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a b s t r a c t

This paper considers a class of online gradient learningmethods for backpropagation (BP) neural networks
with a single hidden layer. We assume that in each training cycle, each sample in the training set is
supplied in a stochastic order to the network exactly once. It is interesting that these stochastic learning
methods can be shown to be deterministically convergent. This paper presents some weak and strong
convergence results for the learning methods, indicating that the gradient of the error function goes to
zero and theweight sequence goes to a fixed point, respectively. The conditions on the activation function
and the learning rate to guarantee the convergence are relaxed compared with the existing results. Our
convergence results are valid for not only S–S type neural networks (both the output and hidden neurons
are Sigmoid functions), but also for P–P, P–S and S–P type neural networks, where S and P represent
Sigmoid and polynomial functions, respectively.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Artificial neural network has been a hot topic in recent years
in cognitive science, computational intelligence and intelligent
information processing. Backpropagation (BP) is the most broadly
used learning method for feedforward neural networks. It was
first proposed by Werbos (1974) in his Ph.D. thesis, and
has been rediscovered several times (LeCun, 1985; Parker,
1982; Rumelhart, Hinton, & Williams, 1986). There are two
practicalways to implement the backpropagation algorithm: batch
updating approach and online updating approach. Corresponding
to the standard gradient method, the batch updating approach
accumulates the weight correction over all the training samples
before actually performing the update. On the other hand,
the online updating approach updates the network weights
immediately after each training sample is fed. Some authors
compare the twodifferent training schemes for feedforward neural
networks (Heskes & Wiegerinck, 1996; Nakama, 2009; Wilson
& Martinez, 2003). Heskes and Wiegerinck (1996) reveal several
asymptotic properties of the two schemes. Wilson and Martinez
(2003) explain why batch training is almost always slower than
online training (often orders of magnitude slower) especially
on large training sets. Nakama (2009) theoretically analyzes the
convergence properties of the two schemes applied to quadratic
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loss functions and shows the exact degrees to which the training
set size, the variance of the per-instance gradient, and the learning
rate affect the rate of convergence for each scheme.

There are three approaches for online training of BP neural
networks according to different fashions of sampling. The first
approach is OGM-CS (completely stochastic order): At each
learning step, one of the samples is drawn at random from the
training set and presented to the network (Finnoff, 1994; Heskes
& Wiegerinck, 1996; Terence, 1989; Wilson & Martinez, 2003).
The second approach is OGM-SS (special stochastic order): In each
training cycle, each sample in the training set is supplied in a
stochastic order to the network exactly once (Heskes&Wiegerinck,
1996; Li & Ding, 2005; Li, Wu, & Tian, 2004; Nakama, 2009). The
third approach is OGM-F (fixed order): In each training cycle, each
sample in the training set is supplied in a fixed order to the network
exactly once (Heskes &Wiegerinck, 1996; Mangasarian & Solodov,
1994; Wu & Xu, 2002; Wu, Feng, Li, & Xu, 2005; Xu, Zhang, & Jin,
2009).

Naturally, the existing convergence results for OGM-CS are
mostly asymptotic convergence with a probabilistic nature as the
size of training samples goes to infinity (Bertsekas & Tsitsiklis,
1996; Chakraborty & Pal, 2003; Fine & Mukherjee, 1999; Finnoff,
1994; Liang, Feng, Lee, Lim, & Lee, 2002; Tadic & Stankovic,
2000; Terence, 1989; Zhang, Wu, Liu, & Yao, 2009). Deterministic
convergence can be obtained for OGM-SS and OGM-F (Li et al.,
2004; Mangasarian & Solodov, 1994; Shao, Wu, & Liu, 2007; Wu
& Xu, 2002; Wu et al., 2005; Wu, Feng, & Li, 2002; Wu & Shao,
2003; Wu, Shao, & Qu, 2005; Xu et al., 2009). It is interesting
to see that the learning method OGM-SS with stochastic nature
enjoys deterministic convergence. The convergence result is a
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bit easier to prove for OGM-F than for OGM-SS. But we have
reason to believe, and our experience shows, that OGM-SS behaves
numerically better than OGM-F since the stochastic nature of the
learning procedure survives in OGM-SS (Li & Ding, 2005; Li et al.,
2004).

To guarantee the convergence, it is commonly required that
the learning rate ηm satisfies the assumptions

∑
∞

m=1 ηm = ∞

and
∑

∞

m=1 η
2
m < ∞ as in Bertsekas and Tsitsiklis (1996) and

Tadic and Stankovic (2000) for OGM-CS. An extra assumption
limm→∞ ηm/ηm+1 = 1was introduced byXu et al. (2009) for OGM-
F. A special conditionwhich is basically ηm = O(1/m)was required
in Li et al. (2004), Shao et al. (2007), Wu and Xu (2002), Wu et al.
(2005), Wu et al. (2002), Wu and Shao (2003) andWu et al. (2005)
for OGM-F and OGM-SS.

To obtain the strong convergence result, which means that
the weight sequence converges to a fixed point, Wu et al. (2005)
introduced an additional assumption: the number of the stationary
points of the error function is finite. A more relaxed condition is
used in Xu et al. (2009): the gradient of the error function has at
most countably infinite number of stationary points.

