
Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, July 31 - August 4, 2005

0-7803-9048-2/05/$20.00 ©2005 IEEE

Reinforcement Learning and the Frame Problem

Roberto Santiago
1
, George G. Lendaris

2

NW Computational Intelligence Laboratory, Portland State University, Portland, OR 97201
1
Systems Science,

robes@pdx.edu

2
Systems Science and Electrical & Computer Engineering, lendaris@sysc.pdx.edu

Abstract: The Frame Problem, originally proposed

within AI, has grown to be a fundamental stumbling

block for building intelligent agents and modeling the

mind. The source of the frame problem stems from the

nature of symbolic processing. Unfortunately, connec-

tionist approaches have long been criticized as having

weaker representational capabilities than symbolic sys-

tems so have not been considered by many. The equiva-

lence between the representational power of symbolic

systems and connectionist architectures is redressed

through neural manifolds, and reveals an associated

frame problem. Working within the construct of neural

manifolds, the frame problem is solved through the use

of contextual reinforcement learning, a new paradigm

recently proposed.

I. Background of the Frame Problem

The frame problem is one of the major stumbling blocks

for realistically modeling cognition and for developing intel-

ligent systems. The key issues revolve around the use of

symbolic processing systems, a) for modeling phenomena

associated with mind and brain, and b) as building blocks for

the development of intelligent systems. While it originally

arose as a significant challenge in classic artificial intelli-

gence, the frame problem is now also discussed in the fields

of cognitive science and philosophy of mind.

Without tracing details of its historical evolution, rein-

vention and multi-disciplinary variants, the basic issues lead-

ing to the frame problem can be summarized in the follow-

ing way: a) If knowledge is to be represented in a symbolic

manner, then as the amount of knowledge needed by an

agent increases, so does the number of symbols needed to

represent all that knowledge; b) as the number of needed

symbols increases, the agent’s efficiency decreases. Thus, a

fundamental problem arises when we want to construct an

intelligent agent that has even a modicum of common sense

knowledge, for, as the corpus of common sense knowledge

grows, the agent slows down. This yields a situation that is

not only inconvenient, but unrealistic in comparison with the

large volume of common sense knowledge that human be-

ings efficiently use every day.

The original description of the frame problem, which

was actually an attempt at its solution, focused on the man-

agement of fluents, a construct from the situational calculus

 This work was partially supported by NSF Grant ECS-0301022,

and IEEE Walter Karplus Summer Grant, 2004.

[4]. A fluent is a state variable that describes the environ-

ment of an agent and whose value changes temporally. An

example of a fluent would be president (USA), which in

2000 equals W. J. Clinton and in 2001 equals G.W. Bush. In

the situational calculus, all temporally changing states are

described with fluents. For real world application, the num-

ber of fluents is quite large. The frame of the famous frame

problem refers to an attempt to limit the number of axioms

(rules) for determining which fluents do and do not change

in any particular situation. An agent is said to always be op-

erating within some particular frame, and every frame has

associated with it axioms (frame axioms) for determining the

changed and unchanged fluents. The idea is that the number

of frame axioms per frame should be small in order to mini-

mize processing cost. An unfortunate side effect of this con-

straint is that as the desired upper limit of frame axioms per

frame decreases, the number of frames increases. The subse-

quent proliferation of frames brings with it the challenge of

setting up rules for determining when an agent is to be in a

particular frame. In essence, it trades one frame problem, the

one focused on managing fluents, for another frame prob-

lem, the one focused on managing frame transitions.

The different variants and versions of the frame problem

(such as the representation problem, the persistence problem,

the prediction problem, etc.) all have the same basic struc-

ture. Namely, when the enumeration of knowledge into

symbolic statements (rules, axioms, predicates, etc.) be-

comes large, some method is invoked to limit the number of

symbolic statements considered at any one time. The varie-

ties of solutions proposed so far have, unfortunately, fallen

short. Either the proposed solution solves one frame problem

by generating another, as in the example above, or the solu-

tions are so limited in scope and application they fail to be a

solution to the general frame problem.

