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Abstract: A framework is presented for processing fuzzy sets for which the universe of discourse { }X x=  

is a separable Hilbert Space, which, in particular, may be a Euclidian Space. In a given application, X   

would constitute a feature space .The membership functions of sets in such X are then  ”membership 

functionals”, that is, mappings from a vector space to the real line. This paper considers the class Φ of 

fuzzy sets A , the membership functionals Aµ of which belong to a Reproducing Kernel Hilbert Space 

(RKHS) ( )F X  of bounded analytic functionals on X , and satisfy the constraint0 ( ) 1,x x Xµ≤ ≤ ∈ . 

These functionals can be expanded in abstract power series in x, commonly known as Volterra functional 

series in x. Because of the one-to-one relationship between the fuzzy sets A and their respective Aµ , one 

can process the sets A as objects using their Aµ as intermediaries. Thus the structure of the uncertainty 

present in the fuzzy sets can be processed in a vector space without descending to the level of processing of 

vectors in the feature space as usually done in the literature in the field. Also, the framework allows one to 

integrate human and machine judgments in the definition of fuzzy sets, and to use concepts similar to 

probabilistic concepts for the combination of fuzzy sets. Some analytical and interpretive consequences of 

this approach are presented and discussed. A result of particular interest is the best approximation ˆ
Aµ  of a 

membership functional Aµ in ( )F X based on interpolation ˆ ( )i i

A v uµ =   on a training 

set{( , ), 1,..., }i iv u i q= and under the positivity constraint. The optimal analytical solution comes out in 

the form of an Optimal Interpolative Neural Network (OINN) proposed by the author in 1990 for best 

approximation of pattern classification systems in a ( )F X space setting. An example is briefly described 

of an application of this approach to the diagnosis of Alzheimer’s disease. 
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1  INTRODUCTION 
 

From the time they were invented by L. A. Zadeh four decades ago [1], fuzzy sets have played a 
prominent role in the modeling of uncertainty in the processing of data and information (See, for 
example, [2-5]).  
   To enhance their applicability, we present a new framework for processing fuzzy set 
membership functionals as vectors. In a moment we will explain the use of the more general term 
“membership functional” for the membership function of a fuzzy set. 
   The above framework allows one to include a completely additive class of events or attributes 
as well as human judgment in the definition of fuzzy sets. Also, under appropriate conditions, it 
permits to view a fuzzy set membership functional as a generalization of the concept of a 
conditional probability, and fuzzy set combinations as a generalization of analogous conditional-
probability-based combinations of sets. Finally, it allows one to assign vector-inspired and 



appropriately-interpreted attributes to fuzzy sets, such as the pseudo-norm of a fuzzy set, the 
pseudo-distance between two fuzzy sets, and the pseudo-scalar-product of two fuzzy sets.  
   To achieve this goal in very explicit terms, we focus attention on the case in which the universe 
of discourse X  is a vector space endowed with a scalar product. Then, under appropriate 
conditions, we create a Hilbert Space ( )F X to which the membership functions of the fuzzy sets 
under consideration may belong. In such a setting, membership functions become “membership 
functionals”, i. e., mappings from a vector space to the real line.  This, in turn, allows us to exploit 
the one-to-one relationship existing between fuzzy sets and their membership functionals, to 
obtain the results that we mentioned above. 
    Let Φ denote the class of fuzzy sets under consideration in this paper. Specifically, we 
defineΦ  as the class of fuzzy sets satisfying the following conditions:  
(a) The universe of discourse X for the fuzzy sets is a separable Hilbert Space, which may, in 

particular, be a (possibly weighted) Euclidian Space. Note that then, in general, the 
membership function Aµ  pertaining to any given fuzzy set A is a nonlinear (not necessarily 

linear) “functional” (rather than a mere function) from the vector space X to the real line 1R . 
In an application-specific context, X would be called a “feature space”.  

