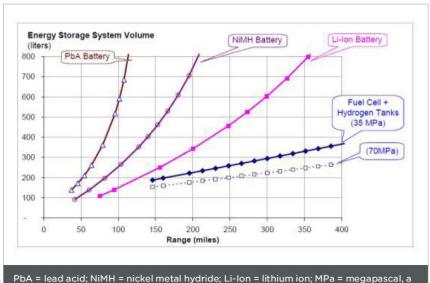
- Green House Gases (GHG)
- diesel exhaust regulatory directions [particulates, NOx,etc]
- operating costs [ventilation, maintenance, automation]

Technical Committee	Advisory Committee	Stakeholders	Facilitators
Air Liquide	A.V.Tchouvelev & Associates	Chief Inspectors	SOREDEM
Barrick	Hatch	MSHA	CANMET-MMSL
IAMGOLD	Université du Québec à	Trade Unions	
Vale INCO	Trois-Rivières, IRH	Equipment	
Xstrata Nickel	Paceas Technologies	Manufacturers	
Raglan	Washington Safety and		
	Management Systems		

First International Symposium on Fuel Cells Applied to Mining Montreal, April 29, 2007

Pentation, NRCan

From Marc Betournay presentation, NRCan


Economics and Risks (X)

- Will "blue hydrogen" (natural gas based) be accepted after 2050?
- Will hydrogen fuel cells be a strong competitor of batteries for passenger cars? for trucks?
- [USA, Russia, China, India, Arab, Persia, other] "upstream" competitors
 - they are not going to be restrained as Alberta has been?
- substitute "energy carrier" technologies (later slide)
- Crushing new priorities, FAR beyond all this??! (**)

Economics and Risks (X)

- Will hydrogen fuel cells be a strong competitor of batteries for passenger cars?
- For comparison to today's living, it's essential to know CO2 taxes, effect of heavier EV batteries, actual [battery, fuel cell] life, city vs highway, subsidies, etc etc?
- Energy efficiency of EVs: battery 70-80%, fuel cell 25-35% via electrolysis
- don't trust numbers until you've looked [broadly, closely] and did your own estimates!

Garrett Motion - battery small vehicles, fuel cell larger

unit of pressure (1MPa = 145 psi). Source: Cadex Electronics (CH)

University of Alberta (from roadmap, are CO2 credits involved?)

FIG. 1: 2020 GLOBAL HYDROGEN PRODUCTION COSTS

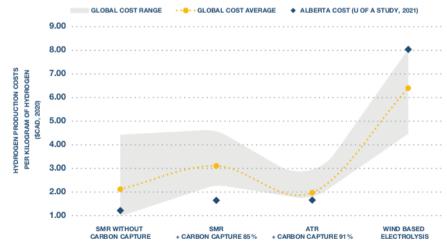
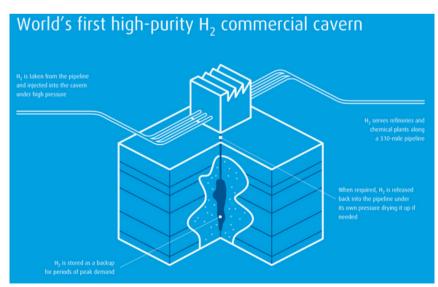
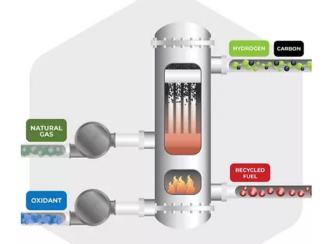


Figure 1. Alberta's hydrogen production costs against global averages. Hydrogen production costs vary desired and size type, feedstock, and energy use 17

31


nttp://www.ʁɪɪɪнoweii.ca/ʁɪɪɪ нoweiis viaeos/220331 Hydrogen future Alberta/Howeii - nyarogen future Alberta.ntmi

Alberta roadmap- selected ideas (X)


(ideas that have been around, but with advances)

