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Preface

This volume is part of the three-volume proceedings of the 21st International
Conference on Neural Information Processing (ICONIP 2014), which was held
in Kuching, Malaysia, during November 3–6, 2014. The ICONIP is an annual
conference of the Asia Pacific Neural Network Assembly (APNNA). This series of
ICONIP conferences has been held annually since 1994 in Seoul and has become
one of the leading international conferences in the area of neural networks.

ICONIP 2014 received a total of 375 submissions by scholars from 47 coun-
tries/regions across six continents. Based on a rigorous peer-review process where
each submission was evaluated by at least two qualified reviewers, a total of
231 high-quality papers were selected for publication in the reputable series of
Lecture Notes in Computer Science (LNCS). The selected papers cover major
topics of theoretical research, empirical study, and applications of neural infor-
mation processing research. ICONIP 2014 also featured a pre-conference event,
namely, the Cybersecurity Data Mining Competition and Workshop (CDMC
2014) which was held in Kuala Lumpur. Nine papers from CDMC 2014 were
selected for a Special Session of the conference proceedings.

In addition to the contributed papers, the ICONIP 2014 technical program
included a keynote speech by Shun-Ichi Amari (RIKEN Brain Science Institute,
Japan), two plenary speeches by Jacek Zurada (University of Louisville, USA)
and Jürgen Schmidhuber (Istituto Dalle Molle di Studi sull’Intelligenza Arti-
ficiale, Switzerland). This conference also featured seven invited speakers, i.e.,
Akira Hirose (The University of Tokyo, Japan), Nikola Kasabov (Auckland Uni-
versity of Technology, New Zealand), Soo-Young Lee (KAIST, Korea), Derong
Liu (Chinese Academy of Sciences, China; University of Illinois, USA), Kay Chen
Tan (National University of Singapore), Jun Wang (The Chinese University of
Hong Kong), and Zhi-Hua Zhou (Nanjing University, China).

We would like to sincerely thank Honorary Chair Shun-ichi Amari, Mohd
Amin Jalaludin, the members of the Advisory Committee, the APNNA Gov-
erning Board for their guidance, the members of the Organizing Committee for
all their great efforts and time in organizing such an event. We would also like
to take this opportunity to express our deepest gratitude to all the technical
committee members for their professional review that guaranteed high quality
papers.

We would also like to thank Springer for publishing the proceedings in the
prestigious LNCS series. Finally, we would like to thank all the speakers, authors,
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and participants for their contribution and support in making ICONIP 2014 a
successful event.

November 2014 Chu Kiong Loo
Keem Siah Yap
Kok Wai Wong
Andrew Teoh
Kaizhu Huang
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Abstract. Most previous studies of functional brain networks have been con-
ducted on undirected networks despite the direction of information flow able to 
provide additional information on how one brain region influences another. The 
current study explores the application of normalized transfer entropy to EEG 
data to detect and identify the patterns of information flow in the functional 
brain networks during cognitive activity. Using a mix of signal processing,  
information and graph-theoretic techniques, this study has identified and cha-
racterized the changing connectivity patterns of the directed functional brain 
networks during different cognitive tasks. The results demonstrate not only the 
value of transfer entropy in evaluating the directed functional brain networks 
but more importantly in determining the information flow patterns and thus 
providing more insights into the dynamics of the neuronal clusters underpinning 
cognitive function. 

Keywords: Transfer entropy, directed functional brain network, EEG, cognitive 
load, graph theory. 

1 Introduction 

The human brain is a complex and dense network of billions of interconnected neu-
rons. To quantify the topological features of this network, graph theoretical analysis 
has been successfully employed by researchers in the recent past [1-3]. Most of this 
graph theoretical analysis has, however, been applied to undirected networks. Such 
analysis can, however, be applied to directed networks [2]. This is perhaps, surprising 
given that directed networks exhibit more prominent features by providing directional 
interactions between pairwise elements thereby enabling more detailed analysis. Al-
though Granger causality is often used to identify causal relationship in electroence-
phalogram (EEG) data, it is limited to the linear model of interaction [4]. As a result, 
it fails to accurately identify causal relationships in highly nonlinear systems such as 
the human brain. By comparison, the information theoretical measure of transfer en-
tropy (TE) determines the direction and quantifies the information transfer between 
two processes [5]. TE estimates the amount of activity of a system which is not  
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dependent on its own past activity but on the past activity of another system. It does 
not require a model of the interaction and inherently non-linear [4]. As a consequence, 
TE has been used in various applications such as identifying information transfer 
between auditory cortical neurons using spike train data, investigating the influence of 
heart rate on breath rate and vice versa, and for the localization of the epileptic focus 
of epileptic patients on EEG data [5-8]. TE has however not been applied in the con-
struction and analysis of directed functional brain networks (FBN) during different 
cognitive states. The current study reported in this paper aims to investigate the appli-
cation of normalized TE to construct a directed FBN. It further explores graph theo-
retic and statistical analysis to characterize this directed FBN and its patterns of in-
formation flow during cognitive tasks. Complex network metrics have also been used 
to delineate the cognitive tasks and the comparative results are presented. The re-
search literature on TE and graph theoretical analysis are reviewed and described in 
the following sections. 

2 Transfer Entropy 

Given two processes ݔ and ݕ, the TE from ݕ to ݔ is shown in Equation 1 [9]:                           ܶܧ௬՜௫ ൌ ෍ ,௡ାଵݔሺ݌ ,௡ݔ ௡ሻݕ log ቆ݌ሺݔ௡ାଵ , ,௡ݔ .௡ሻݕ ,௡ݔሺ݌௡ሻݔሺ݌ .௡ሻݕ ,௡ାଵݔሺ݌ ௡ሻቇ  ௫೙శభ,௫೙,௬೙ݔ             ሺ1ሻ 

Here, ݔ௡ denotes the status (value) of signal/system ݔ at time ݊, ݕ௡ denotes the status 
of signal ݕ at time ݊ and ݔ௡ାଵ denotes the status of signal ݔ at time ݊ ൅ 1. The value 
of ܶܧ௬՜௫ is calculated by summing over all possible combination of ݔ௡ାଵ,  .௡ݕ ௡, andݔ
TE is in the range 0 ൑ ௬՜௫ܧܶ ൏ ∞. Here, ܶܧ௬՜௫ ്  ௫՜௬. There is another similarܧܶ
equation for ܶܧ௫՜௬. In practice, for the calculation of TE, two additional steps were 
included to improve the calculation accuracy [7, 10]. Due to the finite size and non-
stationarity of data, TE matrices usually contain much noise. In the existing literature, 
noise/bias has been removed from the estimate of TE by subtracting the average trans-
fer entropy from ݕ to ݔ using shuffled version of ݕ denoted by ൏ ௬ೞ೓ೠ೑೑೗೐՜௫ܧܶ  ൐, 

over several shuffles [10]. ݕ௦௛௨௙௙௟௘  contains the same symbol as in ݕ but those sym-
bols are rearranged in a randomly shuffled order. Then, normalized transfer entropy is 
calculated from ݕ to ݔ with respect to the total information in sequence ݔ itself. This 
will represent the relative amount of information transferred by ݕ. The normalized 
transfer entropy (NTE)  is shown in Equation 2 as follows [7]:                                   ܰܶܧ௬՜௫ ൌ ௬՜௫െ ൏ܧܶ ௬ೞ೓ೠ೑೑೗೐՜௫ܧܶ  ൐ܪሺݔ௡ାଵ|ݔ௡ሻ                                            ሺ2ሻ 

In equation 2, ܪሺݔ௡ାଵ|ݔ௡ሻ represents the conditional entropy of process ݔ at time ݊ ൅ 1 given its value at time ݊ as shown in equation 3.                           ܪሺݔ௡ାଵ|ݔ௡ሻ ൌ െ ෍ ,௡ାଵݔሺ݌ ௡ሻݔ log , ௡ାଵݔሺ݌ ௡ሻ௫೙శభ,௫೙ݔሺ݌௡ሻݔ                            ሺ3ሻ 
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NTE is in the range 0 ൑ ௬՜௫ܧܶܰ ൑ 1 . NTE is 0 when ݕ transfers no information to ݔ, and is 1 when ݕ transfers maximal information to ݔ. 

3 Functional Brain Networks and Graph Theoretical Analysis 

To capture the dynamic interactions between the neuronal elements of human brain, 
FBNs can be derived from time series observations of EEG signals [2]. As EEG is 
cheap non-invasive method with high temporal resolution, it has been used extensively 
in research, medical diagnosis and brain computer interaction [3, 11]. In the present 
study, the FBNs are constructed by computing the NTE between EEG channels. Ac-
cording to the graph theory, graph is a mathematical model that consists of vertices 
(nodes) where the connection between each pairs of vertices is called an edge (link) 
 [1, 2]. In the case of FBNs, scalp electrodes are considered as vertices and the connec-
tions/links between electrodes are measured using correlation. The following graph (or 
complex network) metrics are also used in this study: connectivity density representing 
the actual number of edges as a proportion to the total number of possible edges [1]; 
reciprocity representing the ratio of the number of pairs with a reciprocated edges rela-
tive to the total number of edges [12]; clustering coefficient quantifying the fraction of 
triangles around a node [13]; average of shortest path length between all node pairs 
known as the characteristic path length [14]; small world representing both high cluster-
ing and short characteristics path length [14]; node eccentricity representing the maxim-
al shortest path length between any two nodes [12]; and node strength representing the 
total of all incoming and outgoing link weights [15]. 

4 Methods 

4.1 Participants and EEG Data Acquisition 

Six healthy, right handed adults (4 males, 2 females) volunteered for EEG data collec-
tion (age range 19-59) at the Cognitive Neuroengineering Laboratory of University of 
South Australia. The participants were recruited from staff and students cohort of 
University of South Australia. All reported normal hearing, normal or corrected-to-
normal vision, with none reporting any psychological, neurological or psychiatric 
disorder. EEG data were acquired at a sampling rate of 1000 Hz through a 40 channel 
Neuroscan Nuamps amplifier using Curry 7 software. The 30 electrode sites used in 
the current study were based on the international 10-20 convention: FP1, FP2, F7, F3, 
Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T3, C3, Cz, C4, T4, TP7, CP3, CPz, CP4, TP8, 
T5, P3, Pz, P4, T6, O1, Oz and O2. Continuous EEG data were collected as each par-
ticipant undertook three tasks in a Simuride Driving Simulator. In Task 1 (baseline), 
data were collected for 2 minutes (each) in both eyes open and eyes closed conditions. 
In Task 2, participants were asked to drive normally on a virtual winding road for 
approximately 4 minutes. In Task 3, participants were asked to drive, as per Task 2, 
while also responding to auditory stimuli. All stimulus onsets and participant res-
ponses were time-marked on the EEG record using STIM 2 software. 
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4.2 EEG Signal Pre-processing 

A band pass filter of 1-70 Hz and a notch filter of 50 Hz were applied to the EEG 
data. Eye blinks were removed using principal component analysis (PCA), with any 
residual. Bad blocks were removed manually. For Tasks 1 and 2, two seconds 
epoched averaged data were extracted by applying back-to-back epoching process of 
Curry software using epoch length of 2 seconds, and then averaging those epochs. For 
tasks 3, two seconds epochs were extracted by identifying all two seconds epochs 
from stimulus onsets, where reaction times were between 1.5 and 3 seconds, and then 
averaging those epochs. 

4.3 Proposed Methodology for the Analysis of Directed Functional Brain 
Network 

The pre-processed EEG data during eyes open (EOP), driving only (Drive), and driv-
ing with audio distraction (DriveAdo) were used for the construction of TE matrices, 
where each cell of the TE matrices represents the TE value from one electrode to 
another. For noise removal, an average shuffled TE matrix (noise matrix) was calcu-
lated and subtracted from the original matrix. The data, information processing and 
associated computational steps are illustrated in Figure 1. 

 

 

Fig. 1. Framework for transfer entropy and information flow patterns during cognition 
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The Normalized TE (NTE) matrices were used for the construction of both binary 
and weighed directed FBNs. The objectives of the proposed methodology are twofold: 

1. To quantify the topological features of binary and weighted directed FBNs during 
different cognitive states; and 

2. To determine information flow patterns during different cognitive states. 

To investigate the topological features and information flow patterns from con-
structed FBNs, the following complex network metrics were used. Connectivity den-
sity is calculated by counting the actual number of edges in a graph and then diving 
by all possible number of edges in that graph. For a directed graph with ݊ nodes 
where there is no self-connections/loop, the total number of possible connections are ݊ כ ሺ݊ െ 1ሻ. Reciprocity of a graph is calculated by finding the ratio of the total num-
ber of bidirectional edges relative to the total number of any directional edges be-
tween the node pairs. Clustering coefficient has been calculated using the technique of 
directed variant of clustering coefficient developed by Fagiolo [13]. In a directed 
graph, 3 nodes can generate up to 8 triangles. The clustering coefficient for node ݅ 
represents the ratio between all directed triangles actually formed by ݅ and the number 
of all possible triangles that ݅ could form. The experimental results and analysis are 
presented in the following section. 

5 Results and Discussion 

The NTE matrices (each are 30 by 30 in size) during EOP, Drive and DriveAdo states 
are presented in Figure 2. The increased information flow during cognitive load con-
dition is demonstrated by the appearance of more cluttered brighter pixels (see Figure 
2b and 2c). From this experiment, it can be inferred that, during cognitive load, in-
formation flow generally increases between the electrodes than in baseline condition 
(EOP). 
 

 

Fig. 2. Normalized transfer entropy matrix during a) EOP, b) Drive and c) DriveAdo 

5.1 Analysis of Binary Directed Functional Brain Network 

The binary directed FBNs constructed using NTE matrices with threshold=0.002 was 
utilized in this study and as shown in Figure 3 demonstrating increased connectivity 
between the electrodes during the cognitive load. Due to space limitations the result 
of graph metrics analysis is shown only for one participant. As indicated in Figure 4a 
connectivity density is higher in the cognitive load than the baseline condition, infer-
ring more connections are established to facilitate more active information flow.  
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Figure 4b shows that reciprocity is higher in the cognitive load condition, which 
further suggests that most electrode pairs are trying to establish mutual connections to 
facilitate effective information transmission within the network.  

 

 

Fig. 3. Binary directed functional brain network during a) EOP, b) Drive and c) DriveAdo 

 

Fig. 4. Comparison of a) Connectivity density, and b) Reciprocity of the brain network during 
EOP, Drive and DriveAdo 

Clustering coefficient value increases in almost all of the electrodes during cogni-
tive load (Figure 5). This indicates that each node’s nearest neighbors directly  
communicate and form clusters. This type of segregated neural processing of brain 
network during cognitive load would increases the local efficiency of the information 
transfer. The electrodes F3, F8, FT7, FT8 and TP8 are not showing that trend which 
need to explore in further research. 

 

Fig. 5. Clustering coefficient across electrodes during EOP, Drive and DriveAdo 
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Between the regular lattice and completely random networks there is a class of 
networks which has the properties of high clustering and short path length. That 
means, most of the nodes are not neighbors but most of the nodes can traverse each 
other’s by small number of edges. This class of network is called as “small world 
network” [14]. Small world network can be also characterized as a set of network 
with both high local and global efficiency [16]. Efficiency estimates how well the 
information propagates over the network. The small world properties of the directed 
FBNs during different cognitive tasks are illustrated in Table 1.  

Table 1. Small-worldness of directed FBNs during EOP, Drive and DriveAdo 

Cognitive 
Tasks 

 ࢊ࢔ࢇ࢘࡯ ࡯
 

 ࢊ࢔ࢇ࢘ࡸ ࡸ
 

ࢽ ൌ  ࢊ࢔ࢇ࢘࡯/࡯
 

ࣅ ൌ ࡿ ࢊ࢔ࢇ࢘ࡸ/ࡸ ൌ  ࣅ/ࢽ

EOP 0.4735 0.4708 1.5345 1.5264 1.0056 1.0053 1.0003 
Drive 0.5736 0.4882 1.4356 1.5126 1.1749 0.9491 1.2680 

DriveAdo 0.7930 0.4905 1.2425 1.5011 1.6167 0.8277 1.9532 
 

Here, ܥ and ܥ௥௔௡ௗ are the clustering coefficient of a tested and random network re-
spectively; ܮ and ܮ௥௔௡ௗ are the characteristic path length of a tested and random net-
work respectively. The results reveal that characteristics path length decreases during 
cognitive load which would suggest a high global efficiency of information transfer in 
the FBN. The directed FBNs during EOP, Drive and DriveAdo all exhibit small-
worldness (ܵ ൐ 1ሻ, however, the FBN constructed during cognitive load exhibits 
more small world properties than that of the baseline condition suggesting that the 
FBN facilitates both high local and global efficiency of information transfer. 

5.2 Analysis of Binary Directed Functional Brain Network (Influential Edges 
Only) 

Binary FBNs were constructed by keeping only the influential edges between each 
electrode pair during different cognitive states; namely, two electrodes ܽ and ܾ, may 
have two possible edges: ܽ ՜ ܾ and ܾ ՜ ܽ. In the current study, the maximum weight 
value’s edge ܽ ՜ ܾ or ܾ ՜ ܽ was chosen.  
 

 

Fig. 6. Comparison of node eccentricity across electrodes during EOP, Drive and DriveAdo 
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Eccentricity was then calculated for different cognitive states (See Figure 6). The 
maximum number of edges traversed to reach one node from another during EOP, 
Drive and DriveAdo are 6, 5 and 4 edges, respectively. It may be concluded that, 
during cognitive load, information may travel pretty quickly in FBN than in baseline 
condition. 

5.3 Analysis of Weighted Directed Functional Brain Network  

NTE matrices without applying any threshold were also used to construct weighted 
FBN. Figure 7 represents the comparison of the node strengths during different cogni-
tive states computed using the weighted network. As shown, almost all the electrodes 
have higher strength values during cognitive load, which indicates that each electrode 
sends and receives more information during cognitive load. 
 

 

Fig. 7. Comparison of strength across electrodes during EOP, Drive and DriveAdo 

5.4 Statistical Analysis 

The following experiments were conducted to demonstrate the statistical significance 
of information flow during various cognitive states. For the three cognitive states, the 
total information flow of each electrode to all other electrodes was calculated. One-
way analysis of variance (ANOVA) was applied to compare the mean information 
flow of each group and the multi-comparison results are shown in Figure 8. 

 
 

Fig. 8. Multi-comparison of mean total information flow of each electrode to all other elec-
trodes during different cognitive states for 3 participants (a) DP1, (b) DP2 and (c) DP3 (Y-
Axis: Cognitive States 1 for EOP, 2 for Drive, and 3 for DriveAdo) 
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The statistical significance of the differences between means is calculated using  
t-test at ߙ ൌ 0.05 (two-tailed) and the results are shown in Table 2. The results dem-
onstrate that mean of total information flow is significantly different in EOP and Dri-
veAdo experiments for all participants.  

Table 2. Statistical validation of mean information flow difference in different cognitive states 

States DP 1 DP 2 DP 3 
Mean Diff 95% CI Mean Diff 95% CI Mean Diff 95% CI 

Drive EOP 0.0244 [0.0244,0.0651] 0.0218 [-0.0033,0.0469] 0.0155* [ 0.0053, 0.0258] 
DriveAdo Drive -0.0108 [-0.0329,0.0113] 0.0239 [-0.0071,0.0550] 0.0235* [ 0.0110, 0.0360] 
DriveAdo EOP 0.0339* [0.0191,0.0487] 0.0457* [0.0200,0.0715] 0.039* [0.0285, 0.0495] 

*Mean difference is significant at p< .05 level. 

6 Conclusion  

In this study the information theoretical NTE measure has been applied to construct 
EEG based directed FBNs in baseline and cognitive load conditions. Using the tech-
niques of signal processing, information and graph theoretic measures, and inferential 
statistics, information flow patterns during cognition have been detected and identi-
fied. The overall results demonstrate that the directed FBNs constructed using NTE 
are sensitive to cognitive load. This sensitivity of NTE based FBN has the potential to 
assist the development of quantitative metrics to measure cognition. The NTE ap-
proach may have likely application in the clinical diagnosis of cognitive impairments 
in future. Future research should address the application of various graph mining al-
gorithms on the constructed directed functional brain networks to detect and track 
possible patterns as well as quantum of information flow during cognitive activity. 
This may lead to deeper understanding of cognitive function. 
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Abstract. In this paper, we propose a new human implicit intent understanding 
model based on multi-modal information, which is a combination of eye 
movement data and brain wave signal obtained from eye-tracker and Electroen-
cephalography (EEG) sensors respectively. From the eye movement data, we 
extract human implicit intention related to features such as fixation count and 
fixation duration corresponding to the areas of interest (AOI). Also, we analyze 
the EEG signals based on phase synchrony method. Combining the eye move-
ment and EEG information, we train several classifiers such as support vector 
machine classifier, Gaussian Mixture Model and Naïve Bayesian, which can 
successfully identify the human's implicit intention into two defined categories, 
i.e. navigational and informational intentions. Experimental results show that 
the human implicit intention can be better understood using multimodal infor-
mation. 

Keywords: brain-computer interface (BCI), electroencephalographic (EEG), 
eye movement, phase synchrony, intent recognition, multi-modality. 

1 Introduction 

Human intent recognition is crucial for an efficient non-verbal human computer inte-
raction. In cognitive science, intention modeling and recognition is considered to 
create a new paradigm in human computer interface (HCI) and human robot interac-
tion (HRI) [1, 2]. In Psychology, human intention can be divided into 2 types – expli-
cit and implicit [3]. In last few years, several attempts have been made to understand 
and distinctly recognize subject’s implicit intention using techniques like eye move-
ment, Electroencephalography (EEG), etc. [4].  

In this work, we propose a method to integrate two different modalities, eyeball 
movement data and EEG data, in order to improve the classification of human's im-
plicit intention in real-world environment. Using the multimodal information, we 
compare performance of several classifiers that is trained to classify human's implicit 
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3.3 Intent Classification by EEG Data 

We selected 25 MSP - N and 25 MSP - I identified in theta band to classify naviga-
tional and informational intentions. MSP - N and MSP - I are identified using Eq. 
(2) in section 2.3. Fig. 5 (a) shows the part of results obtained with 8-th subject as an 
example case. The average PLV of 25 MSP - N and 25 MSP - I during both the events 
for 8-th subject are also illustrated. Although PLV values are difference from each 
other, all of participants also shown this trend of plot such as an 8th result. The reason 
of difference of PLV value of MSP in each other is that human's thinking process is 
different. 

One can easily observe the MSP - N having higher PLV level compared to 
MSP - I during navigational intention and vice versa during informational intention. 
The difference in PLV level of navigational and informational intention is crucial for 
the intent classification. According to Eqs. (4) and (5) in [13], the difference in PLV 
level of identified MSP’s can be calculated. The largest difference of PLV level is 
evident in theta band [13]. Based on this finding, we propose that theta band can be 
reliably used in phase analysis for intent recognition. In other words, firing intention 
signal at theta band is larger than the others [13]. Therefore, PLV of /MSP - N I at 
each period is characterized to discriminate human's implicit intention based on PLV 
analysis. 

 

 

Fig. 5. Result (about Sub #8) of PLV analysis in theta band; (a)  An average of PLV of MSP 
in each intention part, (b) Comparison of PLV (MSP-I, MSP-N) value 

3.4 Intent Classify Using Multimodal Information 

To classify a subject's implicit intention in real-world environment, we use three kinds 
of classifier (SVM, GMM and Naïve Bayesian) using the extracted features during 
each intention part (navigational intention, informational intention). From the eye 
movement data, we can get 2 features (fixation length and fixation count) per sub-
jects. However, in case of brain wave signal, we extract PLV of 25 /MSP - N I per 
each subject. That is, the PLV of MSP is used as a feature in EEG analysis. Based on 
these features, we construct input data by concatenating the eye movement features 
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and PLV features. Then, we train the train data that is selected randomly to classify 
the data as two classes such as navigational and informational intentions. For the 
SVM classifier, we use a radial basis kernel. And also, we use a Gaussian distribution 
in Naïve Bayesian classifier. Table 1 shows the performance of several classifier 
train/test rate per each modality. We can then observe that the performance of the 
proposed method that uses both eyeball movements and brain wave signals is higher 
if compared to the classifier based on unimodality. 

Table 1. Performance of three kinds of classifiers between each modality and multi-modality 

Modality 
Performance of several kinds of classifier; Test rate (%)± STD 

SVM with RBF GMM Naïve Bayesian 

EEG features 83.9 ± 0.07 83.95 ± 3.43 84.58 ± 0.16 

Eye movement features 85.8 ± 0.06 84.42 ± 5.34 84.15 ± 0.28 

Eye movement  

and  EEG features 
90.9 ± 0.07 89.08 ± 3.67 72.08 ± 1.15 

 
Since the data was collected from 8 participants during 25 trials, we had a total of 

200 samples per intent condition. Out of these 200 samples, 100 randomly selected 
samples were used to train each classifier model, whereas the remaining 100 samples 
were used for testing. And, we also use a cross validation. During the cross validation 
the testing procedure is iterated for 30 times and the average of the 30 iteration is 
reported. Finally, we get the most performance 90.9% using multi-modality with 
SVM classifier. After comparing each kinds of state-of-the-art classifier, performance 
of SVM with RBF is better than other performance. 

4 Conclusions 

In this paper, we propose a human's implicit intention recognition model based on 
both eye movement and EEG data analysis. We define and present enhanced classifi-
cation results of human's implicit intention understanding. In order to recognize the 
human's implicit intention for given real-visual stimuli, an eye tracking system, Tobii 
1750, and BIOSEMI were used. Through the experiment, we can extract some useful 
features in order to distinguish between navigational and informational intention. 
From the eye movement analysis, we get the fixation length, fixation count. For the 
EEG signals, we also get the useful features such as PLV of MSP for classifying two 
different human implicit intentions. Then, in order to classify the human's implicit 
intention, we used three kinds of state-of-the-art classifier such as SVM, GMM, Naive 
Bayesian using the concatenating input features of eye movement and brain signals. 
The experimental results show that the proposed method has a plausible performance 
to recognize human implicit intentions, which is better than using just one modality. 

In future work, we would like to apply the model mentioned above in web queries 
to determine the user's implicit intention. 
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Abstract. Preliminary results describing the relationship of the human
arousal level with the amount and smoothness of their locomotion are
reported in this paper. While there is a number of solid results indicating
that in many cases arousal level may influence motor activities, measur-
ing the strength, and modeling such relation remains relatively neglected
area. The main weakness of the existing results is, that unlike the mea-
surements of the arousal level which are described by the measured value
of skin conductance, the locomotion parameters are determined on the
basis of human observations and therefore contain certain degree of sub-
jectiveness. Approach proposed in this paper targets to eliminate such
subjectiveness. Trajectories of the limb joints will be recorded by the
motion capture system. Amount and smoothness of the locomotion will
be expressed by means of so-called motion mass parameters computed
on the basis of recorded trajectories. Then relations between the arousal
level and amount of locomotion will be studied.

Keywords: Neural activity, Arousal level, Motion Mass, Modeling,
Electrodermal activity, Skin conductance.

1 Introduction

Pilot results, on the establishing relationship between the arousal level on the
one side and the locomotion amount of the human limbs on the other side,
are reported in this paper. Usually measured value of skin conductance (SC) is
used to describe arousal level of a human being. It has been found that electro
dermal activity is related to activation of several brain regions including those
responsible for locomotion [1],[2]. This relationship is especially remarkable in
performing tasks that require effort [3]. In clinical studies of intensive care the
skin conductance value of the patients has been found to be related to motor
activity [4]. Skin conductance is also related to everyday motor activities, such as
drivers’ brake pressure during driving [5]. Skin conductance and its relation to the
different neuropsychological processes has been extensively studied [6], [7], [8].
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While the SC were always measured by the special equipment, up to a recent
time locomotion amount was assessed on the basis of human made observations
and expressed in terms of some kind of motor activity assessment scale. In the
best of the author’s knowledge there are just a few contributions available where
level of locomotion is described by means of objectively measured parameters.
For example in [5] angle of the steering wheel and break pressure were measured.

Approach proposed in this paper targets to relate measured values of the skin
conductance to the observed locomotion amount of the human limbs. Locomo-
tion amount will be measured using motion capture system which will exclude
any possible subjectiveness introduced by human made observations. The Mo-
tion Mass parameters, which provide numeric measure of the amount and the
smoothness of the human limb movements [9], will be calculated on the basis of
raw data recorded by motion capture system. Once arousal level and amount of
the locomotion are described numerically one may formally describe the strength
of the relationship and if possible build the model to estimate one parameter on
the basis of the other. In [9] it was demonstrated that values of the Motion Mass
parameters reflect changes observed during the learning of a new motor activity
and in turn describe changes in the quality of motion planning. Human actions
are usually target to achieve a certain goal [10], [11]. When motor activity is re-
quired, planning of the motions possesses a crucial importance in achieving the
goal [12]. Obviously inadequate motions planning may not only be the obstacle
to achieve the goal of the action but also lead to unwanted consequences like
traumas etc. At the same time measuring the SC usually requires special equip-
ment which in turn limits human movements. In this context ability to estimate
arousal level on the basis of measured parameters of the motion may allow to
detect higher arousal levels without imposing any limits on human locomotion.
In [5] it was pointed out, that higher levels of arousal do not always reflected
by the changes of motor activities and vice versa. This leads another direction
of the research. Namely determine the types of arousal which influence amount
and the smoothness of the the human motions.

The organization of the paper is as follows. Main goals of the paper are for-
mulated in Section 2. Mathematical tools and experimental setting are described
in Sections 3 and 4 respectively. Analysis of the achieved results is presented in
Section 5. Concluding remarques are drawn in the last section.

2 Problem Formalisation

It has been found, as we showed above, that for large groups of individuals there
is a relation between the arousal levels and locomotion parameters, at least for
the arousals caused by certain stimuli types. It is usually assumed that group-
level results apply to individual level as well. If this hypothesis proved true, then
for the certain cases it would be possible to develop a model estimating value
of the SC based on the measured amount and smoothness of the locomotion
and in turn determine the arousal level based on the parameters of captured
motions. Pilot study is required to determine which Motion Mass parameters
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provide better ground for modeling of the SC values, cluster individuals by their
responsiveness to the different stimuli and analyze which stimuli cause arousal
levels to influence locomotion activity. This leads following goals of the present
research

– Cluster the group of individuals by the values of correlation coefficient be-
tween the chosen Motion Mass parameters and the amount of SC changes.

– For the individuals demonstrating strong correlation between the Motion
Mass parameters and amount of SC change attempt to construct the model
to estimate amount of SC change as a function of Motion Mass parameters.

3 Mathematical Tools

Main goal of the present research requires one to possess an ability to measure the
both arousal level, and locomotion amount. While SC measurements are widely
accepted to represent level of arousal, up to now there is no widely accepted
technique to measure locomotion amount on the basis of captured motion data.
In [9] the notion of the Motion Mass was proposed as the measure of the amount
and smoothness of the movements associated with the motion or motor activity.
In order to make this paper self-sufficient let us briefly remind the definition
and meaning of this notion. In [9] Motion Mass is defined as the set of four
parameters; Trajectory Mass, Acceleration mass, Combined Euclidean Distance
and length of the motion in time.

MJ =
{
TJ , AJ , EJ , t

}
. (1)

Denote J = {j1, j2, . . . , jn} the set of joints describing certain limb or limbs.
Let Tji be the length of the trajectory of the joint ji, observed during the motion
then Trajectory Mass is defined as the sum of the trajectory lengthes of each
joint of the set J .

TJ =
n∑

i=1

Tji . (2)

Acceleration Mass and Combined Euclidean Distance are defined in the similar
way as follows

AJ =
n∑

i=1

Aji . (3)

EJ =

n∑
i=1

Eji (4)

Trajectory mass describes amount of the limb movements associated with
motion and acceleration mass describes their smoothness. It was demonstrated in
[9] that the values of the Motion Mass reflect changes of human motor functions
while individual learning new motor activity. Therefore, those parameters are
suitable as the measure of the locomotion amount. To compute numeric values
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of theMotion Mass parameters, actual trajectories of the limb joints are required.
Motion capture system was used to record trajectories of the limb joints. In such
setting all the measures will be collected by computerized systems, therefore
human subjectiveness is excluded.