(b) For any given fuzzy set A , the membership functional Aµ is (or may be approximated by, 

a) bounded analytic functional on X belonging to a Reproducing Kernel Hilbert Space 
(RKHS) ( )F X of bounded analytic functionals on the Hilbert Space X . In addition, Aµ  is 

required to satisfy the constraint 0 ( ) 1,x x Xµ≤ ≤ ∈ . The space ( )F X constitutes a 
generalization of the Symmetric Fock Space, the state space of non-self-interacting Bosons 
in quantum field theory. This generalization was introduced in 1980 by de Figueiredo and 
Dwyer [6] for nonlinear signal and system analysis (For some of the other related work of 
the author, see [7]-[15]). From now on, ( )F X  will be denoted simply by F when its 

argument X is clear from the context.    
     
      As a fundamental result arising from this generic fuzzy set model, we show that, for any given 
fuzzy set A∈Φ  , the mapping : [0.1]A Xµ →  can be optimally represented and hence realized 

by an artificial neural network. 
    In section 2, we present our formulation for the important case in which X is a (possibly 

weighted) Euclidian N -space NE . The case in which X is the Hilbert Space 2L  of square-
integrable functions, such as waveforms or video images, is discussed briefly in section 3 on 
applications. In this section we also briefly describe the results of a computational-intelligence-
based study on the diagnosis of Alzheimer’s disease in the setting of the approach presented 
here. In section 4, we summarize our conclusions. Finally, we provide, in an Appendix, a brief 
overview of some of the fundamentals on the space F  underlying our presentation  
 
2. FUZZY SETS IN A EUCLIDIAN SPACE 
 

Let the universal set X  be a N -dimensional Euclidian space NE over the reals, with the scalar 

product of any two elements 1 )( ,..., )TNx x x= and ( )1,...,

T

Ny y y= denoted and defined by 

     
1

,
N

T

i i

i

x y x y x y
=

< >= =∑ ,                                                                                                         (1) 

where the superscript T  denotes the transpose. If NE  is a weighted Euclidian Space with a 
positive definite weight matrix R , the scalar product is given by 

    1, Tx y x R y−< >=                                                                                                                      (2) 



                                                                                    
   Typically, such X would constitute the space of finite-dimensional feature vectors x associated 
with the objects alluded in a given discourse, as in the following example. 
 
   Example 1: The Space X of Feature Vectors in a Patient Database The database of a 
health care clinic for the diagnosis of the conditions of patients w. r. t. various illnesses could 
constitute a universal set X . In this space, each patient p , would be represented by a feature 

vector ( ) Nx x p E= ∈ , consisting of N observations made on p  These observations could consist, 

for example, of lab test results and clinical test scores pertaining to p . Then, a subset A  in the 

feature space X with a membership functional Aµ  could characterize the feature vectors of 

patients possibly affected by an illness AΓ . For a given patient p , a physician or a computer 

program would assign a membership value ( ( )) ( )A Ax p xµ µ=  to x  indicating the extent of 

sickness, w. r. t. the illness AΓ , of the patient p (e.g., gradual scoring from very well to fairly well 

to, okay to slightly sick to very sick). ▌1 
 
    2.1 Membership Functionals as Vectors in the RKH Space F(EN)  
 
    2.1.1 Abstract Formulation 
 
Returning to our formulation, in the present case, F  is the space of bounded analytic functionals 

on a bounded set NEΩ⊂  defined by 

                       { }:Nx E x γΩ = ∈ ≤ ,                                                    (3) 

whereγ  is a positive constant selected according to a specific application. Typically, γ may be 
viewed as the radius of the uncertainty ball in the feature space. The conditions under which F is 
defined and the mathematical properties of F are given in the Appendix. 

   Under the assumption made in this paper, namely that the fuzzy sets A under consideration 
belong toΦ , the membership functionals Aµ  belong to F .This is not a serious restriction because, 

in most instances, Aµ can be approximated by members in F  (in a way analogous to that in 

which a square pulse can be approximated to any desired degree of accuracy by an analytic 
function in a given region of interest). For simplicity in notation, we will denote Aµ simply by µ  

when its relationship to a set A  is clear from the context 

 
    Remark 1. It is important to note that not all the members ofF are membership functionals. 
Only those objects f in F that satisfy the condition 