The aimof this paper is to present a comprehensive study on the
weak and strong convergence for OGM-F and OGM-SS, indicating
that the gradient of the error function goes to zero and the weight
sequence goes to a fixed point, respectively. These convergence
results improve the existing results in Li et al. (2004), Shao et al.
(2007), Wu and Xu (2002), Wu et al. (2005), Wu et al. (2002), Wu
and Shao (2003), Wu et al. (2005) and Xu et al. (2009) such that
the conditions on the activation function and the learning rate
to guarantee the convergence are much relaxed. Specifically, we
make the following contributions:

• The extra condition limm→∞ ηm/ηm+1 = 1 for the learning rate
is removed which is a requisite in Xu et al. (2009).

• The convergence results are valid for both OGM-F and OGM-SS.
• The convergence results apply not only to S–S type neural

networks (both the output and hidden neurons are Sigmoid
functions), but also to P–P, P–S and S–P type neural networks,
where S and P represent Sigmoid and polynomial functions,
respectively.

• The restrictive assumptions for the strong convergence in Wu
et al. (2005) and Xu et al. (2009) are relaxed such that the
stationary points set of the error function is only required not
to contain any interior point.

• We assume that the derivative g ′ of the activation function
is Lipschitz continuous on any bounded closed interval. This
improves the corresponding conditions in Wu et al. (2005),
which require the boundedness of the second derivative g ′′, and
in Xu et al. (2009), which require g ′ to be Lipschitz continuous
and uniformly bounded on the whole R.

Let usmake a few remarks on the above contribution points. For
the first contribution point, as an example, we recall a well-known
adaptive technique for the learning rate ηm: ηm = (1 + a)ηm−1 if
the error is decreasing, and ηm = (1 − a)ηm−1 otherwise, where
a < 1 is a positive number. Xu’s condition limm→∞ ηm/ηm+1 =

1 (Xu et al., 2009) is not valid in this case, while our convergence
results remains valid. For the second contribution point, it is
interesting to see that the learningmethodOGM-SSwith stochastic
nature enjoys deterministic convergence. We observe that OGM-F
is actually a deterministic iteration procedure in that the iteration
sequence is determined uniquely by the initial value and the fixed
order of the samples. The convergence result is a bit easier to
prove for OGM-F than for OGM-SS. We have reason to believe,
and our experience shows, that OGM-SS behaves numerically
better than OGM-F since the stochastic nature of the learning
procedure survives in OGM-SS (Li & Ding, 2005; Li et al., 2004).
Our convergence results are generalizations of both the results of

Xu et al. (2009), which considers OGM-F, and the results of Li et al.
(2004), which considers OGM-SS with an unpleasant condition
ηm = O(1/m) on the learning rate. Our third contribution allows
the activation functions for both hidden and output layers to be
more flexible. Here we remark that typically, S–S type networks
are used for classification problems, and S–P type networks with
Sigmoid hidden neurons and linear output neurons are used for
approximation problems. The existing convergence results (Li
et al., 2004; Shao et al., 2007; Wu & Xu, 2002; Wu et al., 2005,
2002; Wu & Shao, 2003; Wu et al., 2005; Xu et al., 2009) are
mostly for either S–S type or S–P type alone but not for both of
them. In this paper, we give a uniform treatment for all types of
networks. The fourth and fifth contribution points are mainly of
theoretical interest. From a theoretical point of view, we mention
that different analytical tools are employed inWu et al. (2005) and
Xu et al. (2009) and this study for the convergence analysis, might
explain, at least in part, why different conditions are obtained
for the convergence. The differential Taylor expansion is used in
Wu et al. (2005), which requires the boundedness of the second
derivative g ′′ of the activation function g; the mean value theorem
of integrals is employed in Xu et al. (2009), which requires g ′ to be
Lipschitz continuous and uniformly bounded; and in this paper, we
use the integral Taylor expansion and hence require the Lipschitz
continuity of g ′ on any bounded closed interval. Finally, we point
out that Xu et al. (2009) is a big step forward for the convergence
study of OGM-F and that Xu et al. (2009) also includes another
convergence result under the condition that the error function is
directionally convex. This convex condition is not considered in
this paper.

The rest of this paper is organized as follows. In Section 2, online
updating methods including OGM-F and OGM-SS are introduced.
The main convergence results are presented in Section 3 and their
proofs are gathered in Section 4. Some conclusions are drawn in
Section 5.

2. OGM-F and OGM-SS

Let us begin with an introduction of a feedforward neural
network with three layers. The numbers of neurons for the input,
hidden and output layers are p, n and 1, respectively. Suppose that
the training sample set is


xj,Oj

J
j=1 ⊂ Rp

× R, where xj and Oj

are the input and the corresponding ideal output of the jth sample,
respectively. Let V =


vi,j

n×p be the weight matrix connecting

the input and the hidden layers, and write vi = (vi1, vi2, . . . , vip)
T

for i = 1, 2, . . . , n. The weight vector connecting the hidden and
the output layers is denoted by u = (u1, u2, . . . , un)

T
∈ Rn. To

simplify the presentation, we combine the weight matrix V with
the weight vector u, and write w =


uT , vT1, . . . , v

T
n

T
∈ Rn(p+1).

