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cycles, yet the Nicholson’s blowfl ies model can generate 
rich and complex dynamics.

DDEs are differential equations in which the deriva-
tives of some unknown functions at present time are de-
pendent on the values of the functions at previous times. 
Mathematically, a general delay differential equation for 
x (t ) � R n takes the form 

   dx (t ) _____ 
dt

   � f  (t, x t ),

where x t (�) � x (t � �) and �� � � � 0. Observe that xt (�) 
with �� � � � 0 represents a portion of the solution trajec-
tory in a recent past. Here, f  is a functional operator that 
takes a time input and a continuous function xt (�) with �� 

� � � 0 and generates a real number (dx (t )/dt ) as its output. 
A well-known example of a delay differential equation is the 
Hutchinson equation, or the discrete delay logistic equation, 
x�� rx (1 � x (t � �)/K ). Some DDEs can be conveniently 
solved in a stepwise fashion. In fact, the Hutchinson equa-
tion can be rewritten as (ln x )� � r (1 � x (t � �)/K ), which 
can be used to solve for x for 0 � t � �. Some DDEs, such 
as x �(t ) � rx (t )[1 � a  ∫��  0

  e as  x (t � s )ds/K ], a � 0, are in 
fact a system of ordinary diffential equations (ODEs) in dis-
guise. This can be seen by letting y (t ) � a  ∫��  0

  e as  x (t � s )ds 
and noticing that y� � a(x (t ) � y (t )), which yields a system 
of ODEs x�(t ) � rx (t )(1 � y (t )/K ); y� � a(x (t ) � y (t )). 
Indeed, an integro-differential equation of the form x�(t ) � 
f  (t, x (t )) �  ∫��  0

  k (s )g (x (t � s ))ds   with initial condition 
xt(�) where �� 	 � � 0 is equivalent to a system of ODEs 
with initial condition if k is a linear combination of func-
tions eat, teat, t 2eat, . . . , tmeat, where a is a real number and 
m is a positive integer. The method of reducing such a delay 
differential equation into a system of ODEs is called the 
linear chain trick.
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All processes take time to complete. While physical 
processes such as acceleration and deceleration take little 
time compared to the times needed to travel most dis-
tances, the times involved in biological processes such as 
gestation and maturation can be substantial when com-
pared to the data-collection times in most population 
studies. Therefore, it is often imperative to explicitly in-
corporate these process times into mathematical models 
of population dynamics. These process times are often 
called delay times, and the models that incorporate such 
delay times are referred as delay differential equation 
(DDE) models.

CONCEPTS AND NOTATION

Recent theoretical and computational advancements in 
delay differential equations reveal that DDEs are capable 
of generating rich and plausible dynamics with realistic 
parameter values. Naturally occurring complex dynamics 
are often naturally generated by well-formulated DDE 
models. This is simply due to the fact that a DDE oper-
ates on an infi nite-dimensional space consisting of con-
tinuous functions that accommodate high-dimensional 
dynamics. For example, the Lotka–Volterra predator–
prey model with crowding effect does not produce sus-
tainable oscillatory solutions that describe population 

D
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Numerically solving most delay differential equa-
tions or systems is almost as simple as solving ODEs. 
The popular MATLAB-based dde23 solver developed 
by  Shampine and Thompson for delay differential equa-
tions is well tested and user-friendly. Interested readers 
can fi nd many familiar and informative examples at the 
website http://www.radford.edu/thompson/webddes/
ddetutwhite.html, and more sophisticated users can 
fi nd additional information at http://www.radford.edu/
thompson/webddes/.

As with linear ODEs, stability properties of linear 
DDEs can be characterized and analyzed by studying 
their characteristic equations. For example, the character-
istic equation for x�(t ) � ax (t ) � bx (t � �) is � � a � 
be ��� � 0. The roots � of the characteristic equation are 
called characteristic roots. Notice that the root appears in 
the exponent of the last term in the characteristic equa-
tion, causing the characteristic equation to possess an in-
fi nite number of roots. However, there are only a fi nite 
number of roots located to the right of any vertical line 
in the complex plane. 

SOME CHARACTERISTICS OF DDEs

In most applications of delay differential equations in the 
sciences, the need for incorporating time delays is often 
due to the presence of process times or the existence of 
some stage structures. In engineering applications, such 
time delays are often modeled via high-dimensional 
compartment models. In life-science applications, com-
partmental models can present the additional challenges 
of estimating some of the involved parameter values. In 
such cases, low-dimensional delay differential models 
with fewer parameters can be sensible alternatives. 

Since the through-stage survival rate is often a func-
tion of such time delays, it is easy to see that these mod-
els may involve some delay-dependent parameters. The 
ubiquitous presence of such parameters often greatly 
complicates the task of a systematic study of such mod-
els. In some special cases, the stability of a given steady 
state can be determined by the graphs of some functions 
of time delay that can be expressed explicitly and thus 
can be depicted. The common scenario is that as time 
delay increases, stability changes from stable to unstable 
to stable, implying that a large delay can be stabilizing. 
This scenario often contradicts the one provided by simi-
lar models with only delay-independent parameters. 

In addition, a closer look at the cause of a time delay 
often suggests that the time delay itself maybe depen-
dent on some key model variables. In short, the delays are 
state dependent. These state-dependent delay differential 

equations are notoriously diffi cult to study mathemati-
cally. However, they may possess some surprising and 
more plausible dynamics.