                                                            ( ) [0,1] Nf x x E∈ ∀ ∈Ω ⊂                                              (4) 
qualify for membership functionals. As explained in Remark 2, this condition is taken into account 
in the RLS algorithm of section 2.3, which estimates the membership functional of a fuzzy set 
inΦ   from the training data.▌ 
 
.   In view of the analyticity and other conditions satisfied by members of F , stated in the 
Appendix, any µ  pertaining to a fuzzy set belonging to Φ  can be represented in the form of an 

                                                 
�  Ends of formal statements will be signaled by ▌ 



N -variable power series, known as an abstract Volterra series, in these N  variables, absolutely 
convergent at every x∈Ω , expressible by: 

0

1
( ) ( )

! n

n

x x
n

µ µ
∞

=

=∑ ,                                                                                        (5) 

where nµ  are homogeneous Hilbert-Schmidt(H-S) polynomial of degree n in the components of 

x , a detailed representation of which is given in the Appendix. 
    The scalar product of any Aµ and B Fµ ∈ , corresponding to fuzzy sets A and B  is defined by 

0
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where. nλ . 0,1, 2,...n= , is a sequence of positive weights expressing the prior uncertainty 

respectively in the terms nµ , n = 0, 1, 2,…, satisfying (A11) in the Appendix, and  kc  and kd  are 

defined for Aµ  and Bµ  in the same way as kc is defined for µ in.(A4) and (A8) in the Appendix. 

    The reproducing kernel ( , )K x z , in F is  

( ) ( )
0

( , ) , ,
!

def n
n

n

K x z x z x z
n

λ
ϕ

∞

=

= =∑ ,                                                                          (7)                                    

where ,x z  denotes the scalar product of x and z  in NE .  

   In the special case in which 0
n

nλ λ= , ϕ  is an exponential function, and thus ( , )K x z  

becomes  

 

         ( )0( , ) exp ,K x z x zλ= .                                                                                                  (8) 

   We note that ( , )K x z is called a Reproducing Kernel (RK) because: (a) ( ,.)K x is a member 

of F , and (b) it has the “reproducing property” expressed by the equation (A16) of the Appendix, 
which we quote below 
 

( ,.), (.) ( )FK x xµ µ< > =                                                   

 
Example 2: Fuzzy Set of “Good Weather” Days. Let days d  be represented by their 
respective feature vectors ( )x x d= , the universe of discourse being { ( )}X x x d= = . The 

components , 1..., ,ix i N=  of x  would be observation variables, such as temperature, pressure, 

humidity, wind velocity, etc., associated with the dayd that x represents.  

   Assume that x  is a random vector with a co-varianceΣ , and denote by , 1,...,iv i N= , the 
eigenvectors of Σ listed in the order of decreasing eigenvalues. Assume also that most of the 
relevant information lies in the subspace of X spanned by the first q , say three, eigenvectors 
ofΣ .  
   Then a fuzzy set A of days that are considered to be “Good” may be represented by the 
membership functional 
    

   ( ) ( ) ( )1 2
1 1( ) , , ... ,qA qx w v x w v x w v xµ ϕ ϕ ϕ= + +                                                             (9) 



 where ϕ is as defined in (7), and the iw , as in (25), are obtained by choosing a set of prototype 

days 1,..., qd d ,corresponding to different types of weather, and interpolating the membership 

values 1,..., qu u , assigned by a weather expert to those days, at the feature 

vectors 1( ),..., ( )qx d x d corresponding to those days.▌ 

 
 
   2.1.2 The Case in which Fuzzy Sets are Intervals on Real Line 
 
   To illustrate the above formulation, we now consider the case in which the universe of 

discourse X  is the real one-dimensional Euclidian space 1E . Then if x and y are two real 

numbers constituting vectors in 1E , their scalar product and the norm of x are defined by 
                                                          
                                                                     ,x y xy< >=                                                (10) 
 

                                                                          x x=                                                   (11) 

 

   The uncertainty region 1EΩ⊂ may be represented by an appropriate interval x γ≤ of the real 

line. 
   Then ( )xµ is represented by (5), where ( )n xµ simplifies to the expression 

 

                                                                 ( ) n

n nx c xµ =                                                 (12) 