II. Neural Networks, Systematicity

and the Frame Problem

 It has been said that artificial neural networks (NNs) are

immune to the frame problem, based on the fact that NNs

encode their knowledge into a set of weights of fixed cardi-

nality, with the implication that there is always only a fixed

cost to recall that knowledge, regardless of how much

knowledge is encoded onto those weights. On the other

hand, it is also argued that while NNs may avoid the frame

problem in this way, they do so at the cost of reduced repre-

sentational power compared to that available in symbolic

systems. This latter argument is based on the notions of sys-

tematicity, brought forth by Fodor and Pylyshyn. Their cri-

2971

tique, as we shall argue, hinges upon a limited understanding

of connectionist architectures; and, moreover, that connec-

tionist architectures do provide the representational power of

symbolic systems. Alas, this representational power comes

at the cost of incurring a frame problem; but, as we shall also

argue, this frame problem comes in a form that is solvable.

The systematicity analysis of the representational capa-

bility of NNs was based on the then prevalent static, feed-

forward architectures in the NN literature. Unfortunately, the

focus on such architectures yielded misleading conclusions.

Specifically, in their systematicity argument, Fodor and

Pylyshyn [1] not only focus on feed-forward architectures

but also invoke an interpretation that nodes in a feed-forward

NN correspond to concepts, or at least to some set of sym-

bols as would be used for symbolic representation (hereafter

referred to simply as a concept). This method for knowledge

representation is commonly referred to today as a semantic

network and, we argue, is one of the most limiting uses of

neural networks. None the less, in consideration of only

‘semantic network’ type usage of neural networks, Fodor

and Pylyshyn correctly draw the conclusion that the connec-

tions between nodes are only interpretable as causal relation-

ships, a crippling representational limitation. But, this is not

the only issue with feed-forward semantic networks

The diagram in Fig. 1 shows a prototypical example con-

sidered in the systematicity argument. There are three nodes

labeled a priori with the concepts Mary, John, and Mary-

LovesJohn. Assuming the network in Fig. 1 operates from

left to right, the network architecture represents a causal

relationship from the nodes labeled Mary and John to the

node labeled MaryLovesJohn. If this were a connectionist

architecture, the job of the network would be to learn the

strength of the causal relationship. Notice that this network

only has the ability to encode MaryLovesJohn and not Joh-

nLovesMary without an additional node being defined. As

such, the type of compactness and expressiveness one gets

by systematically (hence, systematicity) recombining sym-

bols is not to be found in this type of connectionist architec-

ture with concept-labeled nodes.

While it is historically true that similar representational

schemes appear in the works of well known connectionist

researchers (e.g., [6]), they by far do not represent the

breadth of knowledge representation approaches with NNs, a

fact more understood today. In fact, recurrent connectionist

architectures can learn and develop their own representa-

tional schemes. Of recent, Turing computability has been

proven for discrete recurrent neural networks and super-

Turing computability has been shown of analog recurrent

neural networks. This means that a recurrent neural network

is best thought of as a program which opens up a myriad of

representational schemes. If a recurrent neural network can

be thought of as a program then, of course, the training of a

recurrent neural network can be thought of as constructing a

program. Programs within the realm of Turing computabil-

ity are certainly not limited to only causal representation of

relationships between variables. Thus in consideration of

recurrent connectionist architectures we overcome the first

major criticism of Fodor and Pylyshin.

We agree that at the time, the ‘semantic network’ repre-

sentational schemes posited were likely necessary, not only

for early empirical work and comparison with symbolic sys-

tems, but also because little else was on offer for applying

NNs to the problems and challenges of artificial intelligence

and cognitive science. With the benefit of insights about

recurrent connectionist architectures, we are now able to

redress the above systematicity argument against connec-

tionism. While we could again use the Turing computability

argument for recurrent connectionist architectures to counter

the main systematicity criticism, we believe a deeper analy-

sis is needed. Specifically, redressing the systematicity cri-

ticism reveals a frame problem similar to ‘managing frame

transitions’ discussed in Section I. However, finding the

frame problem embedded within a connectionist architecture

also reveals a clear solution path through a version of

Reinforcement Learning. Thus we devote the next two sec-

tions to addressing systematicity and returning to the frame

problem.

