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Using the EM Algorithm to Train Neural Networks:
Misconceptions and a New Algorithm for

Multiclass Classification
Shu-Kay Ng and Geoffrey John McLachlan

Abstract—The expectation-maximization (EM) algorithm has
been of considerable interest in recent years as the basis for var-
ious algorithms in application areas of neural networks such as pat-
tern recognition. However, there exists some misconceptions con-
cerning its application to neural networks. In this paper, we clarify
these misconceptions and consider how the EM algorithm can be
adopted to train multilayer perceptron (MLP) and mixture of ex-
perts (ME) networks in applications to multiclass classification. We
identify some situations where the application of the EM algorithm
to train MLP networks may be of limited value and discuss some
ways of handling the difficulties. For ME networks, it is reported
in the literature that networks trained by the EM algorithm using
iteratively reweighted least squares (IRLS) algorithm in the inner
loop of the M-step, often performed poorly in multiclass classifica-
tion. However, we found that the convergence of the IRLS algorithm
is stable and that the log likelihood is monotonic increasing when
a learning rate smaller than one is adopted. Also, we propose the
use of an expectation-conditional maximization (ECM) algorithm
to train ME networks. Its performance is demonstrated to be su-
perior to the IRLS algorithm on some simulated and real data sets.

Index Terms—Expectation-conditional maximization (ECM)
algorithm, expectation-maximization (EM) algorithm, mixture of
experts, multiclass classification, multilayer perceptron (MLP),
variational relaxation.

I. INTRODUCTION

I N many important application areas such as control, pat-
tern recognition, and signal processing, nonlinear adaptive

systems are needed to approximate underlying nonlinear map-
pings through learning from examples. Neural networks have
been used as such nonlinear adaptive systems, since they can be
regarded as universal function approximators of nonlinear func-
tions that can be trained (learned) from examples of input-output
data. When the data includes noise, the input–output relation for
a neural network is described stochastically in terms of the con-
ditional probability of the output given the input .
Some neural networks (for example, Boltzmann machines) do
have explicit probabilistic components in their definition. How-
ever, even when a neural network is deterministic, it can be ef-
fective to train it as if it were a stochastic network, although it be-
haves deterministically in the execution model [1]. By working
with a stochastic version of a deterministic network, we are able
to employ statistical methodology in the learning process of the
network [2], [3].
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The expectation-maximization (EM) algorithm [4] has been
of considerable interest in recent years in the development of
algorithms in various application areas of neural networks; see
for example [5]–[8]. Amari [1], [9] has looked at the application
of the EM algorithm to neural networks from a geometrical per-
spective in terms of the information geometry. In related work,
Jacobs et al. [10] and Jordan and Xu [11] have considered the
use of the EM algorithm to train mixtures of experts models,
which are weighted combinations of subnetworks, while Jordan
and Jacobs [12] and Jacobs, Peng, and Tanner [13] have con-
sidered hierarchical mixtures of experts and the EM algorithm.
The statistical framework of the EM algorithm allows us to treat
the learning process as a maximum likelihood (ML) problem, so
standard likelihood-based methodology can be used to train the
neural networks in the first instance and to subsequently obtain
confidence intervals for a predicted output corresponding to
an input . The EM algorithm has a number of desirable proper-
ties, including its numerically stability, simplicity of implemen-
tation, and reliable global convergence [14, Sec. 1.7].

The EM algorithm is a broadly applicable approach to the
iterative computation of ML estimates, useful in a variety of
incomplete-data problems. It is based on the idea of solving a
succession of simpler problems that are obtained by augmenting
the original observed variables (the incomplete-data) with a set
of additional variables that are unobservable or unavailable to
the user. These additional data are referred to as the missing data

in the EM framework. The EM algorithm is closely related
to the ad hoc approach to estimation with missing data, where
the parameters are estimated after filling in initial values for
the missing data. The latter are then updated by their predicted
values using these initial parameter estimates. The parameters
are then reestimated, and so on, proceeding iteratively until
convergence. On each iteration of the EM algorithm, there are
two steps called the expectation (E) step and the maximization
(M) step. The E-step involves the computation of the so-called