 
The condition (A12) takes the form 
 

                                                                     2
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   If, accordingly, the membership functionals for two intervals A and B are represented by 
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and the scalar product between Aµ and Bµ is 

 

                                                           ,A Bµ µ< >=
0

1
! n n

n n

c d
n λ

∞

=
∑                                             (16) 

 
   For example, suppose that A and B are the interval [0,1]with the membership functions  



( ) exp( )A x axµ = − and ( ) exp( )B x bxµ = − , and 0
n

nλ λ −= , where a ,b and 0λ are positive 

constants. Then, since using the formula for the power series expansion of an exponential 
function, we obtain the following expression for the scalar product (16) for this example: 
 

                                      ,A Bµ µ< >= 0
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   Going further with this simple illustration, one may obtain, in general, a best approximation for a 
fuzzy interval along the lines described in section 2.3 , as a linear combination of exponentials of 
the form 
 

                                                      
1

( ) exp( )
q

i

i

i

x w v xµ
=

=∑ ,                                                  (18)   

where given a training set of pairs of real numbers {( , ) : 1,..., }i iv u i q= , the constants iw are 

obtained by requiring that (18) interpolate µ  with the values iu at iv .  
 
   2.2 Pseudo-Norm, Pseudo-Distance, and Pseudo-Scalar-Product of Fuzzy 
Sets in Φ 
   The following important questions arise regarding the formulation of membership functionals as 
vectors: 
(a) What is the meaning of vector addition in F of two membership functionals 

Aµ and Bµ belonging to fuzzy sets A and B ? 

(b) Is it possible to assign a meaning to their point-wise multiplication ( ) ( )A Bx xµ µ ? 

(c) What is the meaning of the multiplication by scalar of a membership functional Aµ inF ? 

 
For this purpose, we resort to a probability-like interpretation to the membership function by 
defining a fuzzy set, in our specific way, as follows:  

   Definition 1. Let there be given a universe of discourse { }X x= , a measure space M = 

( { }, { }, : [0,1])C A m CξΨ = = →ɶ , where Ψ  denotes a set of elements ξ ; C  a completely 

additive class of subsets Aɶ ofΨ , each Aɶ representing an attribute or event; and m a measure on 
C satisfying the usual axioms of a probability measure. Let there also be a set { }Jϒ = of 

human- or/and machine-based judgment criteria J . Then, given an attribute or event Aɶ and a 
judgment J , on the basis of which set membership decision is made, a fuzzy set A of objects 
x of X is defined to be one for which there is a membership functional : [0,1]A C Xµ ×ϒ× → , 

such that ( , ; )A A J xµ ɶ expresses the extent, on a scale from 0 to 1, to which x belongs to A . 

From now on, we will denote  ( , ; )A A J xµ ɶ  simply by ( )A xµ when the longer notation is clear from 

the context. ▌ 
 
    Note that in a probabilistic setting, x would represent values of measurable functions (random 
vectors) fromΨ to X    
   The above definition is broad and yet precise enough to incorporate other formulations of 
human-based uncertainty, such as belief theory, in the structure of fuzzy sets. 
   Elsewhere [16], In the context of the above definition, we have interpreted the membership 

functional ( )A xµ  as a generalization of the posterior probability ( / )P A xɶ , i.e., 



                                      ( , ; ) ( / )A A J x P A xµ ⇔ɶ ɶ                                                                      (19)                          

   We also proposed that, in such a probabilistic setting, for given fuzzy sets A and B , fuzzy 
intersections, fuzzy unions, and fuzzy complements be assigned membership values as 
                 
                 ( ) ( ) ( )A B A Bx x xµ µ µ∩ =                                                                             (20) 
                  ( ) ( ) ( ) ( ) ( )A B A B A Bx x x x xµ µ µ µ µ∪ = + −                                                          (21)  
                 ( ) 1 ( )C AA

x xµ µ= −                                                                                          (22) 
   Note that the fuzzy sets resulting from these definitions are the same as the ones resulting from 
the conventional definitions of fuzzy intersections, fuzzy unions, and fuzzy complements.    
   Returning to the three questions posed earlier, the answer to question (b) is that point-wise 
multiplication of membership functionals is useful for the interpretation (20); the answer to 
question (a) is that vector addition of membership functions is useful for the interpretation (21). 
Finally, the answer to question (c) is that a scalarα  can be used as a weight in the mathematical 
processing of membership functions. Also, in some applications, it may be interpreted as the 

probability ( )P x  in the computation of the probability of the joint event ( , )P A xɶ . i.e., 

                   ( , ) ( ) ( / ) ( )AP A x P x P A x xαµ= ⇔ɶ ɶ       ▌                                                              (23) 

 
   Finally, the entities and their interpretation in the following definition may be useful in 
applications.  
    