III. Representation and Neural Manifolds

Methods for representation in neural systems are signifi-

cantly more diverse than previously thought. One of the key

architectures for enhanced representational capability is the

recurrent neural network (RNN). In fact, analyzing RNNs

provides a gateway to a more robust set of concepts with

respect to connectionist architectures. Consider the recur-

rent multilayer Perceptron (RMLP) architecture (cf. [2]); in

this architecture, the standard feed forward MLP is aug-

mented with weighted connections between nodes where

node output values from previous processing cycles may

serve as inputs to nodes for the current cycle (a.k.a. recur-

rent connections). The recurrent connections of the RMLP

enable this type of neural system to incorporate temporal

information, and further, they enable the development of

representational schemes during the process of training. The

signal values that appear as inputs to the nodes via the result-

ing recurrent connections may be seen as a representation of

the information content of data presented to the network in

the past. For clarity we will refer to this representation as a

dynamic representation to distinguish it from other represen-

tations that arise in the use of neural systems.

Mary

MaryLovesJohn

John

Figure 1. Basic Semantic Net representation.

2972

The role of these dynamic representations in RMLPs is

to encode the relative use of current and past input data. To

clarify, consider the RMLP structure as comprising two dis-

tinct parts: the feed forward network and the recurrent con-

nections (see Fig. 2). The feed forward network on its own

only has the ability to process new inputs to the RMLP (i.e.

just the current input data), and further, during operation it is

a static structure. But now consider the dynamic representa-

tion generated by the recurrent connections. Mechanically,

this representation may be thought of as shifting the bias

settings on each of the feed forward nodes. The shifting of

the bias settings has the important qualitative effect of

changing the feedforward network from a static structure to

a dynamic structure. More specifically, one can think of the

RMLP as a sequence of feed forward MLPs. This sequence

of MLPs is selected from a set of MLPs where each MLP is

exactly the same, except for its bias settings. Therefore,

each MLP within the set is uniquely identified by its bias

settings. During each step of operation, the recurrent con-

nections of the RMLP serve the role of generating bias set-

tings and, as a result, selecting an MLP from the set. Thus

we recast the RMLP into two components: 1) a set of MLPs

each uniquely identified by their bias settings and 2) a net-

work selector (i.e. the recurrent connections which generate

a set of bias settings during each step of operation).

 The first component, the set of MLPs, can be thought of

as a manifold. While manifolds entail deep mathematical

properties, it suffices for the purposes of this paper to think

of a manifold as comprising the following: 1) a set of ele-

ments, S, and 2) a coordinate system (a one-to-one mapping

from S to R
n
 that specifies each element in S via a vector of

n real numbers, a.k.a. the coordinates of the element). For

the RMLP the set of elements is the collection of feed-

forward neural networks (NN) defined by varying the bias

parameters of the hidden nodes and holding all other weights

static. The coordinate of each feed-forward NN is the vector

of bias settings. Thus the set can be considered a manifold

of neural networks, or more simply a neural manifold. Fig.

3 presents a visualization aid for this concept.

The definition of neural manifold is generic enough that

we may consider any type of NN architecture not just feed-

forward when constructing the set of elements. What is im-

portant, though, is that we designate some set of parameters

for the chosen architecture as static and some other set of

parameters as defining the coordinates for each element of

the set. We may refer to each group of parameters as static

parameters and dynamic parameters, respectively. In the

example of the RMLP, the dynamic parameters are the bi-

ases of the hidden nodes and the static parameters are all the

other weights on the feed-forward network. Notice, though,

that the weights of the network selector are not in either of

these two parameter sets. In the RMLP example this would

be the weights of the recurrent connections. Also notice

that the weights of the recurrent connections can themselves

be thought of as a simple linear network. We can generalize

the definition of the network selector to be an NN of any

architecture. What is important is that at every step of op-

eration it chooses a network from the manifold to use for

information processing, that is, it sets the dynamic parame-

ters.