-function, which is given by the conditional expectation of
the complete-data log likelihood given the observed data and
the current estimates. The M-step updates the estimates that
maximizes the -function over the parameter space. A detailed
account of the properties and applications of the EM algorithm
and its more recent extensions such as the expectation-condi-
tional maximization (ECM) and the expectation-conditional
maximization either (ECME) algorithms are provided in the
monograph [14]. There is now a whole battery of EM-related
algorithms and more are still being developed. Unfortunately,
there exists some misunderstanding about its applications in
training a neural network.
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In some instances, the conditional expectation of the com-
plete-data log likelihood (the E-step) is effected simply by
replacing the random vector of missing data by its con-
ditional expectation. However, this will be valid only if the
complete-data log likelihood were linear in . Unfortunately,
it is in general not true and this condition often seems to
be neglected in the application of the EM algorithm in the
training process of neural networks. In the paper, we clarify this
misconception about the implementation of the EM algorithm
in neural networks. We also investigate its application to
train multilayer perceptron (MLP) networks and mixture of
experts (ME) neural networks in applications to multiclass
classification problems. We identify some situations where the
application of the EM algorithm for training MLP networks
may be of limited value due to complications in performing the
E-step. A computationally intensive Monte Carlo EM (MCEM)
algorithm may be adopted in this situation to approximate
the E-step. Alternatively, a variational relaxation approach
derived from a mean field approximation can be used to obtain
an approximate E-step. These approaches will be described
further in Section III. For the ME networks, it is reported in
the literature [15] that networks trained by the EM algorithm
using the IRLS algorithm in the inner loop of the M-step,
often performed poorly in multiclass classification because of
the incorrect assumption on parameter independence. In our
study, we found that the convergence of the IRLS algorithm is
stable and that the log likelihood is monotonic increasing even
though the assumption of independence is incorrect. Moreover,
we present in the paper a new ECM algorithm to train ME
networks for multiclass classification such that the parameters
in the gating and expert networks are separable. Thus, the
independence assumption is not required and the parameters in
both gating and expert networks can be estimated separately.

The rest of the paper is organized as follows: Section II de-
scribes briefly the EM algorithm and the misconception of its
application in training neural networks. In Section III, we show
how the EM algorithm can be adopted to train MLP neural net-
works. An integration of the methodology related to the EM
training of radial basis function (RBF) networks is also pre-
sented. In Section IV, we propose a new ECM algorithm to train
ME networks for multiclass classification problems. Section V
reports simulation results to investigate the performance of the
ECM algorithm for training the ME networks. In Section VI,
the algorithm is illustrated using three real examples, and Sec-
tion VII ends the paper by presenting some concluding remarks.

II. THE EM ALGORITHM

In the sequel, we shall assume that the neural network is being
used in a multiclass classification context. In the classification
context, there are populations or groups, and the
problem is to infer the unknown membership of an unclassified
entity with feature vector of -dimensions. This membership
can be defined by a -dimensional output vector of zero-one
indicator variables, where the th element of the output vector
is one or zero, according as the entity does or does not belong
to the th group . We let

(1)

Fig. 1. MLP neural networks.

denote the examples available for training the neural net-
work, where the superscript denotes vector transpose,

is an input feature vector, and
is an output vector with . In

the training process, the unknown parameters in the neural
network, denoted by a vector , are inferred from the observed
training data given by (1). We let and

. In order to estimate by the statistical
technique of maximum likelihood, we have to impose a
statistical distribution for the observed data (1), which will
allow us to form a log likelihood function, , for

. In general, we proceed conditionally on the values for the
input variable ; that is, we shall consider the specification
of the conditional distribution of the random variable
corresponding to the observed output given the input as

The EM algorithm is a popular tool for the iterative compu-
tation of ML estimates, useful in a variety of incomplete-data
problems, where algorithms such as gradient ascent methods
may turn out to be more complicated. Further details on the EM
algorithm in a general context can be found in the monograph of
McLachlan and Krishnan [14]. Within the EM framework, the
unknown vector is estimated by consideration of the com-
plete-data log likelihood (that is, the log likelihood function for

based on both the observed and the missing data ). For ex-
ample, with MLP neural networks (Fig. 1), an obvious choice
for the missing data is the set of hidden units whose values
cannot be observed directly. The complete-data log likelihood
formed on the basis of both the observed and the missing data
is given by

(2)

That is, we need to specify the distribution of the random vari-
able , conditional on , and the conditional distribution of
given and . On the th iteration of the EM algorithm,
the E-step computes the -function, which is given by

(3)
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where denotes the expectation operator using the current
value for . On the M-step, is updated by taking

to be the value of that maximizes over
all admissible values of .