- Natural Gas Decomposition (NGD) thermal decomposition of methane into hydrogen gas and solid carbon (also known as carbon black), then a direct carbon fuel cell
- Underground Gasification (UG) of [crude oil, bitumen, coal] integrated with Carbon Capture and Underground Storage (CCUS)
- Can some Alberta natural gas storage (salt formations) be <u>adapted</u> to hydrogen? (**)

Linde, Texas

Ekona Power -CH4 to H2 and carbon black

(there is no end to the ideas... most ideas here very old)

- Hydrogen [combustion engines, turbines] for transportation? (roadmap) (*)
- [battery, fuel cell, flywheel, <u>ultra-capacitor</u>] comparison (*) (X)
- Caterpillar's global initiative for electric battery huge mining trucks
- your hydrogen fuelcell car as an electric power generator for the grid? (*) (X)
- Fischer-Tropsch-like processes: coal to [gas, oil, hydrogen, other] (*) (X)

Caterpillar, Teck, BHP

[battery, fuel cell, flywheel, <u>ultra-capacitor</u>] comparison (*) (X)

- Catalysis, materials, sensors, micro-electronics, controls can be gamechangers
 - thermal management, fabrication, costs, overall system efficiency etc
 - life cycle analysis (wrong phrase!) always problematic
 - IF rare lab results can be translated into viable product ...?
 - seems to be common in electrochemistry, photo-voltaic
 - [solid, liquid, gas, but also plasma?] = "Earth, water, air, fire" of ancient Greece?
 - [poorly known, new] * [science, technology] "dark horses"
 - can upset the apple-cart and ruin massive investments?
- Flywheels
 - fascinating company in Ottawa years ago (*)
 - safety issues & "asymmetry of perceptions" of technologies?

ultra-capacitors - one of those "dark horses"? (*) (X)

Image: US-DOE presentation, 10Jun2010

2019 lab results: China-Korea paper thiol-functionalized, nitrogen-doped, reduced graphene oxide scrolls

Why Ultracapacitors?

Strengths

- High specific power → Good for power assist
- Fast charge acceptance → Good for regenerative energy capture
- Excellent cycle life → Fewer replacements required
- Excellent low temperature performance
 → Good for engine start

Weaknesses

- Low specific energy → Limited operational time
- High self discharge → Requires frequent charge

US∆BC

Advantages of Hybridizing Battery and Ultracapacitor

Reduces battery operating current. Lower I²R heating.

· Reduces power pack weight.

Extends battery life. Reduce replacement cost.

 Better low-temperature performance for cold engine starts.

> Energy Density: 3 Wh/kg Power Density: 650 W/kg Operating Range: -30 to +52°C Survival Range: -46 to +66°C

Cycle Life: 750,000 cycles

lab results will be far less in a battery pack!!! vehicle packs will be lower than for cellphone battery

W/kg 496 ~10 ~250-340 -->

cellphone

100-265 -->

Li-ion

31Mar2022

2019 lab results

@A/q 0.25 50

Wh/kg 206 32

ultracap

slide# 11

Fischer-Tropsch-like processes: coal to [gas, oil, hydrogen, other] (*) (X)

historical operations [WWII Germany (*), South Africa]
China ~2010-ongoing?: ceased or carbon capture?
India - intent to expand gas storage even before Ukraine
2019 India reluctance for CO2 storage
coal plant in a bottle (like sailing ships), O2 enrichment (*)
recently, USA coal to [acetylene, ethylene] (strange?)

Environmental Defense Fund 2019 Underground Gas Storage in China Figure1 - China's Gas Network

R USSIA

R A Z A K H S T A N

Almoty
Hutubl

TAJIKSTAN

Qaidam Basin

C H I N A Pingdingsham
Huanqchang
Nep 22/36
Rudong
Huanghan

NEPAL

LING terminal
Salt cavity/cavern
Depleted field
Salt cavity/cavern
Depleted field
Salt cavity/cavern
Depleted field
Dashan Bay