Unlike the measured value of SC, which is recorded for each instance of time,
parameters of the Motion Mass are associated with time intervals. In order to
compare SC to the Motion Mass parameters one has to choose from a two follow-
ing alternatives. The first one is to introduce the analogue of the Motion Mass
parameters for each time instance. The second one, is to derive the parameters
describing amount and/or smoothness of the SC changes for a given time inter-
val, similarly to those of the Motion Mass (1). Present contribution pursues the
second alternative. Define the amount of the changes in SC associated with the
certain time interval in the similar way to Trajectory Mass. Denote Ci amount
of the changes of SC during time interval i. In the case of SC the amount of
changes and smoothness would strongly correlate, therefore there is no sense to
compute the last one.

4 Experimental Setting

For the pilot research, a group of 10 individuals was randomly chosen from a
population of eighth grade adolescents. The entire range of the motion activities
human may perform is too wide to be considered in a single paper, therefore
results reported in the present contribution are narrowed to the studies of upper
right limb motions of a seated individual. Performed activity was limited to
the manipulation with the computer mouse. Individual was asked to play game
and respond on different stimuli by mouse clicks. During the experiments the
individual was exposed to the sequence of different stimuli, whereas irritating
stimulus was always followed by the stimulus which usually has calming effect.
For example one of the irritating stimuli was frightening and it was archived by
showing the video of frightened cat. Calming stimulus was usually provided by
the video of trees during the autumn. The sequence of stimuli consisted totally
of a 21 interval. For each time interval SC, was recorded together with the
trajectories of the right hand joints.

Experiment environment is presented in Figure 1. Recording time for each
individual took 20 minutes. The hardware setting consists of two devices con-
nected to the PC. Values of SC were measured and recorded by MP150WSW
with GSR100C amplifier produced by BIOPAC Systems, Inc. SC was recorded
in micro Siemens, which is standard measure for such experiments, whereas fre-
quency was 200Hz. Low pass filter was applied then to smoothen the data and
eliminate nonspecific electrodermal reactions (sparks). Within the frameworks
of present contribution Kinect sensor was used to capture human motions and
record trajectories of the limb joints. In spite of its simplicity it has proved it-
self to be precise enough to be applied in such delicate area like medicine [13].
After necessary processing, for each of 21 interval amount of SC changes and
parameters of the Motion Mass were computed.
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Fig. 1. Hardware setting

5 Analysis

Present research concentrate its attention on Trajectory Mass and Acceleration
mass, which leads the square matrix, with the rows corresponding to the intervals
and columns to the amount of SC change, Trajectory Mass and Acceleration
mass. Pearson correlation coefficients r together with corresponding p−values

Table 1. Relation between Trajectory Mass and amount of SC changes

ID r p-value Corresponding linear model

41 0.51 0.0272

3 0.74 0.0001 C(i) = 1.31TJ (i) + 7.76

52 0.79 2.2e − 05 C(i) = 0.07TJ (i) + 0.11

57 0.44 0.0486

42 0.81 9.9e − 06 C(i) = 0.42TJ (i) + 0.04

47 0.84 1.4e − 06 C(i) = 0.2TJ (i) + 2.11

46 0.53 0.0128

24 0.82 5.2e − 06 C(i) = 0.17TJ (i) + 0.42

40 0.78 3e− 05 C(i) = 0.09TJ (i) + 0.31

11 0.74 0.0001 C(i) = 0.39TJ (i) + 2.79

computed between the amount of SC change and Trajectory Mass, for each
individual, together with corresponding linear models wherever applicable, are
presented in Table 1. Table 2 describes similar relation between the Acceleration
mass and amount of the SC changes.

Let us now turn our attention to the standardized residuals. Figure 2 depicts
standardized residuals computed for the models describing relation between the
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Table 2. Relation between Acceleration Mass and amount of SC changes

ID r p-value Corresponding linear model

41 0.51 0.0176
3 0.73 0.0001 C(i) = 0.001Aj(i) + 8.89989656
52 0.86 4.9e − 07 C(i) = 0.0002Aj(i) + 0.012423054
57 0.50 0.0203
42 0.84 1.5e − 06 C(i) = 0.0007Aj(i)− 0.004897169
47 0.83 3.0e − 06 C(i) = 0.0003Aj(i) + 2.313445807
46 0.53 0.0119
24 0.84 1.6e − 06 C(i) = 0.0002Aj (i) + 0.36474467
40 0.78 2.1e − 05 C(i) = 0.0002Aj(i) + 0.313465413
11 0.76 5.7e − 05 C(i) = 0.0005Aj(i) + 3.375591976

Trajectory Mass and the amount of SC change and Figure 3 depicts standardized
residuals for the case when models describe relation between the Acceleration
mass and the amount of SC change.

Fig. 2. Standardized residuals for the C(i) = aTJ(i) + b type models

One may easily see that for many models standardized residuals corresponding
to the computer task intervals 1, 2, 4, 7 and 21 are in absolute value greater
than 2, which indicates that corresponding observation points may be outliers.
Remind here that each interval corresponds to the different type of stimulus,
therefore analysis of standardized residuals may allow to determine stimuli which
cause arousal levels with lesser or greater influence on motor functions.
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Fig. 3. Standardized residuals for the C(i) = aAJ(i) + b type models

6 Conclusions

Results of the pilot research reported in this paper has clearly demonstrate
that amount and smoothness of the locomotion was significantly related to the
level of arousal in all cases. The strength of such relationship allows to divide
individuals in to two groups. For those who demonstrate higher strengths of such
relations models to estimate amounts of SC changes were developed. Studies
of the corresponding standardized residuals has revealed that certain types of
stimuli cause abnormal arousal levels. In other words, arousal types which either
are not related to locomotion or influence locomotion too much. On the one
hand, ability to relate machine measured locomotion parameters to the level of
arousal provides an alternative approach to measure the last one without limiting
human motor activities. On the other hand such ability allows to study in detail
influence of the arousal level on the motions planning process.
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Abstract. Recent advances in measurement technology enables us to
obtain spatotemporal data from neural systems as imaging data. In this
study, we propose a statistical method to estimate nonlinear spatiotem-
poral membrane dynamics of active dendrites. We formulate general-
ized state space model of active dendrite, based on multi-compartment
model. Membrane dynamics and its underlying electrical properties are
simultaneously estimated by using sequential Monte-Carlo method and
EM algorithm. Using the proposed method, we show that nonlinear spa-
tiotemporal dynamics in active dendritic can be extracted from partially
observable data.

Keywords: Multi-compartment model, Dendrite, Spatiotemporal dy-
namics, Probabilistic time-series analysis.

1 Introduction

Recent findings such as dendritic spikes and backpropagations suggest that den-
drite contributes more important roles in neural information processings in our
brain [1,2,3,4,5,6]. For example, experimental results showed that dendritic pro-
cessing plays a key role in directional selectivity for visual stimuli [7,8]. However,
the mechanism of dendritic spatiotemporal information processings remain un-
clear.

Great advances in measurement technology enables us to deal with spatiotem-
poral data from neural systems including dendrites as imaging data. However,
the observable information in the measurements are limited, compared with the
complexity of the entire neural system. Some estimation techniques are proposed
using the state space modeling approach to extract the spatiotemporal dynamics
of the dendrites [9,10,11,12]. In some of previous methods, only membrane po-
tentials are estimated while assuming the parameters underlying spatiotemporal
dynamics are known [10], and most of previous methods only consider the esti-
mation of linear dynamics in multi-compartment models or nonlinear dynamics
in single-compartment models, although it is important to establish nonlinear
dynamics for spatiotemporal membrane evolution in multi-compartment models
to reveal dendritic information processings [9,11,12].
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Fig. 1. A schematic diagram of multi-compartment model. Neuron has spatially-
extended structure in dendrite. In the multi-compartment model, membrane electrical
response at each position is described by using a compartment; each compartment has
passive and active channels where the dynamics of membrane potential and channel
variables obeys conductance-based model. Each compartment is connected to other
compartments according to the neuronal morphology.

In this study, we propose a statistical method to estimate nonlinear spa-
tiotemporal membrane dynamics of active dendrites in order to extract non-
linear dynamics of dendritic membrane. We employ a framework of probabilistic
information processing to extract the nonlinear spatiotemporal dynamics from
partially observable data. First, we formulate generalized state space model of
active dendrite, based on multi-compartment model. Next, sequential estima-
tion algorithm is derived for the generalized state space model. Estimation of
membrane dynamics and its underlying electrical properties are simultaneously
estimated by using sequential Monte-Carlo method and EM algorithm. Using
the proposed method, we show that nonlinear spatiotemporal dynamics in ac-
tive dendrites can be extracted from partially observable data.

2 State-Space Modeling of Nonlinear Spatiotemporal
Dynamics in Dendrite

In this section, we formulate a generalized state-space model of dendritic dynam-
ics in probabilistic manner. We first derive a system model, which describes spa-
tiotemporal nonlinear dynamics of dendrite. Next we formulate an observation
model, which reflects partially observable situation seen in imaging experiments.
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Fig. 2. A framework to estimate the nonlinear spatiotemporal dynamics of dendritic
membrane. The hidden variables {Xt} including membrane potentials ({vX,x}) and
channel variables ({mX,x}, {hX,x}), and those underlying electrical properties Θ are
simultaneously estimated from partially observable data {Yt}.

2.1 System Model

Dynamics of Membrane Potential. A membrane potential vx,t at compart-
ment x and time t is assumed to obey the following differential equation:

C
dVx

dt
= −

∑
X

gX,x(mX,x)
MX(hX,x)

NX(Vx − EX)− gaxial
∑
y

(Vx − Vy)

+ Iext,x + ξ(V )
x (t) (1)

where mX,x and hX,x in the first term show the activation and inactivation chan-
nel variables, respectively. Each compartment is assumed to have some kinds of
membrane currents

∑
X gX,xm

MXhNX(Vx−EX), axial currents gaxial
∑

y∈Nx
(Vx−

Vy), external input currents Iext,x and noise current ξ
(V )
x (t). The maximal mem-

brane conductances and reversal potentials and membrane capacitance are ex-
pressed by gX,x, EX and C, respcetively. By discretizing Eq. (1) with respect to
time, we derive the following equation.

vx,t+1 = vx,t −Δ
∑
X

gX,x(mX,x,t)
MX(hX,x,t)

NX(vx,t − EX)

− Δgaxial
∑
y

(vx,t − vy,t) +ΔIext +Δξ
(v)
x,t (2)

where time width is set to Δ and we put C = 1 without loss of generality.
Based on the statistics of noise, probabilistic density function of membrane

potential is described by probabilistic model p(vx,t+1|{vx,t},mX,x,t, hX,x,t) which
depends on the state at preceding time. If the noise obeys white Gaussian noise,
the probabilistic density function can be described by

p(vx,t+1|{vx,t},mX,x,t, hX,x,t) = N (vx,t+1|μx,t+1, σ
2
v) (3)

where the average is expressed by μx,t+1 = vx,t−Δ
∑

X gX,x(mX,x,t)
MX(hX,x,t)

NX

(vx,t − EX)−Δgaxial
∑

y(vx,t − vy,t) +ΔIext, and the variance by σ2
v .
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Fig. 3. Graphical model of generalized state-space model of dendritic nonlinear spa-
tiotemporal dynamics in the proposed model. Hidden states Xt including spatiotem-
poral distribution of membrane potentials vx,t and that of channel variables mX,x,t

and hX,x,t show time evolutions from time t to t + 1, based on the system model
p(Xt+1|Xt). Within multi-dimensional hidden variables Xt, only partial information
with lower dimension are observed as Yt, based on the observation model p(Yt|Xt).

Dynamics of Channel Variables. In the conductance-based models such as
the Hodgkin-Huxley model, channel variables mX,x,i and hX,x,i obey the follow-
ing first-order kinetics:

dmX,x

dt
= αmX(Vx)(1 −mX,x)− βmX(Vx)mX,x + ξ(mX)

x (t) (4)

dhX,x

dt
= αhX(Vx)(1− hX,x)− βhX(Vx)hX,x + ξ(hX)

x (t) (5)

where αmX(Vx), αhX(Vx), βmX(Vx), and βhX(Vx) are functions of membrane
potential. By descretizing Eq. (4) and (5) with respect to time, we obtain
the probabilistic model of the channel variables: p(mX,x,t+1|mX,x,t, vx,t) and
p(hX,x,t+1|hX,x,t, vx,t). If noise obeys white Gaussian noise, the probabilistic den-
sity function can be described by

p(mX,x,t+1|mX,x,t, vx,t) = N (mX,x,t+1|μmX,x,t+1, σ
2
Xm

) (6)

p(hX,x,t+1|hX,x,t, vx,t) = N (hX,x,t+1|μhX,x,t+1, σ
2
Xh

) (7)

Based on probabilistic models (Eqs. (3), (6) and (7)), the system models
for all the hidden state vectors Xt = {vx,t,mX,x,t, hX,x,t} are summarized as
p(Xt+1|Xt).
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2.2 Observation Model

Each compartment has a multi-dimensional state such as membrane potential
vx,t and channel variables mX,x,t and hX,x,t for each type of ion channel X.
We assume the situation that only membrane potential can be observed; the
observed variable yx,t is assumed to be expressed as follows:

yx,t = g(vx,t) + ξ
(y)
x,t (8)

where g(·) is observation function of true membrane potential vx,t, and ξ
(y)
x,t is

an observation noise. According to the statistics of the noise, we can derive
probabilistic version of observation model p(yx,t|vx,t). If the observation noise
obeys white Gaussian noise, the probabilistic density function is described by

p(yx,t|vx,t) = N (yx,t|g(vx,t), σ2
y). (9)

The observation model for the entire multi-compartment model is expressed as
p(Yt|Xt).

3 Estimation of Hidden Variables

Here we describe the method to estimate latent variables {Xt} from observable
data {Yt}. Hidden variables at time t, Xt, is estimated using the observable data
up to the same time Y1:t based on the filtering distribution as follows:

p(Xt|Y1:t) =
p(Yt|Xt)p(Xt|Y1:t−1)∫
p(Yt|Xt)p(Xt|Y1:t−1)dXt

(10)

where p(Xt|Y1:t−1) shows a predictive distribution given the observable data up
to the previous time Y1:t−1 as follows:

p(Xt|Y1:t−1) =

∫
p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1 (11)

Since we have assumed that the nonlinearity in the generalized state space model,
the integrations in both distributions become analytically intractable. In the
present study, we employ sequential Monte-Calro method to tackle this difficulty
and perform the filtering and prediction iteratively.

In addition to hidden variables ofXt, a set of parametersΘ including maximal
membrane conductances {gX,x} is unknown. The EM algorithm [13] is employed
in order to estimate those parameters underlying the nonlinear spatiotemporal
dynamics. In the E-step, expectation of log-likelihood function is calculated

Q(Θ|Θk) = 〈log p({Xt}, {Yt}|Θ)〉p({Xt}|{Yt,},Θk) (12)

where Θk shows a set of parameters estimated at step k of the EM algorithm.
In the M-step, we obtain the set of parameters Θ which maximizes Q(Θ|Θk) as
Θk+1,

Θk+1 = argmax
Θ

Q(Θ|Θk) (13)

By performing the E-step and the M-step iteratively, we employ the converged
value of Θk as estimated parameters.
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Fig. 4. Latent nonlinear spatiotemporal dynamics extracted by the proposed method.
Hidden variables {Yt} = {vx,t, mX,x,t, hX,x,t} for membrane potentials and channel
variables and Θ for electrical properties are simultaneously estimated. (a) estimated
membrane potentials and channel variables. The estimated membrane potentials at
compartments 1 and 3 (v1,t and v3,t) are shown in top two figures, whereas the es-
timated sodium activation and inactivation variables (mNa,1,t and hNa,1,t) are shown
in the bottom two figures. Estimated membrane potentials at multiple compartments
(red solid lines) show similar behavior to the true ones (dashed blue lines). Further-
more, estimated channel variables (both activation and inactivation) are similar to the
true ones. (b) estimated underlying electrical properties Θ. Maximal membrane con-
ductances of sodium and potassium currents (gNa and gK) are simultaneousy estimated
from observed data. As estimation step proceeds, estimated conductances (solid red
lines) converges to the true conductances (dashed blue lines).

4 Results

In this section, we evaluate the effectiveness of the proposed method by using sim-
ulated data of multi-compartment model with active channels. We assume that
each compartment has passive and active channels, and only noisy membrane
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potentials are partially observable. By using the proposed method, we estimate
not only membrane potentials but also other hidden variables such as activation
and inactivation variables for active channels for every compartments. Further-
more, we also estimate underlying parameters including maximal membrane con-
ductances of active channels, which govern the nonlinear spatiotemporal dynamics
of dendritic membrane.

4.1 Estimation of Membrane Potentials and Channel Variables

Here we extract true membrane potentials vx,t and channel variables of sodium
current mNa, hNa and potassium current mK, hK. The estimated time evolution
of these hidden variables are shown in Fig. 4(a). We find that true membrane
potential at each compartment x can be estimated accurately. Furthermore, non-
observable other hidden variables such as sodium channels can be estimated as
shown in the bottom figures in the Fig. 4(a). Hidden variables for potassium
channels can be estimated as well (data not shown). These results suggest that
proposed method enables us to extract hidden variables under nonlinear spa-
tiotemporal dynamics of dendritic membrane.

4.2 Estimation of Electrical Properties Governing Nonlinear
Spatiotemporal Dynamics

Electrical properties such as maximal membrane conductances should be es-
timated since these properties govern nonlinear spatiotemporal dynamics of
dendritic membrane potentials and channel variables. The estimated maximal
membrane properties are shown in Fig. 4(b). In this results, not only electri-
cal properties but also membrane potentials and channel variables are simul-
taneously estimated. In Fig. 4(b), we find that estimated maximal membrane
conductances converge to true value (dashed line). These results show that the
proposed method can estimate nonlinear spatiotemporal dynamics of dendritic
membrane.

5 Concluding Remarks

In this study, we have proposed a statistical method to estimate spatiotempo-
ral membrane dynamics of active dendrites. Generalized state space model of
active dendrite has been derived based on multi-compartment model of den-
drites. A novel spatiotemporal dynamics extraction technique has been realized
by using sequential Monte-Carlo method and EM algorithm. Using the proposed
method, we have shown that inner state of neurons such as membrane potential
and ion channel variables, and those underlying parameters are simultaneously
estimated. These results show that nonlinear spatiotemporal dynamics in ac-
tive dendritic can be extracted from partially observable data by means of the
proposed method.
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Abstract. Brain imaging using functional MRI allows us to understand brain 
function while participants are engaged in meaningful tasks. Traditionally the 
experimental paradigms have been limited to repeated presentation of stimuli to 
participants followed by a model-based analysis of the data. The Inter Subject 
Correlation (ISC) analysis allows a model-free analysis while participants are 
presented with naturalistic stimuli such as watching a movie. We extend the 
ISC approach to a learning paradigm in which participants are repeatedly per-
forming a motor sequence in response to visual stimuli. We qualitatively com-
pare the correlation results across learning sessions. The preliminary result we 
observe is shift of correlation activity in cerebellum across sessions. A model-
based analysis identifying task related activity compared to baseline is also re-
ported. 

Keywords: inter subject correlation analysis, visuomotor, sequence learning. 

1 Introduction 

Functional magnetic resonance imaging (fMRI) allows us to measure brain activa-
tions corresponding to specific cognitive phenomena while participants are engaged 
in a particular task [1]. Design and analysis of such experiments are based on the 
cognitive subtraction technique, i.e. task-related activation is typically identified by 
comparing against activation in a baseline condition. The corresponding analysis of 
fMRI data is a model-based technique. For example, a general linear model (GLM) 
approach can be used to specify the task conditions that the participant was presented. 
For detecting the brain activation, i.e. to improve the signal to noise ratio, fMRI expe-
riments require the experimental trials of the task to be repeated a number of times. It 
is assumed that the repeated trials are similar to each other. Hence in the parlance of 
signal processing, averaging over multiple experimental trials would yield a good 
fMRI signal. Further, in order to generalize the inferences from brain imaging expe-
riments to the population, the experiments are collected over a number of subjects.  
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A random effects analysis with the subjects as a random factor is used to make infe-
rences.  

There exist several model-free methods for analyzing fMRI data, such as the Inde-
pendent Component Analysis (ICA) [2]. A more recently developed data driven me-
thod is the Inter-Subject Correlation (ISC) analysis [3]. Inter subject correlation (ISC) 
analysis aims to quantify to what extent brains of different individuals operate in a 
similar manner [3]. Previous studies in ISC analysis have used naturalistic stimuli 
identically across participants. These paradigms are not amenable to a model-based 
analysis such as the General Linear Model because of the complex nature of the sti-
muli and the experimental conditions are not repeatedly presented as typically done in 
fMRI experiments. We present a model-free analysis using Inter-Subject Correlation 
in a visuo-motor sequence learning task [4, 5]. Because ISC is a model-free approach, 
it has been applied to naturalistic stimuli such as watching a dance [6], watch a movie 
[7], spoken & written narratives [8], speech comprehension [9], real-life risk commu-
nication [10], action observation [11] etc. Through ISC analysis, we can find shared 
hemodynamic activity in the brain across subjects during the experimental task. Basi-
cally, it finds correlation coefficients between fMRI time series of the participants in 
corresponding brain regions. One study [12] investigated intra-subject correlations by 
repeatedly presenting stimuli in order to test the reliability of hemodynamic activity in 
natural viewing. Pajula et al. [13] have validated the ISC approach with that of a sti-
mulus – model based analysis and found the same foci of hemodynamic activity. 
Moreover, it may also give us a cursory look of co-activation in different brain re-
gions while performing the task.   

The present research extends ISC analysis for analyzing a block-design fMRI ex-
periment in which the participants repeatedly performed visuo-motor sequence learn-
ing. When analyzing tasks that involve learning, the experimental trials are all not 
similar to each other. Hence, the assumptions of the GLM do not strictly hold for 
learning paradigms. It is also known that the corresponding brain activity would shift 
between different regions as the learning progresses. The inter-session differences in 
such tasks can be interpreted in the context of learning-related changes in brain acti-
vation.  

2 Design of Experiment 

Eight participants performed a visuomotor sequence learning experiment [5]. The 
Task condition required participants to learn, by trial and error, the correct order of 
pressing two keys corresponding to two colored circles presented simultaneously on 
the screen. Six such sets were presented. There were four possible colors – red, green, 
blue, and yellow. The stimuli could appear in four possible positions – up, down, left, 
right. The responses were recorded on a keyboard with similar spatial configuration. 
The order of keys depended on the color of the stimuli, which remained fixed 
throughout the experiment. The positions at which the stimuli were presented was 
randomized every trial (see Fig. 1). The response was made depending on the position 
of the stimuli. An example is given here. One set of stimuli containing blue and red 
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circles is presented simultaneously at the left and bottom positions on the screen. 
Participants have to discover the correct order of these two stimuli by trial and error. 
Let’s say the correct order was blue followed by red. Now the participant successively 
presses the two buttons corresponding to the positions at which the blue and red sti-
muli were presented i.e. left followed by bottom keys. This is done for six such sets. 
If an error is made, then a flash appears on the screen and participants repeat the se-
quence from the first set. Upon completion of the sequence, the trial is repeated in a 
block until fixed duration of 36 sec. There were a total of four learning sessions, each 
with six blocks of sequence task. The baseline condition was alternating with the 
sequence task, in which one colored circle was presented randomly at one of the four 
positions. The participants had to simply press the corresponding button on the key-
pad. There were a total of seven baseline blocks per session each of duration 18 sec 
and every session began and ended with the baseline condition.  

 

Fig. 1. Color Sequence Learning Task. In one trial, a set of two colored circles blue and red are 
presented on the screen. In another trial, the same set is displayed at a different position. Partic-
ipants press the button corresponding to blue circle first followed by the button corresponding 
to the red circle using a keypad with four keys placed in the same spatial configuration.  

3 Data Collection and Analysis 

Functional images were collected in a 1.5 T whole-body scanner (Shimadzu-Markoni 
Magnex Eclipse). A time series of 228 whole-brain scans were obtained for each ex-
periment composed of four sessions. In each scan, a set of 50 axial T2* weighted 
gradient-echo echo-planar images[repetition time (TR) 6000 ms, echo time (TE) 55 
ms, Flip angle (FA) 90, matrix 64 × 64, Field of view (FOV) 192 × 192 mm and slice 
thickness of 3 mm] covering the whole-brain were collected parallel to the anterior 
commissure - posterior commissure (AC-PC) line. In addition, a high-resolution T1-
weighted anatomical brain image consisting of 191 sagittal slices (TR 12 ms, TE 4.5 
ms, FA 20, matrix 256×256, FOV 256×256 mm and slice thickness of 1 mm) was 
collected for each subject. The ethics committee of the Brain Activity Imaging Center 
(BAIC), Advanced Telecommunications Research Institute International (ATR), Kyo-
to, Japan approved the experimental protocol. 
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Images were preprocessed with SPM8 [14]. The preprocessing for each subject 
was done using the following procedure. Images were corrected for head movements 
(realignment). The normalization of images to template was done using the following 
procedure. First, the structural image was coregistered with the first functional image. 
The structural image was used to calculate the normalization parameters after seg-
mentation into gray matter, white matter and cerebro-spinal fluid volumes.  These 
normalization parameters were applied for all functional images. An isometric 3D 
Gaussian kernel with a full-width at half maximum of 8 mm was used for smoothing, 
as the final step of preprocessing the fMRI data.  

We use the toolbox for inter-subject correlation analysis of fMRI developed by 
Kauppi et. al. [15] .The four sessions of fMRI data were entered separately into a single 
ISC analysis. The Pearson correlation coefficient (r) of fMRI time series was calculated 
for all pairs of subjects and the average correlation coefficient was taken at every voxel. 
The correlation maps were threshold at p<0.05 corrected for false discovery rate (FDR) 
at full frequency band. We make a qualitative interpretation of the correlations observed 
for each session in the results below. Further, we performed a model-based analysis 
using statistical parametric mapping (SPM8 software) as follows. First, a general linear 
model was specified identifying the onsets and durations of the sequence learning task 
for each subject’s preprocessed fMRI images. The contrasts were specified to identify 
brain activity for each session. The contrast maps corresponding to each of the four 
sessions from all the subjects are taken to a random-effects group analysis. In this 
second-level analysis, an ANOVA (Analysis of Variance) model was implemented. The 
final group-level results are identified at a relatively liberal threshold of p<0.001, uncor-
rected for multiple comparisons. We present the qualitative comparison of the two ap-
proaches for analyzing the fMRI time series.   

4 Results 

In the following, we use the words correlation and activation interchangeably. Inter 
Subject correlations (see Fig. 2) in session 1 were found in the posterior cerebellum, 
medial orbitofrontal/ ventromedial prefrontal cortex, anterior striatum, dorsolateral 
prefrontal cortex, and parts of temporal, parietal and occipital lobes accompanied by 
extensive correlation in cortical motor areas. In session 2, the cerebellar correlations 
were found more in the anterior and dorsal regions. Other regions with high correla-
tions were medial orbitofrontal/ ventromedial prefrontal cortex, posterior portions of 
dorsal striatum, frontopolar areas, and portions of temporal, parietal, and occipital 
regions concentrated medially. Interestingly, the correlations in cortical motor regions 
found extensively in session 1 were found to be negative in session 2. In session 3, 
cerebellar activity continued to be localized in the anterior and dorsal portions. The 
correlations in orbitofrontal cortex extended to lateral regions also. The ventromedial 
prefrontal correlations were also present. Correlations in visual areas were more con-
centrated to medial portion. Correlations in cortical motor areas were observed more 
laterally. In session 4, the cerebellar correlations were localized more towards anterior 
region. The correlations in ventral frontal, temporal and parietal areas were extensive-
ly found in lateral regions. Striatum and medial prefrontal correlations were also 
found. The lateral cortical activity in motor areas was persistent in session 4.  



 Inter Subject Correlation of Brain Activity during Visuo-Motor Sequence Learning 39 

 

 

Fig. 2. Inter subject correlations result. Axial slices of Sessions 1 to 4 of Color to Position se-
quence learning task are shown as rows with slices at Z = -40, -16, 0, 16, 36, 60 mm respective-
ly, shown in columns. Values depicted are the average correlation values (Pearson coefficient) 
that survived the significance threshold of p<0.05 FDR corrected (full frequency band).  

When compared to the ISC analysis, the General linear model analysis revealed 
fewer locations of brain activity even at a relatively liberal threshold of p<0.001. For 
a qualitative comparison we have depicted the results at the same brain slices as the 
results of ISC analysis. We notice that the extent of correlation-based activity was 
much larger throughout different areas of the brain compared to the model-based 
analysis. The model based-analysis however did identify more specific brain regions 
activated (see the sagittal slice in Fig. 3).  
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Fig. 3. General linear model result - axial slices of Sessions 1 to 4 of Color to Position sequence 
learning task are shown as rows at the same locations as Fig. 2. Additionally a mid-sagittal 
view is included with overlaid activations. Values depicted are the scores of statistical parame-
ter estimated from the GLM analysis that survived threshold of p<0.001, uncorrected for mul-
tiple comparisons. 

5 Discussion and Conclusion 

The present research extends a model-free approach of inter-subject correlation analy-
sis to a visuo-motor sequence learning paradigm. We qualitatively identified some 
interesting shifts of correlation values in few brain regions such as the cerebellum 
across different learning sessions. The correlation maps had a greater extent of activa-
tions compared to the model-based analysis. This is possibly because of the block 
design of the experiment with alternating baseline and sequence learning. Future work 
can aim at delineating the time series from sequence learning blocks alone for ISC 
analysis. It can be extended to a qualitative comparison of the ISC approach to other 
model-free approaches such as the Independent Component Analysis.  

One limitation of our experimental paradigm is that the task performed required a 
motor action on behalf of participants. Different participants will have different rate 
of learning. Hence, unlike paradigms of naturalistic stimuli, our trial and error based 
learning experiment is not identical across participants. While the model-based analy-
sis is specifically task-related activity corresponding to visuo-motor sequence learning 
compared to baseline, the ISC analysis performs a time series comparison across the 
entire experimental session i.e. including both baseline and task. The comparison  
of the model-free and model-based approaches allows us to conclude that there is 
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information spread across a number of brain regions, as revealed by the ISC analysis. 
We speculate that this correlation activity represents information that perhaps is sub-
threshold in a traditional General Linear Model. With this limitation, this research 
extends ISC analysis to experiments beyond naturalistic stimuli. 
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Abstract. The applications of service agent have been proliferated. For res-
ponding the user intention in a flexible environment, researchers need to incor-
porate the aspects of biological response method. Especially, the investigations 
about generating the agent behavior like the human are studied using rule or on-
tology. However these previous system do not work flexibly. Propose an agent 
response system based on human brain processes can responds in changeable 
situation flexibly. There are well known theories to investigate the process of 
generating response in human brain. First, the mirror neuron investigated the in-
tuitive response process. Second, the theory of mind studied the response 
process for solving the complicated tasks. In other word, the response process 
in brain was investigated for the immediate response and the complex response. 
The proposed system implements this human brain function using a modular 
behavior selection network and a STRIPS planning. The system applies the 
home service agent and we evaluate the performance using the data by 7 sub-
jects.  

Keywords: Intelligent agent, response model, theory of mind, mirror neuron. 

1 Introduction 

The service agents have been integrated the human function such as conversational, 
emotional, brain factor, and so on. Traditionally, these agents facilitated human-
computer interaction in many services and helped more natural communication. In 
this regard, the methods of recognizing the user intention from sensory information 
and of responding it became the core components in the service agent. However, one 
of the problems in the previous system is not to respond in changeable situation. 

The goal of the proposed response system aims to respond the user intention like 
human. The system is imitated by the cognitive process of the human brain: The mir-
ror neuron system (MN) and the theory of mind system (ToM) [1]. The mirror neuron 
system is used for responding to the user intentions intuitively [2]. The theory of mind 
system makes for responding the complex intentions through the sequence production 
[3]. These human functions are implemented by the modular behavior selection net-
work and the STRIPS planning. 
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We apply the proposed system to the home service agent and verify the perfor-
mance to compare of the optimal response which is obtained 7 subjects. In addition, 
we calculate the performance time to verify the improvement of the response speed of 
the proposed system. 

The rest of the paper is organized as follows. Section 2 presents the related works 
for intelligent agent, cognition model in the brain, and planning system. Section 3 
describes in the details of the proposed system. Section 4 reports the experiments 
conducted to show the usefulness of the system in the implemented home service. 