SOME SIMPLE DELAY DIFFERENTIAL 
EQUATION MODELS 

Many consumer species go through two or more life stages 
as they proceed from birth to death. In order to capture the 
oscillatory behavior often observed in nature, various mod-
els are proposed. They include many difference models 
and delay differential models. The  Hutchinson equation,

 x� � rx (1 � x (t � �)/K ), (1)

and its variations are among the ones that are most 
frequently employed in theoretical ecology models. In 
Equation 1, r is the growth rate, K is the carrying capac-
ity, and � is a time delay that may have no real biological 
meaning. Like logistic equations, these models are ad hoc 
and hence can be misleading. Indeed, they produces arti-
fi cially complex dynamics such as excessive volatility and 
huge peak-to-valley ratios (Fig. 1). 

On the other hand, if we assume the adults have a 
constant birth rate of r, the newborns mature in � units 
of time, and the mortality rate is proportional to the 
adult population density, then the following model may 
be a reasonable model for the adult population: 

 x� � rx (t � � )e�m� � rx 2/K. (2)
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FIGURE 1 Solutions of the Hutchinson equation with delay values of 1 
and 3. Note that the peak-to-valley ratio is well over 2000 when the 
delay is 3.
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However, the positive steady state of model 2 is always 
(globally) stable, similar to the case when the delay is 
zero. On the other hand, the well-known Nicholson 
blowfl ies model,

 x� � px (t � �)e�ax(t��) � mx, (3)

exhibits plausible and rich dynamics. In other words, the 
dynamics of delay differential equations are extremely 
sensitive to model forms. 

To further support the above statement, let us now 
examine some predator–prey models with age structure. 
We assume that the prey or the renewable resource, de-
noted by x, can be modeled by a logistic equation when 
the consumer is absent. The predators or consumers are 
divided into two age groups, juveniles and adults, and 
they are denoted by yj and y, respectively. We also as-
sume that only adult predators are capable of preying on 
the prey species and that the juvenile predators live on 
other resources. We then have the following two-stage 
predator-prey interaction model:

 x� � rx (1 � x/K ) � yp(x ), 
 y� �  be  

�dj �  y (t � �)p(x (t � �)) � da y � my 2. (4)

With the aid of the geometric stability switch criteria 
that were specifi cally developed to deal with models with 
delay-dependent parameters, it can be shown that this 
model generates increasingly more complex dynamics, 

as its characteristic equation produces more roots with 
positive real part when we increase the time delay from 
0.25 to 25 (Fig. 2). If we assume that the maturation 
time delay in population dynamics is determined by the 
resource uptake, then we may have

  ∫ 
��

  
0

   p(x (s ))ds � M  (5)

for some positive constant M that measures the re-
source requirement for a newborn to mature. With 
this additional reality, solutions of model 4 tend to a 
steady-state or a limit-cycle dynamics. In addition, the 
time to approach the limit cycle is much shorter than 
a typical model without time delay or with constant 
time delay, suggesting that the more realistic formula-
tion of time delay (Eq. 5) satisfactorily describes the 
often-observed short duration of transition dynamics 
in nature (Fig. 3). 

Delay differential equation models can be more ef-
fective and accurate compared to ordinary differential 
equation–based models when it is necessary to capture os-
cillatory dynamics with specifi c periods and amplitudes. 
This characteristic has been successfully employed to ex-
plain why lemmings often have a 4-year cycle whereas 
snowshoe hares have a 10-year cycle, and why the puta-
tive cycles of the moose–wolf interactions on Isle Royale, 
Michigan, is 38 years long. In addition, some simple and 
plausible models with two time delays can generate the 
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FIGURE 2 A solution of model 4 with p(x) � px, where r � K � 1, p � 1, b � 10, dj� 0, da � 0.5, m � 0.1, and � varies from 0.25 to 25.
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ubiquitous ultradian insulin secretory oscillations in the 
human glucose–insulin regulatory system.
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FIGURE 3 Maturation time delay may not generate complex dynamics 
other than periodic solution. In addition, maturation time delay may 
signifi cantly cut the transition time from an initial point to an attract-
ing limit cycle.
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Demography is the study of vital rates, such as mortal-
ity and fecundity rates, and their effects on population 
dynamics. Studies usually focus on how vital rates depend 
on traits such as age; in ecology, vital rates may include 
individual growth or shrinkage rates (the latter being most 
relevant for plants), and the traits on which they depend 
may include size, developmental stage, or any other state 
through which individuals transition,  including spatial lo-
cation and environmental state. Commonly investigated 
population consequences of the vital rates include the 
population growth rate and the population trait structure 
(the proportion of individuals in each age, size, stage, or 
other state class). The predominant tool for the ecological 
study of demography is the population projection matrix, 
a discrete-trait approach that is amenable to parameteri-
zation using empirical data and which allows analyses of 
factors such as environmental variation. 

OVERVIEW 

In almost any population, the rates describing individual 
activities depend on individual traits, and the activities 
most likely to have population consequences are the rates 
at which individuals reproduce, die, and change with re-
spect to rate-determining traits. For example, in an ani-
mal population, juveniles may be more likely to die and 
less likely to reproduce than adults, so differentiating the 
two developmental stages and understanding the rates 
at which individuals pass through them is important for 
understanding overall population death and birth rates. 
In addition, older or larger animals may survive or repro-
duce better or worse than younger or smaller ones; bet-
ter habitat quality in some places or at some times may 
similarly influence vital rates. Figure 1 illustrates the po-
tential effects of two such traits and hypothetical transi-
tions between trait states. Demography encompasses these 
and similar processes. Without context, the term is usu-
ally taken generally to mean the population dynamics of 
humans, whose vital rates depend on age and may also 
depend on socioeconomic status, nationality, or behav-
iors such as cigarette smoking, for instance. Demography 
departments in a university or other such organizational 
units are therefore often interdisciplinary social science 
units, most often including economists and sociologists. 
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