As described in Section I, in some instances, a modified form
of the EM algorithm is being used unwittingly by the author(s)
in that on the E-step, the conditional expectation of the com-
plete-data log likelihood, the -function, is effected simply by
replacing the random vector by its conditional expectation. For
example, in (3), [16], [17] is computed by the approximation

(4)

where

However, the approximation (4) will be valid only in special
cases. It is valid if the complete-data log likelihood were linear
in as in the ME neural networks presented in Section IV [11],
[12], but in general it is not. For instance, it is a nonlinear func-
tion of for MLP neural networks (see Section III) and it is
a quadratic function of for the regression models in both the
RBF network of [16] and the Sugeno-type model of [17].

III. TRAINING MULTILAYER PERCEPTRON NETWORKS

An MLP neural network constructs a decision surface in the
data space for discriminating instances with similar features
by forming a boundary between them. For a MLP neural
network with one hidden layer of units (Fig. 1), we can
specify a stochastic model of MLP neural network as follows.
Let be the realization of
the zero-one random variable for which its conditional
distribution given is specified by

(5)

where is the synaptic weight
vector of the th hidden unit. The bias term is included in

by adding a constant input for all so
that the input is now ; that is

The probability is equal to
. That is, has a Bernoulli distribution. The output of

-dimensional zero-one indicator variables is distributed ac-
cording to a multinomial distribution consisting of one draw on

cells with probabilities

(6)

for , where is the
synaptic weight vector of the th output unit. The bias term

is included in by adding a constant hidden unit
for all so that the hidden layer is now

, that is

In the EM framework, the missing data are then given by
.

The term on the right-hand side (RHS) of (6) is known as
the normalized exponential, or softmax function [18]. This func-
tion represents a smooth version of the winner-takes-all activa-
tion model in which the unit with the largest input has output
1 while all other units have output 0. It can be seen from (6)
that the probabilities are unchanged whenever the same addi-
tive constant is added to . For uniqueness,
we therefore set for [19]. This corre-
sponds to a network with output neurons in Fig. 1.With
the case of , (6) reduces to the logistic transformation.
This stochastic specification of the MLP neural network, using
the Bernoulli distribution for and the multinomial distribution
for , has been considered by Amari [1]. He pointed out that
the EM algorithm for training stochastic MLP is more flexible
with a better global convergence property than the back prop-
agation approach. Ma, Ji, Farmer [20] considered a MLP net-
work in which the output was linear in and the stochastic
model was specified by assuming the conditional distribution

to be Gaussian with known variance. Aitkin and
Foxall [21] studied a latent variable LV-MLP model which is
a special case of the ME networks to be presented in Section IV.

With reference to (5) and (6), the vector of all the unknown
parameters is given by .
The ML estimate of is obtained via the EM algorithm. Pre-
cisely, it follows from (5) and (6), respectively, that:

and

where

(7)

for

(8)
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for , and

(9)

From (2), apart from an additive function not involving , the
complete-data log likelihood for , , is given
by

(10)

It follows on application of the EM algorithm in training MLP
networks that on the th iteration of the E-step, we cal-
culate the expectation of conditional on the
current estimate of the parameter and the observed input
and output vectors (the -function). In view of (7)–(10), the

-function can be decomposed as

(11)

with respect to the unknown parameters and
, respectively.