2 Related Works 

The intelligent agents can respond to changes in its environment and interacts with 
others. These agents have integrated a lot of the fields such as home service, robot, 
network, mobile, and so on [4]. Tong et al. proposed a three-layer agent-based web 
service workflow model using ontology [5]. The purpose of this agent is that users 
only need to focus on what they want rather than how to achieve. Giraffa et al. ap-
plied the intelligent agents in tutoring system [6]. Tutoring agents are entities whose 
ultimate purpose is to communicate with the student in order to efficiently fulfill their 
respective tutoring function, as part of the pedagogical mission of the system. Garvey 
and Sankaranarayanan applied the intelligent agent to flight search and booking archi-
tecture [7]. The system provided the real time viewing of flight arrivals and depar-
tures in smartphone. However, these previous agent systems using rule-based or  
ontology had the limitation in the specific service and the lack of generating flexible 
response like human. To improve these limitations, the proposed system is imple-
mented considering the human brain process. 
 

 

Fig. 1. Cognitive process of human brain 

A mirror neuron system and a theory of mind are well known systems in terms of 
the cognitive process of human brain. Figure 1 shows the cognitive process of human 
brain. The mirror neuron system consists of three parts. The system relates to respond 
to user intention intuitively. In the system, superior temporal sulcus (pSTS) handles the 
stimuli input that is combined the visual and verbal information. Anterior intraparietal 
sulcus (aIPS) recognizes user intention and premotor cortex (PMC) manifests the ac-
tion comparing behavior schema [8]. The theory of mind system consists of two parts: 
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Temporo-parietal junction (TPJ) and medial prefrontal cortex (mPFC). The TPJ is 
crucial for the representation of goals and intentions, and mPFC plays a role in reflec-
tive reasoning about actions and judgments including goals and intentions [9]. The 
difference of both systems is whether to require the reasoning or not for the response 
generation. The agent response system like the human brain process requires to the 
component of making the action intuitively and of solving the complex goals. 

3 Agent Response System 

The proposed system aims to generate the reasonable action more quickly in the 
changeable situation and respond about the immediate intention and the complex 
intention as shown in figure 2. 
 

 

Fig. 2. System architecture for agent response 

At the bottom, the user and the environment layer is called as physical layer. That in-
cludes simple sensors used to the collect information of interest from the environment, 
above which there is the gateway that handles the information and sends the action 
commands to the physical layer. The information processed by the gateway is essential 
for the intention analysis module which is responsible for recognizing user intention. 

The intention analysis module recognizes user intention either prospective or im-
mediate using ontology. We define the two types of user intention with reference to 
Grafton and Tipper’s work [10]. The immediate intention is that the user wants to 
control one type of object by the command of the direct meaning. The prospective 
intention involves the control of the various objects by the command in other word, 
the system need to require the reasoning processes of goal of the intention.  

The response selection module consists of the mirror neuron system and the theory 
of mind system. To implement the similar function as the MN in the system, the sys-
tem utilizes the behavior selection network [11]. Also, the similar function of the 
ToM makes the sequence using the STRIPS planning method [12]. The detail of re-
sponse selection module will be discussed in section 3.1 and 3.2. 
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3.1 Response Selection Module 

The MN system needs to implements the reactive planning system as one of the com-
ponents of response selection module because it generates the most suitable behavior 
for an environment using the sensory information and the established goals. The pro-
posed system uses the BSN because it can generate the appropriate action intuitively in 
the changeable environment. 

 

Fig. 3. Mirror neuron system using modular BSN 

• Definition 1. Maes’ BSN ܤெ ൌ ሼܧ, ,ܣ  ሽܩ

Here the parameter ܧ ൌ ሼ݁ଵ, ݁ଶ, … , ݁௡ሽ is the set of environments such as state of light, 
windows, user, and so on. The parameter ܣ ൌ ሼܽଵ, ܽଶ, … , ܽ௡ሽ is the set of the action 
nodes such as turn on the device, turn off the device, and so on. The parameter ܩ ൌ ሼ݃ଵ, ݃ଶ, … , ݃௡ሽ is the set of goals such as controlling windows [2]. We modularize 
the BSN to control objects as the effect of response because these objects are gathered 
together for the same purpose and activity that can represent the purpose of objects based 
on activity theory [13]. When the people take some tasks, the task can be used specific 
situation or common situation. The BSNs have two types: Specific task module and 
common task module. Figure 3 shows the mirror neuron system based on BSN. 

• Definition 2. Mirror neuron system based on BSN ܯ ஻ܰௌே ൌ ሼ ୱܶ, ୡܶሽ 

The specific BSNs are designed for specific services. The goal of these BSNs is to 
react in the specific situation. The common BSNs are not used in specific situations. 
Sometimes, the common BSNs conduct as sub-goal in specific BSNs though the com-
mon link. The purpose of the link is to map to the common BSNs. 

• Definition 3. Specific task module ୱܶ ൌ ሼܧ, ܴୱ, ܴୡ, Iୱሽ 

The specific task module responds to the intention in specific situations. These mod-
ules consist of four parameters. The parameter E is information about the environment 
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using sensors or command. The response ܴୱ and ܴୡ are the specific response and the 
common response, respectively. For instance, turning off light is the response of inten-
tion that is to control light only. Sending warning message, however, is the response 
that can occur in several intentions. The parameter ܫ௦ is the specific task called the 
immediate intention. 

• Definition 4. Common task module ୡܶ ൌ ሼܧ, ܴ௖,  ௖ሽܫ

The common task modules are not used in specific situations. Sometimes, the common 
task modules are conducted as sub-task in specific task modules. The parameter ܫ௖ is 
the common task called the common intention.  

The theory of mind system is implemented by a deliberative planning system be-
cause the system analyzes the user’s intention and generates the sequence to approach 
the goal. The STRIPS, one of the deliberative planning systems, is well known for 
solving the complex problems in real environment. We implement the theory of mind 
system using the STRIPS planning system. The ToM system does not plan the se-
quences of all primitive responses or trajectories, but plans the sequences of sub-task 
of conducting task modules in the mirror neuron system. The system should be con-
trolled explicitly to respond to complex intention through the sequence of several inde-
pendent MN modules as sub-task. The ToM makes response with several sub-tasks 
correctly in complex environments, but the MN modules only deal with current situa-
tions and one corresponding sub-task. 

• Definition 5. Theory of mind based on STRIPS ܶܯ݋ௌ்ோூ௉ௌ ൌ ሼܲ,  ሽܣ

The parameter A represents the action component. It has preconditions and effects. The 
preconditions must be “true” before that the action can be executed. The effects are 
“true” in the world after that the action is executed. When an action is executed, the 
preconditions are removed from the world state and the effects are added. The parame-
ter ܲ is the planer. Pre-defined actions are also organized in plan decompositions, 
whose detail is how one plan can be executed by performing a sequence of component 
action. 

3.2 Response Selection 

In this section, we present how the response is selected depending on the intentions. 
The flowchart of generating the agent response is shown in figure 4. When the user 
intention sends to the response module, it is analyzed as the prospective intention or 
the immediate intention. If the user intention is the prospective intention, the system 
makes sequence using the planning module like the reasoning process of ToM system. 
The system checks the action that is satisfied all preconditions. If such action exists, 
the effect of the action is conducted. Some effect of action pushes a sequence queue 
to the name of the task module in MN system. If the action that is satisfied all precon-
ditions do not exist, the planner sends an error message to the gateway. When the 
process of planner is completed, the immediate modules are executed depending on 
the sequence until there are no more tasks. 

When the user intention is single or the sequence is situated, the task modules are 
conducted. First, the system searches the specific task module that maps the name of 
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the task or single intention. If the task module exists, the system calculates a response 
level as equation (1). We define the equation of the response level at time t with refer-
ence to the activation level of BSN. 

 

Fig. 4. Flowchart for response generation 

 
αሺݕ, ሻݐ ൌ ,ݕሺݐ݊݁݉݊݋ݎ݅ݒ݊݁_݉݋ݎ݂_ݐݑ݌݊݅ ሻݐ ൅       ∑ ൫ݓܾ_݀ܽ݁ݎ݌ݏሺݔ, ,ݕ ሻݐ ൅ ,ݔሺݓ݂_݀ܽ݁ݎ݌ݏ ,ݕ ሻݖ െ ,ݖሺݕܽݓܽ_ݏ݁݇ܽݐ ,ݕ ሻ൯௫,௭ݐ , (1) 

where x ranges over the modules of the task, z ranges over the modules of the task 
minus that module y. Next, the system selects the response and sends the action com-
mands to the gateway. Finally, when the response node satisfies the task, the response 
generating process is finished. 

4 Experiments 

We implemented the home service environment using Unity3D and applied the pro-
posed agent response system. The system has three types of specific goal: “TV man-
agement”, “Radio management”, and “Light management”. The “Warning task” is a 
common goal. In addition, the system has one planner in the ToM system: “Saving 
energy”, “Controlling appliance”, and “Controlling temperature”. 

4.1 Performance of the Proposed System 

We conduct the performance test for verifying whether the system offers the appropri-
ate response in a given situation or not. The system obtains the current state of the 
object and the environment given situation. The state is set to change every time and 7 
subjects respond the optimal service before the system offers the services. Each sub-
jects response 10 times per each service and compare with the result of system and the 
optimal service. They evaluate the system performance that ranged from 1 which 
means “strongly incongruent” to 5 which means “strongly suitable”. 
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Fig. 5. Performance of each type of intention 

The average score is 4.07 as shown in figure 6. As the result, the expected response 
by subjects is similar in comparison to the service by the proposed system. 

4.2 Performance Time of Proposed System 

In this section, the comparison results verify the outstanding performance time of 
the proposed system. It is very important requirement of the smart home agent. As the 
reason, we conduct the test about three systems: Sequential execution using rule, user 
command, and proposed method. Sequential execution means the system executes the 
fixed order for immediate goal. User command means the system require user's com-
mand when the system responds to private intention for making a sequence. The expe-
riment is conducted in the configuration: Intel Core™ i7-2600L CPU, 16.0 GB RAM, 
and Window7. The experiment is conducted ten times. 

Table 1. Comparison of performance time 

 Sequential execution User command Proposed method 

Average time (Sec.) 9.725 11.357 7.525 

 
Table 1 shows the average time about the given 20 situations. As the result, the 

proposed system has the fastest generation time in changeable situation among other 
methods. We conduct the statistical tests to verify the usefulness of the proposed sys-
tem. As the result of the t-test, we obtain the significance probability of 0.05, which 
confirms that the proposed method was more appropriate than the other methods. 

5 Conclusion 

In this paper, we propose the response system to generate the appropriate action more 
quickly based on human brain process: Mirror neuron system and theory of mind. The 
mirror neuron system responds to user intention intuitively and the theory of mind 
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system recognizes prospective user intention and response. We implement the mirror 
neuron system using the reactive planning system because of the quality of the intuitive 
generation. The theory of mind system is implemented using deliberative planning 
system because of the quality of making the sequence. The implemented agent system 
responds to user intentions in the home service environment and assesses the perfor-
mance of the relevant response. In addition, we compare the performance time. 
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Abstract. Cellular communiction is one mechanism that connects nerve
cells to cognition. At present it seems that synaptic transmission may not
be the only type of signal processing between cells. Volume transmission
(VT) is a process that is performed by means of a gas diffusion pro-
cess, which is obtained with a diffusive type of signal. This work shows a
Diffusion Model for NO based on Bessel Functions that are valid for ho-
mogeneous and isotropic environments for instantaneous generation and
their diffusion occurs while being constrained by cylindrical morphol-
ogy. The model is validated with experimental data from the dynamic
behaviour of NO in endothelium cells. Capacities are analysed in the
study of the Diffusion and Autoregulation of NO, and their role in Fast
Diffusion Neural Propagaton of NO is observed.

Keywords: Nitric Oxide, Volume transmission, NO dynamics, Fast Dif-
fusion Neural Propagation, Bessel functions.

1 Introduction

The underlying mechanisms of brain activity need to be studied in order to
understand structure and brain function, in addition to computational processes.
Volume Transmission (VT) is one of these mechanisms, and is complementary
to classic neural signal transmission. VT is based on the diffusion of neuro-active
substances such as Nitric Oxide (NO) in the Extracellular Space.

NO is a gaseous liposoluble molecule, with a permeable membrane and is char-
acterised by high diffusibility. NO dynamics make up diverse processes: Gener-
ation or Synthesis, which occurs in the framework of the synaptic transmission;
Diffusion, which is controlled by the gradient of its own concentration; and Au-
toregulation and Recombination with other substances. NO dynamics, as a brain
messenger, is not experimentally defined.

As opposed to other approaches in this research area [1], [2], [3], [4], [5] and
[6] our aim is to emulate the behaviour of NO with minimal constraint assump-
tions regarding the characteristics of the specific morphologies present in the
underlying processes in its dynamic.

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 50–58, 2014.
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We present a Diffusion Model of NO based on Bessel Functions. It is an
analytical model and is based on phenomenological aspects of the transportation
of molecular matter in isotropic and homogeneous media [7]. The model is tested
and validated with the experimental behavioural data of NO dynamics measured
by Tadeusz Malinski et al [2]. An analysis of Fast Diffusion Neural Propagaton
(FDNP) [8] and [9] is also carried out.

2 Diffusion Model Based on Bessel Functions

In order to develop this model we present our hypothesis that presynaptic spe-
cialisation is not necessary for the generacion or synthesis of NO, that is, the
complete surface of the neuron can be seen as a possible place for this generation.
This occurrence allows us to consider the volume morphology of the diffusion
process of NO, an aspect which heavily depends on the NO dynamic. We con-
sider, in this study, the neuron as a basic emissor module. Hence we consider
the construction of a model where the diffusion is defined on the radius of the
neuron, and, consequently leads to the study of the expression of the diffusion
in a cylindrical environment (figure 1).

p
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p
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p
3

r2
max

r1
max

r3
max

Fig. 1. Environment Ω for the diffusion of NO in cylindrical coordinates

Starting with the General Diffusion Equation with x = rcos(θ) and y =
rsin(θ), we can obtain the expression for the diffusion based on the cylindrical
coordinates r, θ and z, as shown in expression (1).
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Given that the dynamic of diffusion is the same for any value of z and θ, an
expression for the diffusion equation is (2)

∂c

∂t
=

1

r

∂

∂r
(rD

∂c

∂r
) (2)

The prior assumption establishes that the diffusion behaves the same on the
entire circumference with radius r where the neuron is located at the center.
We introduce a term that represents the autoregulation process, and assume
that it is proportional to the concentration of the substance that is present in
a given moment. We obtain the basic expression for the diffusion of NO with a
morphology of cylindrical diffusion, equation (3) in the following form:

∂c

∂t
=

1

r

∂

∂r
(rD

∂c

∂r
)− γc (3)

This expresion leads to the concentration of NO for a value of r and for
some initial conditions and specific environment in a given homogeneous and
isotropic medium. Assume a cylinder like the one shown in figure 1, and a value
rmax where c(rmax, t) = 0 for all values of t. Then r can take on values in the
interval [0, rmax], and for t = 0 the following initial condition is c(r, 0) = f(r),
allowing us to define the form of the concentration initially with t = 0. Partial
derivatives can then be used to solve the equation with the following infinite
series of appropriately weighted Bessel functions:

c(r, t) =

∞∑
n=1

AnJ0(
ξn
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r)e
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ξ2n
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+ γ

D )Dt
(4)

Where
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2

r2maxJ
2
1 (ξn)

∫ rmax

0

f(r)J0(
ξn

rmax
r)rdr (5)

and J0(x) and J1(x) are first type order zero and order one Bessel functions,
respectively (see figure 2), and f(r) is defined as the initial condition c(r, 0), ξn
are the different roots of the Bessel function J0(x), D is the diffusion constant
associated with the homogeneous and isotropic medium, causing the the diffusion
and γ is the autoregulation constant.

The calculation of the An coefficients is done as a function of f(r), and when
a step function is involved, as shown in figure 2(b), the integral can be directly
evaluated, as shown in expression (6),

An =
2ρr0J1(

ξn
rmax

r0)

ξnrmaxJ2
1 (ξn)

(6)

leading to the following infinite series, which defines the concentration proportion
of NO in the environment points where it is diffusing at every moment.
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Fig. 2. Figure a) First type Bessel Functions, order 0 and 1, respectively, used in the
calculation of An. Figure b) Function f(r), where f(r) = ρ when 0 ≤ r ≤ r0, and 0
when r0 < r. The edge of the cylinder is rmax, so that c(r, t) = 0 when rmax < r is
satisfied.

The resultant model allows us to analyze the behaviour of two of the key
processes in the dynamics of NO. These processes are NO Diffusion and NO Au-
toregulation. The process of Generation or Synthesis is constrained by a sponta-
neous generation of NO at the beginning of the process. As regards the diffusion
morphology, and as stated previously, this model only considers cylindrical dif-
fusion.

Once the diffusion process for one case is obtained the next step is to derive
the expression for the NO dynamic in a environment Ω such as the one shown in
figure 1 where a set of N diffusion processes are present whose individual dynam-
ics for the NO concentration are shown as {c1(r, t), c2(r, t), c3(r, t), . . ., ci(r, t),
. . ., cN (r, t) }. These diffusion processes are produced at specific points, and
belong to the environment {p1, p2, p3, . . . , pi, . . . , pN} ∈ Ω , and have respective
attributes which define their specific diffusion dynamic. A maximum diffusion
radius for each process is associated {r1max, r

2
max, r

3
max, . . . , r

i
max, . . . , r

N
max}, and

the implied NO is not capable of reaching longer distances. It is represented by
{f1(r), f2(r), f3(r), . . . , fi(r), . . . , fN(r)} for the concentration at t = 0, with dif-
fusion constants {D1, D2, D3, . . . , Di, . . . , DN} and autoregulation { γ1, γ2, γ3,
. . ., γi, . . ., γN }.

Using previous developments, the general expression of the dynamics of the
NO concentration in a generic point pk ∈ Ω, belonging to the environment is
seen as:

c(pk, t) =

N∑
i=1

H(pk, t, i) (8)
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Where

H(pk, t, i) = { ci(| pk − pi |, t− ti0) If | pk − pi |< rimax ∧ t ≥ ti0
0 otherwise

(9)

and {t10, t20, t30, . . . , ti0, . . . , tN0 } are starting times for the diffusion processes.
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Fig. 3. Generation of complex structures

The proposed models allows us to determine the generation of complex struc-
tures that occur in these simultaneous NO diffusion processes, (see figure 3).

3 Analysis and Model Validation

The model proposed in this paper reproduces the dynamic behaviour of NO
reported in Tadeusz Malinski et al. [2] where a maximum induced value of 1
μM for the NO concentration in the membrane of a endothelial cell of 1 μm.
diameter was obtained.

Parameters in the model are set with maximum diffusion radius of 1 μm.,
establishing a cylindrical diffusion environment with a 2 μm. diameter. An en-
dothelium cell with 1 μm. diamter is assumed to be located in the centre, hence
its surface is determined by a r = 0.5 μm. radius. In order to determine the
shape to maximise NO concentration we consider the funcion f(r), with r = 0.5
μm. for 1 μM. concentration. Figure 4(a) reveals that there is a relationship of
exponential growth between the strength of the NO source (ρ) and the size of
r0. Smaller r0 creates a spontaneous increase in the quantity of NO needs in the
centre of the cylinder.

This figure also allows us to analyse how much time is necessary to reach the
maximum value of the concentration with r = 0.5 μm. to converge to 1.8 10−5s.
while the size of the source is reduced. This calculation is found to be directly
related to the NO concentration profiles which are shown at position r = 0.5
μm. for different values of r0 and ρ (see figure 4(b)).
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Fig. 4. Behaviour of cylindrical diffusion model for different functions f(r), using
rmax = 1 μm. Figure a shows the relationship between r0 and ρ (black graph) to-
gether with the relationship between r0 and t (red graph). Figure b) shows increasing
NO concentration profiles for different values of r0 and ρ.

The model has been subjected to a second test, which is used to determine
the implications of the amount of NO in the environment. In this case we use
parameters for the a maximum diffusion radius of 100 μm., creating a cylindrical
environment with 200 μm., and then observe what f(r) should look like under
the same conditions previously established (maximum concentration of 1 μM. a
distance of r = 0.5 μm.). Figures 5(a) and 5(b) reveal that the implied variables
(ρ and r0) react similarly to the ones in the previous case where the maximum
diffusion radius was 1 μm. The only observable difference is in the concentration
profiles, and they do not appear to be implied in the NO behaviour for r = 0.5
μm. when it reaches its maximum value. Figures 4(b) and 5(b) show that the
elimination of NO in these profiles takes longer.

Observed behaviour supports the Fast Diffusion Neural Propagation (FDNP)
phenomenon, since the dynamic behaviour of NO in locations near its generation
process and is not affected by the reach of NO. Hence, the way in which this NO
dynamic has an impact in that environment is independent of the reach of NO.

Figure 6 shows the explicit form of the FDNP phenomenon. Figure 6(a) shows
the maximum NO concentration values for different values of rmax, and figure
6(b) shows the time needed to reach the maximum value, as a function of r.
Notice that FDNP is present in the neighbourhood of 0.25 μm. to 0.35 μm.,
where the influence of NO in reaching maximum concentrations and in the time
needed for the same. When r > 0.35 μm. as seen in figure (6(a)), we see that the
maximum concentration level of NO starts to differ based on the reached value,
and the difference in the time variable to reach these maxima are more apparent
(see figure 6(b)).

How the model represents autoregulation is analysed in figure 7(a), which
shows a comparison of NO concentrations for with radius 0.5 μm. for a NO
dynamic with rmax = 1 μm. and values of r0 = 0.25 μm. and ρ = 10.8440 μM.
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0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

200

400

C
NO

(r = 0.5 μm.) = 1 μM. & r
max

 = 100 μm.

r
0
 (μm.)

ρ 
(μ

M
.)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

1

2
x 10

−5

t (
s.

)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
−4

0

0.2

0.4

0.6

0.8

1

t (s.)

C
N

O
 (

μM
.)

C
NO

(r = 0.5 μm., t) & r
max

 = 100 μm.

 

 
ρ = 3.1245 μM. & r

0
 = 0.45 μm.

ρ = 5.4633 μM. & r
0
 = 0.35 μm.

ρ = 30.1923 μM. & r
0
 = 0.15 μm.

ρ = 271.8271 μM. & r
0
 = 0.05 μm.

(b)

Fig. 5. Cylindrical diffusion model behaviour for different function f(r), using rmax =
100 μm. Figure a) shows the relationship between r0 and ρ (black graph), and the rela-
tionship between r0 and t (red graph). Figure b shows different concentration profiles
for NO for different values of r0 and ρ.
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Fig. 6. Observed FDNP phenomenon using variation of maximum reached NO con-
centration levels, figure a),and using time variation to reach these maxima, figure b).
f(r) is shown with values of r0 = 0.25 μm. and ρ = 10.8440 μM.
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When an autoregulation process is not present, the Dynamic of NO reaches
a maximum concentration at 1 ρM. when r = 0.5 μm., which corresponds to
observed biological behaviour. Concentration profiles during autoregulation is
based on a value of γ = 1104 s−1, but does not reach this maximum value,
revealing that most of the generated NO is destroyed from the autorregulacion
process before it reaches a distance r = 0.5 μm.
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Fig. 7. Concentration profiles of NO for distinct parametrized dynamics with the same
f(r) but different maximum levels of NO, a) maximum level rmax = 1 μm. and b)
maximum level rmax = 100 μm

The last analysis of NO concentration profiles compares behaviour along the
radius r for values of r = 0.5 μm. and r = 1 μm. when the maximum radius is
reached at rmax = 100 μm. Figure 7(b) shows the importance of the distance
variable. For instance, when the radius only moves 0.5 μm. from the area of
generation or spontaneous synthesis this causes significant changes in the shape
of the NO profile, in addition to the maximum magnitude and the amount of
time to reach it.

4 Conclusions

A study of the NO dynamic in biolgical and artificial environments was carried
out, leading to an increased understanding of NO and advances in the modeling
of NO diffusion.

Observations of NO concentration profiles in different positions at specific
distances from the source for a morphology of puntual NO generation and a
cylindrical diffusion, as well as in homogenerous and isotropic environments dif-
fusion were performed.

The proposed NO diffusion model was validated biologically based on experi-
mental data of NO behaviour found in Tadeusz Malinski et al. [2]. We analysed
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the process of Fast Diffusion Neural Propagation (FDNP). This process charac-
terizes the underlying VT transmission scheme in such a way that its influence on
the environment depends on the distance to the diffusion process. Furthermore
it is independent the maximum radius of NO propagation, that is, the reach of
NO.

The generation of complex structures that occur in simultaneous NO diffusion
processes have been shown, in addition to the proposed models capacity for
their determination. This capability leads to significant implications for neural
information transmission and learning, which can be included in future works.

Finally we conclude that in order to consider other diffusion morphologies,
as well as generation processes that are different from the puntual generation of
NO and non-homogeneous and non-isotropic characteristic environments, further
modeling of the NO dynamic must be done using a discrete perspective.
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7. Suárez Araujo, C.P., Lopez, P.F., Báez, P.G.: Towards a Model of Volume Transmis-
sion in Biological and Artificial Neural Networks: A CAST Approach. In: Moreno-
Dı́az Jr., R., Buchberger, B., Freire, J.-L. (eds.) EUROCAST 2001. LNCS, vol. 2178,
pp. 328–342. Springer, Heidelberg (2001)
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Abstract. In this paper a computational model is presented that describes the 
role of emotion regulation to reduce the influences of negative events on long 
term mood. The model incorporates an earlier model of mood dynamics and a 
model for the dynamics of emotion generation and regulation. Example model 
simulations are described that illustrate how adequate emotion regulation skills 
can prevent that a depression is developed. 

Keywords: depression, emotion regulation, mood regulation, agent. 

1 Introduction  

Emotions were traditionally seen as a neural activation states without a function[1]. 
However, relevant research provides evidence that emotions are functional [2, 3] and 
provide information about the ongoing fight between a human being and its environ-
ment[4]. In addition to the theories that exist in social psychology also in recent neu-
rological literature many contributions (e.g.,[2, 4]) can be found about the relation 
between emotion and brain functioning. For example, emotional responses relate to 
activations in the brain within the limbic centers (generating emotions), and cortical 
centers (regulating emotions); cf.[5, 6].  Previously emotions were often left out of 
cognitive models; however since the awareness that emotions play a vital role in hu-
man lifes is increasing, cognitive models are developed that include the generation 
and regulation of emotions as well. A useful basic theory for the latter is the one of 
Gross: on how individuals regulate which emotions they have, when they have them 
and how they experience and express them[7]. 

Emotions are different from mood, and emotion regulation is different from mood 
regulation[7, 8]. Emotions are instantaneous in nature and are specific reactions to a 
particular event, usually for a short period of time. Emotions help us to set priorities 
in our lives, taking initiatives in changing situations or making decisions based on 
how we feel, whether we are happy, angry, frustrated, bored or sad. Emotion regula-
tion describes how a subject can use specific strategies to affect the emotion response 
levels. Mood, on the other hand, is a more general feeling such as happiness, sadness, 
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frustration, or anxiety that exists for a longer period of time. Mood regulation usually 
involves the deliberate choice of mood-affecting activities, such as pleasant activi-
ties[9]. It has been found that recurring events triggering stressful emotions have a 
bad influence over time on mood and can easily lead to depression when subjects are 
vulnerable for that [10, 11]. 

In this paper a computational model is introduced that combines the short-term 
emotional reaction on stressful events with the long term dynamics of mood. The 
model is based on existing model for mood dynamics[12] and the theory for emotion 
regulation introduced by Gross [7, 8, 13]. In the current paper, it is shown how this 
process of emotion regulation can help people to maintain a healthy mood in case of 
the occurrence stressful events. 

The paper is organized as follows. First, in Section 2 some background information 
about the mood model and the process of emotion regulation is presented. In Section 
3 the integrated model is explained in detail. In Section 4 simulation results are pro-
vided to show the influence of stressful events in different scenario’s, thereby provid-
ing evidence for the feasibility of the model. Finally, Section 5 concludes the paper. 

2 Background on Emotion Regulation and Mood Dynamics 

The model presented in this paper adopts Gross’ theory of emotion regulation and an 
existing model of mood dynamics[12]. Both elements are introduced here briefly. 

2.1 Emotion Regulation 

Controlling emotions or regulating them is often related with the suppression of an 
emotional response, for example, expressing a neutral poker face. This kind of regu-
lating emotions is sometimes considered not very healthy, and a risk for developing 
serious kinds of medical problems. However, it has been found that the strategies to 
regulate emotions are much more varied. For example, closing or covering your eyes 
when a movie is felt as too scary, or avoiding an aggressive person are other forms of 
emotion regulation mechanisms[13, 14]. 

The framework introduced by Gross describes how emotions can be regulated or 
controlled in different phases of the process during which emotions are generated[7]. 
Gross distinguishes cognitively regulated emotions, which occurs relatively early on in 
the emotion generation process (e.g., re-interpretation) and behaviorally regulated emo-
tions, that happen relatively late in the emotion generative process (e.g., suppression). 

Over a longer period of time several strategies for emotion regulation have been 
described in the literature. In general they are classified into two major categories. 
The first category covers the antecedent focused strategies that can be used before an 
emotional response has an effect on the behavior. In this category of emotion regula-
tion, emotions may be regulated at four different points in the emotion generation 
process (a) selection of the situation, (b) modification of the situation, (c) deployment 
of attention, (d) change of cognition. The second category is formed by the response 
focused strategies, which can be used in situations where the emotion response  



 A Computational Model of the Relation between Regulation 61 

already is coming into effect; this is also called modulation of responses[7]. In the 
current paper the focus is on antecedent focused strategies, in particular re-
interpretation of world information by belief change. 

2.2 Modeling Emotion Regulation 

Based on the theory of emotion generation and regulation described above, a compu-
tational model of emotion regulation has been introduced before [15] and applied in 
the context of contagion and decision making. A detailed discussion of this model is 
given in that paper; however, here a brief summary is given of these concepts and 
their dynamics. As illustrated in the dashed box in the upper part of Fig.1 the follow-
ing concepts play their part in the model: control state (cs), beliefs (bel), feeling (feel), 
preparation (prep), and sensory representation (srs(x)). The aim of the model is to 
describe how negative beliefs and feelings are generated and how alternative, more 
positive beliefs can be generated to regulate the negative feeling. The model is in-
spired from various neurological theories [16–19] , from fMRI experiments it has 
been found that emotion regulation occurs through the interaction between prefrontal 
cortex and amygdala. Here less interaction or weak connections between amygdala 
and prefrontal cortex lead to less adequate emotion regulation[16]. 

In the model, antecedent focused emotion regulation is achieved by the interplay 
of three states cs(b, c), bel(c), feel(b). Negative weights are assigned to the connec-
tions from the control state cs to negative beliefs bel(c) and negative feelings feel(b). 
Positive weights are assigned to connections in the opposite direction.  In the exam-
ple scenario only two beliefs are taken into account: a positive belief which may asso-
ciate to good feeling and a negative belief which is related to a stressful feeling (ac-
tually for the sake of simplicity there is only one negative feeling state in the scena-
rio). A control state is used to determine whether an unwanted emotion through a 
negative belief has occurred (as a form of monitoring as happens in the prefrontal 
cortex). If so, by becoming activated the control state suppresses these negative ef-
fects. Furthermore, as they concern opposite interpretations of the world information, 
both beliefs inhibit each other, which is modelled by assigning negative weights to 
their mutual connections. In the literature (e.g.,[20]) emotion generation and emotion 
regulation are sometimes considered as overlapping in one process.  

In the model introduced here on the one hand both subprocesses (emotion genera-
tion and regulation) are clearly distinguished but on the other hand by the cyclic con-
nections between them and the dynamics created by these cycles the processes are 
fully integrated into one process.  

The sensory representation srs(w) of a world state w is associated both with a nega-
tive and a positive belief, as a basis for two different interpretations of the same world 
information;, as discussed earlier they suppress each other by a form of inhibition. 
Only the negative belief has a connection with the preparation for a negative emotion-
al response prep(b). The feeling state feel(b) has an impact on this preparation state 
prep(b), which in turn has an impact on feeling state feel(b) through srs(b) which 
makes it recursive; this is often called an as-if body loop in the literature (e.g.,[2]). 
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2.3 Modeling Mood Dynamics and Depression 

The model of mood dynamics is depicted in Fig. 1 (lower part). The main concepts 
include the mood level, appraisal and coping skills of a person, and how the levels for 
these states affect the external behavior in the form of selection of situations over time 
(objective emotional value of situation). The model is based upon a number of psy-
chological theories, see [12] for a mapping between the literature and the model itself. 