The neural manifold and the network selector concepts

provide already a rich foundation for representation. In gen-

eral, we may consider any NN a program, not just RNNs.

So a manifold can be thought of as a library of programs.

Thus, the network selector is a program for selecting pro-

grams. These concepts will be leveraged as we return to the

systematicity criticism and subsequently the frame problem.

It is important at this point to remark that an RMLP is a very

simple example of a neural manifold and network selector

and that the remainder of this paper will deal with the con-

cepts of neural manifolds and network selectors and only

refer back to the RMLP as an example to add clarity.

z
-1

z
-1

Entire Recurrent Neural Network

Feedforward Sub-Network

z
-1

z
-1

Recurrent Connections

Figure 2. Components of Recurrent MLP (RMLP)

Networks within

Neural Manifold

-0.5

+1.5

Figure 3. Example for description of Dynamic Parameters.

Coordinate System

of Neural Manifold

0.0

+1.5

2973

IV. Neural Manifold and the Systematicity Argument

Recall that the systematicity argument was directed at

the expressive capabilities of single feedforward neural net-

works, which we agree have a limited repertoire of relation-

ships they can express among primitive symbols. We sub-

mit, though, that through the agency of neural manifolds and

network selectors the story is different. Consider a neural

manifold whose elements are RNNs, per say a recurrent

neural manifold (RNM). Because RNNs can be thought of

as programs we can indeed imagine constructing an RNM

with at least one program that takes the primitives John and

Mary and encodes JohnLovesMary and at least one program

that takes the same primitives and encodes MaryLovesJohn.

Due to space limitations we cannot go into a detailed expla-

nation but at this point simply assert this is true. By defini-

tion, these two RNNs are exactly the same in architecture

and are accessible via their respective coordinates. Thus,

contrary to the conclusions of the systematicity argument, it

is not necessary to specify an architecture with multiple spe-

cialized nodes; rather, the same RNN architecture may be

used but only with differing dynamic parameter settings. So

for the same node count, we are in a position to get much

more representational power, and in principle, at the same

level of representation as AI’s systematic manipulation of

symbols.

The above establishes that RNMs provide expressiveness

on par with symbolic processing, and thus takes the wind out

of the sails of the systematicity argument against NNs. So

far, so good. What we have yet to address is a principled

way to construct a useful manifold, through setting of the

static parameters, and an optimal network selector, through

setting of the parameters on the network selector. We know

that in the case of the RMLP this is possible through the use

of backpropagation through time (BPTT). By way of fore-

shadow, we shall see how BPTT is a form of reinforcement

learning and that reinforcement learning is the general

method for setting the static parameters of the manifold and

the parameters of the network selector. Before this, though,

we shall see that constructing an optimal network selector is

equivalent to solving the frame problem.

Recall from Section I, the difficult issue of managing

fluents for the original frame problem was solved at the cost

of creating another frame problem – that of managing

frames, which again was not directly solvable. In a sense, we

have a similar situation here. We draw the parallel by equat-

ing the notion of frame with a point on our RNN manifold,

and then posit that the task of selecting an RNN from the

manifold is a (type of) frame problem. An important conse-

quence of this view is that once we develop a solution for

constructing an optimal network selector, we will have the

basis for a solution to the general frame problem.

V. Neural Manifolds, Frames and the Solution

As suggested above, we posit that conceptually each

point on a neural manifold corresponds to a frame. Frames,

as originally proposed, are defined around a particular ac-

tion. This frame action can more conventionally be thought

of as a program (an action program). So the neural network

corresponding to each point of the manifold takes the place

of the action program (an action network, which performs

the frame action).