Lisah Island Import

Ling Guangdong


Lisah Island Import

Depleted field
Dashan Bay

Lisah Island Import

Depleted field project

https://tse2.mm.bing.net/

Source: Cedigaz

Unknown UGS project

Main gas pipelines

India Coal Field Map
India CO₂ Sources Near S

India CO₂ Sources Near Oil and Gas Fields

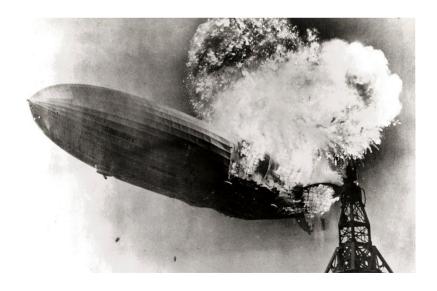
Multi-edged heresy? (X)

For the next slide, almost all (except ~<1:100) [government, academic] research scientists are perhaps best advised to roll their eyes and walk away, if they don't climb up a wall first.

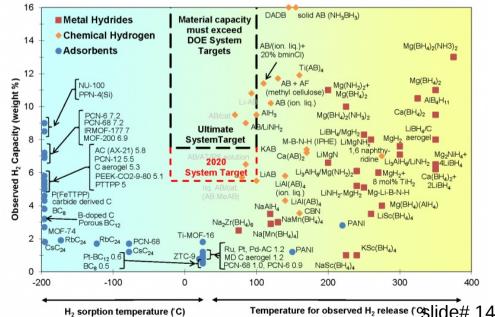
It's all they [can, should] do?

But I'm looking for essentially none (<1:10k) of the scientists, and none for all [theories, time].

So strange that so many of the so few turn out to be amateurs.


"multiple conflicting hypothesis" to avoid the trap of becoming a tool of concepts, rather than the concepts being a starting environment to play with

[right, wrong, true, false] are not so relevant. I'm mainly interest in finding a strong thinker, and if I'm really lucky, a [creative, revolutionary, breakthrough] thinker.


Fun, crazy stuff (X)

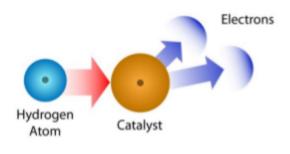
(% = things I've come across in the past with my personal projects, definitely NOT accepted by mainstream science!)

- % Randell Mills hydrino fractional electron quantum levels? (*)
- % Aureon.ca in Toronto mythology inspired, electric sun experiments (*)
- Stairway to heaven? Zeppelins for hydrogen transport in the North, riding the jet streams (X)
- Joke: best hydrogen [storage, transport] is to attach it to long carbon chains or oxygen!
 - joking aside, there are wonderful developments for better hydrogen storage
 - one example in roadmap ammonia as a carrier for export

USA Office of Energy Efficiency and Renewable Energy

Randell Mills hydrino

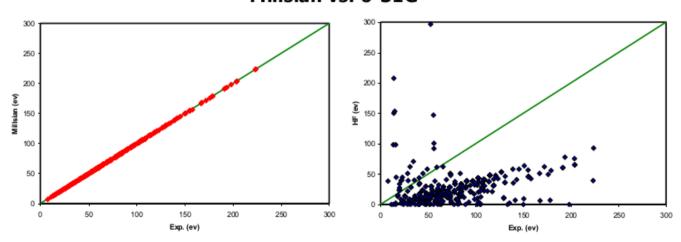
Electron fractional quantum levels? (*)


Mills has MANY critics!!! - probably any scientist that looked at it since 1986-91 My lesson over decades across subjects, one often finds that :

Great work is greatly hated, follow the outcries to find the truly exceptional

BrilliantLightPower.com hydrino catalytic reaction releasing heat

Comparison of Classical to Quantum Mechanical Performance



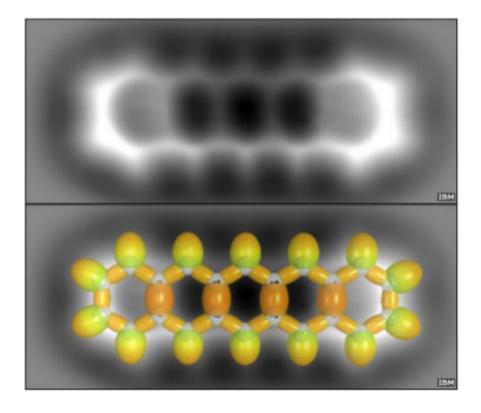
The total bond energies of exact classical solutions of 415 molecules generated by Millsian 1.0 and those from a modern quantum mechanics-based program, Spartan's pre-computed database using 6-31G* basis set at the Hartree-Fock level of theory, were compared to experimental values.