    Definition 2. Let A  and B  denote fuzzy sets in Φ . Then the “pseudo-norm”, “pseudo -
distance”, and “pseudo-scalar-product” in Φ  may be defined by the rules: 

    A F
A µ=                                                                                                                           (24) 

    A B F
A B µ µ− = −                                                                                                            (25}        

    , ,A B F
A B µ µ< > = ,                                                                                                          (26)                                                                          

 
   Interpretations: 

         A = “Membership Load” of fuzzy set A  

     A B− = “Load of Membership Difference” between fuzzy sets A  and B                                                                                                 

      ,A B< > = “Correlation in Membership” between fuzzy sets A  and B .  ▌ 
. 
 
    2.3 Best Approximation of a Membership Functional in F  
 
   Now we address the important issue of the recovery of a membership functional µ , associated 

 with a fuzzy set A∈Φ  from a set of training pairs ( , )i iv u , 1,2,...,i q= , i.e., 
 

              { }1( , ) : , ( ) , 1, ,i i i N i iv u v A E u v R i qµ∈ ⊂ = ∈ = ⋯ ,                                                 (27)                                              

 
and under the positivity constraint (4) which we re-write here as 

               0 ( ) 1,x x Aµ≤ ≤ ∈                                                                                                    (28) 

   The problem of best approximation µ̂  of µ  can be posed as the solution of the optimization 

problem in F of the problem 



                

inf sup || ||

(18) (19)

F

F F

subject to and

µ µ

µ µ

−

∈ ∈

ɶ

ɶ                                                                     (29) 

    

   This is a quadratic programming problem in F that can be solved by standard algorithms 
available in the literature. However, a procedure that usually works well (see [10]) is the one 
which solves (29) recursively using a RLS algorithm under (27) alone. In such a learning process 
setting, the pairs in (18) are used sequentially and a new pair is added whenever (19) is violated. 
This procedure is continued until (27) is satisfied. Such a procedure leads to the following closed 

form for µ̂ , where the pairs ( , )i iv u  are all the pairs used until the end of the procedure, 

                          1ˆ ( ) ( )Tx u G K xµ −= ɶ                                                              (30) 
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and G  is a q q×  matrix with elements ,  , 1, ,ijG i j q= ⋯ , defined by 

( ),ij i jG v vϕ=                                                                           (33) 

In terms of the above, another convenient way of expressing (33) is 

( )
( )
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1
1

2
1

1 1 2 2
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,
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q
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q q

x w v x
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ϕ
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+

+

= + +

⋯
                                                                             (34)                          

 
where iw are the components of the vector w  obtained by 

               1w G u−=                                                                                                                      (35) 
 



    Remark 2: We repeat that It is important to note that the functional µ expressed by (30) or, 
equivalently (34), need not satisfy the condition (28) required for it to be a membership functional. 
If this condition is violated at any point, say 0x X∈ then 0x and its observed membership value 

at 0x  are inserted as an additional training pair 1, 1( , )q qv u+ +  in the training set (27) and the 

procedure of computing the parameter vectorw is repeated. This process is continued using the 
RLS algorithm in until it converges to a membership functional that satisfies (28). For details on a 
general recursive learning algorithm that implements this process see [10 ]. ▌       
 
….Remark 3: In most applications, a fuzzy set in the feature space is a union of fuzzy sets and 
its membership function is multiple-valued conditional membership function, i. e., a n-tuple of 
membership funcdtionals. In a probabilistic interpretation, each value corresponds respectively to 
the conditional probability that a given feature vector x  belong to a respective fuzzy set. This 
interpretation provides further motivation for the setting for the following realization of the 
membership functional as a neural network, the latter being obtained strictly on mathematical 
basis. 
 