Let g, f : R → R be given activation functions for the hidden
and output layers, respectively. For convenience, we introduce the
following vector valued function

G (z) = (g (z1) , g (z2) , . . . , g (zn))T , ∀ z ∈ Rn. (1)

For any given input x ∈ Rp, the output of the hidden neurons is
G(Vx), and the final actual output is

y = f (u · G (Vx)) . (2)

For any fixedweightsw, the error of the neural networks is defined
as

E(w) =
1
2

J−
j=1

(Oj
− f (u · G(Vxj)))2 =

J−
j=1

fj(u · G(Vxj)), (3)

where fj(t) =
1
2 (O

j
− f (t))2, j = 1, 2, . . . , J, t ∈ R. The gradients

of the error function with respect to u and vi are, respectively,
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given by

Eu(w) = −

J−
j=1


Oj

− yj

f ′(u · G(Vxj))G(Vxj)

=

J−
j=1

f ′

j (u · G(Vxj))G(Vxj), (4)

Evi(w) = −

J−
j=1


Oj

− yj

f ′(u · G(Vxj))uig ′(vi · xj)xj

=

J−
j=1

f ′

j (u · G(Vxj))uig ′(vi · xj)xj, (5)

where

yj = f (u · G(Vxj)), i = 1, 2, . . . , n; j = 1, 2, . . . , J. (6)
Write

EV(w) =

Ev1(w)

T , Ev2(w)
T , . . . , Evn(w)

T T , (7)

Ew(w) =

Eu(w)T , EV(w)T

T
. (8)

First, let us consider the case that the training samples are
supplied to the network in a fixed order (OGM-F) in the training
process. Hence, starting from an arbitrary initial guess w0, we
proceed to refine it iteratively by the formulas

umJ+j+1
= umJ+j

+∆jumJ+j, (9)

vmJ+j+1
i = vmJ+j

i +∆jv
mJ+j
i , (10)

where

∆kumJ+j
= ηm(Ok

− ymJ+j, k)f ′(umJ+j
· GmJ+j, k)GmJ+j, k

= −ηmf ′

k


umJ+j

· GmJ+j, kGmJ+j, k, (11)

∆kv
mJ+j
i = ηm


Ok

− ymJ+j, k f ′(umJ+j
· GmJ+j, k)

× umJ+j
i g ′(vmJ+j

i · xk)xk

= −ηmf ′

k


umJ+j

· GmJ+j, k umJ+j
i g ′(vmJ+j

i · xk)xk, (12)

GmJ+j, k
= G(VmJ+jxk), ymJ+j, k

= f (umJ+j
· GmJ+j, k),

m ∈ N; i = 1, 2, . . . , n; j, k = 1, 2, . . . , J. (13)
Here the parameter ηm is the learning rate, whose value may be
changed after each cycle of the training procedure.

We can also choose training samples in a special stochastic
order (OGM-SS) as follows: For the mth training cycle, let
xm, 1, xm, 2, . . . , xm, J


be a stochastic permutation of the set

x1, x2, . . . , xJ

. Similar to (9) and (10), the weights are iteratively

updated in the following fashion

umJ+j+1
= umJ+j

+∆m
j u

mJ+j, (14)

vmJ+j+1
i = vmJ+j

i +∆m
j v

mJ+j
i , (15)

where
∆m

k u
mJ+j

= ηm(Ok
− ymJ+j, m, k)f ′(umJ+j

· GmJ+j, m, k)GmJ+j, m, k

= −ηmf ′

k


umJ+j

· GmJ+j, m, kGmJ+j, m, k, (16)

∆m
k v

mJ+j
i = ηm


Ok

− ymJ+j, m, k f ′(umJ+j
· GmJ+j, m, k) · umJ+j

i

× g ′(vmJ+j
i · xm, k)xm, k

= −ηmf ′

k


umJ+j

· GmJ+j, m, k
× umJ+j

i g ′(vmJ+j
i · xm, k)xm, k, (17)

GmJ+j, m, k
= G(VmJ+jxm, k), ymJ+j, m, k

= f (umJ+j
· GmJ+j, m, k),

m ∈ N; i = 1, 2, . . . , n; j, k = 1, 2, . . . , J. (18)
Wemention that OGM-F and OGM-SS are also called cycle learning
and almost-cycle learning in Heskes and Wiegerinck (1996),
respectively.

3. Main results

For any x ∈ Rn, wewrite ‖x‖ =

∑n
i=1 x

2
i , where ‖·‖ stands for

the Euclidean norm in Rn. LetΩ0 = {w ∈ Ω : Ew(w) = 0} be the
stationary point set of the error function E(w), whereΩ ⊂ Rn(p+1)

is a bounded region satisfying (A3) below. Let Ω0,s ⊂ R be the
projection ofΩ0 onto the sth coordinate axis, that is,

Ω0,s =

ws ∈ R : w = (w1, . . . , ws, . . . , wn(p+1))

T
∈ Ω0


(19)

for s = 1, 2, . . . , n(p + 1). To analyze the convergence of the
algorithm, we need the following assumptions.

(A1) g ′(t) and f ′(t) are Lipschitz continuous on any bounded
closed interval;

(A2) ηm > 0,
∑

∞

m=0 ηm = ∞,
∑

∞

m=0 η
2
m < ∞ ;

(A3) There exists a bounded open setΩ ⊂ Rn such that {wm} ⊂

Ω (m ∈ N);
(A3′) There exists a bounded open setΩ ′

⊂ Rn such that {um} ⊂

Ω ′ (m ∈ N), and the derivative of the activation function g
in (1) is uniformly bounded and Lipschitz continuous on R.

(A4) Ω0,s does not contain any interior point for every s =

1, 2, . . . , n(p + 1).