In the model, a number of states are defined, whereby to each state at each point in 
time a number on the interval [0,1] is assigned. First, the state objective emotional 
value of situation represents the value of the situation a human is in (without any in-
fluence of the current state of mind of the human). The state appraisal represents the 
current judgment of the situation given the current state of mind (e.g., when you are 
feeling down, a pleasant situation might no longer be considered pleasant). The mood 
level represents the current mood of the person, whereas thought indicates the current 
level of thoughts (i.e., the positivism of the thoughts). The long term prospected mood 
indicates what mood level the human is striving for in the long term, whereas the 
short term prospected mood level represents the goal for mood on the shorter term (in 
case you are feeling very bad, your short term goal will not be to feel excellent imme-
diately, but to feel somewhat better). The sensitivity indicates the ability to select 
situations in order to bring the mood level closer to the short term prospected mood 
level. Coping expresses the ability of a human to deal with negative moods and situa-
tions, whereas vulnerability expresses how vulnerable the human is for negative 
events and how much impact that structurally has on the mood level. Both coping and 
vulnerability have an influence on all internal states except the prospected mood le-
vels, but in Figure 1, those arrows are left out for clarity reasons. Finally, world event 
indicates an external situation which is imposed on the human (e.g., losing your job). 

3 Integrated Model  

The integrated model describes how the emotion generation and regulation mechan-
ism influences the mood dynamics. It describes how specific stressful events generate 
specific instantaneous negative feelings, which have a negative effect on the (subjec-
tive) appraisal (also called sevs – subjective emotional value of the situations of the 
person) of the more general situations of the person and thus on the mood. When 
emotion regulation is taking place, the instantaneous feelings will be less negative and 
thus reduce the influence of the stressful events on the mood. To implement this prin-
ciple in the model, a connection from the negative feeling in the regulation model to 
appraisal state in the mood model is introduced. The purpose of this connection is to 
model the effect of negative but short term feelings on the (longer term) mood. In the 
model, only negative feelings are considered. For beliefs, there is both a positive and 
a negative variant. The world(w), sensor(w), srs(w) states may lead to the negative 
and positive belief as alternative interpretations of the same world information. 



 A Computational Model of the Relation between Regulation 63 

 

Fig. 1. The integrated model: emotions about stressful events and their influence on mood 

4 Simulation Results 

In this section, example simulation results are presented that show how emotion regu-
lation can help to change bad beliefs and feelings into more positive beliefs and feel-
ings, and thus protects the mood against stressful events. First, some details of the 
model design and its implementation and the parameter values used are described. 

As mentioned, for the model of mood dynamics (the lower part of Fig. 1) an exist-
ing model is used. Due to the lack of space, we have to refer to original article [12] 
for the numerical details of this part of model. 

In the emotion regulation model, the activation level of a state is determined by the 
impact of all the incoming connections from other states thereby being multiplied by 
their corresponding connection weights. In the simulations, the connection weights set 
at the following values: wworldstate_sensor  1.0,wsensor-srsw  1.0, wsrsw-PosBel  0.4, wsrsw-NegBel  
0.9, wNegBel_prep  0.9, wPrep_srsb  0.9, wsrsb_feel  0.9, wfeel_prep  0.4, wcs_feel  -0.2, wcs_negBel  
-0.35, wNegBel_PosNeg= -0.3, wPosNeg _ NegBel= -0.1. When no emotion regulation takes 
place wfeel_cs and wnegBel_cs are taken 0. For scenarios in which emotion regulation 
takes place, the value of wfeel_cs and wnegBel_cs change from 0 to 3 and 0.05. 

In particular, for a state causally affected by multiple other states, to obtain their 
combined impact, first the activation levels Vi for these incoming state are weighted 
by the respective connection strengths wi thus obtaining Xi=wivi and then, these val-
ues Xi are combined, using a combination function f(X1,.., Xn). In the context of emo-
tion regulation model, the combination function is based on the following function: 

 Vnew = Vold + adaptER * th(τ, σ, X1+X2+…+Xn) 

Where adaptER is an adaptation factor, determines the speed with which the value of 
state changes. The adaptER for all states of the emotion regulation model is equal to 6. 
And,  
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4.2 Simulation of the Mood 

The integrated model was used to simulate three types of persons in different situa-
tions. The different types are characterized by different values for the parameters 
coping, vulnerability and LT prospected mood level. The first type of person is an 
emotionally stable person, defined by having good coping skills that balance out any 
vulnerability and by having the desire to have a good mood: coping is 0.5, vulnera-
bility 0.5 and LT prospected mood level 0.8. An emotionally slightly unstable person 
is defined by having some vulnerability and bad coping skills and the desire to have a 
medium mood: settings 0.1, 0.9 and 0.6 respectively. The third type, an emotionally 
very unstable person, is characterized by settings 0.01, 0.99 and 0.6. As start value for 
OEVS the equilibrium state is used; this needs to be calculated for each type so that 
when no events occur, the person stays balanced with al variables equal to LT pros-
pected mood level. For type the OEVS is 0.8, for type 2 it is 0.94 and for type 3 the 
stable OEVS is 0.999. 

The six weights between mood, thoughts and appraisal can also be varied to simu-
late different personal characteristics. However, in these simulations they have been 
set at the following values: wappraisal_mood 0.7, wthoughts_mood 0.3, wappraisal_thoughts 0.6, 
wmood_thoughts 0.4, wmood_appraisal 0.5, wthoughts_appraisal 0.5. In each iteration, the value of 
each state(Vnew) in the mood model is defined according the weighted sum of its in-
puts and its old value(Vold): 

 Vnew = Vold + adaptmood * (w1V1+W2V2+..) 

The adaptation factor for all states in the mood model is 0.1. By comparing the adap-
tation factors of the mood model and the emotion regulation model, we see that the 
states of the emotion regulation model are updated 60 times faster than the states of 
the mood model. This is in line with the background provided in the introduction, 
which says that the emotions are much more short-time events than mood. 

In the first scenario, three short (3.3 hours) bad events occur with the time interval 
of 12 hours. The length of the scenario is three weeks (504 hours).  Table 2 shows 
the value of mood after one, two and three weeks, and the minimum value of mood, 
for each person when the emotion regulation is on or off. 

Table 2. Simulation results when three bad events happen 

 
Person 1 Person 2 Person3 

Without ER With ER Without ER With ER Without ER With ER 
Week 1 0.79008 0.78098 0.43627 0.50024 0.32473 0.39851 

Week 2 0.80356 0.79827 0.45075 0.50162 0.27910 0.32961 
Week 3 0.79825 0.80059 0.46553 0.50530 0.24847 0.28355 

 
As Table 2 shows, a stable person does not require emotion regulation to handle 

these bad events (the value of mood does not change significantly when emotion 
regulation is on or off). However, emotion regulation is critical for person 2 (unsta-
ble). In fact, if emotion regulation does not take place, he/she will become depressed 
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Abstract. This paper presents a method for extracting a low-cost rep-
resentation from restricted Boltzmann machines. The new representation
can be considered as a compression of the network, requiring much less
storage capacity while reasonably preserving the network’s performance
at feature learning. We show that the compression can be done by con-
verting the weight matrix of real numbers into a matrix of three values
{−1, 0, 1} associated with a score vector of real numbers. This set of
values is similar enough to Boolean values which help us further translate
the representation into logical rules. In the experiments reported in this
paper, we evaluate the performance of our compression method on image
datasets, obtaining promising results. Experiments on the MNIST hand-
written digit classification dataset, for example, have shown that a 95%
saving in memory can be achieved with no significant drop in accuracy.

Keywords: Restricted Boltzmann Machines, Low-cost Representation,
Knowledge Extraction.

1 Introduction

Restricted Boltzmann Machines (RBMs) [5,1] are a generative model which can
learn interesting hidden features from data. In many applications, RBMs have
been shown advantageous over traditional feature extraction at training clas-
sifiers, especially when RBMs are stacked onto a deep network to form, e.g.
a Deep Belief Network [2]. However, due to their structural complexity, these
feature learning models require a large storage of memory. In this paper, we
propose a method for extracting a low-cost representation from RBMs, as a step
towards the use of Deep Belief Networks in memory-limited devices. The low-cost
representation is expected to require less memory for storage, while reasonably
preserving the performance of the RBMs. Furthermore, we show that our low-
cost representation can be translated into a logic-like language, thus providing an
intuitive understanding of the data and being compatible with boolean circuits.

We are concerned with the use of RBMs as feature extractors whereby the hid-
den features are generated from a logistic function of the weighted combination
of the original features, obtained from a dataset. For the low-cost representation,
we use the same logistic function with some changes to the weights. In partic-
ular, we convert the weight matrix of real values from an RBM into a matrix

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 69–77, 2014.
c© Springer International Publishing Switzerland 2014
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where each entry has three possible states {−1, 0, 1}, and each column vector
has a real-valued score associated with it. Since there are only three possible
values for each element of the matrix, one needs to use only two bits to repre-
sent them. Furthermore, by removing any rows where the low-cost matrix has
value zero, a further compression can be achieved. The result, as we shall see, is
that the relationships among the input variables in an RBM can be represented
by logic rules, similarly to [7]. Experiments on the MNIST handwritten digit
classification dataset have shown that a 95% saving in memory can be achieved
with no significant drop in accuracy, and up to 99% saving can be achieved with
the low-cost feature extraction still offering a significant improvement on the
baseline SVM classification applied directly to the input data.

The remainder of the paper is organized as follows. In Section 2, we present
background on RBMs. In Section 3, we present the low-cost representation and
the network-compression algorithm. In Section 4, we recall the relationship be-
tween the compressed representation and logic. Section 5 contains experimental
results on the MNIST and related datasets, and Section 6 concludes the paper
and discusses directions for future work.

2 Background

A Restricted Boltzmann Machine [5] is a two-layer symmetric connectionist sys-
tem with no connections between units in the same layer. We use V and H to
denote, respectively, the visible and hidden layers of an RBM. We useW ∈ RI×J ,
where I is the number of visible units and J is the number of hidden units, to
denote the RBM’s weight matrix, with wij denoting the connection weight from
visible unit i to hidden unit j. The energy function of a network with states of
visible layer V = v and hidden layer H = h is given by:

E(v, h) = −
∑
ij

viwijhj −
∑
i

aivi −
∑
j

bjhj (1)

Here, wij , ai, bj are the connection weights, biases for visible units, and biases
for hidden units, respectively. The joint distribution of the network’s states is:

P (v, h) = e−E(v,h)

Z , with Z =
∑

v,h e
−E(v,h). Given the state of a layer, the units

in the other layer are conditionally independent and can be sampled from the
following distributions:

P (vi|h) = σ(
∑
j

wijhj + ai)

P (hj |v) = σ(
∑
i

wijvi + bj)
(2)

with σ(x) = 1
1+e−x , called a logistic function.

Training RBMs is difficult due to the computational intractability of the par-
tition function Z. However, one can use efficient approximation methods such
as Contrastive Divergence [1] to estimate such parameters reasonably well.
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In previous work, [7], we have shown that the memory cost of an RBM can
be reduced by pruning low-scoring feature detectors. In what follows, we show
that the memory cost can be further reduced by converting the weight matrix
into a three-valued matrix and a vector of scores.

3 Low-Cost Representation for RBMs

RBMs have been used as a powerful tool for the extraction of features from
a dataset. Normally, the RBM is used to perform a non-linear transformation
of the data from its original space v to the space of hidden variables h. The
probability fj of unit hj in the hidden layer being activated given an input v, is
given by (from Eq. (2)):

fj = σ(w�
j v + bj) (3)

where wj is column vector j in the weight matrix W of the RBM, and is also
known as a basis vector or feature detector.

We now propose a function to transform the features from the data space to
the same hidden space as follows:

f ′
j = σ(cjs

�
j v + bj) (4)

where cj is a real value and sj ∈ {−1, 0, 1}I is a low-cost vector having the
same size as wj , with element sij having one of the values −1, 0, or 1. In order
to make our proposed features f ′

j useful, we need to be able to extract cj and sj
from the feature detector wj of the RBM such that f ′

j approximates fj. We do
this by minimizing the squared Euclidean distance between the basis vector wj

and the low-cost vector sj weighted by cj , as follow:

d(wj , cjsj) =
1

I

∑
i

‖wij − cjsij‖21 (5)

Note that (5) is quadratic, the optimal value of cj can be found by setting the
derivatives of the squared Euclidean to zeros, such that:

cj =

∑
i wijsij∑

i s
2
ij

(6)

Since the value of sij is in the set {−1, 0, 1}, we have:

‖wij − cjsij‖21 = ‖abs(wij)− cj
sij

sign(wij)
‖21 =

⎧⎨
⎩

(abs(wij) + cj)
2 if sij �= sign(wij)

(abs(wij)− cj)
2 if sij = sign(wij)

abs(wij)
2 if sij = 0

(7)
Here, abs(wij) and sign(wij) are functions that return the absolute value and sign
of wij , respectively. Since (abs(wij) + cj)

2 > (abs(wij) − cj)
2 and (abs(wij) +

cj)
2 > abs(wij)

2, sij = 0 will minimize the Euclidean distance if and only if
abs(wij)

2 ≤ (abs(wij)− cj)
2 from which cj ≥ 2× abs(wij).
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We are now able to describe the procedure to extract cj and sij from the RBM,
as follows:

Step 1: Initialize sj so that sij = sign(wij)
1

Step 2: For each hidden node j, compute cj using Eq. (6)
Step 3: For each connection weight wij , set sij = 0 if cj ≥ 2× abs(wij)
Step 4: Compute cj ; if cj is unchanged then stop, otherwise go to Step 3.

4 Relation to Logic Representation

In this section, we show that the use of low-cost vectors is similar to the confi-
dence logic representation from [6,7]. A confidence-based logic formula is a logic
programming (if-then) implication of the form c : h ← b1 ∧ · · · ∧ bn, where h is
a logical atom and each bi, 1 ≤ i ≤ n, is a logical literal (an atom or its nega-
tion), labelled by a real-valued number c called a confidence-value. For example:
1.5 : h← b1∧¬b2 ∧b3 associates hypothesis (hidden unit) h with beliefs (visible
units) b1, not b2, b3 with confidence value 1.5.

If we remove every sij whose cj = 0 from the low-cost vector sj then we are
able present each function f ′

j = σ(cjs
�
j v + bj) in the following confidence-logic

form:
cj : f

′
j ←

∧
si′j=1

vi′j ∧
∧

si′′j=−1

¬vi′′j (8)

In what follow, we present two examples, using the XOR function and the MNIST
images data set, to illustrate the above translation.

Example 1. XOR function
We trained an RBM with 10 hidden units on the truth-table of the XOR

function with 3 variables X,Y, Z. Suppose that we would like Z to be our target
variable (notice that we could have equally chosen X or Y without retraining the
model). Below, we present the confidence-logic rules in which literal hj appears
together with target literal z or ¬z. By combining rules of the form h ← z
and z ← h into h ↔ z, we obtain the set of rules below; treating hj as an
intermediate concept and combining each pair of rules to obtain rules relating
x, y and z directly, and ignoring the confidence-values, one obtains the four rules
for XOR, e.g., from h2 ← ¬x ∧ ¬y and ¬z↔ h2, one obtains ¬z← ¬x ∧ ¬y.

6.843 : h2 ← ¬x ∧ ¬y; 4.008 : ¬z ↔ h2; 5.342 : h3 ← x ∧ y; 4.008 : ¬z ↔ h3

3.984 : h5 ← ¬x ∧ ¬y; 4.008 : ¬z ↔ h5; 2.668 : h6 ← x ∧ y; 4.008 : ¬z ↔ h6

4.611 : h7 ← ¬x ∧ y; 4.008 : z ↔ h7; 2.389 : h8 ← x ∧ y; 4.008 : ¬z ↔ h8

3.847 : h9 ← x ∧ ¬y; 4.008 : z ↔ h9; 4.015 : h10 ← ¬x ∧ y; 4.008 : z ↔ h10

Example 2. Handwritten Characters
We have applied the same process from the previous example to the MNIST

dataset. We trained a sparse RBM[4] with 500 hidden units and 794 visible
units (784 pixel variables and 10 softmax class variables). Below, we present a

1 sij = 0 if wij = 0.
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0.765 : Zero ← ∧ ∧ ∧ ∧ ∧

0.831 : One ← ∧ ∧ ∧ ∧ ∧

0.524 : Two ← ∧ ∧ ∧ ∧ ∧

0.687 : Three ← ∧ ∧ ∧ ∧ ∧

0.348 : Four ← ∧ ∧ ∧ ∧ ∧
visualization of the confidence-logic rules whereby a positive literal vi is shown
as a white pixel, a negative literal ¬vi is shown as a black pixel, and a literal
that does not appear in the rule is shown as a grey pixel. Normally, the rules
are organized, by the way in which they are obtained, into two levels: one with
relations between pixel variables and hidden variables, and another with relations
between hidden variables and target variables. For ease of presentation, we omit
the scores (confidence-values) from the first level, and also omit the negative
literals from the second level, before we replace the hidden literals (intermediate
concepts) with the visible literals for visualization. Because of space restrictions,
we only show 6 images per rule for 5 (out of 10) rules.

5 Experimental Results

We performed experiments with the MNIST handwritten digits dataset2, TiCC
handwritten characters dataset3 and YALE face dataset4. In each dataset, we
divide the data into training, validation and test set. For the MNIST dataset,
we use a subset of the training data with 10, 000 samples (MNIST10K), 2000
validation samples, and 10, 000 test samples for a digits recognition task (from
0 to 9). We also use the same test set to test the representation extracted from
RBMs trained on the entire training set with 60, 000 samples5 (MNIST60K). The
TiCC dataset consists of 18, 189 training samples, 1, 250 validation samples, and
18, 177 test samples for a person’s letter recognition task (from A to Z). We di-
vide the YALE dataset into a training set with 135 samples, thus 9 samples per
person, and the test set with 30 samples. We used an SVM with Gaussian kernel
as a classifier to measure the performance of the extracted low-cost representa-
tion in comparison with the RBMs. Model selection is performed by running a
grid-like search (except for the YALE dataset) over the learning rates for the
RBMs (between 0.001 and 1), cost (between 0.0001 and 100), and gamma (be-
tween 0.0001 and 100)) for the SVM, all on a log-scale. We did not select the
number of hidden units in the RBMs, instead we tested RBMs with 500 and
1000 hidden units only, simply to investigate whether the size of the network

2 http://yann.lecun.com/exdb/mnist/
3 http://algoval.essex.ac.uk:8080/icdar2005/index.jsp?page=ocr.html
4 http://vision.ucsd.edu/content/yale-face-database
5 Here, we re-use the hyper-parameters from the experiment with 10, 000 training
samples.

http://yann.lecun.com/exdb/mnist/
http://algoval.essex.ac.uk:8080/icdar2005/index.jsp?page=ocr.html
http://vision.ucsd.edu/content/yale-face-database
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affects the quality of the extracted low-cost representation. All the results using
the MNIST dataset can be reproduced using the MATLAB code provided at
https://github.com/sFunzi/Low-costRBM/. The reader can contact the authors
directly if interested in the results obtained using the other datasets.

The memory needed by each type of representation, i.e. RBMs and our low-
cost representation, can be defined as follows:

MRBM = T × Cword × I × J

Mlow−cost = (2× I × J) + (T × Cword × J)
(9)

where Cword is the number of bits of a computer word in a device, and T is
the number of computer words of a real-valued data type. For example, in a
32-bit machine, a RBM with 784 visible units and 500 hidden units will cost
2× 32× 784× 500 = 25, 088, 000 bits for a double precision floating point type.
In the case of an implementation of low-cost vectors in a computing device which
needs 2 bits to represent an element in the vector then the memory cost should
be (2× 784× 500) + (2× 32× 500) = 816, 000 bits. The ratio of memory saved
by the low-cost representation over the RBM can be measured by:

rsave =
MRBM −Mlow−cost

MRBM
× 100% (10)

Table 1. The expected memory saving ratios for an RBM with 784 visible units and
500 hidden units using standard floating point data types in a 32-bit computer; pruning
refers to the percentage of low-scoring hidden nodes removed

float double

rsave no pruning 93.622% 96.747%
rsave 20% pruning 94.898% 97.398%
rsave 40% pruning 96.173% 98.048%
rsave 60% pruning 97.449% 98.699%
rsave 80% pruning 98.724% 99.349%

In our experiments, we have trained RBMs using double-precision floating
point weight matrices on a 32-bit computer in order to evaluate the perfor-
mance of the low-cost representation in comparison with that of the original
RBMs at performing feature extraction. Hence, our purpose is to compare the
accuracy and ratio of memory saved of the RBMs and their low-cost represen-
tation. We assume the existence of a feasible hardware implementation of the
low-cost representation. We also investigate how accuracy drops as the RBMs
are pruned, in comparison with pruning of their low-cost representation with
respect to the ratio of memory saved. Pruning of x% of a network (RBM or its
low-cost counterpart) means that the x% lowest-scoring vectors sj , i.e. with the
smallest values of cj , are removed, as done in [7].

Table 2 contains the accuracies of the RBMs with 500 and 1000 hidden nodes
trained on four datasets, and the accuracies of their low-cost counterparts, all
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Table 2. Average test set performance of RBMs in comparison with their low-cost
representation on four different datasets

TiCC MNIST10K MNIST60K YALE face

RBM (J=500) 94.851% ± 0.033 97.198 ± 0.060 98.553% ± 0.031 95.000% ± 2.833
Low-cost 94.711% ± 0.072 97.240 ± 0.089 98.530% ± 0.040 94.333% ± 3.865

RBM (J=1000) 94.928% ± 0.016 97.245% ± 0.031 98.680% ± 0.024 97.000% ± 2.919
Low-cost 94.729% ± 0.070 97.219% ± 0.056 98.562% ± 0.035 96.667% ± 1.757

on the held-out test sets. We have run each experiment 10 times and report
the mean accuracy, along with standard deviation. The results show that the
performance of the low-cost representation can be almost identical to that of the
RBMs, with high consistency.

Next, we evaluate the effectiveness of the low-cost representation in compari-
son with pruning the RBM. For both the RBM and its low-cost counterpart, one
can rank and remove the low-scoring vectors sj, for which cj is relatively low. For
the sake of comparison, we prune 20%, 40%, 60% and 80% of both the RBMs and
the low-cost representation, and evaluate performance. As expected, the average
test set error increases with the pruning. However, results show that more than
98% memory saving can be achieved by the low-cost representation with the
feature extraction still offering a significant improvement on the baseline SVM
classification obtained from the input data directly.

(a) TiCC dataset (b) MNIST dataset

Fig. 1. Error rate progression in comparison with memory capacity gains for RBMs
and low-cost RBMs pruned by 0, 20, 40, 60 and 80%

In order to show the usefulness of the compressed representation at feature
extraction, we use the classification accuracy obtained by an SVM on the orig-
inal input data as baseline. We found that for the MNIST60K and YALE face
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datasets, the features extracted by either the RBM or the low-cost represen-
tation produced only a slight improvement on the original data trained using
an SVM. In the experiments with the TICC and MNIST10K datasets, however,
feature extraction outperformed the SVMs. Therefore, we have chosen the latter
two datasets to visualize and evaluate the effect of pruning, as shown in Figure
1 for RBMs containing 500 hidden units only.

In Figure 1, the SVM line indicates the test set error on the raw input data
without using RBMs at all. This line separates the space into an area where the
use of an RBM, low-cost or otherwise, can improve performance (on the left hand
side) and an area where feature extraction, whichever the memory capacity gains,
is not warranted (on the right hand side). Notice that, in the case of the MNIST
dataset, since a 0.2% increase in accuracy is generally accepted as a significant
improvement [3], Figure 1 shows that approximately 98% of memory capacity
gains can be obtained from storing a low-cost RBM for feature extraction, while
preserving a significant improvement over the baseline SVM classification applied
to the raw input data.

6 Conclusions and Future Work

We have presented a method for the extraction of a low-cost representation
from restricted Boltzmann machines, which may be seen as a step towards the
integration of deep networks in memory limited devices. The new representation
offers a compression of the network, which theoretically requires less storage
memory, while preserving to some extent most of the network’s performance at
feature learning. In the experiments reported in this paper, it is shown that the
low-cost representation proposed here is advantageous over RBMs in terms of
memory efficiency. The experiments also indicate that the performance of the
low-cost RBMs is almost identical, in practice, or acceptably lower than that
of the full RBMs. As future work, we intend to consider details of hardware
implementation and a real application using lower-memory devices.
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Abstract. The neocognitron is a multi-layered convolutional network
that can be trained to recognize visual patterns robustly. This paper dis-
cusses a new neocognitron, which uses the add-if-silent rule for training
intermediate layers and the method of interpolating-vector for classifying
patterns at the highest stage of the hierarchical network. By the add-if-
silent rule, a new cell is generated when all postsynaptic cells are silent.
The generated cell learns the activity of the presynaptic cells in one-
shot, and its input connections will never be modified afterward. Thus
the training process is very simple, and does not require time-consuming
calculation such as the gradient descent process. This paper analyzes
how the size of training set affects the performance of the neocognitron
and show that the add-if-silent rule can produce feature-extracting cells
efficiently even with a small number of training patterns.

Keywords: add-if-silent, neocognitron, convolutional network, pattern
recognition, size of training set.

1 Introduction

Multi-layered neural networks show a large power for robust recognition of visual
patterns. Training intermediate layers of a multi-layered network, however, is a
difficult problem, because it is not easy to know intuitively the desired response
of cells of intermediate layers. Various methods have been proposed for training
intermediate layers of a multi-layered network [1,2].

The author proposed previously another learning rule, named add-if-silent,
by which a new cell is generated if all postsynaptic cells are silent in spite of
non-silent presynaptic cells [3]. The generated cell learns the activity of the
presynaptic cells in one-shot, by setting its input connections to be proportional
to the activity of the presynaptic cells. Once a cell is generated, its input connec-
tions will never be modified afterward. Thus the training process is very simple,
and does not require time-consuming calculation such as the gradient descent
process. For example, the supervised backpropagation for fine-tuning, which is
used after pre-training in many deep-learning algorithms, is not required.

The neocognitron is a multi-layered convolutional network that can be trained
to recognize visual patterns robustly [4,5]. This paper discusses a neocognitron,
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c© Springer International Publishing Switzerland 2014
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which uses an improved add-if-silent rule [6] for training intermediate layers and
the method of interpolating-vector (IntVec) [7] for classifying patterns at the
highest stage of the network. We analyze how the size of training set affects
the performance of the neocognitron and show that the add-if-silent rule can
produce feature-extracting cells efficiently even with a small training set.

2 Neocognitron

2.1 Network Architecture

The neocognitron consists of layers of S-cells, which resemble simple cells in the
visual cortex, and layers of C-cells, which resemble complex cells. As shown in
Fig. 1, layers of S-cells and C-cells are arranged alternately in a hierarchical
manner. USl, for example, indicates the layer of S-cells of the lth stage.
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Fig. 1. The architecture of the neocognitron

Each layer of the network is divided into a number of sub-layers, called cell-
planes, depending on the feature to which cells respond preferentially. A cell-
plane is a group of cells that are arranged retinotopically and share the same set
of input connections. All cells in a cell-plane have receptive fields of an identical
characteristic, but the locations of the receptive fields differ from cell to cell.

The stimulus pattern is presented to the input layer, U0. An S-cell of US1

responds selectively to an edge of a particular orientation. The input connections
to S-cells, except in US1, are variable and are modified through learning. After
having finished the learning, S-cells come to work as feature-extracting cells.

In each stage of the network, the output of layer USl is fed to layer UCl. Each
C-cell has fixed excitatory connections from a group of S-cells of the correspond-
ing cell-plane. Through these connections, each C-cell averages the responses of
S-cells whose receptive field locations are slightly deviated.
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2.2 Feature Extraction by S-cells

S-cells work as feature extractors. As illustrated in Fig. 2(a), each S-cell of layer
USl (l ≥ 2) receives excitatory connections directly from a group of C-cells,
which are cells of the preceding layer UCl−1. Let an be the strength of the
excitatory connection from the nth C-cell, whose output is xn. We now use
vector notation x = (x1, · · · , xn, · · · ) to represent the input signal to the S-
cell, namely, the response of the presynaptic C-cells. The S-cell also receives an
inhibitory connection of strength −θ (0 ≤ θ < 1) through a V-cell. The V-cell
receives fixed excitatory connections from the same group of C-cells as does the
S-cell and calculate the norm of x. Namely, v = ‖x‖.

The output u of the S-cell is given by

u =
1

1− θ
· ϕ
[∑

n

an xn − θ v

]
(1)

where ϕ[ ] is a rectified linear function defined by ϕ[x] = max(x, 0). Connection a
is given by a = X/‖X‖, where X is the training vector (or a linear combination
of training vectors) that the S-cell has learned. Then, (1) reduces to

u = ‖x‖ · ϕ[s− θ]

1− θ
where s =

(X,x)

‖X‖ · ‖x‖ (2)

In the multi-dimensional feature space, s shows a kind of similarity betweenX
and x, which is defined by the normalized inner product of X and x. If similarity
s is larger than θ, the S-cell yields a non-zero response [5]. Thus θ determines
the threshold of the S-cell. The area that satisfies s > θ in the multi-dimensional
feature space is named the tolerance area of the S-cell. We call X the reference
vector of the S-cell. It represents the preferred feature of the S-cell.
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(a) Connections converging to an S-cell.
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(b) Feedback signals from S-cells.

Fig. 2. Connections feed-forward to and feedback from an S-cell
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2.3 Add-if-Silent Rule for Training the Intermediate Layer

The add-if-silent rule is used for unsupervised learning of the intermediate layer
US2 [3,5]. During learning, training patterns from a training set are presented
one by one to the input layer U0, and the response of layer UC1 works as a
training stimulus for US2.

If all postsynaptic S-cells are silent for a training stimulus, a new S-cell is
generated and added to the layer. The strength of the input connections of
the generated S-cell is determined to be proportional to the response of the
presynaptic C-cells at this moment. The learning is done in one-shot: once an
S-cell is generated and added to the network, the input connections to the S-cell
do not change any more. This means that the learning by the add-if-silent is a
process of choosing reference vectors from the large set of training vectors.

Thus the training process is very simple, and does not require time-consuming
calculation such as the gradient descent process. Presenting each training pattern
only once is enough to complete the learning process.

Under the add-if-silent rule, no cell can be generated any more within the
tolerance areas of existing S-cells, whose size is determined by the threshold θ
of S-cells. As a result, reference vectors of generated S-cells come to distribute
uniformly in the multi-dimensional feature space after presentation of a high
enough number of training vectors.

If the threshold of S-cells during recognition is kept to the same value as in
the learning, however, S-cells behave like grandmother cells. Namely, each test
vector elicits a response from only one (or a small number of) S-cell. This is
not desirable for robust recognition of deformed patterns. To make these S-cells
respond in such a way that the input pattern be represented by a population
coding, we use dual threshold for S-cells [3]. After the finish of the learning, the
threshold of S-cells is set to a lower value than the threshold for the learning.

To apply the add-if-silent rule to a neocognitron, a slight modification is re-
quired because the neocognitron is a convolutional network. Each layer of the
neocognitron consists of a number of cell-planes. In a cell-plane, all cells are
arranged retinotopically, and share the same set of input connections. This con-
dition of shared connections has to be kept even during learning.

In the neocognitron, generation of a new S-cell means a generation of a new
cell-plane. To keep the condition of shared connections, all S-cells in the gener-
ated cell-plane are organized so as to have the same input connections as the
added S-cell. Since the added S-cell thus works like a seed in crystal growth, we
call it a seed-cell.

Suppose a training stimulus is presented to US2. If there is a retinotopic
location where all S-cells are silent in spite of non-zero training stimulus, a new
S-cell is generated and is added to the layer. The newly added S-cell learns this
training stimulus, and plays the role of a seed-cell.

After the generation of the new cell-plane, if there still remains any area in
which all postsynaptic S-cells are silent in spite of non-zero training stimulus,
the same process of generating a cell-plane is repeated until the whole area is
covered by non-silent S-cells.
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If there are a number of retinotopic locations where postsynaptic S-cells are
silent but presynaptic C-cells are not silent, we have to decide which location
should be chosen first. Since presynaptic cells that do not contribute yet for elic-
iting responses from existing postsynaptic cells convey important information,
we look for the location of such presynaptic cells.