The first term of the complete-data log likelihood (10) is
linear in , so its expectation can be replaced by the expecta-
tion of as in . The last term of (10), however, is nonlinear
in . The decomposition of the -function implies that the es-
timates of and can be updated separately by maximizing

and , respectively. On differentiation of with respect
to for , it follows that satisfies

(12)

where

(13)

and where

(14)

On differentiation of with respect to for
, it follows that satisfies

(15)

A. Intractability of the Exact E-Step for Training MLPs

It can be seen from (13) and (15) that each E-step of the EM
algorithm involves summation over . There
are tuples with or .
Hence, the computational complexity grows exponentially with

. The EM algorithm may provide an efficient training algo-
rithm if the number of hidden units is small. For example,
Lai and Wong [22] adopted a similar E-step procedure in fit-
ting neural networks to time series data. When is large, say

, Monte Carlo (MC) approach may be used to imple-
ment the E-step [14, Ch. 6]. This MCEM algorithm iterates be-
tween a MC estimate of the conditional expectation of the com-
plete-data log likelihood (MC E-step) and a maximization of
this expectation over the relevant parameters (M-step) [23]. In
the implementation of the MCEM algorithm, the MC error in-
curred in obtaining the MC sample in the E-step is monitored so
as to adjust the number of MC replications when the algorithm
progresses [24], [25].

An alternative variational relaxation approach derived from a
mean field approximation has been proposed to circumvent the
difficulty of the intractable E-step in training MLP [26]. The
basic idea involves approximating the intractable posterior dis-
tribution with a family of factorial distributions, in
which the troublesome coupling in the exact EM algorithm in
(13) and (14) are approximated with a factorization assumption
for each value of the observed data. A best approximation in the
family that is “closest” to the posterior distribution is obtained
by minimizing the Kullback-Leibler (KL) divergence between
them. By replacing the E-step with an approximate E-step, this
variational EM algorithm guarantees a global convergence on a
lower bound on the log likelihood [26].

B. An Integration of the Methodology Related to EM Training
of RBF Networks

For RBF neural networks, the EM algorithm has been used
for the unsupervised or supervised modes of the training process
[16], [27]. In the training of RBF networks, the hidden variable

corresponding to the input value in a RBF neural network
has the form

where denote the radial basis centres and is
a covariance matrix, usually taken to be spherical (that is,

, where is the identity matrix). The function
represents the -variate density with mean and

covariance matrix .
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Fig. 2. Mixture of experts.

Typically, with RBF neural networks, these centres are found
by using a clustering algorithm such as -means in an unsuper-
vised mode; that is, the clustering algorithm is applied to just the
input values , ignoring their known classification labels. How-
ever, attention has been given to using a normal mixture model
to find suitable values for the and the or the before the
second stage of finding the weights by conventional neural net-
work training procedures. Detailed description of unsupervised
learning of normal mixtures model via the EM algorithm can
be obtained in [28, Ch. 3]. Thus, in contrast to the training of
MLP networks where a boundary between different groups of
instances is sought, training of RBF networks forms clusters in
the data space with a centre for each cluster .
These clusters are then used to classify different groups of data
instances. This implies that the training of RBF networks can
be substantially faster than the methods used for MLP networks
by separately training the basis functions by some unsupervised
method and the weights by some linear optimum approaches.
On the other hand, Ungar et al. [29] introduced a statistical inter-
pretation of RBF’s as a normal mixture and showed how the EM
algorithm could be used to estimate the centres and covariance
matrices of the basis functions and the weights simultaneously.
They called this method to train fully RBF neural networks the
EMRBF.

IV. ECM ALGORITHM FOR TRAINING MIXTURE OF EXPERTS

In Section III, we have identified some situations where the
application of the EM algorithm for training MLP networks
may be of limited value due to complications in performing the
E-step. In this section, we show that the E-step for training ME
neural networks is easy to implement. In ME neural networks
(Fig. 2), there are several modules, referred to as expert net-
works. These expert networks approximate the distribution of

within each region of the input space. The expert network
maps its input to an output, the density , where

is a vector of unknown parameters for the th expert network.
It is assumed that different experts are appropriate in different
regions of the input space. The gating network provides a set of
scalar coefficients that weight the contributions of the
various experts, where is a vector of unknown parameters in
the gating network. Therefore, the final output of the ME neural
network is a weighted sum of all the output vectors produced by
expert networks

(16)

where is the vector of all the unknown parameters. For mul-
ticlass classification, the local output density is
modeled by a multinomial distribution consisting of one draw
on categories.