Theorem 3.1. Assume that conditions (A1)–(A3) are valid. Then,
starting froman arbitrary initial valuew0, the learning sequence {wm

}

defined by (9) and (10) or by (14) and (15) satisfies the followingweak
convergence

lim
m→∞

‖Ew

wm

‖ = 0. (20)

Moreover, if assumptions (A1)–(A4) are valid, there holds the strong
convergence: There existsw∗

∈ Ω0 such that

lim
m→∞

wm
= w∗. (21)

Let us make three remarks on the convergence result: (1) We
claim that the weak convergence remains valid if the activation
function g of the hidden layer is a commonly used sigmoid function
and assumptions (A3′) (instead of (A3)) and (A2) are valid. This is
due to the fact that the sigmoid function g is uniformly bounded
on R and that (37) is valid even if the weight vectors vi (i =

1, 2, . . . , n) are unbounded. (2) In the numerical analysis of an
iterative method for a class of nonlinear problems, the iterative
sequence is often required to be bounded in order to prove its
convergence. This is what we do in conditions (A3) and (A3′). We
mention that the weights will be automatically bounded in the
network training with the help of a penalty term (cf. Zhang et al.,
2009). (3) For the strong convergence, our condition (A4) on Ω0
allows it to be finite set, countably infinite set, nowhere dense set
or even some uncountable dense set. Hence, the corresponding
assumptions that the set Ω0 contains finite points and at most
countably infinite points in Wu et al. (2005) and Xu et al. (2009),
respectively, are special cases of assumption (A4). This relaxed
condition makes it much easier to verify the strong convergence
in practice.

4. Proofs

For convenience of presentation, we present in detail the
convergence proof for OGM-F in the following Section 4.1. Then,
in Section 4.2, we briefly point out how to extend the result to
OGM-SS.

4.1. Convergence analysis for OGM-F

We first present four useful lemmas for the convergence
analysis.
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Lemma 4.1. Let q(x) be a function defined on a bounded closed
interval [a, b] such that q′(x) is Lipschitz continuous with Lipschitz
constant K > 0. Then, q′(x) is differentiable almost everywhere in
[a, b] andq′′(x)

 ≤ K , a.e. [a, b]. (22)

Moreover, there exists a constant C > 0 such that

q(x) ≤ q(x0)+ q′(x0)(x − x0)+ C(x − x0)2, ∀x0, x ∈ [a, b]. (23)

Proof. Since q′(x) is Lipschitz continuous on [a, b], q′(x) is
absolutely continuous and the derivative q′′(x) exists almost
everywhere on [a, b]. Hence, for almost every x ∈ [a, b],q′′(x)

 =

limh→0

q′(x + h)− q′(x)
h


= lim

h→0

q′(x + h)− q′(x)
h

 ≤ K . (24)

Using the integral Taylor expansion, we deduce that

q(x) = q(x0)+ q′(x0)(x − x0)

+ (x − x0)2
∫ 1

0
(1 − t)q′′(x0 + t(x − x0))dt

≤ q(x0)+ q′(x0)(x − x0)+ (x − x0)2
∫ 1

0
K(1 − t)dt

= q(x0)+ q′(x0)(x − x0)+ C(x − x0)2,
C =

K
2
, x0, x ∈ [a, b]


. � (25)

Lemma 4.2. Suppose that the learning rate ηm satisfies (A2) and that
the sequence {am} (m ∈ N) satisfies am ≥ 0,

∑
∞

m=0 ηma
β
m < ∞ and

|am+1 − am| ≤ µηm for some positive constants β and µ. Then we
have

lim
m→∞

am = 0. (26)

Proof. According to (A2), we know that ηm → 0 as m →

∞. We claim that limk→∞ infm>k am = 0. Otherwise, if a∗ ≡

limk→∞ infm>k am ∈ (0,∞], then by the definition of the inferior
limit, there exists an integer M > k such that am ≥

a∗
2 > 0 for

m ≥ M , which leads to

∞−
m=0

ηmaβm ≥

a∗

2

β ∞−
m≥M

ηm = ∞. (27)

This contradicts
∑

∞

m=0 ηma
β
m < ∞ and confirms the claim. Next,

we claim that limk→∞ supm>k am = 0. Otherwise, there exists
δ ∈ (0,∞] such that limk→∞ supm>k am = δ. Then, for any
0 < ε < δ, we can choose two subsequences


aik

and


ajk

of

{am} to satisfy (1) aik ∈

0, ε4


, ajk ∈ (ε, δ); (2) ik + 1 < jk < ik+1;

(3) aik+1 ∈ [
ε
4 ,

ε
2 ]. (This can be done because limk→∞ infm>k am =

0, limk→∞ supm>k am = δ, and |am − am+1| ≤ µηm → 0 as
m → ∞.) For any ik < m < jk, we have am ∈ [

ε
4 , ε]. Thus, we

conclude that
ε

2
≤
ajk − aik+1

 ≤ |ajk − ajk−1| + · · · + |aik+2 − aik+1|

≤ µ

jk−1−
m=ik+1

ηm ≤ µ

jk−
m=ik+1

ηm.

Therefore, we have for all large enough integer k that
jk−

m=ik

ηmaβm ≥

jk−
m=ik+1

ηmaβm ≥

ε
4

β jk−
m=ik+1

ηm ≥
2
µ

ε
4

β+1
.