We use negative feedbacks for this purpose [6]. Fig. 2(b) illustrates this pro-
cess. Negative feedback signals from postsynaptic cells suppress the activity of
the presynaptic cells, where the strength of the feedback connections is −a. If
a certain feature is extracted correctly by a postsynaptic cell, the negative feed-
back signals from the cell will suppress the activity of presynaptic cells that
constitute the feature. If a cell remains unsuppressed by the negative feedback,
it means that there still remains a feature that has not been extracted by any
postsynaptic cells yet. Hence a new cell is generated at the retinotopic location
where the activity of the presynaptic cells remain unsuppressed.

Let the feedback signal from the postsynaptic S-cell to the nth presynaptic
C-cell be yn = anu. Then, from (2),

y = au =
X

‖X‖ · u =
X

‖X‖ · ‖x‖ ·
ϕ[s− θ]

1− θ
(3)

The suppressed activity of the nth presynaptic cell is given by zn = ϕ[xn − yn].
If x = X, we have s = 1 and then y = X. This means that, if the feature of
the stimulus vector x is correctly extracted by the postsynaptic S-cell, we have
zn = 0. On the other hand, if a feature fails to be extracted correctly by the
S-cell, zn keeps a large value.

Actually, there are a number of postsynaptic S-cells, and feedback signals
come, not only from a single S-cell, but from a number of postsynaptic S-cells.
If zn is large, it means that the stimulus feature centered at location n has not
been extracted correctly by any of the existing S-cells yet.

We then choose the retinotopic locations sequentially from the place at which∑
zn is the largest, where the sum is taken for all cells that have the same

retinotopic location, and generate a new S-cell to extract the feature located
there. It should be noted here that z is used only for determining the retinotopic
location where the add-if-silent rule is to be applied, and that the reference vector
of the generated S-cell is set to be proportional, not to z, but to x.

2.4 Interpolating-Vector for the Highest Stage

We use the method of interpolating-vector (IntVec) for US3 (the highest stage)
to classify input patterns based on the features extracted by the intermediate
layers [3,5,7]. The input signals to an S-cell of US3 is the response of C-cells of
UC2. The response of the S-cell is given by u = ‖x‖·s from (2), because θ = 0 for
US3. For the economy of computational cost, analysis of the response of C-cells
of UC2 is actually performed only at the retinotopic location where the response
of the V-cell is the largest.

Before explaining the method of learning, we first explain the basic idea of
classification by the IntVec. Each S-cell (hence its reference vector) has a label
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indicating the class to which it belongs. In the multi-dimensional feature space,
we assume plane segments spanned by every trio of reference vectors of the same
label. Every plane segment is assigned the same label as the reference vectors
that span it. We then measure distances (based on similarity) to these plane
segments from the test vector. The label of the nearest plane segment indicates
the result of pattern recognition. In an initial version of the IntVec, we used
line segments spanned by pairs of reference vectors, instead of plane segments
spanned by trios. In this paper, we use the IntVec from trios, because it can
produces a smaller recognition error than the IntVec from pairs.

The IntVec is used also for the learning. Every time a training vector x is
presented during learning, we try to classify it using the IntVec. If the result of
classification is wrong, or if the similarity to the nearest plane segment is smaller
than a certain threshold Θ, a new S-cell is generated. The training vector x is
adopted as the reference vector of the generated S-cell, which is assigned the
label of the class name.

The learning is carried out in two steps. In each step, the same set of training
vectors is presented. In the first step, once new reference vectors are generated,
they are not modified. In the second step, however, if the result of classification
is correct, the three reference vectors, that span the nearest plane segment, learn
the training vector by adjusting their values toward the training vector.

3 Computer Simulation

With computer simulation, we test how the training set affect the performance
of the neocognitron. For the simulation, we use handwritten digits (free writing)
of the ETL1 database [8]. In each run of the simulation, training and test sets
are made of patterns randomly sampled from the ETL1 database. There is no
overlap between the two sets. The size of a test set is always 5,000 (500 patterns
for each digit), but the size of a training set differs depending on the experiment.
In each experiment shown below, we repeated the simulation seven times and
averaged the results. Error bars show the standard deviation.

3.1 Effect of the Size of Training Set

To see how the size of training set affects the recognition error, we measure the
recognition error under different sizes of training set. Sizes of the training set
are chosen independently for layers US2 and US3. Since the recognition error is
affected, not only by the size of training set, but also by threshold Θ for the
IntVec, we first compared the effect of the size of training set under the same
value of Θ = 0. It should be noted here that the recognition error can be reduced
further by choosing a larger value of Θ (See 3.2).

Fig. 3 show how NL2 (the size of training set for US2) affects the recognition
error. The curves with thin dotted lines show the cases where NL3 (the size of
training set for US3) is fixed. The curve with thick line shows the case with
NL3 = NL2 (the case where the same training set is used for both US2 and US3).
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Fig. 3. Recognition error vs. NL2. NL2: the size of training set for US2. NL3: the size
of training set for US3. Here, threshold for the IntVec is Θ = 0.

As can be seen from these curves, the recognition error is affected largely by
NL3, but not so much by NL2. In other words, the effect of NL2 is very small,
and it is almost sufficient to use NL2 = 1, 000. Even a smaller size of NL2 = 500
does not increase the recognition error so much.

The reason for this can be explained as follows. The intermediate stages of the
neocognitron are trained to extract local features. These local features are chosen
during the learning, based on the difference in shape between local features,
independently of the class name of the pattern that contains these local features.
During the recognition, the same local features can be used in common for
classifying entire patterns of different classes. Hence the use of a large set of
training patterns is not necessarily required for training intermediate layers.

On the other hand, it is very important to present varieties of training patterns
during the supervised learning for US3. The recognition error is mainly affected
by NL3 (the size of the training set for US3).

3.2 Effect of Threshold for the Interpolating-Vector

The recognition error of the neocognitron is also affected by the value of threshold
Θ during the training of US3 by the IntVec. A higher value of Θ usually reduces
the recognition error but increases KS3, the number of cell-planes generated in
US3. A larger value of KS3 requires a larger computational cost for classification
by the IntVec. Fig. 4 shows how the recognition error changes with Θ. In the
figure, the error rate is plotted as the ordinate against KS3 as the abscissa.

The curves in the figure show the cases with NL3 = 3, 000 and 5,000. Although
each curve shows the case of NL2 = NL3, we can have almost the same result
even if NL2 is fixed to a smaller number, say, around NL2 ≈ 1, 000, because the
error rate is affected mostly by NL3, and little by NL2.
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Fig. 4. Recognition error vs. KS3 under different values of threshold Θ during the
training by the IntVec. The curves show the case of NL2 = NL3.

4 Discussion

This paper has shown that the add-if-silent is a powerful and efficient rule for
the learning of intermediate layers of multi-layered convolutional networks. The
add-if-silent is an unsupervised learning method with very small computational
cost. Different from the gradient-descent algorithms, for example, it does not
require any repetitive calculation.
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Abstract. In order to obtain a robust supervised model with good generalization 
ability, traditional supervised learning method has to be trained with sufficient 
well labeled and uniformly distributed samples. However, in many real applica-
tions, the cost of labeled samples is generally very expensive. How to make use 
of ample easily available unlabeled samples to remedy the insufficiency of la-
beled samples to train a supervised model is of great interest and practical  
significance. In this paper we propose a new supervised learning framework, 
Posterior Distribution Learning (PDL), which could train a robust supervised 
model with very a few labeled samples by including those unlabeled samples 
into training stage. Experimental results on both synthetic and real world data 
sets are presented to demonstrate the effectiveness of the proposed framework. 

Keywords: distribution learning, nonlinear regression, manifold classification. 

1 Introduction 

Supervised learning method is widely used in various areas, because once it is well 
trained, it builds a model in the whole input space and thus can predict any unseen 
sample with high speed and good accuracy. However, in order to obtain such a model 
with good generalization ability, one needs to train a supervised classifier with suffi-
cient well labeled and uniformly distributed samples. But in many real applications, 
the cost of labeled samples is generally very expensive, as the labeling process  
usually takes much time and resource. This poses an obstacle to applying supervised 
learning method to those applications in which one needs to classify large amount of 
unlabeled samples with a very few labeled samples. How to make use of the large 
quantity of easily available unlabeled samples to train a supervised learning classifier 
and, meanwhile, to reduce the demand and requirement upon the labeled samples is 
still an interesting problem and of great practical significance.  

                                                           
* Corresponding author. 
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The problem of incorporating unlabeled samples to remedy the insufficiency of la-
beled samples to improve the performance of supervised learning method has been 
studied for many years and previous works generally can be casted into two catego-
ries. One is the co-training strategy [1-4]. These algorithms either require the data set 
has two or more distinct views, each of which is sufficient to make good classification 
alone, or require different classifiers can discover the diversity in the data set. But 
most of real world data sets do not meet these requirements. The other category is 
self-training [5-8]. These algorithms are restricted to binary classification tasks, in 
which only labeled samples of one class (called positive samples) are known and 
labeled samples of the other class (called negative samples, possibly a mixture of 
several classes) are unknown. A theoretical study of this strategy can be found in [9]. 

In this paper we propose a novel supervised learning framework which contains 
two steps to incorporate the distribution of unlabeled samples to train a robust super-
vised model with a few labeled samples: the posterior probability estimation and the 
posterior distributions regression. The first step estimates the posterior probabilities of 
each sample in a part of (or the whole) the data set and the second step fit a single 
multivariate posterior distribution function for all classes in the data space. When a 
new sample comes, the posterior distribution function can give directly its posterior 
probability to each class and thus the class label can be obtained using minimum 
Bayes error rule. Unlike previous works, the new supervised learning framework has 
the following characteristics: (1) it does not put constraints on the data set, such as 
multi-view property; (2) it is multi-class and more time efficient because it does not 
require training several classifiers iteratively. Instead, it fits a single model in the 
input space; (3) most importantly, it can greatly improve classification results by in-
corporating the distribution of unlabeled sample. Experimental results on both syn-
thetic and real world data sets are presented to demonstrate validity and effectiveness 
of the proposed framework and algorithm. 

2 Posterior Distribution Learning (PDL) 

Let us consider a data set 1 2 1 1{ , ,..., , , ,..., }t t t nX x x x x x x− += . The first t  samples are 

labeled by {1,2,... }, 1...ω ∈ =i C i t  and the rest samples are unlabeled. We use 

1 2 1{ , ,..., , }−=T t tX x x x x  and 1 2{ , ,..., }+ +=U t t nX x x x  to denote the labeled sample 

set and unlabeled sample set, respectively. With a little abuse of notation, we also use 

X  (similarly, TX and UX ) to denote the data matrix 1 2( , ,..., ) ×∈ d n
nx x x R . We de-

fine a learning set 1 2 1 1{ , ,..., , , ,..., }L t t t lX x x x x x x− += , which contains all the labeled 

samples and −l t  ( ≤l n  ) unlabeled samples in X .  

2.1 A New Supervised Learning Framework 

The diagram of the proposed supervised learning framework is shown in Figure 1.  
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Fig. 1. Diagram of the proposed supervised learning framework that includes distribution of 
unlabeled samples into training stage 

The posterior estimator computes ( | )i jP xω  , the posterior probability of 

, 1..jx j l=   coming from class , 1..i i C=ω  .We require the output of the Estimator to 

have the following properties: 

• , ( | ) 0; 1..j L j jx X P i x i C∀ ∈ = ≥ =ω .  

• 
1

|, ( ) 1j L j j

C

i
x X P i x

=
∀ ∈ = = ω . 

• ∈j Lx X , ( | ) 1ω = =j jP i x  if jx  is labeled to class i . 

• ∈j Lx X , ( | ) ( | )ω ω= > =j j j jP i x P k x , ≠k i and 1..=k C , if jx  is unlabeled 

and more similar to labeled samples in class i  than other classes. 

Let ( )( ) ( 1 | ), ( 2 | ),..., ( | ) C
j j j j j j jF x P x P x P C x Rω ω ω= = = = ∈ , then ( )jF x  can 

be deemed as a sample point of a continuous function ( )F x  and it can be regressed 

by the Density Regressor. After this, for a new sample x , its posterior probability can 
be obtained directly with ( )F x  and the class label is determined by the minimum 

Bayes error rule. 

2.2 Posterior Estimator: Propagate Posterior Probability from Labeled 
Samples to Unlabeled Samples  

The posterior probabilities of a labeled sample are known, i.e. ( | ) 1j jP i xω = =  if 

jx  is from class i and ( | ) 0,j jP k x k i= = ≠ω . We set ( | ) 0, 1..j jP i x i Cω = = =  if

jx is unlabeled. Define an initial posterior probability matrix l C
TF R ×∈  over LX  as 

( |( ) )T ij j jPF i xω == . Then we construct a full connected graph ( , )LG X A  on 

learning set LX , where the adjacency matrix { | , 1.. }ijA A i j l= =  is computed by 

Gaussian kernel. Then the posterior probability matrix LF  is computed as follows 

1. Compute 1/2 1/2S D AD− −= , where D is a diagonal matrix with 
1

l

ii ijj
D A

=
= . 

2. Evaluate equation ( )rate rate TF I SF I I F= + −   repeatedly until convergence. 

3. Normalize 1
LF G F−=  , where G  is a diagonal matrix with 

1

C

ii ijj
G F

=
=  . 
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where I  is the identity matrix and rateI  is a diagonal matrix defining the propaga-

tion rates on different directions. The method to determine rateI  will be described in 

Section 2.4. We treat the posterior probability of the labeled samples as information 
sources (or activation sources) and propagate this information iteratively over the 

graph [10, 11]. In the first iteration TF F= . 

2.3 Density Regressor: A Robust Multivariate Nonlinear Model to Regress the 
Posterior Distribution 

Denote ( )( ) ( 1| ), ( 2 | ),..., ( | )j j j j j j jF x P x P x P C xω ω ω= = = = , i.e. ( )jF x  is the jth 

row of LF . We build a model ( )( ) ( 1| ), ( 2 | ),..., ( | ) CF x p x p x p C x Rω ω ω= = = = ∈ , 

where the posterior density function of class i is ( ) ( )| T
i i iw xp i bx ϕω = = + and ( )ϕ ⋅i  is 

a unknown nonlinear mapping function which maps the input space to the so-called fea-
ture space, whose dimensionality are unknown and can be very large (possibly infinite). 
Without loss of generality, we assume all mapping functions are same, written as ( )ϕ x . 

So ( ) ( )ϕ= +TF x W x b , where 1 2( , ,..., )= T
CW w w w , whose row dimension is same as 

that of the feature space.  Note that ( )F x  is a vector-valued function. 

We compute ( )F x  by solving the following optimization problem 

22

1

1 1
min ( , , ) , . . ( ) ( ) , 1...

2 2

l
T

j j j j j
j

J W b E W v r s t F x W x b r j l
=

= + = + + =γ ϕ   (1) 

where 1 2( , ,..., )l
C lE r r r R ×= ∈  is the error matrix and γ  is a regularization parame-

ter. It is worth noting that because the mapping function is unknown and the dimen-
sionality of the feature space can be arbitrary large, problem (1) is quite different from 
ridge regression (or linear regression or Tikhonov regularization) and cannot be 
solved directly in primal form. 1 2( , ,..., )lv v v v=  is a weight vector to reduce the 

sensitivity of the sum of squared error (SSE) to noise and outliers. Method to obtain v 
will be given in Section 2.4. One can also simply set kv  to 1. In this case, problem 

(1) becomes a regular least squares support vector machine [12]. 
It can be shown that problem (1) is a convex optimization problem. According to 

KKT conditions, the optimal solution meets the following linear equations 

 
00 T T

TT
L

e b

Fe K Vη
     

=     + Λ     
  (2) 

where K is a kernel matrix ( ) ( )T
ij i jK x xϕ ϕ=  and 1 2( , ,..., ) c l

l Rλ λ λ ×Λ = ∈  is the 

Lagrange multiplier matrix. V is a diagonal matrix with ii iV v=  and 

(1,1,...,1)T le R= ∈ . After obtaining b and Λ , we can evaluate ( )F x  at any point x   

by 
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We can see that by taking the unlabeled samples into training stage, PDL outper-
forms traditional supervised learning algorithms. It is worth noting that for traditional 
supervised learning algorithms trained with a very few labeled samples, the error rate 
does not always decrease as the number of labeled samples increase. This indicates 
 

Table 2. Classification error rate (%) of real world data set 

 
 
that given a very small number of labeled samples, some of the labeled samples may 
bring negative influence to the supervised model and the impact can be very large 
because of insufficiency of training samples. But for PDL, this negative effect is 
overcome because the posterior propagation algorithm performs a kind of graph diffu-
sion, so even a few and not well positioned labeled samples can be utilized correctly. 
This is the key difference between PDL and traditional supervised learning method 
for training a supervised model. 

3.3 Comparison with the State-of-Art Algorithms 

We also compare the proposed PDL with two recently reported algorithms, the Tri-
training (TriT) [13] and the virtual label regression (VLR) [14], which also train su-
pervised learning classifiers using both labeled and unlabeled samples. For the two 
algorithms, we use the parameters provided in the paper. These algorithms and PDL 
are all trained with LX and then used to classify UX . The average results over 10 

runs are reported in Table 3. 

Table 3. Classification error rate (%) of real world data set 

 
 

We can see that PDL can achieve better results for most of the cases. For tri-
training or co-training algorithms, it is easy to introduce noise labels as the training 
set grows and the impact of these noise labels can be very large. For VLR, it regresses 
a linear model using the discrete class-indicator vector of each sample, so it can hard-
ly capture the nonlinearity and continuousness of the posterior density functions.  
In contrast, PDL first propagates posterior information from labeled samples to  

SVM k NN ANN NB DT PDL SVM k NN ANN NB DT PDL SVM k NN ANN NB DT PDL

usps 59.77 63.66 65.61 45.97 84.73 45.41 49.79 41.95 42.20 97.85 74.77 23.53 43.16 31.08 37.87 85.47 69.14 18.76

segmentation 38.21 56.76 55.35 82.97 71.58 30.27 29.60 32.88 42.73 50.00 63.58 20.10 25.88 28.43 25.05 30.53 29.82 18.21

banknote 38.69 45.11 38.27 38.69 45.11 8.72 27.75 32.81 17.01 41.19 44.52 4.94 16.10 20.52 12.20 29.33 16.79 2.89

pendigits 89.63 67.19 47.21 66.59 89.08 18.47 89.57 28.17 21.68 44.18 80.56 7.34 90.39 21.16 19.77 35.99 61.04 8.82

skin 71.63 71.61 44.07 83.13 71.61 15.95 28.62 28.43 16.17 18.62 71.40 12.69 71.47 25.37 20.63 23.28 27.37 7.96

miniBoo 71.80 71.80 29.97 95.11 71.80 22.27 71.85 29.93 31.96 71.92 71.85 19.11 71.87 18.56 35.21 27.68 26.83 18.31

1 labeled sample  / class 3 labeled samples  / class 5 labeled samples  / class

TriT VLR PDL TriT VLR PDL TriT VLR PDL

usps 68.12 55.22 45.41 50.22 41.45 23.53 33.44 36.16 18.76

segmentation 74.49 31.08 30.27 40.35 28.43 20.10 25.58 24.46 18.21

banknote 41.88 22.81 8.72 22.07 4.91 4.94 6.47 1.38 2.89

pendigits 84.57 40.76 18.47 41.28 29.20 7.43 23.49 28.91 8.82

skin 54.33 32.96 15.95 34.21 17.46 12.69 21.42 17.92 7.96

miniBoo 39.00 32.82 22.27 20.72 18.11 19.11 17.22 27.65 18.31

1 labe led sample  / class 3 labeled samples  / class 5 labe led samples  / class
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unlabeled samples on graph and then regresses a nonlinear model in the input space. 
But graph has a tight relationship with the manifold structure, thus the underlying 
manifold information is thus also encoded in the distribution function ( )F x . There-

fore PDL shows a promising potential for classifying manifold-distributed data set. 

4 Discussions and Conclusions 

In this paper we developed a novel two-step framework to learn a robust supervised 
model using a very few training samples and plenty of unlabeled samples. The 
framework first propagates posterior information from labeled samples to unlabeled 
samples and then regresses a multivariate posterior function in input space. As the 
experiments demonstrated, the proposed method can greatly reduce the number of 
training samples and thus reduce human burden to obtain labeled samples. This has 
not only theoretical interest but also great practical value.  In the future we will focus 
on theoretical analysis and extending the framework to other existing supervised 
learning algorithms.  
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Abstract. The balloon model of neocortical growth and learning claims that 
learning starts with larger groups of functional units (neuron columns) respond-
ing to a signal, but with training and lateral cortical expansion and inhibition, 
the number of units responding to a particular signal decreases as the units be-
come better able to differentiate similar inputs. This process is different from 
most Artificial Neural Networks, but has some similarities with Temporal Or-
ganizing Maps (TOM). This paper describes the architecture and testing of a 
prototype computational model, a variation on TOMs, which seeks to emulate 
the anatomical and physiological behavior. Preliminary results indicate that it is 
consistent with predictions. 

Keywords: Balloon Model, Neocortex, Temporal Organizing Map TOM.  

1 Introduction 

Starting at birth, the human neocortex starts to learn to differentiate speech sounds. 
According to the "balloon model" developed by Seldon (Harasty et al., 2003; Seldon, 
2005, 2006), several neuroanatomical and neurophysiological processes involving the 
cortical neuronal columns are occurring.  

1. The cortex is anatomically a sheet of neuronal columns, each of which is a  
"perceptual unit" (Fig. 1). The columns start with "inter-column spacings" or "cen-
ter-center distances". The input from subcortical centers to the auditory cortex is 
widely spread through afferent axon arbors. 

2. The first speech signals excite diffuse and overlapping ranges of neuronal columns, 
resulting in fuzzy or blurry perception. The horizontal green line in Fig. 2 shows 
that 5 cortical units (blue) are excited (red arrows) by each input (purple). 

3. With activity and training, a couple of things happen. 
(a) The subcortical and intracortical myelin grows, thereby causing the cortex to 

expand laterally and become thinner like a balloon. The neuronal columns 
move physically apart. Compare the distances between blue units in Fig. 3 with 
those in Fig. 2. The total mass of the cortex does not increase so much. 

                                                           
* Corresponding author. 
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(b) The range of excited neuronal columns for each stimulus shrinks, due partly to 
the increasing lateral inhibition within the cortex (the dark yellow dashes in 
Figs. 2-3 show the lateral inhibition from unit X4[4]) and to the stretching. The 
horizontal green line in Fig. 3 covers only 3 cortical units (blue). 

4. Finally, the range of columns excited by a particular stimulus is small. This allows 
the same number of columns to differentiate many more signals. Also, the map 
units (neuronal columns) are arranged non-linearly, with all the spacings dependent 
on the local activity and growth. 

These are summarized in figures 2-3. Physiological studies support it (Yvert et al., 
2001; Mäkelä et al., 2003). 

 

 

Fig. 1. Columnar organization of neurons in Layer 3 of human auditory cortex (arrows). Layer 
4 is below. Microscope image, Nissl stain. 

In contrast, most artificial neural networks (ANNs) work differently. Firstly, the 
human cortex has no blueprint of relevant speech sounds when it starts, so ANNs like 
perceptrons are not the same. Self-organizing maps (SOMs, Kohonen, 1990) and 
Temporal-organizing maps (TOM, Durand & Alexandre, 1995; Sarlin, 2013) are 
similar in that they are "feed-forward" networks which do not require predefined cat-
egories. However, they develop according to a "winner neuron" algorithm and do not 
include non-linear stretching. The balloon model starts with "many winners" and re-
duces their number with training and lateral cortical expansion. 

We are experimenting with a computational model which tries to mimic the 
processes described by the balloon model. In Step 1 we create a simple, 1-layer model 
and observe whether it can expand in accordance with the balloon model, and whether 
the number of responding neuronal columns shrinks with training. 
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Fig. 2. Anatomical / physiological Balloon model at the start 

 

Fig. 3. Anatomical / physiological Balloon model after activity and training 

2 Methodology 

The Stimuli: Many publications have indicated that Voice Onset Time (VOT) is an 
important feature in distinguishing several consonants (Schwartz & Tallal, 1980). To 
correctly perceive speech the cortex must differentiate between voiced and unvoiced 
consonants - ba versus pa, da versus ta, ga versus ka. Therefore, we have chosen ba 
and pa for our sample stimuli; they were each spoken with a low voice and a high 
voice. 
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The Model: The computational model follows the neuroanatomical one, as shown 
in figures 4-6.  

 

Fig. 4. Computational model at the start. A triangle (instead of a Gaussian) represents the 
weights from the input Layer 0 to the receiving Layer 4. 

• The input layer (with the speech signal) is Layer 0 (purple columns in the fig-
ures). 

• The receiving layer is Layer 4, which is the real cortical layer which receives 
subcortical input (blue columns in the figures). 

• The axon distribution (connection weights) from the input layer to the receiving 
layer follow a gaussian distribution. They are all excitatory (red arrows). For 
simplicity the distribution is shown as a yellow triangle. The contributions of in-
put to each receiving unit are the triangle areas between the vertical blue lines se-
parating the columns. 

• The lateral inhibition within the cortex follows the negative parts of a Mexican 
Hat distribution (Fig. 6). 

With training the cortical units (blue) move further apart (Fig. 4 vs Fig. 5), so the 
stimulus from each input layer unit (purple) reaches fewer units. The lateral inhibition 
behaves similarly (Fig. 6); as the cortex expands laterally, the distribution of inhibi-
tion over the units changes (yellow dashes and triangles). 
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Fig. 5. Computational model after activity and training. Receiving units have spread apart. 

The intracortical lateral inhibition behaves similarly. The next figure shows the in-
hibition emanating from cortical unit nC[4]. 

 

Fig. 6. Lateral inhibition after activity and training 
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3 Results 

For each trial the number of receiving nodes (20 or 60), the widths of the gaussian 
input distribution (standard deviation, "afferent axon spread") and of the lateral inhibi-
tion, and the unit integration time (for integrating temporal signals) were set. The 
results are shown at iteration 1 (i.e. the start) and 10 (after training). 

Table 1. Number and width of responding nodes, with 20 nodes, integration time 20 msec, 
afferent axon spread 45 and lateral inhibition 15 

No. of responding nodes HighBa HighPa LowBa LowPa 
Iteration 1 18 20 17 15 

Iteration 10 14 14 12 12 
Response range, µm HighBa HighPa LowBa LowPa 

Iteration 1 -255→+285 -285→+285 -225→+255 -165→+255 
Iteration 10 -288→+287 -288→+257 -287→+286 -226→+226 

 

 

Fig. 7. HighBa responses at iteration 1 and 10 of training. 20 nodes. 

 

Fig. 8. LowPa responses at iteration 1 and 10 of training. 20 nodes. 
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Table 2. Number and width of responding nodes, with 60 nodes, integration time 20 msec, 
afferent axon spread 120 and lateral inhibition 30 

No. responding nodes HighBa HighPa LowBa LowPa 
Iteration 1 34 34 30 28 

Iteration 10 32 30 26 22 
Response range, µm HighBa HighPa LowBa LowPa 

Iteration 1 -495→+495 -495→+495 -435→+435 -345→+465 
Iteration 10 

[main response] 
-618→+617 

[-468→+497]
-618→ +557 
[-498→+507]

-497→+496 
[-347→+496]

-346→+406 
[-346→+406] 

 

 

Fig. 9. HighBa responses at iteration 1 and 10 of training. 60 nodes. 

 

Fig. 10. LowPa responses at iteration 1 and 10 of training. 60 nodes. 

Overall the test results can be summarized: 

• Number of responding nodes shrinks with training for all inputs; neuronal col-
umns move further apart as a function of input activity. 

• Narrower lateral inhibition causes stronger inhibition of neighboring columns by 
the excited columns. The model is indicating that this parameter is critical for the 
final distribution of responding nodes. 

• The syllables (ba and pa) and the pitches (high and low) are differentiated by the 
number of responding columns and the widths of the response regions.  
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4 Discussion 

The neuroanatomical model predicts that initially stimuli will each excite a wide 
range of neuronal columns, and that the excited range will shrink (in numbers of col-
umns) with training. With several parameter settings the computational model has 
shown this behavior up to now (April 2014). The neuroanatomical model also predicts 
that the spatial intervals between excited columns will increase with training, due to 
myelination; this has also been borne out by the computational model. 

Up to now the computational model has differentiated ba and pa signals some, but 
not very well. This is due partly to the use of a very small number of identical input 
frequencies for all test inputs, partly to the use of a small number of receiving nodes 
(initially 20), partly to the 1-layer model (whereas the real cortex uses several layers), 
partly to uniform integration times for all nodes (in contrast to the real cortex), etc.  

Also, the balloon model introduces many additional parameters such as distances, 
lateral expansion rates, widths and expansion rates of Gaussian input versus Mexican 
Hat lateral inhibition distributions, etc. These problems are being addressed in the 
ongoing development of this model, from both the computational and the neuroana-
tomical perspectives. 
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Abstract. Active Learning is a machine learning technique that selects
the most informative examples for labeling so that the classification per-
formance would be improved to its maximum possibility. In this paper,
a novel active learning approach based on Maximum Density and Mini-
mum Redundancy (MDMR) is proposed. The objective of MDMR is to
select a set of examples that have large density and small redundancy
with others. Firstly, we propose new methods to measure the density
and redundancy of examples. Then a model is built to select examples
by combining density and redundancy and dynamic programming algo-
rithm is applied to solve the problem. The results of the experiment on
terrain classification have demonstrated the effectiveness of the proposed
approach.

Keywords: active learning, classification, density, redundancy.

1 Introduction

In many real-world applications, there are large numbers of unlabeled data while
the labels are expensive and difficult to get. And much redundant data, which
slows down the training process without improving the classification result, also
exist in the training set. Active learning [1] was proposed to select the most
informative examples for labeling and training a classifier, thus the labels of
testing examples can be predicted most precisely. The kernel problem of active
learning is how to measure the value of each example and how to select the most
informative examples from the unlabeled data set.

There are many criteria in active learning for examples selection. Uncertainty
sampling is one of the most widely used criterion that queries the examples whose
labels are most uncertain under the current trained classifier. The most popular
uncertainty sampling is SVMactive [2], which selects the examples nearest to the
current decision boundary. Other criteria like variance reduction [3], density [4],
and diversity [5] also have been widely applied to active learning.

Optimum Experimental Design (OED) [6], which refers to the problem of
selecting examples for labeling in statistics, has attracted an increasing amount

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 103–110, 2014.
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of attention [7] [8]. The example x is referred to as experiment and its label y is
referred to as measurement. OED tries to select examples so that the variances
of a parameterized model are minimized. OED has two types of criteria. One is
D, A, and E-Optimal Design that choose data points to minimize the variance
of the model’s parameters. The other is I and G-optimal Design that minimize
the variance of the prediction value.

Active learning based on OED selects the most informative points while it is
unable to exploit the redundancy between selected points. In this paper, we pro-
posed an active learning algorithm called MDMR to select a set of points with
maximum density and minimum redundancy. By combining examples’ density
and redundancy, every selected example is informative and the redundancy be-
tween selected examples are small.

The rest of this paper is organized as follows: In Section 2, we elaborate
the proposed active learning approach MDMR. The experimental settings and
results are presented in Section 3. Finally, we discuss the conclusion and future
work in Section 4.

2 Active Learning with Maximum Density and Minimum
Redundancy

The general problem of active learning can be described as follows. Given a set of
points X = {x1,x2, ...,xn}, where each xi is an instance of d-dimensional vector,
find a subset Z = {zs1 , zs2 , ..., zsk} ⊆ X , which contains the most informative
points. In other words, if the points zsi(i = 1, 2, ..., k) are labeled and used as
training data, the labels of testing data can be predicted most precisely.

In this section, a novel active learning algorithm is proposed to select examples
by considering examples’ density and redundancy.

2.1 Density and Redundancy

Information density is an important criterion for active learning since examples
in dense regions are expected to be representative and informative. Thus we
aim to select a set of examples that have large density. Firstly, we use Gaussian
kernel to construct a complete graph with all unlabeled examples. The weight
Wij between xi and xj is defined as

Wij = exp(−‖xi − xj‖2
2σ2

) (1)

where σ is the parameter of gaussian kernel. As shown in (1), Wij is large if xi

and xj are very close to each other. The large weight Wij means xi and xj are
highly connected, or they have large similarity.