   2.4 Neural Network Realization of a Membership Functional in the Space F 
 
The structure represented by (30) or, equivalently (34), is shown in the block diagram of Fig, 1. It 
is clear from this figure that this structure corresponds to a two-hidden layer artificial neural 
network, with the synapses and activation functions labeled according to the symbols appearing 
in (30) and (34). Such an artificial neural network, as an optimal realization of an input output map 
in F based on a training set as given by (27), was first introduced by de Figueiredo in 1990 [8-9 ] 
and called by him an Optimal Interpolative Neural Network (OINN). It now turns out, as developed 
above, that such a network is also an optimal realization of the membership functional of a fuzzy 
set inΦ . 
 

3 APPLICATIONS 
 

Two important cases of applications in which the universal set X is infinite-dimensional are those 
in which the objects in X  are waveforms { ( ) : }x x t a t b= ≤ ≤  or images 

{ ( , ) : , }x x u v a u b c d= ≤ ≤ ≤ . By simply replacing the formulas for the scalar product in X  
given by (1) or (2) for the Euclidian case to the present case, all the remaining developments 
follow in the same way as before, with the correct interpretation of the inner products and with the 
understanding that summations now become integrations. 

 
For example, the scalar product, analogous to (1) and (2), for the case of two waveforms 

x  and y   would be 

           ( ) ( )
b

a

x t y t dt∫                                                                                                               (36) 

 
and 

 

1( ) ( , ) ( )
b

a

x t R t s y s dtds−∫                                                                                                        (37) 

     
Then the synaptic weight summations in Fig. 1 would be converted into integrals representing 
matched filters matched to the prototype waveforms in the respective fuzzy set. The author called 
such networks dynamic functional artificial neural networks (D-FANNs) and provided a functional 
analytic method for their analysis in [12] and application in [14].. 



 
    Due to limitations in space, it is not possible to dwell on other applications, except to briefly 
mention the following example of an analysis of a database of Brain Spectrogram image feature 
vectors x   belonging to two mutually exclusive fuzzy sets A  and B  of images of patients with 
possible Alzheimer’s and vascular dementia (see [13]). 
 
    Fig. 2 shows the images of 12 slices extracted from a patient brain by single photon emission 
with computed tomography (SPECT) hexamethylphenylethyleneneaminieoxime technetium-99, 
abbreviated as HMPAO-99Tc. The components of the feature vector x are the average 
intensities of the image slices in the regions of interest in the templates displayed in the lower part 
of Fig. 2. This feature vector was applied as input to the OINN shown in Fig. 3, which is self 
explanatory. The results of the study, including a comparison of the performance of our machine-
based algorithms and a human expert in achieving the required objective, are displayed in Table 
1. It turned out that, in this experiment, the machine performed better than the human expert. The 
performance of the expert, reported in the Table, represents an improvement of his diagnostic 
ability achieved by using this machine learning algorithm as a tool. 
 
4 CONCLUSION 
 
Assuming that the universe of discourse X is a vector space endowed with a scalar product, the 
membership functions Aµ  of fuzzy sets A are nonlinear membership functionals from X to the 

real line satisfying the usual positivity constraint. Under appropriate conditions, we have allowed 
such Aµ to belong to a Reproducing Kernel Hilbert Space ( )F X , and process the uncertainty 

present in the fuzzy sets A by nonlinear functional analytic processing of their Aµ in the 

space ( )F X . We have shown how such a processing of Aµ  affects the processing of the fuzzy 

sets A themselves. We have described some of the benefits of this approach toward providing a 
common rigorous platform for human and machine intelligence, and toward generalizing some of 
the concepts of probability theory. In this way, our approach is different from the alternative 
approaches in the literature (see, e.g., [5]), whereby the processing of uncertainty takes place in 
the feature space rather than in the membership functional space. A more detailed discussion of 
our approach will appear in future publications such as [16]. 
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Fig. 1 Optimal realization of the membership functional Aµ  of a fuzzy set A∈Φ . 