But this contradicts
∑

∞

m=0 ηma
β
m < ∞ and implies our second

claim. Finally, the above two claims together clearly lead to the
desired estimate (26). �

Lemma 4.3. Let {bm} be a bounded sequence satisfying limm→∞

(bm+1 − bm) = 0. Write γ1 = limn→∞ infm>n bm, γ2 =

limn→∞ supm>n bm and S = {a ∈ R: There exists a subsequence {bik}
of {bm} such that bik → a as k → ∞}. Then we have

S = [γ1, γ2]. (28)

Proof. It is obvious that γ1 ≤ γ2 and S ⊆ [γ1, γ2]. If γ1 = γ2, then
(28) follows simply from limm→∞ bm = γ1 = γ2. Let us consider
the case γ1 < γ2 and proceed to prove that S ⊇ [γ1, γ2].

For any a ∈ (γ1, γ2), there exists ε > 0 such that
(a − ε, a + ε) ⊆ (γ1, γ2). Noting that limm→∞(bm+1−bm) = 0,we
observe that bm travels to and from between γ1 and γ2 with very
small pace for all large enough m. Hence, there must be infinite
number of points of the sequence {bm} falling into (a − ε, a + ε).
This implies a ∈ S and thus (γ1, γ2) ⊆ S. Furthermore, (γ1, γ2) ⊆ S
immediately leads to [γ1, γ2] ⊆ S. This completes the proof. �

Let the sequence

wmJ+j


(m ∈ N, j = 1, 2, . . . , J) be

generated by (9) and (10). We introduce the following notations:

Rm, j
= ∆jumJ+j

−∆jumJ , (29)

rm, ji = ∆jv
mJ+j
i −∆jv

mJ
i , (30)

dm, l = umJ+l
− umJ

=

l−
j=1

∆jumJ+j
=

l−
j=1

∆jumJ
+

l−
j=1

Rm, j, (31)

hm, l
i = vmJ+l

i − vmJ
i =

l−
j=1

∆jv
mJ+j
i =

l−
j=1

∆jv
mJ
i +

l−
j=1

rm, ji , (32)

ψm, l, j
= GmJ+l, j

− GmJ, j, (33)
m ∈ N, j = 1, 2, . . . , J, l = 1, 2, . . . , J, i = 1, 2, . . . , n.
Then, (9) and (10) can be rewritten as

umJ+j
= umJ

+

j−
k=1


∆kumJ

+ Rm, k , (34)

vmJ+j
i = vmJ

i +

j−
k=1

(∆kv
mJ
i + rm, ki ). (35)

Let constants C1 and C2 be defined by (cf. assumption (A3))

max
1≤j≤J


‖xj‖, |Oj

|


= C1, sup
m∈N

‖wm
‖ = C2. (36)

By assumption (A1), f ′

j (t) also satisfies the Lipschitz condition for
j = 1, 2, . . . , J . Furthermore, g(t), f (t) and fj(t) are all uniformly
continuous on any bounded closed interval.

Lemma 4.4. Let conditions (A1) and (A3) be valid, and let the
sequence


wmJ+j


be generated by (9) and (10). Then there are

constants C3 –C7 such thatGmJ+j, k
 ≤ C3, (37)

‖dm, l‖ ≤ C4ηm, ‖ψm, l, j
‖ ≤ C5ηm, (38)

‖Rm, j
‖ ≤ C6η

2
m, ‖rm, ji ‖ ≤ C7η

2
m, (39)

where m ∈ N; j, k = 1, 2, . . . , J; l = 1, 2, . . . , J; i = 1, 2, . . . , n.
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Proof. According to (36), we have

|vmJ+j
i · xk| ≤ ‖vmJ+j

i ‖
xk ≤ C1C2 ≡ D1. (40)

Thus, there exists a positive constant C3,1 such that

max
|t|≤D1

|g(t)| = C3,1, (41)GmJ+j, k
 =

G VmJ+jxk
 ≤

√
nC3,1 ≡ C3. (42)

It follows from (36) and (42) thatumJ+j
· GmJ+j, k

 ≤
umJ+j

 GmJ+j, k
 ≤ C2C3 ≡ D2. (43)

Then, there is a positive constant C4,1 such that

max
|t|≤D2

f ′

j (t)
 ≤ C4,1. (44)

Furthermore, a combination of (A1), (11), (37) and (40) gives

dm, l =
umJ+l

− umJ
 =

 l−
j=1

∆jumJ+j

 ≤ C4ηm, (45)

where C4 = JC4,1C3.
Employing (40), we find that

max
|t|≤D1

g ′(t)
 = C5,1, (46)

where C5,1 is a positive constant. Moreover, we observe thatψm, l, j
 =

GmJ+l, j
− GmJ, j

 ≤ max
1≤i≤n

g ′(ti)
 xj n−

i=1

‖hm, l
i ‖

≤ max
1≤i≤n

g ′(ti)
 xj n−

i=1

l−
k=1

‖∆kv
mJ+k
i ‖

≤ C5ηm, (47)

whereC5 = nlC4,1C5,1 max1≤i≤n |g ′(ti)|‖xj‖ supm∈N ‖wn
‖max1≤k≤J

‖xk‖, in which ti = vmJ
i · xj + θi(v

mJ+l
i − vmJ

i ) · xj, θi ∈ (0, 1), and

|ti| ≤

vmJ
i · xj

+ |(vmJ+l
i − vmJ

i ) · x
j
| ≤ 3C1C2. By virtue of (A1), we

see that
g ′(ti)

 (i = 1, 2, . . . , n) is bounded.
Combining f ′

j (t)’s Lipschitz continuity, (36) and (37), we havef ′

j (u
mJ+j

· GmJ+j, j)− f ′

j (u
mJ

· GmJ+j, j)