For an example in dense region, it should be very close to its neighbors,
which means the weight between the example and its neighbors should be large.
Therefore, the average weight between an example and its p-nearest neighbors
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is able to measure the density of the example. The density of xi is defined as
follows:

den(xi) =
1

p

∑
xj∈Np(xi)

Wij (2)

Where Np(xi) is the p-nearest neighbors of xi.
Density-based active learning is able to select the most representative exam-

ples, but it is unable to exploit the redundancy between the selected examples.
In other words, some selected examples may have similar information. Hence
each example has maximum information can’t guarantee the global information
is maximum. Here we exploit the redundancy among the selected examples.

The examples have large weight are usually highly connected to each other.
They probably have more redundant information than the examples whose weight
is small. So the selected examples are required to have small weight with each
other. Here, the maximum weight between an example and other selected exam-
ples are used to measure the redundancy of the example. If the maximum weight
is very small, the example has little redundancy with other selected examples.

Suppose we have selected a set of k examples Zk = {xs1 ,xs2 , ...,xsk} from X .
The redundancy between example xsi (i > k) and Zk can be described as follows:

red(xsi , Zk) = max
1≤j≤k
j �=i

Wsisj (3)

2.2 The Proposed Approach

In this work, we aim to select k examples (Z) with maximum density and mini-
mum redundancy from X . Suppose Zk is an arbitrary subset of X that contains
k examples and Zk = {xs1 ,xs2 , ...,xsk}. The final selected k examples Z can be
obtained by solving the following problem:

Z = argmax
Zk⊆X

k∑
i=1

(den(xsi)− λ red(xsi , Zk)) (4)

where λ is the tradeoff parameter that can determine the importance of density
and redundancy.

Unfortunately, the optimization problem (4) is a highly complicated problem.
To get the optimal subset Z, we would have to search over all possible sets to
determine the unique optimal Z. It is impossible to finish in short time with the
number of examples increased.

However, it should be noted that den(xsi) is only dependent on si while
red(xsi , Zk) is related with {xs1 ,xs2 , ...,xsk}. SupposeXu = {x1,x2, ...,xu}(u =
1, ..., n) and Z(u, v)(v ≤ u) denotes the optimal solution of selecting v examples
from Xu. We transform the problem (4) into a relatively simple form:

Z = argmax
Zk⊆X

k∑
i=1

(den(xsi)− λ red(xsi , Z(si − 1, i− 1))) (5)
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where red(xsi , Z(si − 1, i− 1)) is the redundancy between xsi and the selected
i− 1 examples from Xsi−1 = {x1,x2, ...,xsi−1}.

Obviously, red(xsi , Z(si − 1, i − 1)) is relevant with {s1, ..., si−1} but irrele-
vant with {si+1, .., sk}. This means that when we select the i− th example, it is
required to have small redundancy with the selected examples {xs1 , ...,xsi−1}.
This guarantees that the next selected example must be different from the pre-
vious selected examples. This idea is in accord with the process of sequential
examples selection.

2.3 The Dynamic Programming Approach

The problem (5) can be solved by dynamic programming that breaks it down into
simpler subproblems. Suppose F (u, v)(u ≥ v) denotes the maximum volume of
information of selecting v examples from Xu. As defined above, Z(u, v) denotes
the optimal solution of selecting v examples fromXu, hence Z = Z(n, k). F (u, v)
and Z(n, k) can be described as follows:

F (u, v) = max
Zv⊆Xu

v∑
i=1

(den(xsi)− λ red(xsi , Z(si − 1, i− 1))) (6)

Z(u, v) = argmax
Zv⊆Xu

v∑
i=1

(den(xsi)− λ red(xsi , Z(si − 1, i− 1))) (7)

where u ∈ {1, 2, ..., n}, v ∈ {1, 2, ..., k}, and u ≥ v.
Our final goal is to find Z(n, k) that decides which k examples should be

selected from the n unlabeled examples.
It should be noted that there are two special situations: v = 1 and u = v. If

v = 1, there are no redundancy since only one example is selected. Therefore,
the example with maximum density should be selected. If u = v, obviously, all
of the examples in Xu should be selected. So

F (u, v) =

{
max
xi∈Xu

den(xi) if v = 1∑u
i=1 den(xi)− λ red(xi, Xi−1) if u = v

(8)

Suppose we have already obtained the optimal solution of selecting v − 1 and
v examples from Xu−1, now we consider the optimal solution of selecting v
examples from u unlabeled examples. If the example xu has small density and
large redundancy with Z(u− 1, v − 1), obviously we will not select the example
xu. Hence the optimal solution of selecting v examples from Xu should be the
same as selecting v examples from Xu−1. On the contrary, if the example xu

has large density and small redundancy with Z(u− 1, v− 1), we prefer to select
it for labeling. In this situation, since Z(u− 1, v − 1) is the optimal solution of
selecting v−1 examples from Xu−1, the optimal solution of selecting v examples
from Xu is Z(u, v) = Z(u− 1, v − 1) ∪ xu.
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Table 1. The process of the proposed active learning algorithm

Input:
Initial unlabeled data set X = {x1,x2, ..,xn}, the gaussian parameter (σ), the number of
nearest neighbor (p), the tradeoff parameter (λ), the number of examples need to select (k)

Output:
Z(n, k): the k selected examples

Procedure:
compute weight W , den(xi), (i = 1, 2, ..., n)
Initilize Xu, F = 0nk, Z(u, v) = ∅
For u = 1 : n

F (u, 1) = max
xi∈Xu

den(xi)

Z(u, 1) = argmax
xi∈Xu

den(xi)

End
For u = 2 : n

For v = 2 : k
C(u) = den(xu)− λ red(xu, Z(u− 1, v − 1))
F (u, v) = max(F (u− 1, v), F (u− 1, v − 1) + C(u))

Z(u, v) =

{
Z(u− 1, v) if F (u, v) = F (u− 1, v)

Z(u− 1, v − 1) ∪ xu else

End
End

Return Z(n, k)

In general, the relationships between F (u− 1, v− 1), F (u− 1, v), and F (u, v)
can be described as follows:

C(u) = den(xu)− λ red(xu, Z(u− 1, v − 1)) (9)

F (u, v) = max(F (u − 1, v), F (u− 1, v − 1) + C(u)) (10)

where 2 ≤ u ≤ n, 2 ≤ v ≤ k and v ≤ u. Z(u, v) can be computed as follows:

Z(u, v) =

{
Z(u− 1, v) if F (u, v) = F (u− 1, v)

Z(u− 1, v − 1) ∪ xu else
(11)

Since Z(1, 1), Z(2, 1) is easy to obtain, the global optimal solution Z(n, k) can
be obtained by iteration. The dynamic programming approach to solve the ex-
amples selection problem is summarized in Table 1. As can be seen from Table 1,
the proposed active learning algorithm is easy to perform and the computational
cost is low.

3 Experiments

In this section, experiments of terrain classification are performed with differ-
ent active learning algorithms. In order to demonstrate the effectiveness of our
proposed algorithm, we evaluate and compare four active learning methods:
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– Random Sampling (Rand) method, which selects examples randomly from
unlabeled data set.

– D-Optimal Design (DOD) as described in Section 2.1.
– Manifold Adaptive Experimental Design (MAED) Algorithm [9], which

performed convex TED in manifold adaptive kernel space.
– Active Learning with Maximum Density and Minimum Redun-

dancy (MDMR), which is proposed in this paper.

3.1 Data and Experimental Settings

Terrain image dataset used in the experiment was constructed by us from the
Outex Database [10], which is consisted of two data sets: Outex-0 and Outex-1.
Each of them includes 20 outdoor scene images and the size of each image is
2272× 1704. The images are marked as one type of bush, grass, tree, sky, road,
and building. The marked area of each image is cut into patches with size 64×64
and each patch is regarded as an example. In this work, we extract 50 patches
of each class (totally 300 patches) to construct a pool of unlabeled data set for
examples selection. The testing examples, which are predicted to evaluate active
learning algorithms’ performance, are also consisted of 300 patches (50 patches
from each class).

Fig. 1. Patch examples of Outex: sky, tree, bush, grass, road, and building

Two examples of each class are shown in Figure 1. It is difficult to classify
these terrains directly in image color space. Thus color histogram feature [11]
and texture feature with the rotation-invariant operators LBP riu2

8,1+16,3 [12] are
extracted and combined together. As a result, each example is represented by a
43-dimensional feature vector.

Logistic regression with l2 regularization is used as classifier and the regu-
larization parameter is set to be 0.5. The parameters in our proposed active
learning algorithms are set as follows: the gaussian kernel parameter (σ = 0.1),
the number of nearest neighbor (p = 15), and the tradeoff parameter (λ = 10).

3.2 Results

The process of the experiments are as follows: Firstly, we select k(k = 5, 10, 15,
..., 50) examples from unlabeled data set for labeling and training a classifier.
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Then we perform classification on testing data set and the accuracy is defined
as Correct Classification Rate (CCR). The experiments are repeated 20 times
and the average accuracy is computed as the final result.
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Fig. 2. Classification performance on Outex0 and Outex1 dataset using Rand, DOD,
MAED, and the proposed active learning algorithm

Figure 2 shows the average classification accuracy versus the number of train-
ing (selected) examples. As can be seen, our proposed MDMR algorithm sig-
nificantly outperforms the other active learning algorithms in most cases. The
MAED algorithm outperforms Random Sampling and DOD method in most
cases. DOD and Random Sampling perform comparably to each other. When
only five examples are selected, there exists at least one class that does not have
any labeled examples. Therefore, in this case, all of the algorithms yield low
classification accuracy. As the number of selected examples increases, the clas-
sification accuracy of all of the algorithms increases. As shown in 2, with only
40 selected examples, MDMR algorithms performs comparably to or even better
than the other algorithms with 50 selected examples. Our MDMR algorithm
yields the highest classification accuracy.

4 Conclusion

In this paper, we have introduced a novel active learning algorithm called MDMR,
which selects the examples with maximum density and minimum redundancy.
The experimental results on terrain classification demonstrate that it is better
than other popular active learning algorithms.

The disadvantage of this proposed algorithm is that it is not global optimal
since the examples are sequentially selected. The redundancy of selected exam-
ple xst is measured by the redundancy between xst and previous selected t− 1
examples {xs1 ,xs2 , ...,xst−1}. Thus the redundancy among all the selected ex-
amples may not be minimum. Moreover, combining different criteria such as
density and redundancy is a significant problem in active learning. There is a
lot of work that needs to be explored.
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Abstract. In this paper, we investigate one-to-many association ability
of multi-valued patterns in the Chaotic Quaternionic Multidirectional
Associative Memory (CQMAM). The CQMAM is based on the Multi-
directional Associative Memory and composed of quaternionic neurons
and chaotic quaternionic neurons, it can realize one-to-many associations
of M-tuple multi-valued patterns. Although the conventional Chaotic
Complex-valued Multidirectional Associative Memory with variable scal-
ing factor (CCMAM) can realize one-to-many associations of M-tuple
multi-valued patterns, the one-to-many association ability of the CQ-
MAM is better than that of the conventional CCMAM.

1 Introduction

Recently, many associative memories have been proposed in the field of neural
networks, most of these models can not deal with multi-valued patterns and
one-to-many associations. As models which can deal with multi-valued patterns
and one-to-many associations, we have proposed the Chaotic Complex-valued
Bidirectional Associative Memory (CCBAM)[1][2], the Chaotic Complex-valued
Multidirectional Associative Memory (CCMAM)[3] and the Chaotic Complex-
valued Multidirectional Associative Memory (CCMAM) with variable scaling
factor[4]. These models are composed of complex-valued neurons[5] and chaotic
complex-valued neurons[6] and the association of multi-valued patterns is re-
alized by complex-valued neurons, and one-to-many association is realized by
chaotic complex-valued neurons. However, one-to-many association ability de-
creases when the number of states (S) increases in these models. We have
also proposed the Chaotic Quaternionic Multidirectional Associative Memory
(CQMAM)[7]. This model is composed of quaternionic neurons[8] and chaotic
quaternionic neurons[9], and it can realize one-to-many associations of M-tuple
multi-valued patterns. Since this model is composed of quaternionic and chaotic
quaternionic neurons, it is more likely to have better one-to-many association
ability.

In this paper, we investigate one-to-many association ability of multi-valued
patterns in the Chaotic Quaternionic Multidirectional Associative Memory (CQ-
MAM).

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 111–118, 2014.
c© Springer International Publishing Switzerland 2014
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2 Chaotic Quaternionic Neuron Model

Here, we examine the chaotic quaternionic neuron model[9] which is used in the
Chaotic Quaternionic Multidirectional Associative Memory. The chaotic quater-
nionic neuron model is the extended chaotic neuron model[10] in order to deal
with internal states and output of neurons which are represented in quaternions.

The output of the chaotic quaternionic neuron model at the time t is calculated
by

x(t+ 1) = f

(
A(t)− α(t)

t∑
d=0

kdx(t− d)− θ

)
(1)

(A(t),x(t), θ ∈ H, k, α(t) ∈ R)

whereA(t) is the external input at the time t, k is the damping factor (0 < k < 1)
and θ is the threshold of the neuron. And H shows the set of quaternions, and
R shows the set of real numbers. α(t) is the scaling factor of the refractoriness
at the time t, and it is given by

α(t) = a+ b · sin(c · t) (2)

where a, b and c are coefficients. In the conventional chaotic neuron model[10],
the scaling factor of refractoriness α is constant. In contrast, we have proposed
the chaotic neural network with variable scaling factor in order to improve the
dynamic association ability[11]. In the chaotic quaternionic neuron model, by in-
troducing the variable scaling factor, we can except that the dynamic association
ability improves.

And, f(·) is the output function which is given by

f(u) = f (e)(u(e)) + f (i)(u(i))i+ f (j)(u(j))j + f (k)(u(k))k (3)

f (e)(u) = f (i)(u) = f (j)(u) = f (k)(u) = tanh
( u

ε

)
(4)

where ε is the steepness parameter, and i, j and k are imaginary units.

3 Chaotic Quaternionic Multidirectional Associative
Memory

Here, we explain the Chaotic Quaternionic Multidirectional Associative Memory
(CQMAM)[7].

3.1 Structure

The CQMAM has more than two layers and each layer has Key Input Part and
Context Part. Fig.1 shows the structure of the 3-layered CQMAM. In this model,
quaternionic neurons[8] and chaotic quaternionic neurons[9] are used, and the
Key Input Part are composed of quaternionic neurons and the Context Part are
composed of chaotic quaternionic neurons.
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Fig. 1. Structure of CQMAM

3.2 Learning Process

In the CQMAM, the connection weights are trained by the orthogonal learn-
ing. However, the orthogonal learning can not deal with the training pattern set
including one-to-many relations because the stored common data cause super-
imposed patterns. In the CQMAM, the patterns with its own contextual infor-
mation are memorized by the orthogonal learning as similar as the conventional
CCMAM[3].

The connection weights from the layer y to the layer x,wxy and the connection
weights from the layer x to the layer y , wyx are determined as follows:

wxy = Xy(X
∗
xXx)

−1X∗
x (5)

wyx = Xx(X
∗
yXy)

−1X∗
y (6)

where * shows the conjugate transpose, and −1 shows the inverse. And, Xx and
Xy are the training pattern matrix which are memorized in the layer x and the
layer y, and are given by

Xx = {X(1)
x , · · · ,X(p)

x , · · · ,X(P )
x } (7)

Xy = {X(1)
y , · · · ,X(p)

y , · · · ,X(P )
y } (8)

where X(p)
x is the pattern p which is stored in the layer x, X(p)

y is the pattern p
which is stored in the layer y and P is the number of the training pattern sets.

3.3 Recall Process

Since contextual information is usually unknown for users, in the recall process,
only the Key Input Part receives input. In the CQMAM, since the chaotic quater-
nionic neurons in the Context Part change their states by chaos, one-to-many
associations can be realized.

The recall process of the CQMAM has the following procedures when the
input pattern is given to the layer x.
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Step 1 : Input to Layer x
The input pattern is given to the layer x.

Step 2 : Propagation from Layer x to Other Layers
When the pattern is given to the layer x, the information is propagated to

the Key Input Part in the other layers. The output of the neuron k in the Key
Input Part of the layer y (y �= x), xy

k(t) is calculated as

xy
k(t) = f

⎛⎝Nx∑
j=1

wyx
kjx

x
j (t)

⎞⎠ (9)

where Nx is the number of neurons in the layer x, wyx
kj is the connection weight

from the neuron j in the layer x to the neuron k in the layer y, and xx
j (t) is

the output of the neuron j in the layer x at the time t. And f(·) is the output
function which is given by Eq.(4).
Step 3 : Propagation from Other Layers to Layer x

The output of the neuron j in the Key Input Part of the layer x, xx
j (t+ 1),

is calculated as

xx
j (t+ 1) = f

⎛⎝ M∑
y �=x

(
ny∑
k=1

wxy
jkx

y
k(t)

)
+ vAj

⎞⎠ (10)

where M is the number of layers, ny is the number of neurons in the Key Input
Part of the layer y, wxy

jk is the connection weight from the neuron k in the layer
y to the neuron j in the layer x, v is the connection weight from the external
input, and Aj is the external input (See 3.4) to the neuron j in the layer x.

The output of the neuron j of the Context Part in the layer x, xx
j (t + 1) is

calculated as

xx
j (t+ 1) = f

⎛⎝ M∑
y �=x

(
ny∑
k=1

wxy
jk

t∑
d=0

kdmxd
k(t− d)

)

−α(t)
t∑

d=0

kdrx
x
j (t− d)

)
(11)

where km and kr are damping factors. And, α(t) is the scaling factor of the
refractoriness at the time t, and is given by Eq.(2).
Step 4 : Repeat

Steps 2 and 3 are repeated.

3.4 External Input

In the CQMAM, the external input Aj is always given so that the key pattern
does not change into other patterns. If the pattern is given to the layer x and the
initial input does not include noise, we can use the initial input pattern xx

j (0) as
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the external pattern. However, since the initial input pattern sometimes includes
noise, so we use the following pattern x̂x

j (tin) when the network becomes stable
tin as an external input. Here, tin is given by

tin = min

⎧⎨⎩t

⏐⏐⏐⏐⏐⏐
nx∑
j=1

(x̂x
j (t)− x̂x

j (t− 1)) = 0

⎫⎬⎭ (12)

where nx is the number of neurons in the Key Input Part of the layer x. And
x̂x
j (t) is the quantized output of the neuron j in the layer x at the time t.

4 Computer Experiment Results

4.1 One-to-Many Association Ability Comparison with
Conventional CCMAM

Here, we compared one-to-many association ability of the CQMAM with the
conventional CCMAM[3]. In this experiment, 16-valued random patterns in
oneto- many relations were memorized in the 3-layered proposed CQMAM whose
parameters are shown in Table 1 and common pattern was given to the network
as an initial input and investigated how many patterns to be recalled appeared

Table 1. Experimental Conditions

The Number of Neurons (Key Input Part) 400

The Number of Neurons (Contextual Part) 100

Parameter in Output Function ε 0.02

Decay Parameters km 0.89
kr 0.96

Weights from External Input v 50

Parameters for Scaling Factor a 1.2
for Refractoriness b 1.0

c π
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(a) Stored Patterns t=0 t=2t=1 t=3 t=5t=4
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(b) Association Result

Fig. 3. Association Result for Noisy Input

during t = 0 ∼ 999. Fig.2 shows the one-to-many association ability of the pro-
posed CQMAM and the conventional CCMAM. This is the average result of 100
trials. As shown in this figure, we can confirmed that the one-to-many association
ability of the CQMAM is better than that of the conventional CCMAM.

4.2 Robustness for Noisy Input

Here, we examined the robustness for noisy input in the CQMAM. In this ex-
periment, four 16-valued pattern sets shown in Fig.3(a) were memorized in the
3-layered proposed CQMAM and the common pattern cat1 with 20 % noise was
given to X-Layer as an initial input at t = 0. Fig.3(b) shows an association result
of the CQMAM for noisy input. As shown in this figure, at t = 0, the super-
imposed patterns composed of the patterns 1 and 2 corresponding to the input
pattern cat1 appeared in Y-Layer and Z-Layer. And then, the chaotic quater-
nionic neurons in the Contextual Part changed their states by chaos, as a result,
the patterns cat2 and cat3 (pattern 1) and the patterns chick and bird (pattern
2) were recalled correctly.

Fig.4 shows the robustness for noisy input of the CQMAM. As shown in this
figure, the CQMAM has superior robustness for noise.
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4.3 One-to-Many Association Ability in Various Size CQMAM

Here, we examined one-to-many association ability of the CQMAM in various
size CQMAM. Fig.5 shows the one-to-many association ability of the CQMAM
in various size CQMAM. As shown in this figure, one-to-many association ability
of the larger size CQMAM is better than that of the smaller size CQMAM.

5 Conclusion

In this paper, we have investigated one-to-many association ability of multival-
ued patterns in the Chaotic Quaternionic Multidirectional Associative Memory
(CQMAM). We carried out a series of computer experiments and confirmed that
(1) its one-to-many association ability is better than that of the conventional
Chaotic Complex-valued Multidirectional Associative Memory (CCMAM) with
variable scaling factor, (2) it has has superior robustness for noisy input, and (3)
one-to-many association ability of the larger size CQMAM is better than that
of the smaller size CQMAM.



118 T. Okutsu and Y. Osana

References

1. Yano, Y., Osana, Y.: Chaotic complex-valued bidirectional associative memory. In:
Proceedings of IEEE and INNS International Joint Conference on Neural Networks,
Atlanta (2009)

2. Yano, Y., Osana, Y.: Chaotic complex-valued bidirectional associative memory –
one-to-many association ability. In: Proceedings of International Symposium on
Nonlinear Theory and its Applications, Sapporo (2009)

3. Shimizu, Y., Osana, Y.: Chaotic complex-valued multidirectional associative mem-
ory. In: Proceedings of IASTED Artificial Intelligence and Applications, Innsbruck
(2010)

4. Yoshida, A., Osana, Y.: Chaotic complex-valued multidirectional associative mem-
ory with variable scaling factor. In: Honkela, T. (ed.) ICANN 2011, Part I. LNCS,
vol. 6791, pp. 266–274. Springer, Heidelberg (2011)

5. Jankowski, S., Lozowski, A., Zurada, J.M.: Complex-valued multistate neural as-
sociative memory. IEEE Transactions on Neural Networks 7(6), 1491–1496 (1996)

6. Nakada, M., Osana, Y.: Chaotic complex-valued associative memory. In: Proceed-
ings of International Symposium on Nonlinear Theory and its Applications, Van-
couver (2007)

7. Okutsu, T., Osana, Y.: Chaotic quaternionic multidirectional associative memory.
In: Proceedings of International Symposium on Nonlinear Theory and its Applica-
tions, Luzern (2014)

8. Isokawa, T., Nishimura, H., Kamiura, N., Matsui, N.: Fundamental properties
of quaternionic Hopfield neural network. International Journal of Neural Sys-
tems 18(2), 135–145 (2008)

9. Osana, Y.: Chaotic quaternionic associative memory. In: Proceedings of IEEE and
INNS International Joint Conference on Neural Networks, Brisbane (2012)

10. Aihara, K., Takabe, T., Toyoda, M.: Chaotic neural networks. Physics Letter
A 144(6 & 7), 333–340 (1990)

11. Osana, Y.: Recall and separation ability of chaotic associative memory with vari-
able scaling factor. In: Proceedings of IEEE and INNS International Joint Confer-
ence on Neural Networks, Hawaii (2002)

12. Hagiwara, M.: Multidirectional associative memory. In: Proceedings of IEEE and
INNS International Joint Conference on Neural Networks, Washington, D.C., vol. 1,
pp. 3–6 (1990)



An Entropy-Guided Adaptive Co-construction

Method of State and Action Spaces
in Reinforcement Learning

Masato Nagayoshi1, Hajime Murao2, and Hisashi Tamaki3

1 Niigata College of Nursing, 240 Shinnan-cho, Joetsu 943-0847, Japan
nagayosi@niigata-cn.ac.jp

2 Kobe University, 1-2-1, Tsurukabuto, Nada-ku, Kobe 657-8501, Japan
3 Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan

Abstract. Engineers and researchers are paying more attention to rein-
forcement learning (RL) as a key technique for realizing computational
intelligence such as adaptive and autonomous decentralized systems. In
general, it is not easy to put RL into practical use. In previous research,
Nagayoshi et al. have proposed an adaptive co-construction method of
state and action spaces. However, the co-construction method needs two
parameters for sufficiency of the number of learning opportunities. These
parameters are difficult to set. In this paper, first we propose an entropy-
guided adaptive co-construction method with and index using the en-
tropy instead of the parameters for sufficiency of the number of learning
opportunities. Then, the performance of the proposed method and the
efficiency of interactions between state and action spaces were confirmed
through computational experiments.

Keywords: reinforcement learning, interactions between state and ac-
tion spaces, co-construction of state and action spaces, entropy.

1 Introduction

Engineers and researchers are paying more attention to reinforcement learning
(RL)[1] as a key technique in developing autonomous systems. In general, how-
ever, it is not easy to put RL to practical use. Such issues as satisfying the
requirements of learning speed, resolving the perceptual aliasing problem, and
designing reasonable state and action spaces for an agent, etc., must be resolved.
Our approach mainly deals with the problem of designing state and action spaces.
By designing suitable state and action spaces adaptively, it can be expected that
the other two problems will be resolved simultaneously. Here, the problem of de-
signing state and action spaces involves the following two requirements: (i) to
keep the characteristics of the original search space as much as possible in order
to seek strategies that lie close to the optimal, and (ii) to reduce the search space
as much as possible in order to expedite the learning process. In general, these
requirements are in conflict.
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Fig. 1. Developing reinforcement learning model

Previously, some possible solutions for the state space design have been
proposed[2–5]. On the other hand, some possible solutions for the action space de-
sign have been proposed[6, 7] also. Here, Nagayoshi et al. [8] reconstitute these two
construction methods[5, 7] as one co-construction method by treating them as a
combined method for mimicking an infant’s perceptual and motor developments.
We can not find other methods to co-construct the state and the action spaces.
However, this co-construction method needs two parameters for sufficiency of the
number of learning opportunities. These parameters are difficult to set.

In this paper, first we propose an entropy-guided adaptive co-construction
method based on an index using a trend of the entropy instead of the parameters
for sufficiency of the number of learning opportunities. Then, through computa-
tional experiments by a path planning problem with two-dimensional continuous
state space and one-dimensional continuous action space, the performance of
the proposed method and the efficiency of interactions between state and action
spaces are confirmed .

2 Developing Reinforcement Learning

2.1 Outline of a Computational Model

Nagayoshi et al. have proposed an developing RL model to mimic the processes
of an infant’s perceptual and motor developments. The model is constructed by
“state space filter[5]” which is a mapping between an input state space X and
the state space S, and a “switching learning system[7]” as shown in Fig. 1.

The state space filter mimics the process of perceptual development, in which
perceptual differentiation progresses by differentiating the state space gradually
from the undifferentiated state space, as the infant becomes older and more ex-
perienced. In parallel, the switching learning system also mimics the process of
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motor development, in which gross motor skills develop before fine motor skills
by switching discrete action space learning modules (hereafter called “DA mod-
ules”) from a more coarse-grained DA module to a more fine-grained DA module,
and finally switching to a continuous action space learning module (hereafter
called a “CA module”).

2.2 Co-construction Method of State and Action Spaces

Basic Idea. A variety of methods can be considered to acquire the state space
filter and the switching learning module. Here, we have proposed a method based
on introducing and referring to the entropy which is defined by action selection
probability distributions in a state. It is expected that the method (i) is able to
learn in parallel the state space filter and the switching learning system, and (ii)
does not required specific RL methods for the learning module.

The entropy of action selection probability distributions using Boltzmann
selection in a state HD(s) is defined by

HD(s) = −(1/ log |AD|)
∑

a∈AD

π(a|s) log π(a|s) (1)

where π(a|s) specifies the probabilities of taking each action a in each state s,
AD is the action space and |AD| is the number of available actions of the DA
module.

In this paper, sufficiency for the number of learning opportunities is judged
using the following properties of the entropy HD(s).

– The entropy HD(s) becomes smaller with the number of learning opportu-
nities.

– On the other hand, if the number of learning opportunities is sufficient, then
the entropy does not become smaller any more and remains unchanged or
becomes larger temporarily.

Thus, after the entropy becomes smaller, if the entropy remains unchanged or
becomes larger, the number of learning opportunities is judged as sufficient.

Then, if the number of learning opportunities in a state s is sufficient, then
the state space filter is adjusted by dividing the state s or the learning module
is switched to the more fine-grained DA module, and finally ends with the CA
module.

Here, we propose an adaptive entropy-guided co-construction method in which
the adjustment of the state space filter is carried out first, and the adjustment
of the state space filter or the switching of learning modules is carried out alter-
nately upon the number of learning opportunities being sufficient.

Also note that, the effectiveness of the adjustment of the state space filter and
the switching of learning modules are judged by the following: When the number
of learning opportunities is sufficient H+

D (s) gets smaller than the pre-sufficient
entropy H−

D (s) immediately after adjusting the state space filter or switching
the learning module. When both adjusting the state space filter and switching
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learning modules are continuously ineffective, adjusting the state space filter and
switching learning modules in the state are no longer carried out.

2.3 Sufficiency of the Number of Learning Opportunities

In previous research, the co-construction method of Nagayoshi et al.[8] needs θH
and θL to judge sufficiency of the number of learning opportunities where θH
is a threshold value of the entropy, and θL is a threshold value of the number
of learning opportunities. These parameters are difficult to set. In this paper,
sufficiency of the number of learning opportunities is judged using a trend of the
entropy HD(s) (Eq.1).

However, preliminary computational experiments indicate that the entropy
of the action selection probability in the state s shows a range of fluctuations.
In order to decrease wrong judgments by the influence of the fluctuations, the
time of the occurrence of the reversal of a downward trend is detected using
MACD (Moving Average Convergence / Divergence)[9], which is one of the most
popular tools in technical analysis trading. In addition, the entropy H∗

D(s), after
updating the Q-value, is used to refine the detection only when the agent selects
an action with the maximal Q-value, if the learning module is Q-learning. Then,
a short-term (nT = θEMAS) EMA (Exponential Moving Average) value and a
long-term (nT = θEMAL) EMA value of the entropy are calculated according to
the following equation after every update of H∗

D(s).

EMAnT(s(t)) = (1− αEMA)× EMAnT

old(s(t)) + αEMA ×H∗
D(s(t)) (2)

where EMAnT

old(s(t)) is the latest known value of the nT-term EMA in s(t),
αEMA = 2/(nT + 1) and nT are constant numbers expressing the smoothing
constant and the average amount of time respectively.

A MACD (Moving Average Convergence / Divergence) value is calculated
according to the following equation, after updating the short-term and the long-
term EMA values.

MACD(s) = EMAθEMAS(s)− EMAθEMAL(s) (3)

In addition, a ‘signal’ value is a moving average for the latest series of θMACD

values of MACD(s). In particular, when the ‘signal’ value increases from a value
equal to or smaller than 0, to larger than or equal to 0, the number of learning
opportunities in the state is judged as sufficient.

The usual parameters of MACD (θEMAS = 12, θEMAL = 26 and θMACD = 9)
are used in the following experiments.

Adjustment of a State Space Filter. If the number of the learning opportu-
nities in a state s is sufficient, then the state space filter is adjusted by dividing
the range of the input state mapped to the state s into two parts for each di-
mension, and mapping each part to a different state. Through this operation,
the size of the state space increases by (2M − 1) after being divided, where M is
the number of dimensions. Also note that the values of the new 2M states are
the value of the state before it is divided.
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Table 1. Parameters for experiments

Parameter Description Value

αQ, αC, αμ, ασ learning rate of Q-learning, critic, μ ,σ 0.1
γ discount rate 0.9
τ temperature used by Boltzmann selection 0.1

Switching of Learning Modules. In this paper, Q-learning(hereafter called
“QL”) and Actor-critic[10](hereafter called “AC”) are applied to the DA module
and the CA module, respectively. The learning module is switched in the order
of the DA module with an action space divided evenly into n, 2n, · · · , 2(N-1)n,
and finally ending with the CA module, where N is the number of DA modules.