To apply the EM algorithm to the ME networks, we intro-
duce the indicator variables , where is one or zero ac-
cording to whether belongs or does not delong to the th
expert [28, Sec. 5.13]. That is, we let the missing data be the
vector containing all these indicator variables. The probability
that is one, given the input , is

The complete-data log likelihood for , , is
given by

(17)
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It follows on application of the EM algorithm in training ME
networks that on the th iteration, the E-step calculates
the -function as

(18)

It can be seen that the complete-data log likelihood (17) is linear
in . Thus, the E-step just replaces in (17) by its current con-
ditional expectation given , , and the current estimate

for , where

for . In addition, the -function can be decom-
posed into two terms with respect to and ,
respectively.

Hence, the M-step consists of two separate maximization
problems. The updated estimate of is obtained by
solving

(19)

The updated estimate of is obtained by solving

(20)

for each . Both (19) and (20) require iter-
ative methods. Jordon and Jacobs [12] proposed an iterative
reweighted least squares (IRLS) algorithm for all the general-
ized linear models (GLM) [30] used in the ME networks.

The output of the gating network is usually modeled by the
multinomial logit (or softmax) function as

(21)

where for
. Here contains the elements in
. Equation (19) becomes

(22)

for , which is a set of nonlinear equations with
unknown parameters.

For multiclass classification problems, the th expert is taken
to be the multinomial consisting of one draw on categories.
The local output of the th expert is thus mod-
eled as

where contains the elements in .
Equation (20) becomes

(23)

for and , which are sets of
nonlinear equations each with unknown parameters.

It can be seen from (22) that the nonlinear equation for the
th expert depends not only on the parameter vector , but

also on other parameter vectors . In other
words, each parameter vector cannot be updated indepen-
dently. With the IRLS algorithm presented in [12], the indepen-
dence assumption on these parameter vectors was used implic-
itly and each parameter vector was updated independently and
in parallel as

(24)

for , where is the learning rate [11].
That is, there are sets of nonlinear equations each with
variables instead of a set of nonlinear equations with
variables. In [12], the iteration (24) is referred to as the inner
loop of the EM algorithm. This inner loop is terminated when
the algorithm has converged or the algorithm has still not con-
verged after some prespecified number of iterations.

Similarly, each parameter vector for was
updated independently as

(25)

for , where is the learning rate for
. In the simulation experiment (Section IV) and real example

illustration (Section V) to follow, we set and
. Here, a smaller learning rate is adopted for to ensure

better convergence as in (23) is binary zero or one; see the
discussion in [1, Sec.8].

With reference to (24) and (25), the independence assump-
tion on the parameter vectors is equivalent to the adoption of an
incomplete Hessian matrix of the -function. Chen et al.[15]
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Fig. 3. Simulation experiment (a) the training set: x, o, and+ stand for samples belonging toG ,G , andG , respectively. (b) Log likelihood against the number
of iterations.

proposed a learning algorithm based on the Newton-Raphson
method for use in the inner loop of the EM algorithm. In par-
ticular, they pointed out that the parameter vectors cannot be
updated separately due to the incorrect independence assump-
tion. Rather, they adopted the exact Hessian matrix in the inner
loop of the EM algorithm. However, the use of the exact Hessian
matrix results in expensive computation during learning. To this
end, they proposed a modified algorithm whereby an approxi-

mate statistical model called the generalized Bernoulli density
is introduced for expert networks in multiclass classification.
This approximation simplifies the Newton–Raphson algorithm
for multiclass classification in that all off-diagonal block ma-
trices in the Hessian matrix are zero matrices and so the param-
eter vectors are separable. With this
approximation, the learning time is decreased, but the error rate
is reported to be increased [15].
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In this paper, we propose an ECM algorithm for which both
parameter vectors and are separable for

and , respectively. That is, the parameters
in the expert and gating networks can be estimated separately.
With the ECM algorithm of Meng and Rubin [31], the M-step is
replaced by several computationally simpler conditional-maxi-
mization (CM) steps. For example, the parameter vector is
partitioned as . On the th iteration of
the ECM algorithm, the E-step is the same as given above for
the EM algorithm, but the M-step of the latter is replaced by

CM-steps, as follows:

• CM-step 1: Calculate by maximizing with
fixed at .