As described earlier, each frame has associated with it

frame axioms; these determine the update of the fluents. If

the AI frame approach had worked well, the subsequent in-

formation processing would have rapidly resulted in a) up-

date of fluents, b) calculation of the next action, and c) de-

termination of the frame within which the action should be

considered. In principle, this information processing set

could be wrapped up into a single program (a frame pro-

gram). This frame program could in principle be replaced

by a neural network (a frame network). Indeed, the network

selector plays the role of the frame network. In the case of

the RMLP the recurrent connections form the network selec-

tor and thus the frame network where the frames are the

feed-forward networks of the manifold. Recalling that

RMLPs are trained with BPTT and, as we will show, BPTT

is a form of reinforcement learning, the frame network can

be constructed through reinforcement learning. We will

describe this connection in further detail in the next section.

Before moving on, though, it is important to highlight

some differences which exist between frames and neural

manifolds. The frame problem from AI starts with the con-

cept that all actions are explicitly programmed by an engi-

neer, i.e., a tailored program is required for each frame. The

concept of neural manifolds, on the other hand, starts by

defining a large set of networks within which already exist

all the programs that might be needed by the agent. Gener-

ally, the neural manifold may be thought of as comprising a

large collection of “frame-relevant” programs, an idea we

will explore shortly. The critical point here is that it is not

necessary for all points in the manifold to correspond to use-

ful programs. If the manifold contains both useful and non-

useful programs, it will be the frame network’s task to deal

with this issue.

VI. Frame Networks and Reinforcement Learning

Conceptually, the RNN structural form derives its com-

putational power by its ability to merge information to and

from temporally disparate processing steps. A recurrent

connection from one node to another takes the output value

of the “from” node (that was calculated during the previous

time increment) and passes it to the input of the “to” node (at

the beginning of the new time interval). Once a value has

been input to the first node in a structure with recurrent con-

nections, the value will continue to influence the inputs ap-

pearing at each node in the path for all time hence. The ac-

tual contribution at any time tk will depend on the weights of

the various connections.

An interesting thing one can do with this type of compu-

tational structure is to adjust the meaning of past-present-

future. The usual way of thinking about the computations

2974

made at a node at some time tk is to consider that all the data

coming to it are based on past and present data. But, by ad-

justing the zero reference point on the perceiver’s clock, the

same computations can be treated AS IF they include data

from the “future”. Of course, when doing this, care needs to

be taken to keep all aspects of the resulting representation

synchronized.

Thus if one were training a recurrent neural network to

be a policy, the computations can be set up to act as if per-

formance information from one time step is communicated

back to previous time steps. This concept is incorporated in

(at least) two of the modern Reinforcement Learning proce-

dures: the Adaptive Critics and BPTT.

The Adaptive Critic class is based on approximating

Bellman’s Dynamic Programming. This method defines a

primary utility function U that calculates a “cost” associated

with an action and subsequent change of state of the plant

being controlled. Dynamic Programming is a method for

designing a policy that minimizes the total cost that accrues

over an entire trajectory of the plant from a starting point in

its state space (this is called “cost-to-go”, and is designated

as J). The frame network (a.k.a. network selector) can be

thought of as a policy for selecting frames (i.e. selecting

networks from the manifold). The adaptive critic method

uses the clock trick mentioned above for only one step into

the future. The rest of the future is dealt with via a critic NN

whose job it is to directly estimate the value of J (or its gra-

dient). The policy design at each iteration of the process is

based on the current estimate of J (or its gradient). As the

estimate of the J value (or its gradient) is improved, so is the

design of the policy.

The BPTT method approaches the policy design task

from the other direction, by making substantial use of the

clock trick mentioned above. Instead of using a critic to es-

timate J, it adds up the various values of U that are in the

“pipeline” during the evolution of the process, and by using

the clock trick mentioned above, acts as though it is calculat-

ing J by adding up “future” values of U directly. It turns out

that BPTT, in particular its truncated form, has become a

popular method for training the weights of recurrent neural

networks [5]. Augmentation of this algorithm with a form of

extended Kalman filtering has proven extraordinarily power-

ful, and has been used to create RNNs which have been de-

ployed to solve very complex tasks in consumer vehicles [5].