If the number of learning opportunities in a state is sufficient, then the learning
module is switched to the more fine-grained DA module, and finally ends with
the CA module. The Q-values of newly added actions ai at this time are set
according to the following formula:

Q(s, i) = max
j∈i−1,i+1

Q(s, j) (4)

where action i − 1 and i + 1 are adjacent to action i. This formula is set in
consideration of a more efficient search as well as the idea of the optimistic
initial valuess[1].

In the procedure to switch learning modules, the result of QL is succeeded by
AC and the following procedure is carried out. 1. The state value of the critic,
V (s), is initialized by

V (s) =
∑

a∈AQ

π(a|s) ·Q(s, a) (5)

2. The normal probability distribution used by the actor is calculated by

μ(s) = arg max
a∈AQ

Q(s, a), (6)

σ(s) = |AQ(arg max
a∈AQ

Q(s, a))|/4 (7)

where μ is the mean, σ is standard error of the mean, |AQ(i)| is the range of
the action space which represents action i of QL, and σ(s) is set at |AQ(i)|/4 in
order to select an action in the range |AQ(i)| with a probability of 0.95.

3 Computational Examples

3.1 Path Planning Problem

The proposed method is applied to a so-called “path planning problem” where
an agent is navigated from a start point to a goal area in a continuous space as
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shown in Fig. 2. Here, the agent has a circular shape (diameter = 50[mm]), and
the continuous space is 500[mm] × 500[mm] bounded by the external wall with
internal walls as shown in black. The agent can observe the center position of
the agent: (xA, yA) as the input, and move 25[mm] in a direction, i.e., decide the
direction: θA as the output.

The positive reinforcement signal rt = 10 (reward) is given to the agent only
when the center of the agent arrives at the goal area and the reinforcement signal
rt = 0 at any other steps. The period from when the agent is located at the start
point to when the agent is given a reward or 10, 000 steps pass away, labeled as
1 episode, is repeated.

3.2 Comparison to Various Co-construction Methods

In this section, the proposed method (hereafter called method “A”) is compared
with the following two co-construction methods: (1) method B, in which the
adjustment of the state space filter is carried out first and continues until the
effectiveness of the adjustment is lost. Then, the switching of the learning module
is carried out until the effectiveness of the switching is lost. These procedures are
carried out alternately. (2) method C, in which the adjustment of the state space
filter and the switching of the learning module are carried out simultaneously.
Also note that the adjustment of the state space filter is only carried out after
switching to the CA module. When continuously ineffective in both adjusting
the state space filter and switching learning modules, adjusting the state space
filter and switching learning modules in the state are no longer carried out in the
same way as method A. After switching to the CA module, maxπ(a|s) is used
for judging the effectiveness of the adjustment of the state space filter instead
of HD(s). Here, the initial state space filter, the switching learning system, the
range of σ(x), initial Q-values, the number of adjustments of the state space
filter and parameters for experiments are set at the same as above. The average
number of steps, the average number of adjustments of the state space filter and
the average number of switching to DA modules and the CA module, that is QL

goal
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450

Fig. 2. Path planning problem
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and AC, required to accomplish the task were observed during learning over 20
simulations with various methods, as described in Figs. 3,4,5 respectively.

Learning speed and obtained control rule: It can be seen from Fig. 3 that,
(1) method A shows a better performance than any other methods with regard
to the control rule obtained. (2) method C shows a better performance than any
other methods with regard to the learning speed.

The number of adjustments of the state space filter, that is the number of
divisions of the state space: It can be seen from Fig. 4 that, (1) method C is
smaller than any other methods. (2) method B is larger than any other methods.
This is regarded as the result of adjusting the state space filter first until the
effectiveness of the adjustment is lost.

The number of switching learning modules: It can be seen from Fig. 5 that,
(1) with regard to the number of switching to QL, method C is smaller than any
other methods, and method B is larger than any other method, but it is also
considered to be a result of switching learning modules until the effectiveness
of switching is lost. (2) with regard to the number of switching to AC, method
B is smaller than any other methods. Thus, it is thought that method B was
mostly ineffective in switching to QL. Then, method A is larger than any other
methods. Thus, it is considered that method A has more effective for switching
learning modules than any other methods. Therefore, we have confirmed that
method A demonstrates better performances than any other method for the path
planning problem. In addition, because method A, which constructs the state
and the action spaces mutually, showed better performance than the method C,
which constructs the spaces simultaneously, we have confirmed that interactions
between the state and the action spaces improve the performance. However, it
could be considered that these experiments happen to mutually suit grain sizes
of the state and action spaces mutually. For this reason, we need to re-create the
experiments with various grain sizes of the state and action spaces.
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4 Conclusion

In this paper, we proposed an entropy-guided adaptive co-construction method
based on an MACD, which is one of the most popular tools in technical anal-
ysis trading, using an entropy instead of two parameters for sufficiency of the
number of learning opportunities. Then, through computational experiments by
a path planning problem with two-dimensional continuous state space and one-
dimensional continuous action space, the performance of the proposed method
and the efficiency of interactions between state and action spaces were confirmed.

Our future projects include to re-create the experiments with various grain
sizes of a state and an action spaces, etc.
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Abstract. This paper presents a two-stage learning algorithm to reduce the hid-
den nodes of a radial basis function network (RBFN). The first stage involves 
the construction of an RBFN using the dynamic decay adjustment (DDA) and 
the second stage involves the use of a modified histogram algorithm (HIST) to 
reduce hidden neurons. DDA enables the RBFN to perform constructive learn-
ing without pre-defining the number of hidden nodes. The learning process of 
DDA is fast but it tends to generate a large network architecture as a result of its 
greedy insertion behavior. Therefore, an RBFNDDA-HIST is proposed to  
reduce the nodes. The proposed RBFNDDA-HIST is tested with three bench-
mark medical datasets. The experimental results show that the accuracy of  
the RBFNDDA-HIST is compatible with to that of RBFNDDA but with  
less number of nodes. This proposed network is favorable in a real environment 
because the computation cost can be reduced.   

Keywords: radial basis network, nodes reduction, histogram, dynamic decay 
adjustment. 

1 Introduction 

The Radial Basis Function Network (RBFN) is one of the popular artificial neural 
networks (ANNs) being used due to its fast learning characteristic through the use of 
locally-tuned neurons [1, 2]. It learns the non-linear relationship among the input and 
output data with a simple topological structure [3, 4]. An RBFN is also an universal 
approximator with the use of continuous functions (usually the Gaussian functions) in 
the hidden units for information processing [1] [4] [5]. An RBFN can be trained by 
using a dynamic decay adjustment (DDA) algorithm [24]. The DDA algorithm can 
speed up the training process of a network to construct an RBFNDDA with a satisfac-
tory performance in prediction. A note is, users should set manually the number of 
hidden nodes in a conventional RBFN but an RBDNDDA requires no such a parame-
ter setting because the network topology can be built up automatically. However, such 
constructive-learning approach could result in large network architecture. A huge 
network architecture is fast in convergence and also favorably used for solving prob-
lems [6]. However, the complexity of a huge network is high and over-fitting is likely 
to occur during its training process. The network may give a poor performance on 
presence of spurious information such as outliers, noise and overlapping nodes [7, 8]. 
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On the other hand, a small network has a better generalization ability but to search for 
a small yet suitable network architecture could be a time-consuming task [8, 9]. There 
is also a possibility where the small network may not be able to solve problem and 
trapped in local minima [8]. Various methods have been proposed to improve genera-
lization capability of an ANN. One of the common methods is node pruning. Sietsma 
and Dow [13] proposed a two-stage pruning algorithm. In the first stage, a hidden 
node is removed if it has a constant output over all the training inputs and if the out-
puts of any two hidden nodes are the same. In the second stage, nodes are removed 
when they are linearly independent from other nodes in the same layer. As com-
mented by [9], the method [13] will cause the network to take a long training time. 
Liang [14] proposed a node pruning method with the use of orthogonal projection and 
weight crosswise propagation (CP) calculation. The pruning method consists of two 
stages. In Stage 1, the node with shortest distance in its orthogonal projection is re-
moved. In Stage 2, the author used the weight CP to propagate the information of 
deleted hidden nodes to the other hidden nodes. As such, information loss in stage 1 
can be reduced. Zhang and Qiao [15] proposed the pruning algorithm based on the 
neural complexity (PBNC). The PBNC algorithm calculates the network complexity 
after deleting a hidden node. All hidden nodes must be selected once. The node with 
the highest neural complexity is removed. The learning process of the network is 
terminated when the average error of the adjustment process is less or equal to the 
objective error. Indeed, these methods [13, 14, 15] involved a complicated calculation 
process to prune the network.  

As simpler and more efficient methods are favorably adopted to formulate solu-
tions to many real-world problems [10]. The research in this study is aimed to reduce 
the network size of an RBFN with the use of histogram. Histogram is a traditional 
statistical approach that enables the visualization of statistical approximation [11]. In 
this work, it is employed to reduce hidden nodes of an RBFN due to its simplicity and 
computational efficiency [12]. Histogram is commonly used to approximate the dis-
tribution of data. From the literature, histogram is vastly applied in the field of image 
processing and computer vision, especially in the usage of summarizing the characte-
ristics of images [11]. There are researchers who used histogram for pruning in 
speech recognition. Researchers [22, 23] proposed to use a histogram-based pruning 
method to further limit the search space in automatic speech recognition system. In 
this work, we proposed a node reduction method by absorbing a histogram algorithm 
[16] into the RBFNDDA learning process. Notably, the histogram algorithm was 
proposed by Shimazaki and Shinomoto [16] to optimize the distribution of neuronal 
spike signals. To our best knowledge, the use of a histogram approach for reducing 
the number of hidden nodes of an ANN is new. 

The organization of this paper is as follows. In Section 2, the details of the 
RBFNDDA, the histogram algorithm and the proposed RBFN are described. In Sec-
tion 3, the results from an experimental study using several benchmark data sets from 
the UCI machine-learning repository [17] are presented, analyzed and compared. 
Lastly, the conclusion of the paper and future work are described in Section 4. 
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2 The Methods 

2.1 Overview of RBFNDDA  

The DDA algorithm is applied to build an RBFNDDA. During training, new nodes are 
inserted into the hidden layer of RBFNDDA to encode new information from the data 
samples. The dynamics of RBFNDDA are governed by two user-defined parameters, 
i.e., the positive threshold ߠା and the negative threshold ିߠ. They regulate the width of 
a node (prototype) and correspond to distinguish a prototype from its neighbors (proto-

types) of other classes. In this regard, +θ  represents the lowest correct-classification 

probability for the correct class, and −θ  represents the highest probability tolerable to 

an incorrect class. In [24], the default settings of +θ  and −θ  are 0.4 and 0.2 respec-
tively. The training algorithm of RBFNDDA in a single epoch is as follows. 
 
Step 1:  Initialize the weight ௜ܹ ൌ 0  
Step 2:  Consider a training input x of a class k, assume that ࡼ௜௞ denote an RBF hid-

den node of class k has been inserted in the network. Increase the weight ௜ܹ௞ ൌ  ௜ܹ௞ ൅ 1 if the ࡼ௜௞  has the Gaussian activation ܴ௜௞ ൒ ାߠ  (in other 
words, the input is correctly classified) 
Otherwise, insert a new hidden node ࡼ௠ೖ௞  (݉௞ denote number of nodes for 
class k) and perform the following actions. 

  Set ݉௞ ൌ  ݉௞ ൅ 1     ௠ܹೖ௞  = 1 
Center of neuron ࢠ௠ೖ௞  = x  

      Width ߪ௠ೖ௞ ൌ min ௝ஷ௞ଵஸ௕ஸ௠ೕ ൞ඨെ ೕ್ࢠ|| ೘ೖೖࢠି ||௟௡ఏష ଶൢ  

         
Step 3:  Shrink the width of all the conflicting nodes where ݆ ് ݇, 1 ൑ ܾ ൑ ௝݉  

௕௝ߪ  ൌ min ቊߪ௕௝, ටെ ||௫ି ௭ೕ್||మ௟௡ఏష ቋ 

Step 4:  Repeat steps 2 and 3 for the next training inputs. 

2.2 Overview of Histogram 

Finding a suitable bin size is important to construct a histogram for representing the 
actual data distribution as close as possible [16]. As such, Shimazaki and Shinomoto 
[16] proposed a histogram algorithm to determine a suitable bin size with equal width 
and number of sequences (trials) required when representing the time-dependent spike 
rate. The optimal bin size can be obtained by minimizing ܥ௡ሺ∆ሻ. Throughout the 
process, the number of bin N, the width Δ and the n sequences will change according-
ly to generate the cost function. In [16], N is a setting from a range between 2 and 50 
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whereas n is set as 30. The optimum bin size N with the most minimum cost function 
will be selected. The algorithm is as below:  

 
Step 1:  Observation period T is divided into N bins of width Δ. The frequency of 

spikes ݇௜ from all n sequences that enter the i-th bin is computed.  
Step 2:  Compute the mean, ത݇ and variance, v of the number of spikes, as follows. ത݇ ؠ ଵே ∑ ݇௜   ே௜ୀଵ ݒ (1)           ؠ ଵே ∑ ሺ݇௜ െ ത݇ሻଶே௜ୀଵ              (2) 

Step 3:  Calculate the cost function ( ܥ௡) ܥ௡ሺ∆ሻ ൌ ଶ௞ത ି௩ሺ௡∆ሻమ          (3) 

Steps 4: Repeat steps 1 to 3 by varying different numbers of bin to find the corres-
ponding bin width ∆ that minimizes  ܥ௡ሺ∆ሻ.  

2.3 The Proposed Method 

The proposed method is a two-stage learning process. Inputs are trained through 
RBFNDDA in the first stage. The generated RBFNDDA hidden nodes (or RBF cen-
ters) are sent to the proposed method, which we called HIST algorithm. This HIST 
algorithm is an extension of Shimazaki and Shinomoto [16]’s histogram algorithm. 
Our experiment does not need the number of sequences, as the purpose of HIST is not 
to train the nodes but to identify unneeded nodes. Therefore, n sequence is set as 1. 
The minimum bin number N is set as minimum 3 instead of 2. The reason is too less 
number of bins will cause difficulty in nodes reduction and degrade the performance 
of classification. In order to decide which bins contain unneeded nodes, steps 7 – 11 
are proposed. The hidden nodes have multiple dimensions but HIST accepts one di-
mension inputs. Therefore, each hidden node is transformed to one dimension by 
aggregating sum of all its attributes and enter the HIST according to class label. The 
details of the HIST algorithm are as below: 

 
Step 1: All hidden nodes H are categorized according to class c and transformed to 

one dimension (eq. 4, D = number of dimension), ݐݑ݌݊ܫ ௜ܺ ൌ  ∑ ௝஽୨ୀଵݔ        i=1,…,H                            (4) 

Step 2:  All Input Xs of class c are divided into N bins of width Δ (eq. 5). Count the 
frequency of Input X, ݇௜ which enters the i-th bin.  ∆ ൌ  ூ௡௣௨௧ ௑೘ೌೣିூ௡௣௨௧ ௑೘೔೙ே                          (5) 

Step 3:  Generate the mean, ത݇ (eq. (1)) and variance, v (eq. 2) of ݇௜  
Step 4:  Calculate the  ܥ௡ (eq. 3). 
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Step 5:  Step 1 through 4 are repeated by varying the setting of N and Δ to search for 
an optimum bin size and width that minimize ܥሺ∆ሻ. 

Step 6:  Histogram is constructed using the optimum bin size and width from Step 5.  
Step 7:  Compute the magnitude ݌ሺܽሻ (eq. 6), which is the probability of the 

RBFNDDA weight for each bin, where a = value of RBFNDDA weightage. 
Assume that a bin contains 7 Input X, with 3 of them are having the weigh-
tage a, which is 1, another 3 Input X with weightage which is 3 and 1 Input X 

with weightage which is 5. Therefore, the probability p(a) are 
ଷ଻ , ଷ଻, and 

ଵ଻ re-

spectively. The number of weight category m for this bin is 3.   ݌ሺܽሻ ൌ ௡௨௠௕௘௥ ௢௙ ூ௡௣௨௧ ௑ ௢௙ ௔ ோ஻ிே஽஽஺ ௪௘௜௚௛௧ ௖௔௧௘௚௢௥௬ ௧௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ூ௡௣௨௧ ௑ ௣௘௥ ௕௜௡                   (6) 

Step 8:  Compute the expected value E(a) for each bin, where ܧሺܽሻ ൌ  ∑ ሺܽሻ௠ଵ݌ ܽ . 
(E(a) reflects the score of weightage for each bin. Continue with the example 

in Step 7, ܧሺܽሻ ൌ ሺ1ሻ ቀଷ଻ቁ ൅ ሺ3ሻ ቀଷ଻ቁ ൅ ሺ5ሻ ቀଵ଻ቁ ൌ 2.43 . The highest the 

score, the more important is the bin.) 
Step 9: Normalize E(a) between 0 and 1. Assume that the histogram has 3 bins, each 

bin with the E(a) score is 2.43, 0.38 and 4.50. After normalization, the ob-
tained scores are 0.50, 0 and 1.00 respectively.  

Step 10: Bins with normalized expected value lowered than a threshold (we set it as 
0.2) are deleted. As such, based on the assumption in Step 9, bin 2 is deleted.   

Step 11: Repeat Steps 2 to 10 for all the classes. 
Step 12: Send retains nodes back to RBFNDDA and proceed to testing phase.  
 

Normalization of E(a) is to generalize the proposed method to all data sets as each 
data set will generate different number of DDA weights with different aggregate sum 
of input X. Without generalization, the threshold used to delete the bin need to change 
accordingly. With normalization, one threshold value can be used for different data 
sets.  

3 Experiment and Discussion 

The results of RBFNDDA-HIST is benchmarked with three medical data sets from 
the UCI Machine Learning Repository [17]: Diabetes, Cancer and Heart. All of the 
data sets consist of two classes with the number of samples 768, 699, 270, respective-
ly, and number of attributes 8, 9 and 13 respectively. In this experiment, we used a 
two-fold cross validation where 50% of the data was used for training and the remain-
ing data was used for testing. The involved parameter settings were ߠା = 0.4, ିߠ = 
0.2, n = 1, N = minimum 3, maximum 50, and threshold for E(a) = 0.2. RBFNDDA 
was trained in multi epochs before the execution of the HIST algorithm. The maxi-
mum training epoch of RBFNDDA was set as 6. The proposed RBFNDDA-HIST was 
run on a computer having the following specifications: operating system Windows 7, 
Intel Core (TM) CPU i5-2410M and 4.0 GB RAM. The performance of RBFNDDA-
HIST is then compared with the original RBFNDDA and RBFNDDA-T [18]. 
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RBFNDDA-T is an online pruning technique where node is marked as temporary 
once it is inserted into the network. The status of the node will change to permanent if 
more than two samples are covered by the node. After each epoch training, nodes 
with temporary status are deleted and are not used in the next training epoch. Paetz 
[18] conducted an experiment in 8 runs for both RBFNDDA and RBFNDDA-T. In 
our work, the experiment was repeated for 30 runs, and the average results in terms of 
the number of hidden nodes and the accuracy rates of RBFNDDA-HIST were com-
puted. The results are listed in Table 1.  

Table 1. Experiment results (Acc. = average test accuracy; #nodes = average number of hidden 
nodes; standard deviation in round brackets) 

  Paetz [18] 
RBFNDDA-HIST 

Data Set RBFNDDA RBFNDDA-T 
  Acc. # nodes Acc. # nodes Acc. # nodes 
Diabetes 74.35 288.5 73.5 65.6 72.85 202.9 

 (0.97) (6.1)  (2.38) (4.2)  (1.24) (26.2) 
Cancer 96.86 70.6 96.9 38.3 96.80 19.1 

(0.99)  (13.4)  (0.39) (4.6)  (0.97) (10.3) 
Heart 79.26 83.6 79.82 32.6 80.10 36.95 

 (2.83) (3.3) (3.54) (2.1)  (2.55) (1.9) 
 

As compared to RBFNDDA, RBFNDDA-HIST manages to reduce the hidden 
nodes significantly with the percentages of reduction are 29.68%, 73.00% and 55.80% 
in Diabetes, Cancer and Heart respectively. As compared to RBFNDDA-T, the accu-
racy of RBFNDDA-HIST in Diabetes is lower with a higher number of hidden nodes; 
whereas in Cancer and Heart, RBFNDDA-HIST is competitive to give high accuracy 
rates and small number of hidden nodes. The Diabetes data set consists of data sam-
ples that are highly overlapped [18]. In Diabetes, RBFNDDA-T achieves better result 
in node reduction, i.e. 77.26% because RBFNDDA-T implements node pruning for 
unwanted information from its network whereas RBFNDDA-HIST re-organizes all 
existing nodes of RBFNDDA into a more compact structure without removing such 
overlapping information intensively. On the other hand, for Cancer data sets, 
RBFNDDA-HIST achieves better result where the percentage of node reduction for 
RBFNDDA-HIST is 73.00% and RBFNDDA-T is 45.75% from RBFNDDA. The 
percentages of node reduction for both RBFNDDA-T and RBFNDDA-HIST are al-
most similar when dealing with Heart data set. In other words, the performances of 
RBFNDDA-HIST and RBFNDDA-T in node reduction are problem-dependent. But 
RBFNDDA-HIST shows a significant advantage in generating a more compact net-
work structure when compared to RBFNDDA.  

Further comparison was performed with different experiment setup to see how the 
reduction of nodes will affect the accuracy and computational cost of RBFNDDA-
HIST. We run this experiment by using the Cancer data set and compare with the 
reported methods in [19]. The experiment excluded all the missing values. The re-
maining 400 instances were used in training and 283 instances were used in testing. 
Table 2 presents the comparison of the results. The numbers of hidden nodes for 
MPANN are lower than those of RBFNDDA-HIST, which are 4.125 ± 1.360 and 
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21.567 ± 7.655 respectively. This is expected as we aim to have a simple and yet a 
fast learning neural network. While MPANN is having a complicated construction of 
neural network that match this reason: a successive smaller networks can be time 
consuming [8]. The computational cost of RBFNDDA-HIST is much lower than the 
methods in [19, 20, 21]. The accuracy is about the same when compared with these 
methods.  

Table 2. Performance comparison (accuracy and number of epoch) 

Methods Accuracy Number of epoch 
RBFNDDA-HIST 0.976±0.313 3 
MPANN [19]  0.981±0.005 5100 
EAA [20] 0.981±0.464 200000 
C-net [21] 0.975±1.800 10000 

4 Conclusion 

In this study, a RBFNDDA-HIST network is proposed to reduce hidden nodes to 
constitute a more compact network structure than the original RBFNDDA. The 
process is simple and fast in handling superfluous nodes. This is further shown when 
the proposed method is compared with MPANN, EAA and C-net. In the future, addi-
tional experiments will be carried out by using other benchmark and real data sets to 
examine the effectiveness of RBFNDDA-HIST.    
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Abstract. The approximation of a continuous function on the torus
T

2 is an important problem in approximation theory of artificial neu-
ral networks. In this work, we investigate the universal approximation
capability of one-hidden layer feedforward toroidal approximate identity
neural networks. To this end, we present notions of toroidal convolu-
tion and toroidal approximate identity. Using these notions, we apply
a convolution linear operator approach to prove uniform converges in
terms of continuous functions on the torus T2. Using this result, we also
prove a main theorem. The main theorem shows that one-hidden layer
feedforward toroidal approximate identity neural networks are universal
approximators in the space of continuous functions on the torus T2.

Keywords: Toroidal approximate identity, Toroidal approximate iden-
tity neural networks, Toroidal activation functions, Toroidal convolution,
Two dimensional torus, Universal approximation.

1 Introduction

The approximation of a continuous function on the torus T2 is area of burgeon-
ing interest with applications to bioinformatics, meteorology, and oceanography
[1], [2]. A few efforts has been done for approximation of continuous functions
on the torus T2 [3], [4]. To the best of our knowledge, there exist noting notable
contributions focused on the approximation of continuous functions on the torus
T2 by using feedforward artificial neural networks. Thus, we are motivated to
investigate the universal approximation capability of a one-hidden layer feedfor-
ward neural networks in the space of continuous functions on the torus T2.

The universal approximation capability of feedforward artificial neural net-
works is one of the most important problems in neural networks theory [5].
That is, under what conditions one-hidden layer feedforward neural networks
can approximate arbitrary function belong to a certain set of functions with
arbitrary accuracy on a compact domain? Some authors (Artega and Marrero,
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2013; Costarelli, 2014, Lin et al., 2014) surveyed this topic.
In the other direction, one-hidden layer feedforward approximate identity neu-

ral networks has been constructed based on the notion of approximate identity
[9]. The different types of one-hidden layer feedforward approximate identity
neural networks have been introduced [10], [11], [12], [13], [14], [15], [16], [17].
These networks have been constructed based on the modification of approximate
identity neural networks.

The main purpose of this work is to develop a theory of the universal approx-
imation capability of one-hidden layer feedforward approximate identity neural
networks. In fact, we are concerned with the universal approximation capability
of one-hidden layer feedforward toroidal approximate identity neural networks.
The networks are called toroidal approximate identity neural networks, because
the networks are constructed based on the idea of toroidal approximate identity
as the modification of the notion of approximate identity. Note that, we restrict
our analyses to the space of continuous functions on the torus T2.

In this work, we mainly discuss the following problems: first, we introduce the
notions of toroidal convolution and toroidal approximate identity. Using these
notions, we prove a theorem that shows the convolution of every continuous
function f on the torus T2 with toroidal approximate identity converges uni-
formly to f on the space of continuous functions on the torus T2. Using this
result, we also prove a main theorem. The main theorem shows that one-hidden
layer feedforward toroidal approximate identity neural networks are universal
approximators in the space of continuous functions on the torus T2. The proof
of the main theorem is constructed based on a fact concerning theory of ε-net,
and it is a straightforward modification of the proof of Theorem 1 [18].

The work is organized as follows: in Section 2, we will recall some standard
notations and present preliminaries required for the next section. In Section 3,
we will prove a theorem. The theorem shows that the convolution of every con-
tinuous function f on the torus T2 with toroidal approximate identity converges
uniformly to f on the space of continuous functions on the torus T2. In Section 4,
we will present a main result of this work. The main result shows the analysis of
the universal approximation capability of one-hidden layer feedforward toroidal
approximate identity neural networks in the space of continuous functions on the
T2 embedded in Euclidean space R4. In Section 5, discussion is given. Finally,
we will conclude the work with some remarks in Section 6.

2 Notations and Preliminaries

In this section, we are going to introduce two basic notions required for the
analyses that follows in the next sections. The torus T2 is as the Cartesian
product of the two unit circle S1 × S1.

Now, we present the notion of toroidal convolution.
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Definition 1. Let f, g : T2 → R, be integrable functions. The toroidal convolu-
tion f ∗ g is defined as follows:

f ∗ g(x) := 1

4π2

∫
T2

f(x− y)g(y)dy, x ∈ T
2.

Then, we give the notion of toroidal approximate identity.

Definition 2. Let {φn}∞n=1, φn : T2 → R, be a sequence of functions. The
sequence is called a toroidal approximate identity if it satisfies the following
conditions:

1)
1

4π2

∫
T2

φn(x− y)dy = 1, ∀n ∈ N, x ∈ T
2;

2) for arbitrary ε > 0, δ > 0, and T2
δ(x) := {y ∈ T2|dist(x, y) < δ}, there exists

a number N such that if n � N it results

1

4π2

∫
T2\T2

δ(x)

|φn(x− y)|dy ≤ ε.

In the next section, we will show an approximation result in the space of con-
tinuous functions on the torus T2.

3 The Approximation Result in the Space of Continuous
Functions on the Torus T2

In this section, we prove Theorems 1 that shows the convolution of every con-
tinuous function f on the torus T2 with toroidal approximate identity converges
uniformly to f on the space of continuous functions on the torus T2.

Theorem 1. Let C(T2) be the real linear space of all continuous functions on
the torus T2. Let {φn}n∈N, T

2 → R be a toroidal approximate identity. Then for
every f ∈ C(T2), φn ∗ f converges uniformly to f on C(T2).

Proof. Let f be a continuous function in C(T2), let x ∈ T2 be a points of its
continuity, and let ε > 0. Choose a δ > 0 such that ‖f(x)− f(y)‖C(T2) < ε when
y is in the set T2

δ(x) := {y ∈ T2|dist(x, y) < δ}. Let us define {φn ∗ f}n∈N by
φn(x− y) = nφ(x − ny), we consider

φn ∗ f(x)− f(x)

=
1

4π2

∫
T2

φn(x− y)f(y)dy − 1

4π2

∫
T2

φn(x− y)dyf(x)

=
1

4π2

∫
T2

φn(x− y){f(y)− f(x)}dy

=
1

4π2

∫
T2

nφ(x − ny){f(y)− f(x)}dy

=
1

4π2
(

∫
T2
δ
(x)

+

∫
T2\T2

δ
(x)

)nφ(x − ny){f(y)− f(x)}dy

= I1 + I2.
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Subsequently we calculate I1, I2 as follows;

‖I1‖C(T2) ≤ 1

4π2

∫
T2
δ(x)

|nφ(x − ny)|‖f(y)− f(x)‖C(T2)dy

<
ε

2 1
4π2

∫
T2 |φ(x − t)|dt

1

4π2

∫
T2
δ(x)

|nφ(x− ny)|dy

=
ε

2 1
4π2

∫
T2 |φ(x − t)|dt

1

4π2

∫
T2
nδ

(x)

|φ(x − t)|dt

≤ ε

2 1
4π2

∫
T2 |φ(x − t)|dt

1

4π2

∫
T2

|φ(x− t)|dt = ε

2
.

For I2, we have

‖I2‖C(T2) ≤ 1

4π2

∫
T2\T2

δ(x)

|nφ(x− ny)|‖f(y)− f(x)‖C(T2)dy

≤ 2‖f‖C(T2)
1

4π2

∫
T2\T2

δ(x)

n|φ(ny)|dy

= 2‖f‖C(T2)
1

4π2

∫
T2\T2

nδ
(x)

|φ(t)|dt.

Since

lim
n→∞

1

4π2

∫
T2\T2

nδ(x)

|φ(t)|dt = 0,

there exists an n0 ∈ N such that for all n � n0,

1

4π2

∫
T2\T2

nδ(x)

|φ(t)|dt < ε

4‖f‖C(T2)
.

Combining I1 and I2 for n � n0, we have

‖φn ∗ f(x)− f(x)‖C(T2) < ε.

��
Using Theorem 1, we shall prove the main result of this work in the next section.

4 The Main Result

In this section, we prove Theorem 2 as the main result of this work. Theorem
2 shows that one-hidden layer feedforward toroidal approximate identity neural
networks are universal approximators in the space of continuous functions on
the torus T2.



Toroidal Approximate Identity Neural Networks 139

Theorem 2. Let C(T2) be the real linear space of all continuous functions on
the torus T2, and V ⊂ C(T2) a compact set. Let {φn}n∈N, φn : T2 → R be

a toroidal approximate identity. Let the family of functions {∑M
j=1 λjφj(x −

yj)|λj ∈ R, x ∈ T2, yj ∈ T2,M ∈ N}, be dense in C(T2), and given ε > 0. Then
there exists an N ∈ N which depends on V and ε but not on f , such that for
arbitrary f ∈ V , there exist weights ck = ck(f, V, ε) satisfying∥∥∥∥∥f(x)−

N∑
k=1

ckφk(x− yk)

∥∥∥∥∥
C(T2)

< ε.

Moreover, every ck is a continuous function of f ∈ V .

Proof. Since V is compact, for arbitrary ε > 0, there is a finite ε
2 -net {f1, ..., fM}

for V . Thus, for arbitrary f ∈ V , there is an f j such that ‖ f − f j ‖C(T2)<
ε
2 .

For arbitrary f j , by assumption of the theorem, there are λj
i ∈ R, Nj ∈ N, and

φj
i (x− yi) such that ∥∥∥∥∥f j(x)−

Nj∑
i=1

λj
iφ

j
i (x− yi)

∥∥∥∥∥
C(T2)

<
ε

2
. (1)

For arbitrary f ∈ V , we define

F−(f) = {j| ‖ f − f j ‖C(T2)<
ε

2
},

F0(f) = {j| ‖ f − f j ‖C(T2)=
ε

2
},

F+(f) = {j| ‖ f − f j ‖C(T2)>
ε

2
}.