≤ L
umJ+j

· GmJ+j, j
− umJ

· GmJ+j, j


≤ L
dm, j GmJ+j, j

 ≤ LC3
dm, j , (48)f ′

j (u
mJ

· GmJ+j, j)− f ′

j (u
mJ

· GmJ, j)


≤ L
umJ

· GmJ+j, j
− umJ

· GmJ, j


≤ L
umJ

 ψm, j, j
 ≤ LC2

ψm, j, j
 , (49)

where L > 0 is the Lipschitz constant.
By the definition of Rm, j, we see that

Rm, j
= ∆jumJ+j

−∆jumJ

= −ηm

f ′

j (u
mJ+j

· GmJ+j, j)GmJ+j, j
− f ′

j (u
mJ

· GmJ, j)GmJ, j
= −ηm


f ′

j (u
mJ+j

· GmJ+j, j)ψm, j, j

+

f ′

j (u
mJ+j

· GmJ+j, j)− f ′

j (u
mJ

· GmJ+j, j)

GmJ, j

+

f ′

j (u
mJ

· GmJ+j, j)− f ′

j (u
mJ

· GmJ, j)

GmJ, j. (50)

Therefore, it follows from (37), (38), (48) and (49) thatRm, j
 ≤ ηm


LC2

3

dm, j+ (C4,1 + LC2C3)
ψm, j, j

 ≤ C6η
2
m,(51)

where C6 = max

LC2

3C4, (C4,1 + LD2)C5

.

Similarly, we can show the existence of a constant C7 > 0 such
thatrm, ji

 ≤ C7η
2
m. � (52)

The next lemma reveals an almost monotonicity of the error
function during the training process.

Lemma 4.5. Let the sequence

wmJ+j


be generated by (9) and (10).

Under assumptions (A1) and (A3), there holds

E

w(m+1)J

≤ E

wmJ

− ηm
Ew wmJ2 + C8η

2
m,

(m = 0, 1, . . .) (53)

where C8 > 0 is a constant independent of m and ηm.

Proof. By virtue of assumption (A1) and Lemma 4.1, we know
that the derivative g ′′(vmJ

i · xj + t(hmJ
i · xj)) is integrable almost

everywhere on [0, 1] and

f ′

j


umJ

· GmJ, jumJ
· ψm, J, j

= f ′

j


umJ

· GmJ, j n−
i=1

umJ
i g ′(vmJ

i · xj)hm, J
i · xj

+ f ′

j


umJ

· GmJ, j n−
i=1

umJ
i (h

m, J
i · xj)2 ·

∫ 1

0
(1 − t)

× g ′′(vmJ
i · xj + t(hm, J

i · xj))dt. (54)

By virtue of Lemma 4.1, (11), (12) and (54), there is a constant
C9 > 0 such that

fj

u(m+1)J

· G(m+1)J, j
≤ fj


umJ

· GmJ, j
+ f ′

j


umJ

· GmJ, j u(m+1)J
· G(m+1)J, j

− umJ
· GmJ, j

+ C9

u(m+1)J

· G(m+1)J, j
− umJ

· GmJ, j2
= fj(umJ

· GmJ, j)

+ f ′

j (u
mJ

· GmJ, j)

dm, J · GmJ, j

+ umJ
· ψm, J, j

+ dm, J · ψm, J, j
+ C9


u(m+1)J

· G(m+1)J, j
− umJ

· GmJ, j2
= fj(umJ

· GmJ, j)−
1
ηm
∆jumJ

· dm, J −
1
ηm

n−
i=1

(∆jv
mJ
i · hm, J

i )

+ f ′

j


umJ

· GmJ, j n−
i=1

umJ
i (h

m, J
i · xj)2 ·

∫ 1

0
(1 − t)

× g ′′(vmJ
i · xj + t(hm, J

i · xj))dt

+ f ′

j (u
mJ

· GmJ, j)dm, J · ψm, J, j

+ C9

u(m+1)J

· G(m+1)J, j
− umJ

· GmJ, j2 . (55)

Summing (55) from j = 1 to j = J and noting (3)–(5), (31) and (32),
we have

E

w(m+1)J
≤ E


wmJ

−
1
ηm

 J−
j=1

∆jumJ


2

+

n−
i=1

 J−
j=1

∆jv
mJ
i


2
+ δm

= E

wmJ

− ηm

Eu wmJ2 +

n−
i=1

Evi wmJ2+ δm

= E

wmJ

− ηm
Ew wmJ2 + δm, (56)
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where

δm = −
1
ηm

J−
j=1

∆jumJ
·

J−
j=1

Rm, j
−

1
ηm

n−
i=1


J−

j=1

∆jv
mJ
i ·

J−
j=1

rm, ji



+

J−
j=1

n−
i=1

umJ
i f ′

j


umJ

· GmJ, j (hm, J
i · xj)2 ·

∫ 1

0
(1 − t)

× g ′′(vmJ
i · xj + t(hm, J

i · xj))dt

+

J−
j=1

f ′

j (u
mJ

· GmJ, j)dm, J · ψm, J, j

+ C9

J−
j=1


u(m+1)J

· G(m+1)J, j
− umJ

· GmJ, j2 .
It now follows from (36) and (37) thatGmJ, j

 =
G VmJxj

 ≤ C3,umJ
· GmJ, j

 ≤
umJ

 GmJ,j
 ≤ C2C3 = D2.