Getting back to the policy design task, feeding back in-

formation to previous time steps allows the output of the

RNN from one time step to be adjusted so as to maximize

the performance measurement for subsequent time steps.

The key here is that BPTT allows the output from an RNN at

one time step (say t) to be adjusted so as to maximize per-

formance measurements for subsequent time steps (say t+1

through t+n). In the language of Adaptive Critics and Ap-

proximate Dynamic Programming mentioned above, the

output of the RNN at time t is adjusted so as to maximize

(minimize) the performance measurements for times t+1

through t+n. That is, the output of the RNN at time t is ad-

justed so as to maximize/minimize

1

()

n

k

U t k

=

+∑ . This is

equivalent to the cost-to-go measure of Dynamic Program-

ming, where ∑
=

=

n

k

kUtJ
0

)()(.

If we denote a weight of the RNN as w, then BPTT cal-

culates
w

tJ

∂

∂)(
, hence the characterization above that BPTT

implements a form of RL. We thus substantiate the claim

that BPTT is a form of RL and, given all of the analysis up

to this point, TL can be used to construct frame networks. In

fact, in general RL can be used to construct a frame network

and solve, in general the frame problem. We briefly review

in the next section a new RL paradigm from which this as-

sertion stems.

VII. Contextual Reinforcement Learning

The following discussion is based on recent work

wherein the idea of “context” is used to extend application

of the RL paradigm into what we have termed Contextual

Reinforcement Learning (CRL). The discussion up to this

point has indirectly described the major components of

CRL; further details, analysis and implementation examples

can be found in [3] and [7]. The major difference between

the above discussion and CRL is use of the term ‘frame’

instead of the term ‘context’. The term context refers to a

larger concept than that of the term frame, in the sense that a

frame focuses just on the actions of the agent whereas con-

text includes aspects of the agent’s environment as well. In a

policy design setting, for example, the plant to be controlled

is the context for the design, and the associated optimal pol-

icy design (actor parameters) is to be selected from the

manifold. More generally, every point on the neural mani-

fold defines a set of behaviors for the agent (e.g., optimal

policy designs), and the aim of CRL is to translate all infor-

mation gained from the environment into an optimal behav-

ior selection from the neural manifold.

Fig. 4 provides for a general description of CRL, and

brings together the significant concepts discussed so far. The

bottom most box is the manifold we have already described.

The set of networks in this manifold are indexed via their

dynamic parameters, which serve as the manifold‘s coordi-

nate system. In our previous RMLP example, it is the set of

feed forward neural networks defined by varying the biases

for the nodes receiving recurrent connections, holding all

other parameters static. The coordinate system (indexing

mechanism) is the domain of the dynamic parameters.

2975

Also in Fig. 4, we see that the dynamic parameters are

being set by the Context Discerner (CD). In general, we may

consider the CD as implementing the network selector, that

is, a ‘policy’ for selecting networks from the neural mani-

fold. The path through parameter space is based on the

stream of inputs and feedbacks the agent receives internally

and from the environment. In our previous RMLP example,

the CD is the set of recurrent connections – i.e., the CD only

receives internal feedback. In the CRL experiments per-

formed so far, the CD has been implemented as an MLP and

an RMLP. In principle, the CD can be any form of machine

learning algorithm.

Among the tasks of the (trained) CD is to “know” what

combinations of inputs and feedbacks require action from

the CD to pick another NN from the manifold, and further, it

needs to know how to accomplish the selection in a time

optimal manner. This entails knowing which changes in the

environment are most important, and what they imply in

terms of the NN (a.k.a. the program) to be selected. A partial

demonstration of this capability is given in a companion

paper at this conference [3].