• CM-step 2: Calculate by maximizing with
fixed at and fixed at .

•
...

• CM-step : Calculate by maximizing

with fixed at .
As the CM maximizations are over smaller dimensional pa-

rameter space, they are often simpler and more stable than the
corresponding full maximization called for on the M-step of the
EM algorithm, especially when iteration is required. More im-
portantly, each CM-step above corresponds to a separable set
of the parameters in for , and can be ob-
tained using the IRLS approach. Moreover, the ECM algorithm
preserves the appealing convergence properties of the EM algo-
rithm, such as its monotone increasing of likelihood after each
iteration [14, Ch. 5], [32]. To see this, it is noted that each of the
above CM-steps maximizes the function found in the pre-
ceding E-step subject to constraints on . Thus, we have

(26)

where is the function after the th CM-step on
the th iteration . The inequality (26)
is a sufficient condition for

to hold. That is, the ECM algorithm monotonically increases the
log likelihood after each CM-step, and hence, after each itera-
tion. This desirable property of reliable convergence ensures a
better result for multiclass classification problems.

V. SIMULATION EXPERIMENT

Here, we report the results of a simulation experiment per-
formed to compare the relative performance of the IRLS algo-
rithm and the ECM algorithm for training the ME networks. Our
simulation experiment is similar to that described in [15], where
the IRLS algorithm and the Newton–Raphson algorithm with
exact Hessian matrix were compared. In their study, they set
both and to be one for the IRLS algorithm and reported
that the log likelihood obtained by the IRLS algorithm was os-
cillatory and unstable and that the error rate was higher.

TABLE I
SIMULATION RESULTS FOR THE THREE-GROUP DATA

TABLE II
CLASSIFICATION RESULTS FOR THE IRIS DATA

In the simulated data set, there are three groups. As
illustrated in Fig. 3(a), two small rectangles, an ellipse, and other
regions in the large square constitute the three groups denoted

, , and , respectively. A training set of points
are produced by a uniformly distributed random number pro-
ducer. Among these points, 100, 122, and 728 points belong to

, respectively. As in [15], the ME networks con-
sists of experts. For comparative purpose, the learning
rates are set to be and for both IRLS and ECM
algorithms. We also run both algorithms for 60 iterations, where
each iteration was composed of a complete E-step and M-step of
the EM algorithm. For evaluating the generalization capability,
a test set of 2500 points uniformly distributed in the large square
was generated. Table I shows the classification results on both
the training and test sets. In addition, we plot in Fig. 3(b) the log
likelihood against the number of iterations.

From Fig. 3(b), it can be seen that with both algorithms the
log likelihood is increased monotonically after each iteration.
The unstable behavior of the IRLS algorithm described in [15]
did not occur in our simulation experiment (compared to [15,
Fig. 2(b)]) because a learning rate of is adopted in
our study. From Table I, it can be seen that the ECM algo-
rithm outperforms the IRLS algorithm in this simulated experi-
ment, in terms of the misclassified rate for both the training and
test sets. Moreover, the ECM algorithm converges to a larger
log likelihood value compared to that using the IRLS algorithm
[Fig. 3(b)].

VI. REAL EXAMPLES

Here, we illustrate the ECM algorithm using three real data
sets: the Leptograpsus crab data of Campbell and Mahon [33],
the well-known set of Iris data firstly analyzed by Fisher [34],
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Fig. 4. Log likelihood against the number of iterations (the Iris data).

and a thyroid data “ann-thyorid.dat.” The last two data sets
are available from the UCI Repository of machine learning
databases [35]. With the Iris data, we compare the ECM algo-
rithm to the IRLS algorithm with learning rates of and

. The data consist of measurements of the length and
width of both sepals and petals of 50 plants for each of three
types of Iris species setosa, versicolor, and virginica. Here,
the ME networks consists of experts and we run the
algorithms for 50 iterations. Table II shows the classification
results for the IRLS and the ECM algorithms. It can be seen
that the performance of the IRLS algorithm improves when a
learning rate smaller than one is adopted. This result indicates
that the comparison between the Newton-Raphson-type algo-
rithms and the IRLS algorithm performed in [15] was unfair
and misleading as the learning rate was adopted for
the IRLS algorithm but a smaller value was adopted for the
Newton–Raphson algorithms.