(57)

By (11), (42)–(44) and (51), the first term of δm can be estimated as
follows.− 1

ηm

J−
j=1

∆jumJ
·

J−
j=1

Rm, j


≤

1
ηm

J−
j=1

∆jumJ
 ·

J−
j=1

Rm, j
 ≤ C8,1η

2
m, (58)

where C8,1 = J2C3C4,1C6 = JC4C6.
Similar estimates for the other terms of δm can be obtainedwith

corresponding constants C8,t > 0 for t = 2, . . . , 5. Finally, the
desired estimate (53) is proved by setting C8 =

∑5
t=1 C8,t . �

Now, we are ready to prove the convergence theorem.
Proof of Theorem 3.1 for OGM-F. The proof is divided into two
parts, dealing with (20) and (21), respectively.

Proof of (20). By (A2) and Lemma 4.5, we conclude that
∞−

m=0

ηm
Ew wmJ2

=

∞−
m=0

ηm

Eu wmJ2 +
EV wmJ2 < ∞, (59)

∞−
m=0

ηm
Eu wmJ2 < ∞. (60)

Employing the integral Taylor expansion, we deduce that

f ′

j (u
(m+1)J

· G(m+1)J, j)G(m+1)J, j
− f ′

j (u
mJ

· GmJ, j)GmJ, j

= f ′

j (u
(m+1)J

· G(m+1)J, j)ψm, J, j

+

f ′

j (u
(m+1)J

· G(m+1)J, j)− f ′

j (u
mJ

· G(m+1)J, j)

GmJ, j

+

f ′

j (u
mJ

· G(m+1)J, j)− f ′

j (u
mJ

· GmJ, j)

GmJ, j

= f ′

j (u
(m+1)J

· G(m+1)J, j)ψm, J, j

+ (dm, J · G(m+1)J, j)GmJ, j
·

∫ 1

0
(1 − t)

× f ′′

j (u
mJ

· G(m+1)J, j
+ t(dm, J · G(m+1)J, j))dt

+ (umJ
· ψm, J, j)GmJ, j

·

∫ 1

0
(1 − t)

× f ′′

j (u
mJ

· GmJ, j
+ t(umJ

· ψm, J, j))dt. (61)

Note (A2) and let ηc > 0 be an upper bound of {ηm}
∞

m=0. It follows
from (36)–(38) thatumJ

· G(m+1)J, j
+ t


dm, J · G(m+1)J, j

≤
umJ

+
dm, J G(m+1)J, j


≤ (C2 + C4ηc) C3, t ∈ (0, 1), (62)umJ

· GmJ, j
+ t


umJ

· ψm, J, j
≤
umJ

 GmJ, j
+

ψm, J, j


≤ C2(C3 + C5ηc) = D2 + C2C5ηc, t ∈ (0, 1). (63)

According to (62), (63) and the proof of Lemma 4.1, there are
positive constants C10, C11 > 0 such that∫ 1

0
(1 − t) f ′′

j


umJ

· G(m+1)J, j
+ tdm, J · G(m+1)J, j dt ≤ C10, (64)∫ 1

0
(1 − t) f ′′

j


umJ

· GmJ, j
+ tumJ

· ψm, J, j dt ≤ C11. (65)

By (43), we obtain
u(m+1)J

· G(m+1)J, j
 ≤ C2C3 = D2. Employing (4)

and (37), (38), (44), (64) and (65), and summing (61) from j = 1 to
j = J , we conclude thatEu w(m+1)J−

Eu wmJ ≤
Eu w(m+1)J

− Eu

wmJ

≤ C10J max
1≤j≤J
m∈N

G(m+1)J, j
 GmJ, j

 dm, J
+


JC4,1 + C11J max

1≤j≤J
m∈N

umJ
 GmJ, j

max
1≤j≤J
m∈N

ψm, J, j


≤ C12ηm, (66)

where C12 = JC2
3C4C10 + JC4,1C5 + JD2C5C11. Combining (59), (66)

and Lemma 4.2 results in limm→∞

Eu wmJ
 = 0.

Similarly as in the proof to (66), there exists a positive constant
C13 such thatEu wmJ+j

− Eu

wmJ ≤ C13ηm. (67)

SinceEu wmJ+j ≤
Eu wmJ+j

− Eu

wmJ+

Eu wmJ
≤ C13ηm +

Eu wmJ , (68)

we have limm→∞

Eu wmJ+j
 = 0 for j = 1, 2, . . . , J . Similarly,

we deduce that limm→∞

Evi wmJ+j
 = 0 for i = 1, . . . , n,

j = 1, 2, . . . , J , and

lim
m→∞

Ew wmJ+j = 0, j = 1, 2, . . . , J. (69)

This immediately gives

lim
m→∞

‖Ew

wm

‖ = 0. � (70)

Proof of (21). According to (A3), the sequence {wm} (m ∈ N) has
a subsequence {wmk} (k ∈ N) that is convergent to, say, w∗

∈ Ω0.
It follows from (20) and the continuity of Ew (w) thatEw w∗

 = lim
k→∞

Ew wmk
 = lim

m→∞

Ew wm = 0. (71)

This implies that w∗ is a stationary point of E (w). Hence, {wm}

has at least one accumulation point and every accumulation point
must be a stationary point.
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Next, by reduction to absurdity, we prove that {wm} has
precisely one accumulation point. Let us assume to the contrary
that {wm} has at least two accumulation points w ≠ w. We write
wm

= (wm
1 , w

m
2 , . . . , w

m
n(p+1))

T . It is easy to see from (9)–(12) that
limm→∞

wm+1
− wm

 = 0, or equivalently, limm→∞ |wm+1
i −

wm
i | = 0 for i = 1, 2, . . . , n(p + 1). Without loss of generality, we

assume that the first components ofw andw do not equal to each
other, that is, w̄1 ≠ w̃1. For any real number λ ∈ (0, 1), let wλ1 =

λw̄1+(1−λ)w̃1. By Lemma4.3, there exists a subsequence

w

mk1
1


of

wm

1


converging to wλ1 as k1 → ∞. Due to the boundedness

of

w

mk1
2


, there is a convergent subsequence


w

mk2
2


⊂


w

mk1
2


.