VIII. Conclusion

The frame problem has been around for some four dec-

ades, and its resolution has long been overdue. It is interest-

ing that in some sense the answer to this problem has existed

in the basic form of RMLPs for some time without recogni-

tion of the fact. The majority of this paper has explored the

nature of the frame problem, how it finds its analogue in

connectionist architectures and, ultimately, how it might be

solved, in general, through the use of reinforcement learning.

Along the way, significant effort has been spent on redress-

ing criticisms of the representational capability of neural

networks. These criticisms long ago pushed away from

fruitful dialogue connectionist architectures as being signifi-

cant building blocks for artificial intelligence (as well as for

models of mind and cognition). We believe that the research

presented here takes a significant step in addressing these

long standing criticisms, as well as demonstrating how some

of the hardest problems of AI can now indeed be addressed

through connectionism.

The work reported here represents but a small sampling

of what we believe to be possible with contextual reinforce-

ment learning and neural manifolds. Indeed, early results

with CRL seem incredibly promising, but at the same time

significant challenges remain. Still, the CRL architecture has

the potential of providing a greater understanding of how

human beings are able to use information learned in one

situation across a large variety of related situations. Namely,

it seems that the context discerner is a policy for looking at

both, external cues (from the environment) and internal cues

(from the agent state) in order to generalize the application

of programs (of the neural manifold) in an optimal manner.

Moreover, the neural manifold seems a powerful method for

describing how memory is organized both at a cognitive and

neural level. From an engineering point of view, CRL pro-

vides a new method for enabling high capacity, long term

learning and memory for an artificial agent.

In closing, it is our hope that this and similar research

might provide a renewed foundation for approaching again

the largest challenges of AI.

References

 [1] Fodor, J.A. & Z.W. Pylyshyn (1988), “Connectionism and

cognitive architecture: a critical analysis,” in Connections

and Symbols, Pinker, S. and Mehler, J. (eds.).

[2] Haykin, S. (1999), Neural Networks, A Comprehensive

Foundation, Prentice Hall.

[3] Holmstrom, L., R. Santiago, & G.G. Lendaris, 2005, “De-

signing an Adaptive Systems Identifier Through Rein-

forcement Learning,” Submitted to IJCNN’2005.

[4] McCarthy, J. & P.J. Hayes (1969), “Some Philosophical

Problems from the Standpoint of Artificial Intelligence”, in

Machine Intelligence 4, ed. D.Michie and B.Meltzer, Edin-

burgh: Edinburgh University Press, pp. 463-502.

[5] Prokhorov, D., G. Puskorius & L. Feldkamp (2001),

“Dynamical Neural Networks for Control.” in A Field

Guide to Dynamical Recurrent Networks, J. Kolen and S.

Kremer (Eds.), IEEE Press.

[5] Pylyshyn, Z.W. (ed.) (1987), The Robot's Dilemma: The

Frame Problem in Artificial Intelligence, Norwood, NJ:

Ablex.

[6] Rummelhart, D.E., J.L. McClelland, & the PDP Research

Group (1986), Parallel Distributed Processing, Vols. 1 & 2,

MIT Press.

[7] Santiago, R. A. & G. G. Lendaris (2004). "Context Discern-

ing Multifunction Networks: Reformulating Fixed Weight

Neural Networks." Proc IJCNN-04, Budapest, Hungary,

IEEE Press.

[8] Santiago, R. (2005), “Discerning Context through Rein-

forcement Learning and Recurrent Neural Networks” Tech-

nical Report, NW Computational Intelligence Lab, Portland

State University, www.nwcil.pdx.edu.

[9] Siegelmann, H. T.(1999), Neural networks and analog com-

putation: beyond the Turing limit, Birkhauser Boston.

Context

Discerner

Manifold

Parameters

Output

Input

External

Feedback

Internal

Feedback

Figure 4. Basic Structure of

Contextual Reinforcement Learning

2976

	Main Menu
	Frontmatter
	Table of Contents
	Conference Program
	Author Index
	Search This CD-ROM
	Search Results
	Print This Paper
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	IJCNN CD-ROM Help