In Fig. 4, we plot the log likelihood against the number of
iterations. It can be seen that the log likelihood obtained by the
IRLS algorithm with is unstable, but that obtained by
the ECM algorithm and the IRLS algorithm with are
both increased monotonically after each iteration.

With the Leptograpsus crab data, one species has been split
into two new species, previously grouped by color form, orange
and blue. Data are available on 50 specimens of each sex of
each species. Each specimen has measurements on the width of
the frontal lip, the rear width, length along the midline and the
maximum width of the carapace and the body depth. Ripley [3]
had studied this data using various approaches. Here, we apply
the IRLS algorithm and the ECM algorithm. As in [3], the 200
examples were divided as 20 in each class for a training set
and the remaining 120 as a test set. The ME networks consists
of experts. For comparative purposes, the learning rates

TABLE III
CLASSIFICATION RESULTS FOR THE LEPTOGRAPSUS CRAB DATA

TABLE IV
CLASSIFICATION RESULTS FOR THE THYROID DATA

are set to be and for both IRLS and ECM
algorithms. We run both algorithms for 50 iterations. Table III
shows the classification results on both the training and test
sets.

The thyroid data are measurements of the thyroid gland.
Each measurement consists of 21 variables — 15 binary and
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Fig. 5. Log likelihood against the number of iterations (a) the Leptograpsus crab data. (b) The thyroid data.

6 continuous variables. Three classes are assigned to each of
the measurement which correspond to the hyper-, hypo-, and
normal function of the thyroid gland. The training set con-
sists of 3772 measurements and again 3428 measurements are
available for the testing set. In the analysis, the six continuous
variables are each standardized to have zero mean and unit
variance. The ME networks consists of experts. The
learning rates are set to be and for both

IRLS and ECM algorithms. We run both algorithms for 100
iterations. Table IV shows the classification results on both the
training and test sets.

From Tables III and IV, it can be seen that the ECM algorithm
outperforms the IRLS algorithm in both real data sets, in terms
of the misclassified rate for both the training and test sets. In
Fig. 5, the log likelihood is plotted against the number of itera-
tions for these two data sets. It can be seen that the ECM algo-
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rithm converges to a larger local maximum of the log likelihood
compared to that using the IRLS algorithm.

VII. CONCLUSION

The EM algorithm has been of much interest in recent years
in its application to the training of neural networks. In this
paper, we have clarified some misunderstandings that have
arisen in training neural networks. This is very important for
further development of algorithms and their applications to
neural networks. We have demonstrated in Sections III and IV
how EM-based algorithms can be adopted to train MLP and
ME neural networks, respectively, for multiclass classification
problems. In particular, we showed that the application of EM
algorithm to train MLP networks may be of limited value due
to complications in performing the E-step when the number of
hidden units is large. A computationally intensive Monte Carlo
E-step may be adopted in this situation.

For training ME networks with applications to multiclass
classification problems, we found that the convergence of the
IRLS algorithm [12] was stable and that the log likelihood
increased monotonically when a learning rate was
adopted. This result is somewhat different from that presented
in [15] where the IRLS algorithm showed unstable behavior
when the learning rate was used. Thus, the result
presented in this paper indicates that the convergence of the
IRLS algorithm can be stable even though the independence
assumption on parameter vectors is invalid for multiclass
classification problems [15].

In Section IV, we described how the ECM algorithm can
be adopted to train ME networks such that both the param-
eter vectors and are separable for and

, respectively. The conditional maximizations
on the M-step thus involve a smaller dimensional parameter
space, which implies that the proposed ECM algorithm is in
general more stable. These appealing properties are demon-
strated by the simulation experiemnt (Section V) and the real
examples (Section VI). Although we have concentrated on how
the ECM algorithm can be used to train ME networks, the
ECM algorithm can also be applied in general to train the hier-
archical mixtures of experts (HME) network model of Jordan
and Jacobs [12].
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