gas Hydrino Atom

Millsian vs. 6-31G*

R. L. Mills, B. Holverstott, W. Good, A. Makwana, J. Paulus, "Total Bond Energies of Exact Classical Solutions of Molecules Generated by Millsian 1.0 Compared to Those Computed Using Modern 3-21G and 6-31G* Basis Sets," Phys. Essays 23, 153 (2010); doi: 10.4006/1.3310832

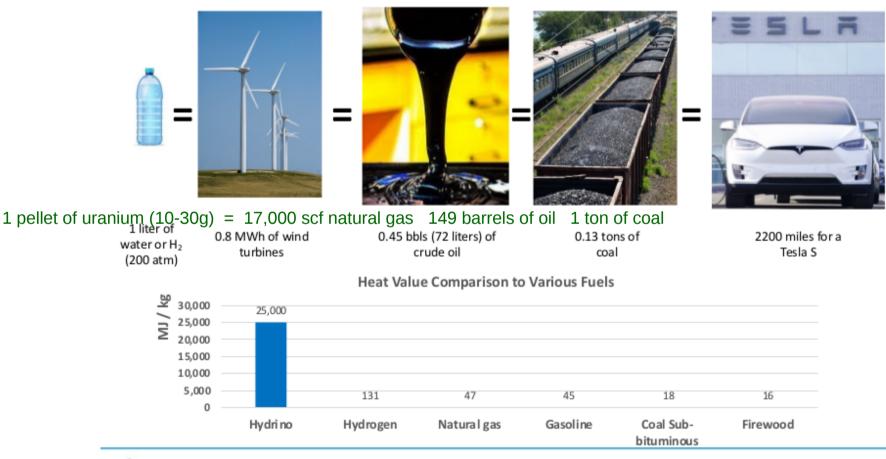
Randell Mills hydrino


Chemical bonds - not your quantum fuzziness?

Physical Image Compared to Physical Solution

The polycyclic aromatic hydrocarbon pentacene was imaged by atomic force microscopy using a single CO molecule as the probe. The resulting breakthrough in resolution revealed that in contrast to the fuzzy images touted by quantum theoreticians as proof of the cloud model of the electron, the images showed localized bonding MOs and AOs in agreement with the classical solution.

Top, atomic force microscopy image of pentacene by Gross et al. Bottom, the superimposed analytical classical solution that matches the physical structure.



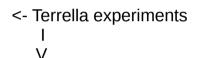
[L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer, "The chemical structure of a molecule resolved by atomic force microscopy", Science, Vol. 325, (2009), pp. 1110-1114.]

Randell Mills hydrino Water to fuel your car (*)

Hydrino®: Energy Release of 2.78 GJ (800 kWh)/ L of Water

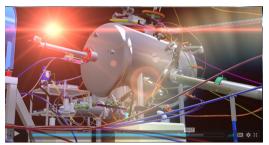
200 times the energy of burning the equivalent hydrogen

SAFIRE, Aureon.ca

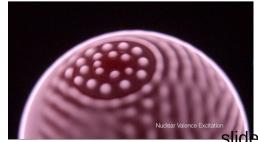

mythology inspired, electric sun experiments (*)