We define wλ2 = limk2→∞w
mk2
2 . Repeating this procedure, we

end up with decreasing subsequences {mk1} ⊃ {mk2} ⊃ · · · ⊃

{mkn(p+1)}withwλi = limki→∞w
mki
i for each i = 1, 2, . . . , n(p+1).

Write wλ
= (wλ1 , w

λ
2 , . . . , w

λ
n(p+1))

T . Then, we see that wλ is an
accumulation point of {wm

} for any λ ∈ (0, 1). But this means that
Ω0,1 has interior points, which contradicts (A4). Thus, w∗ must be
a unique accumulation point of {wm

}
∞

m=0. This completes the proof
of the strong convergence. �

4.2. Convergence analysis for OGM-SS

Now, let the sequence

wmJ+j


(m ∈ N, j = 1, 2, . . . , J) be

generated by (14) and (15), and let

Rm, j
= ∆m

j u
mJ+j

−∆m
j u

mJ , (72)

rm, ji = ∆m
j v

mJ+j
i −∆m

j v
mJ
i , (73)

dm, l = umJ+l
− umJ

=

l−
j=1

∆m
j u

mJ+j
=

l−
j=1

∆m
j u

mJ
+

l−
j=1

Rm, j, (74)

hm, l
i = vmJ+l

i − vmJ
i =

l−
j=1

∆m
j v

mJ+j
i =

l−
j=1

∆m
j v

mJ
i +

l−
j=1

rm, ji , (75)

ψm, l, j
= GmJ+l, m, j

− GmJ, m, j, (76)
m ∈ N, j = 1, 2, . . . , J, l = 1, 2, . . . , J, i = 1, 2, . . . , n.

It is obvious that Lemmas 4.1–4.3 are not influenced by the
new definitions. In place of Lemmas 4.4 and 4.5, we now have the
following two Lemmas.

Lemma 4.6. Let conditions (A1) and (A3) be valid, and let the
sequence


wmJ+j


be generated by (14) and (15). Then, there hold the

following estimates with the same constants C3 –C7 as in Lemma 4.4:GmJ+j, m, k
 ≤ C3, (77)

‖dm, l‖ ≤ C4ηm, ‖ψm, l, j
‖ ≤ C5ηm, (78)

‖Rm, j
‖ ≤ C6η

2
m, ‖rm, ji ‖ ≤ C7η

2
m, (79)

where m ∈ N; j, k = 1, 2, . . . , J; l = 1, 2, . . . , J; i = 1, 2, . . . , n.

Proof. According to (36), we have

|vmJ+j
i · xm, k| ≤ ‖vmJ+j

i ‖ max
1≤k≤J

xk ≤ C1C2 ≡ D1. (80)

Thus, there exists a positive constant C3,1 such that

max
|t|≤D1

|g(t)| = C3,1, (81)GmJ+j, m, k
 =

G VmJ+jxm, k
 ≤

√
nC3,1 ≡ C3. (82)

Similarly, (78) and (79) can be proved after adjusting the
corresponding superscripts in the proof to Lemma 4.4. �

Lemma 4.7. Let the sequence

wmJ+j


be generated by (14) and (15).

Under assumptions (A1)and (A3), there holds

E

w(m+1)J

≤ E

wmJ

− ηm
Ew wmJ2 + C8η

2
m,

(m = 0, 1, . . .) (83)

where C8 > 0 is the same constant defined in Lemma 4.5.

Proof. As in the proof to Lemma 4.6, we only need to adjust some
superscripts. For example, corresponding to (54), we change the
related superscripts and get

f ′

j


umJ

· GmJ, m, jumJ
· ψm, J, j

= f ′

j


umJ

· GmJ, m, j n−
i=1

umJ
i g ′(vmJ

i · xm, j)hm, J
i · xm, j

+ f ′

j


umJ

· GmJ, m, j n−
i=1

umJ
i (h

m, J
i · xm, j)2

×

∫ 1

0
(1 − t)g ′′(vmJ

i · xm, j + t(hm, J
i · xm, j))dt. (84)

The details are left to the interested readers. �

Proof of Theorem 3.1 for OGM-SS. We can use Lemmas 4.1–4.3
and Lemmas 4.6–4.7 to obtain the weak and strong convergence
results for OGM-SS precisely as in the proof to Theorem 3.1 for
OGM-F. �

5. Conclusions

In this paper, we present a comprehensive study on the weak
and strong convergence for three-layer BP neural networks. Com-
paredwith the existing convergence results, the corresponding as-
sumptions are more relaxed. Our convergence analysis holds for
more extensive BP neural networks, e.g., S–S, S–P, P–P and P–S type
neural networks.
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