 
 
 
 
 
 
 



 
 
 
 
Fig. 2. Images of slices of Brain Spectrogram images of a prototype patient. The template frames 
are used to extract the components of the feature vector x  characterizing the patient. 
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Fig. 3. An OINN (Optimal Interpolative Neural Network) used to realize the membership 
functionals of two fuzzy sets of patients with two different types of dementia 
 
 
 

Table: SPECT Data Analysis 

Source of Classification Rate of Correct Classification* 
Fuzzy-Set-Based Classification 81% 

Expert Radiological Diagnostician 77% 
*41 subjects: 15 Probable AD, 12 Probable VD, 10 Possible VD, 4 Normal. 
 
Table 1 Results of the study of dementia based on the fuzzy set vector functional membership 

analysis presented in the paper 
 

APPENDIX 
 

BRIEF OVERVIEW OF THE SPACEF  
 
In this Appendix we briefly review some definitions and results on the space ( )F X  invoked in 
the body of the paper. 
For the sake of brevity, we focus on the case in which X is the N-dimensional Euclidian space 
NE . The developments also apply, of course, when X is any separable Hilbert space, such as 

2l , the apace of square-summable strings of real numbers of infinite length (e.g., discrete time 

signals), or 2L , the space of square-integrable waveforms or images.  



Thus let F  consist of bounded analytic functionals µ  on NE [We denote members ofF  byµ    
because, in this paper, they are candidates for membership functionals of fuzzy sets in Φ ].Then 
such functionals µ  can be represented by abstract power (Vollerra functional) series on NE  
satisfying the following conditions.  
 

    (a) µ is a real analytic functional on a bounded set NEΩ⊂  defined by 

                       { }:Nx E x γΩ = ∈ ≤                                                   (A1) 

where γ  is a positive constant. This implies that there is an N-variable power series known as a 

Volterra series in these N variables, absolutely convergent at every x∈Ω , expressible by: 
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where nµ  are homogeneous Hilbert-Schmidt(H-S) polynomials of degree n in the components of 

x, given by  
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where, in the last equality, we have used the notation 

1( , , )Nk k k= ⋯                                                                          (A5) 
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     (b) Let there be given a sequence of positive numbers 

{ }0 1, ,λ λ λ= ⋯                                                                                                               (A10) 

where the weights nλ express prior uncertainty in the terms nµ , n = 0,1, 2,…, and satisfy  
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Actually, some elements of λ , namely kλ , k S∈ , where S is a subset of non-negative integers, 

may be allowed to be zero, if we assume that f belongs to a subspace of F  consisting of powers 
series in F with the terms of degree k S∈  deleted.   
 
 (c) Finally, the coefficients kc in the terms nµ of the abstract power series expansion of the 

membership function satisfy the restriction 

2

0

!1
! ! k

n k nn

k
c

n kλ

∞

= =

< ∞∑ ∑                                                                       (A12) 

The above allows us to state the following theorem. For a proof, see [6]. 

Theorem 1 (de Figueiredo / Dwyer) [6].  

Under (A1), (A2),(A11), and (A12), the completion of the set of nonlinear functionals µ  in (A2) 

constitutes a Reproducing Kernel Hilbert (RKHS) ( )NF E F= onΩ , with: 

(i) The scalar product between any Aµ  and B Fµ ∈ , corresponding to fuzzy sets A and B  is 

defined by 
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where kc  and kd  are defined for Aµ  and Bµ  in the same way as kc is defined for defined for µ  

in.(A4) and (A8). 
    (ii) The reproducing kernel, ( , )K x z , in F is  
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where ,x z  denotes the inner product in NE .In the special case that 0
n

nλ λ=  ϕ  is an 

exponential function, and thus ( , )K x z  becomes  

( )0( , ) exp ,K x z x zλ=   ▌                                                                                       (A15) 

 
It is easily verified that the ( , )K x z defined as the reproducing property 

            ( ,.), (.) ( )FK x xµ µ< > =                                                                                             (A16) 

Methods for best approximation of a functional in F , on which the  development s in section 2.3 
are based, are described in [6-10] and [15]. 
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