THE SAFIRE REACTOR

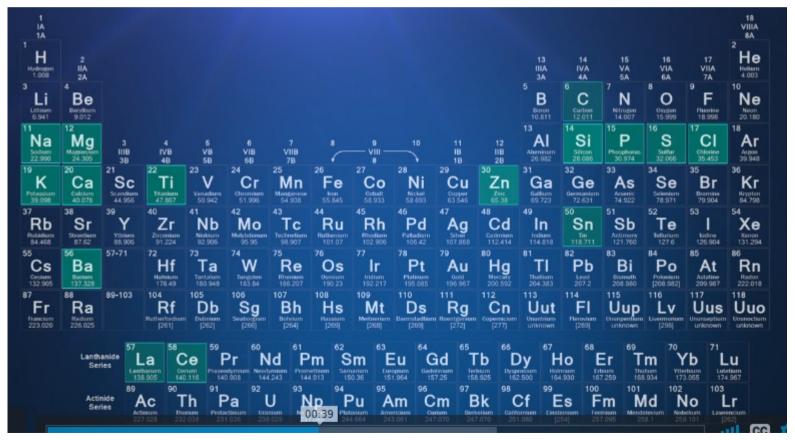
After almost a decade of research and experimentation, the SAFIRE PROJECT team developed a stable medium-energy plasma reactor. Using a process called Nuclear Valence Excitation (NVE) the SAFIRE reactor can generate safe and uniquely controllable nuclear changes. This technology has many potential applications in the energy and cleantech industries.



Kristian Birkeland (December 13, 1867 — Jun 15, 1917)



SAFIRE -> electric sun



31

"de-radio-activation" of materials (*)

We are now creating the first commercial application of the NVE technology to eliminate the radioactivity from the wastewater of <u>hydraulic fracturing operations</u> called produced water. (...high-level fission waste later?...)

Elements produced in the SAFIRE hydrogen plasma vacuum reactor. The Standard Model of the Sun suggests only [helium, lithium]. Removal of radio-activity: either increase or decrease atomic number, depending on isotopes? NOTICE: Rare Earths, a target also!

31Mar2022 slide# 19

SAFIRE, Aureon.ca

"de-radio-activation" of materials (*)

21Nov2020 https://aureon.ca/ SAFIRE video (since replaced with newer aureon videos) Hand-written comments from the video (approximate) :

- "... MIT has found that when radioactive waste is exposed to hydrogen isotope nuclei, the decay rate of the radioactive material can be accelerated, even to the point of neutralising the radio-activity. ..."
- "... SAFIRE would also use radioactive materials as fuel, and the elemental transmutation would remediate the radiactive waste back into the base elements, and render it benign. Right now there are 450 successful nuclear fission plants on the Earth. Imagine if they could produce energy without creating radiactive waste. ..."

Immanuel Velikovsky, David Talbot, Wal Thornhill, Anthony Peratt [psychiatrist, mythologist, physicists] and

petroglyphs (*)(X)

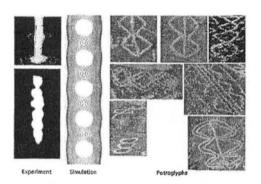


Fig. 16. Pinch instability characteristics of a plasma column. (Left) Plasma light photographs, early time. (Middle) Graphical solution of the Chandasekhar-Fermi equations. (Right) Petroglyphs. The patterns are found

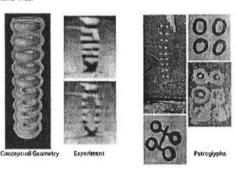


Fig. 17. Conceptual geometry of a stack of nine plasmoids produced in a high-current plasma column. (Left) Experimental and conceptual data of a stack of toroids along the pinched plasma column, (Right) Petroglyphs depicting stacked toroids. Note that the double row of dots numbers nine, the exact number of toroids generally produced in a plasma pinch.

and the duration and location of a current pulse propagating along the column. Because of the time required to produce certain classes of morphologies of petroglyphs and also the precipitousness of location, we conclude that petroglyphs were produced during daylight conditions, perhaps twilight or dawn. This then allows an estimate of the luminance necessary to see auroral plasma phenomena.

1) Spheroids: The petroglyphs in Fig. 16 accurately portray the outer enheroid isophotes, some including the central visible

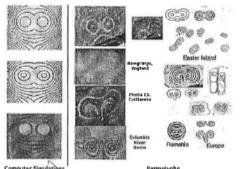


Fig. 18. Eye and nose masks. (Left) Isophotes from a portion of the graphical solution of the Chandrasekhar-Fermi equations. (Right) Eye mask and prominent nose petroglyphs

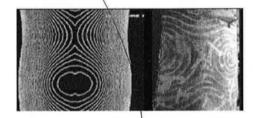


Fig. 19. Face masks as collected from various locations on Earth. The figure at the top left is a portion of the graphical solution of the Chandrasekhar-Fermi equations

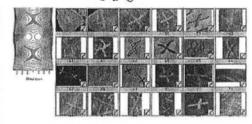



Fig. 20. Separatrix magnetic field merging crisscrosses. (Left) Portion of the graphical solution of the Chandrasekhar-Fermi equations (Right) Assortment of petroglyph criss-crosses.

duration of sporadic current pulses within the auroral plasma column, and the orientation of a column undergoing nonazimuthally symmetric motions.

While the previous figures have suggested that the phenomena was universally seen, what could be observed would depend on the observer's location on Earth and whether or not the entire column was visible or illuminated, or some portion of it, as in auroral displays today.

Fig. 30 is a collection of one of the common nate

Fig. 28. (Left) Laser back-illuminated plasma pinch, The photograph has been digitally stratified to bring out the curling of the edges of the bottom. flattened toroids. The cathode is at the top. (Right) Sample collection of petroglyphs showing the transition from the ladder phase of the instability to toroid vortices. (Left to right, top to bottom), The examples shown have been collected from

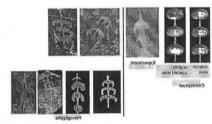
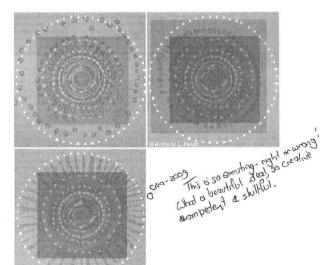



Fig. 29. (Left) Vortex formation in sub and multimegaampere pinched plasma columns. (Right) Petroglyphs.

IEEE TRANSACTIONS ON BLASMA SCIENCE, VOL. 31, NO. 6, DECEMBER 2003

(white) (Top Left) 4 O'Clock Rapids petroglyph on the

Anthony Peratt 2003 paper

Anthony Peratt

Petroglyphs - chaos across the globe? (X)

PERATT et al : CHARACTERISTICS FOR THE OCCURENCE OF A HIGH-CURRENT Z-PINCH AURORA

Fig. 21. Photograph of the Zanskar River looking down to one of the petroglyph sites illuminated by a narrowband of sunlight.

Any particular reason why Anthony Peratt mapped no sites in [Russia, Belarus, Ukraine]? <grin - just kidding, there are some>

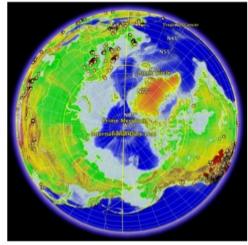


Fig. 2. Arctic map distribution of petroglyphs and pictographs.

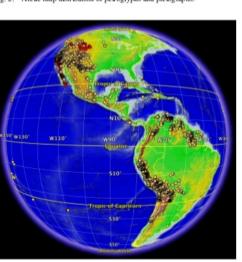
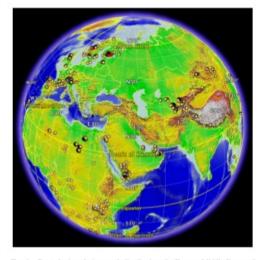


Fig. 3. Petroglyph and pictograph distributions for the North and South America continents. Longitude 30° W–150° W.



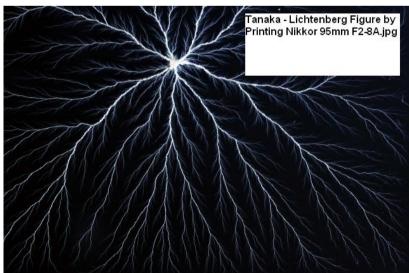

Fig. 4. Petroglyph and pictograph distributions for Europe, Middle East, and Asia. Globe centered on the Tropic of Cancer.

Fig. 5. Petroglyph and pictograph distributions for the African Continent and adjoining regions. Longitude 90° E-30° W.

Paul Anderson, US Army Research chemist, SAFIRE core team member Electric scarring of Earth, Alberta equivalents