Therefore, F−(f) is not empty according to the definition of ε
2 -net. If f̃ ∈ V

approaches f such that ‖ f̃ − f ‖C(T2) is small enough, then we have F−(f) ⊂
F−(f̃) and F+(f) ⊂ F+(f̃). Thus, F−(f̃)

⋂
F+(f) ⊂ F−(f̃)

⋂
F+(f̃) = ∅, which

implies F−(f̃) ⊂ F−(f) ∪ F0(f). We finish with the following:

F−(f) ⊂ F−(f̃) ⊂ F−(f) ∪ F0(f). (2)

Define

d(f) =

[ ∑
j∈F−(f)

( ε
2
− ‖ f − f j ‖C(T2)

)]−1

and

fh =
∑

j∈F−(f)

Nj∑
i=1

d(f)

(
ε

2
− ‖ f − f j ‖C(T2)

)
λj
iφ

j
i (x− yi) (3)
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then, fh ∈
{∑M

j=1 λjφj(x− yj)

}
approximates f with accuracy ε :

‖ f − fh ‖C(T2)

=

∥∥∥∥∥ ∑
j∈F−(f)

d(f)

(
ε

2
− ‖ f − f j ‖C(T2)

)
(
f −

Nj∑
i=1

λj
iφ

j
i (x− yi)

)∥∥∥∥∥
C(T2)

=

∥∥∥∥∥ ∑
j∈F−(f)

d(f)

(
ε

2
− ‖ f − f j ‖C(T2)

)
(
f − f j + f j −

Nj∑
i=1

λj
iφ

j
i (x− yi)

)∥∥∥∥∥
C(T2)

≤
∑

j∈F−(f)

d(f)

(
ε

2
− ‖ f − f j ‖C(T2)

)
(
‖f − f j ‖C(T2) +

∥∥∥∥∥fj −
Nj∑
i=1

λj
iφ

j
i (x − yi)

∥∥∥∥∥
C(T2)

)

≤
∑

j∈F−(f)

d(f)

(
ε

2
− ‖ f − f j ‖C(T2)

)
(
ε

2
+

ε

2
)

= ε. (4)

In the next step, we prove the continuity of ck. For the proof, we use (2) to
obtain ∑

j∈F−(f)

(
ε

2
− ‖ f̃ − f j ‖C(T2)

)

≤
∑

j∈F−(f̃)

(
ε

2
− ‖ f̃ − f ‖C(T2)

)

≤
∑

j∈F−(f̃)

(
ε

2
− ‖ f̃ − f j ‖C(T2)

)
+

∑
j∈F0(f)

(
ε

2
− ‖ f̃ − f j ‖C(T2)

)
. (5)

Let f̃ → f in (5), then we have∑
j∈F−(f̃)

(
ε

2
− ‖ f̃ − f j ‖C(T2)

)
→

∑
j∈F−(f)

(
ε

2
− ‖ f − f j ‖C(T2)

)
. (6)

This obviously demonstrates that d(f̃)→ d(f). Thus, f̃ → f results

d(f̃)

(
ε

2
− ‖ f̃ − f j ‖C(T2)

)
λj
i → d(f)

(
ε

2
− ‖ f − f j ‖C(T2)

)
λj
i . (7)
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Let N =
∑

j∈F−(f) Nj and define ck in terms of

fh =
∑

j∈F−(f)

Nj∑
i=1

d(f)

(
ε

2
− ‖ f − f j ‖C(T2)

)
λj
iφ

j
i (x − yi)

≡
N∑

k=1

ckφk(x− yk)

From (6), ck is a continuous functional of f. ��

5 Discussion and Conclusion

By toroidal functions, we mean functions whose supports are on the torus T2.
Toroidal functions occur frequently in the study of the wind directions. As the
main result of this work, we have found that toroidal continuous functions can
be approximate by one-hidden layer feedforwad toroidal approximate identity
neural networks. In this context, Theorem 2 indicates that one-hidden layer
feedforwad toroidal approximate identity neural networks are universal approxi-
mators in the space of continuous functions on the torus T2. The importance of
our finding is that this finding extends the universal approximation capability of
feedforward neural networks to dimension higher than three. However, a restric-
tion is worth noting. In fact, we have imposed the dimensional restriction on the
torus. We have demonstrated that there are no notable contributions focused
on the approximation of a continuous function on the torus T2 by using feed-
forward neural networks. In the current work, we have developed the theory of
the universal approximation capability of one-hidden layer feedforward toroidal
approximate identity neural networks. To this end, we have presented the notion
of toroidal convolution and the notion of toroidal approximate identity. Using
these notions, we have derived two theorems. In Theorem 1, we have proved that
the convolution linear operators of every continuous function f on the torus T2

with toroidal approximate identity converges uniformly to f on the space of con-
tinuous functions the torus T2. Using this result, we have also proved Theorem
2 as the main result of the study. In Theorem 2, we have proved that one-hidden
layer feedforward toroidal approximate identity neural networks are universal
approximators in the space of the continuous functions on the torus T2.

Acknowledgements. The authors would like to thank the reviewers for their
valuable comments and suggestions. This work was supported by Universiti Sains
Malaysia under Grant No. 1001/PMATHS/811161.
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Abstract. Recently, multiple classifier systems have been used for practical ap-
plications to improve classification accuracy. Self-generating neural networks
(SGNN) are one of the most suitable base-classifiers for multiple classifier sys-
tems because of their simple settings and fast learning ability. However, the com-
putation cost of the multiple classifier system based on SGNN increases in pro-
portion to the numbers of SGNN. In this paper, we propose a novel pruning
method for efficient classification and we call this model a self-organizing neural
grove (SONG). Experiments have been conducted to compare the SONG with
bagging and the SONG with boosting, and support vector machine (SVM). The
results show that the SONG can improve its classification accuracy as well as
reducing the computation cost.

1 Introduction

Classifiers need to find hidden information within a large amount of given data effec-
tively and classify unknown data as accurately as possible [1]. Recently, to improve the
classification accuracy, multiple classifier systems such as neural network ensembles,
bagging, and boosting have been used for practical data mining applications [2]. In gen-
eral, base classifiers of multiple classifier systems use traditional models such as neural
networks (backpropagation network and radial basis function network) [3] and decision
trees (CART and C4.5) [4].

Neural networks have great advantages such as adaptability, flexibility, and universal
nonlinear input-output mapping capability. However, to apply these neural networks,
it is necessary for the network structure and some parameters to be determined by hu-
man experts, and it is quite difficult to choose the right network structure suitable for a
particular application at hand. Moreover, they require a long training time to learn the
input-output relation of the given data. These drawbacks prevent neural networks from
being the base classifier of multiple classifier systems for practical applications.

Self-generating neural networks (SGNN) [5] have a simple network design and high
speed learning. SGNN are an extension of the self-organizing maps (SOM) of Koho-
nen [6] and utilize the competitive learning which is implemented as a self-generating
neural tree (SGNT). The abilities of SGNN make it suitable for the base classifier of
multiple classifier systems. In order to improve in the accuracy of SGNN, we proposed
ensemble self-generating neural networks (ESGNN) for classification [7] as one of mul-
tiple classifier systems. Although the accuracy of ESGNN improves by using various

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 143–150, 2014.
c© Springer International Publishing Switzerland 2014
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SGNN, the computation cost, that is the computation time and the memory capacity in-
creases in proportion to the increase in numbers of SGNN in multiple classifier systems.

In an earlier paper [8], we proposed a pruning method for the structure of the SGNN
in multiple classifier systems to reduce the computation cost. In this paper, we propose
a novel pruning method for more effective processing and we call this model a self-
organizing neural grove (SONG). This pruning method is constructed in two stages. In
the first stage, we introduce an on-line pruning algorithm to reduce the computation
cost by using class labels in learning. In the second stage, we optimize the structure
of the SGNT in multiple classifier systems to improve the generalization capability by
pruning the redundant leaves after learning. In the optimization stage, we introduce a
threshold value as a pruning parameter to decide which subtree’s leaves to prune and
estimate with 10-fold cross-validation [9]. After the optimization, the SONG improve
its classification accuracy as well as reducing the computation cost. We use bagging [10]
and boosting [11] as a resampling technique for the SONG.

We investigate the improvement performance of the SONG by comparing it with
support vector machine (SVM) [12] using ten problems in the UCI machine learning
repository [13].

The rest of the paper is organized as follows. The next section shows how to construct
the SONG. Section 3 shows the experimental results. Then section 4 is devoted to some
experiments to investigate the incremental learning performance of SONG.

2 Constructing Self-organizing Neural Grove

In this section, we describe how to prune redundant leaves in the SONG. First, we
mention the on-line pruning method in the learning of SGNT. Second, we show the
optimization method in constructing the SONG.

2.1 On-line Pruning of Self-generating Neural Tree

SGNN are based on SOM and are implemented as an SGNT architecture. The SGNT
can be constructed directly from the given training data without any intervening human
effort. The SGNT algorithm is defined as a tree construction problem of how to con-
struct a tree structure from the given data which consists of multiple attributes under
the condition that the final leaves correspond to the given data.

Before we describe the SGNT algorithm, we denote some notations.

– input data vector: ei ∈ IRm.
– root, leaf, and node in the SGNT: nj .
– weight vector of nj: wj ∈ IRm.
– the number of the leaves in nj : cj .
– distance measure: d(ei,wj).
– winner leaf for ei in the SGNT: nwin.

The SGNT algorithm is a hierarchical clustering algorithm. The pseudo C code of
the SGNT algorithm is given as follows:

Algorithm (SGNT Generation)
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Table 1. Sub procedures of the SGNT algorithm

Sub procedure Specification
copy(nj ,ei/wwin) Create nj , copy ei/wwin as wj in nj .
choose(ei, n1) Decide nwin for ei.
leaf(nwin) Check nwin whether nwin is a leaf or not.
connect(nj , nwin) Connect nj as a child leaf of nwin .
prune(nwin) Prune leaves if the leaves have the same class.

Input:
A set of training examples E = {e_i},

i = 1, ... , N.
A distance measure d(e_i,w_j).

Program Code:
copy(n_1,e_1);
for (i = 2, j = 2; i <= N; i++) {

n_win = choose(e_i, n_1);
if (leaf(n_win)) {
copy(n_j, w_win);
connect(n_j, n_win);
j++;

}
copy(n_j, e_i);
connect(n_j, n_win);
j++;
prune(n_win);

}
Output:

Constructed SGNT by E.

In the above algorithm, several sub procedures are used. Table 1 shows the sub proce-
dures of the SGNT algorithm and their specifications.

In order to decide the winner leaf nwin in the sub procedure choose(e i,n 1),
competitive learning is used. This sub procedure is recursively used from the root to
the leaves of the SGNT. If an nj includes the nwin as its descendant in the SGNT, the
weight wjk (k = 1, 2, . . . ,m) of the nj is updated as follows:

wjk ← wjk +
1

cj
· (eik − wjk), 1 ≤ k ≤ m. (1)

In the SGNT, the input vector xi corresponds to ei, and the desired output yi corre-
sponds to the network output oi which is stored in one of the leaf neurons, for (xi, yi) ∈
D. Here, D is the training data set which consists of data {xi, yi|i = 1, . . . , N},
xi ∈ IRm is the input and yi is the desired output. After all training data are inserted
into the SGNT as the leaves, the leaves each have a class label as the outputs and the
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weights of each node are the averages of the corresponding weights of all its leaves.
The whole network of the SGNT reflects the given feature space by its topology.

We explain the SGNT generation algorithm using an simple example. In this exam-
ple, m is one and the four training data (xi, yi) is (1,1), (2,2), (3,3), and (4,4). Hence,
e11 = 1, e21 = 2, e31 = 3, and e41 = 4. Fig. 1 shows an example of the SGNT gener-
ation. First, e11 is just copied to a neuron n1 as the root, and e11 is substituted to w11

(Fig. 1 (a)). In Fig. 1, the circle is the neuron, the integer in the circle is the number of
neuron j, the integer of left-upper of the circle is cj , and the integer of under the circle
is wj1. Next, n2 and n3 are generated as the children of n1 with w21 = 1, w31 = 2. w11

is updated by e21 to 1+1/2(2− 1) = 1.5 (Fig. 1 (b)). Next, the winner in {n1, n2, n3}
is n3 since d(e3,w1) = 1.5, d(e3,w2) = 2, and d(e3,w3) = 1; and thus, n4 and n5

are generated as the children of n3 with w41 = 2, w51 = 3. w31 is updated by e31 to
2+ 1/2(3− 2) = 2.5 and w11 is updated by e31 to 1.5+ 1/3(3− 1.5) = 2 (Fig. 1 (c)).
Finally, n6 and n7 are generated as the children of n5 with w61 = 3, w71 = 4. w51 is
updated by e41 to 3+1/2(4−3) = 3.5, w31 is updated by e41 to 2.5+1/3(4−2.5) = 3,
and w11 is updated by e41 to 2 + 1/4(4− 2) = 2.5 (Fig. 1 (d)).

Note, to optimize the structure of the SGNT effectively, we remove the threshold
value of the original SGNT algorithm in [5] to control the number of leaves based on
the distance because of the trade-off between the memory capacity and the classification
accuracy. In order to avoid the above problem, we introduce a new pruning method in
the sub procedure prune(n win). We use the class label to prune leaves. For leaves
that have the nwin’s parent node, if all leaves belong to the same class, then these leaves
are pruned and the parent node is given to the class.

2.2 Optimization of the SONG

The SGNT has the capability of high speed processing. However, the accuracy of the
SGNT is inferior to the conventional approaches, such as nearest neighbor, because the
SGNT has no guarantee to reach the nearest leaf for unknown data [14]. Hence, we
construct the SONG by taking the majority of multiple SGNT’s outputs to improve the
accuracy.

(a) (b) (c) 
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Fig. 1. An example of the SGNT generation
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Although the accuracy of the SONG is superior or comparable to the accuracy of
conventional approaches, the computational cost increases in proportion to the increase
in the number of SGNTs in the SONG. In particular, the huge memory requirement
prevents the use of SONG for large datasets even with the latest computers.

In order to improve the classification accuracy, we propose an optimization method
of the SONG for classification. This method has two parts, the merge phase and the
evaluation phase. The merge phase is performed as a pruning algorithm to reduce dense
leaves (Fig. 2).

1 begin initialize j = the height of the SGNT
2 do for each subtree’s leaves in the height j
3 if the ratio of the most class ≥ α,
4 then merge all leaves to parent node
5 if all subtrees are traversed in the height j,
6 then j ← j − 1
7 until j = 0
8 end.

Fig. 2. The merge phase

This phase uses the class information and a threshold value α to decide which sub-
tree’s leaves to prune or not. For leaves that have the same parent node, if the proportion
of the most common class is greater than or equal to the threshold value α, then these
leaves are pruned and the parent node is given the most common class.

The optimum threshold values α of the given problems are different from each other.
The evaluation phase is performed to choose the best threshold value by introducing
10-fold cross validation (Fig. 3).

3 Experimental Results

We investigate the computational cost (the memory capacity and the computation time)
and the classification accuracy of the SONG with bagging for ten benchmark problems

1 begin initialize α = 0.5
2 do for each α
3 evaluate the merge phase with 10-fold CV
4 if the best classification accuracy is obtained,
5 then record the α as the optimal value
6 α ← α+ 0.05
7 until α = 1
8 end.

Fig. 3. The evaluation phase
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in the UCI machine learning repository [13]. We evaluate how the SONG is pruned
using 10-fold cross-validation for the ten benchmark problems. In this experiment, we
use a modified Euclidean distance measure for the SONG. Since the performance of the
SONG is not sensitive to the threshold value α, we set the different threshold values α
to vary from 0.5 to 1; α = [0.5, 0.55, 0.6, . . . , 1]. We set the number of SGNT K in the
SONG as 25 and execute 100 trials by changing the sampling order of each training set.
All experiments in this section were performed on an UltraSPARC workstation with a
900MHz CPU, 1GB RAM, and Solaris 8.

Table 2 shows the average classification accuracy of 10 trials for the SONG with
bagging and boosting. On boosting, we implement AdaBoost [11] to the SONG. Since
original AdaBoost algorithm have been proposed for binary classification problems,
we use four binary classification problems in Table 2. In comparison with boosting,
bagging is superior to boosting on all of the 4 datasets. In short, bagging is better than
boosting in terms of the classification accuracy.

To show the advantages of the SONG, we compare it with SVM on the same prob-
lems. In the SONG, we choose the best classification accuracy of 100 trials with bag-
ging. In SVM, we use C-SVM in libsvm [12] with radial basis function kernel. We
select the parameters of SVM, the cost parameters C and the kernel parameters γ, from
15× 15 = 225 combinations by 10-fold cross validation; C = [212, 211, 210, . . . , 2−2]
and γ = [24, 23, 22, . . . , 2−10]. We normalize the input data from 0 to 1 for all problems
in SONG and SVM. All methods are compiled by using gcc with the optimization level
-O2 on the same workstation.

Table 3 shows the classification accuracy, the memory requirement, and the com-
putation time achieved by the SONG and SVM. Next, we show the results for each
category. First, in view point of the classification accuracy, the SONG superior to SVM
3 of the 10 datasets and degrade 1.7% in the average. Second, in terms of the memory
requirement, even though the SONG includes the root and the nodes which are gener-
ated by the SGNT generation algorithm, this is less than SVM for 8 of the 10 datasets.
Although the memory requirement of the SONG is totally used K times in Table 3, we
release the memory of SGNT for each trial and reuse the memory for effective com-
putation. Therefore, the memory requirement is suppressed by the size of the single
SGNT. Finally, in view of the computation time, although the SONG consumes the cost
of K times of the SGNT to construct the model and test for the unknown dataset, the
average computation time is faster than SVM. The SONG is slower than SVM for small

Table 2. The average classification accuracy of 10 trials for the SONG with bagging and boosting.
The standard deviation is given inside the bracket (×10−3.)

SONG with bagging SONG with boosting
Dataset SGNT SONG ratio SGNT SONG ratio
breast-cancer-w 0.96(4.74) 0.975(2.86) +1.5 0.96(6.47) 0.957(4.13) -0.3
ionosphere 0.847(19.3) 0.89(8.23) +4.3 0.854(18.26) 0.773(17.4) -8.1
liver-disorders 0.571(21.4) 0.636(11.0) +6.5 0.588(17.0) 0.572(24.3) -1.6
pima-diabetes 0.705(9.8) 0.754(4.96) +4.9 0.696(12.2) 0.722(6.82) +2.6
Average 0.771 0.814 +4.3 0.775 0.756 -1.9
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Table 3. The classification accuracy, the memory requirement, and the computation time of ten
trials for the best pruned SONG and SVM

classification acc. memory requirement computation time (s)
Dataset SONG SVM SONG SVM SONG SVM
balance-scale 0.885 0.992 109.93 60.6 0.82 4.77
breast-cancer-w 0.976 0.973 26.8 79.6 1.18 0.64
glass 0.758 0.738 91.33 132.4 0.36 0.61
ionosphere 0.912 0.954 51.38 147.9 1.93 1.25
iris 0.973 0.96 11.34 51.3 0.13 0.06
letter 0.958 0.977 6208.03 7739.7 208.52 2359.39
liver-disorders 0.685 0.73 134.17 214.5 0.54 2.07
new-thyroid 0.972 0.977 45.74 44.1 0.23 0.22
pima-diabetes 0.764 0.766 183.57 363.5 1.72 5.63
wine 0.983 0.989 11.8 62.2 0.31 0.15
Average 0.887 0.904 687.41 889.58 21.57 236.88

datasets such as glass, ionosphere, and iris. However, the SONG is faster than SVM for
large datasets such as balance-scale, letter, and pima-diabetes. Especially, in letter, the
computation time of the SONG is faster than SVM about 11 times. We need to repeat
10-fold cross validation many times to select the optimum parameter for α, k, C, and
γ. This evaluation consumes much computation time for large datasets such as letter.
Therefore, the SONG based on the fast and compact SGNT is useful and practical for
large datasets. Moreover, the SONG has the ability of parallel computation because
each classifier behaves independently. In conclusion, the SONG is a practical method
for large-scale data mining compared with SVM.

4 Conclusions

In this paper, we proposed a new pruning method for the multiple classifier system
based on SGNT, which is called SONG, and evaluated the computation cost and the ac-
curacy. We introduced an on-line and off-line pruning method and evaluated the SONG
by 10-fold cross-validation. Experimental results showed that the memory requirement
reduced remarkably, and the accuracy increased by using the pruned SGNT as the base
classifier of the SONG. The SONG is a useful and practical multiple classifier system
to classify large datasets. In future work, we will study a parallel and distributed pro-
cessing of the SONG for large scale data mining.

Acknowledgment. The author would like to thank the anonymous referees for their
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Abstract. In this paper, we present an analysis on transfer learning using the 
Fuzzy Min-Max (FMM) neural network with an online learning strategy. 
Transfer learning leverages information from the source domain in solving 
problems in the target domain. Using the online FMM model, the data samples 
are trained one at a time. In order to evaluate the online FMM model, a transfer 
learning data set, based on data samples collected from real landmines, is used. 
The experimental results of FMM are analyzed and compared with those from 
other methods in the literature. The outcomes indicate that the online FMM 
model is effective for undertaking transfer learning tasks. 

Keywords: Data classification, fuzzy min-max neural network, online learning, 
transfer learning. 

1 Introduction 

Transfer learning focuses on utilizing data from the one (source) domain to solve 
problems in a different, but related domain, or known as the target domain [1]. 
Traditional machine learning models typically assume that the training samples 
collected have the same distribution and characteristics as the incoming data samples 
during operation [2]. In real-world situations, this assumption may not always be true. 
As an example, in time-varying environments, the training data samples are unlikely 
to have the same distribution as the actual incoming data samples during the operation 
phase, since the environment is non-stationary. 

In order to have an effective machine learning model, a large number of data 
samples from a particular task are required during the training phase [3].  This can be 
a problem when it is not feasible to collect a large number of data samples, or it is too 
costly to do so in real environments.  As such, in this paper, transfer learning using a 
machine learning model that is able to learn incrementally is studied.  The rationale 
behind transfer learning is although data distribution in the source and target domains 
is different, common knowledge in both domains can be adapted during learning [4]. 

In transfer learning, the key issues to solve include differences in the task and type of 
knowledge to be transferred [1].  Transfer learning can be utilized in various real-world 
applications. It has been shown to be useful for learning manufacturing conditions and 
requirements of high-volume products and for adapting them in improving the processes 
of low-volume products [5]. In another case study, the location of an object can be found 
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using access points with machine learning models with transfer learning [6]. As standard 
methods could not adapt to changes in the environment, an indoor location estimation 
model based on transfer learning and feature relevance network-based method was 
introduced [6]. For the detection of facial landmark and facial expression recognition, a 
regression-based transfer learning technique was used, where only data samples from one 
of the two classes were used in the target domain [7]. The results indicated increased 
accuracy rates in facial-based detection and recognition applications [7]. 

We aim to tackle transfer learning tasks using the Fuzzy Min-Max (FMM) 
supervised neural network [8] in this paper.  The online learning strategy of FMM 
allows it to incrementally learn new knowledge from new data samples without the 
need to retrain the network with previously learned knowledge [9].  The main issue in 
online learning is on how the system can adapt to new information in an incremental 
manner without forgetting previously learned knowledge, which is known as the 
stability-plasticity dilemma [10].  Here, FMM possesses salient features to overcome 
this stability-plasticity dilemma in undertaking online learning problems.  Since FMM 
is able to avoid the need of retraining, learning can be performed on-the-fly by 
training one data sample after another [8].  This is important to tackle large data sets 
in time-varying environments. 

This study is an extension of [11], whereby learning is conducted using individual 
data samples, instead of blocks of data samples.  Each data sample is fed to FMM on-
the-fly for evaluation and training.  As such, the main contribution of this study is a 
truly online learning model for tackling transfer learning problems.  The resulting 
model eliminates the periodic en-bloc learning cycle as adopted in [11].  Its efficacy is 
clearly shown based on the benchmark problems presented in Section 3. 

The organization of this paper is as follows.  In Section 2, the online learning model 
of FMM is detailed. This is followed by an explanation on the transfer learning 
experiment and the results in Section 3. 

2 Online FMM Model 

2.1 An Overview of the Online FMM Model 

In this section, the procedure of online FMM is detailed.  Table 1 shows the overall 
online FMM procedure for transfer learning.   

Table 1. The procedure of online FMM for transfer learning 

1. Initialize the minimum and maximum points FMM hyperbox points 
2. Load a data sample, and evaluate (test) the performance of FMM with the 

data sample 
3. Use the data sample with the following steps of online learning 

a) Identify the closest hyperbox for the input data sample for expansion, 
otherwise add new hyperbox 

b) Check whether the expansion process causes any overlaps among 
hyperboxes of different classes 

c) If overlaps exist, eliminate overlaps by contracting hyperboxes 
4. Repeat steps 2 and 3 until all data samples have been used for evaluation 

(testing) and followed by training 
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By creating the hyperboxes online and incrementally, FMM is able to absorb 
knowledge autonomously when it is provided with increasing number of data samples. 
As such, an online learning strategy is devised such that FMM can be exploited to tackle 
transfer learning problems.  A set of data samples is presented on-the-fly, one at a time. 
For each data sample, FMM is first used to provide a predicted target class for the data 
sample (i.e. evaluation/testing); therefore producing a performance metric. Then, FMM 
training with the data sample is initiated, with online, one-pass learning. 

The testing and then training process is repeated for the remaining data samples.  
This online learning strategy allows FMM to adapt to data distribution that can change 
over time, or data samples that are drawn from noisy and/or non-stationary environments. 
In other words, FMM handles changes in the target domain by learning the  
new characteristics embedded in the incoming data samples in an incremental  
manner; therefore transfer learning takes place. The dynamics and structure of FMM  
are detailed next. 

2.2 Dynamics of the FMM Model 

The FMM classification model [8] consists of an input layer (FA), a hidden 
(hyperbox) layer (FB), and an output layer (FC).  The number of input nodes equals 
the number of dimensions of the input pattern, while the number of nodes in the 
output layer equals the number of target classes.  FA to FB connections are made 
through matrices V and W, which store the minimum and maximum points of the 
associated hyperboxes, respectively.  The connections between nodes FB and FC are 
binary-valued, and are stored in matrix U. 

The FMM model learns by forming a knowledge base comprising a set of multi-
dimensional hyperboxes incrementally. The size of each hyperbox is controlled by a 
user-defined parameter, θ, set between 0 and 1. The number of hyperboxes is large 
when θ is small, and vice versa. The fuzzy membership function is measured with 
respect to the minimum and maximum points of the hyperbox, and to the extent in 
which an input pattern fits within the hyperbox. For an input pattern X with n-
dimension in a unit cube space, In, each hyperbox with a fuzzy set Bj is defined as: 

( ){ }, , , , ,  ,n
j j j j jB X V W f X V W X I= ∀ ∈  (1)

where Vj and Wj is the minimum and maximum points of the jth hyperbox.  The 
combined fuzzy set that is used to classify the Kth target class, Ck, is 

,k j
j K

C B
∈

=  (2)

where K is the index of class k associated hyperboxes.  
In FMM, the learning process is concerned with finding and fine-tuning the 

hyperbox boundaries.  The learning algorithm of FMM allows hyperboxes of the 
same class to overlap one another, while overlapping among hyperboxes of different 
target classes needs to be eliminated.  The membership function for the jth hyperbox, 
Bj(Xh), 0 ≤ Bj(Xh) ≤ 1, measures the extent to which the hth input pattern, Xh, falls 
outside hyperbox Bj.  This can be considered as a measurement of the extent of each 
component is lower (or higher) than the minimum (or maximum) point along each 
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dimension that extends over the minimum and maximum bounds of the hyperbox.  
The function that meets all these criteria is the sum of two complements, i.e., the 
average number of the maximum point violation and the average number of the 
minimum point violation.  The resulting membership function is: 

( )( )( )
( )( )( )1

max 0,1 max 0, min 1,1
( ) ,

2 max 0,1 max 0, min 1,

n
hi ji

j h

i hi ji

x w
b X

n x w

γ

γ=

− −
=

+ − −

 
 
  

  (3)

where, Xh = (xh1,xh2,…..,xhn) ∈ In is the hth input pattern, and γ is the sensitivity 
parameter that controls how quickly the membership values decrease when the 
distance between Xh and Bj increases, Vj = (vj1,vj2,…..,vjn) is the minimum point of Bj 
and Wj = (wj1,wj2,….,wjn) is the maximum point of Bj.  The FB to FC connection is 
determined as follows. 

1     if  is a hyperbox for class 
,

0     otherwise

j k

jk

b C
u =





 (4) 

where bj is the jth node and Ck is the kth node.  Each FC node represents a target class.  
The output of the FC node constitutes the degree to which input pattern Xh fits within 
class k.  The transfer function of each FC node performs the fuzzy union operation of 
the appropriate hyperbox fuzzy set values, and is defined as: 

1
max ,

m

k j jk
j

c b u
=

=  (5)

Note that the FC class nodes can be utilized in two ways.  The outputs are used 
directly when a soft decision is required.  On the other hand, if a hard decision is 
required, the FC node with the highest value is determined, and its node value is set to 
1 to indicate that it is the closest target class, while the remaining FC node values are 
set to 0, i.e., the principle of winner-takes-all [12]. 

The learning algorithm of FMM consists on a series of expansion and contraction 
processes of the hyperboxes.  The training set, D, consists of M ordered pairs, 
{Xh,Ch}, where, Xh = (xh1, xh2,…..,xhn) ∈ In is the hth input pattern, and Ch ∈ {1,2,…,m} 
is the index of one of the m target classes.  The learning process of FMM begins by 
selecting an ordered pair from D and finding a hyperbox of the same class that can be 
expanded.  The expansion criterion has a constraint to be met, and is defined as: 

( ) ( )( )
1

max , min , ,
n

ji hi ji hi
i

n w x v xθ
=

≥ −  (6)

where θ is the hyperbox size.  When the expansion criterion cannot be found, a new 
hyperbox is formed in the hidden layer of the network.   

There is a possibility of overlaps among the existing hyperboxes when the 
hyperboxes expand.  An overlap test is introduced to check if the overlap occurs 
among the same or different classes.  A number of cases exist to identify the overlap 
between two hyperboxes from different classes.  During the search process, if an 
overlap is found, the index of the dimension and the smallest overlap value is 
identified and used for the contraction process.  Details of FMM are available in [8]. 
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3 Experimental Study 

In this section, we present an empirical evaluation of the FMM model to tackle transfer 
learning problems using the Landmine data set [13].  To comprehensively evaluate the 
efficacy of FMM in tackling transfer learning problems, a series of experiments with 
both offline and online learning was conducted.   In offline learning experiments, the data 
samples were divided into training and test sets.  FMM was first trained using the training 
data set.  The trained network was then evaluated using the test set.  The experiment was 
repeated ten times.  On the other hand, in online learning experiments, the data samples 
were fed one at a time. Each data sample was first used as a test datum to produce the 
performance metrics of FMM, and then used as the training datum to reinforce  
the knowledge base of FMM in tackling changes or drifts in knowledge contained in the 
incoming data samples.  In the offline experiments, the average results of 10 runs were 
computed while for the online experiments, the averages in moving window of 100 
samples were computed.  All experiments were conducted using MATLAB® R2013a. 

3.1 Landmine Data Set 

The Landmine data set was collected from real landmines.  A total of 29 data sets 
were available [13], which were collected from different landmine fields.  In each 
data sample, a nine-dimensional feature vector was formed based on features 
extracted from radar images, and the target classes were either true or false mines.  As 
the data sets were collected from various regions with different types of ground 
surface conditions, they were dominated by different distributions [15].  As explained 
in [14], the first ten data sets were collected from foliated regions, while data sets 20 
to 24 were from bare earth or desert.  Following the experiments in [15], the first five 
data sets were combined as the source data samples, while data sets 20 to 24 were 
used as the target data samples.  In addition, data sets 6 to 10 were combined as they 
exhibited similar distributions with that of the first five data sets [15].  

Shi et al. [15] applied an active learning algorithm (i.e., AcTraK or Actively 
Transfer Knowledge) with the concept of using out-of-domain data in prediction of 
domain data, and applied it to the Landmine data set.  The results were compared with 
those from TrAdaBoost [15]. Table 2 shows the FMM accuracy rates and those 
reported in [15]. The online FMM scores are the highest for all five experiments, 
which is followed by offline FMM. The results from both online and offline 
experiments are close to AcTraK [15], and higher (by up to 5%) than those from 
TrAdaBoost [15]. It should be noted that while the difference in accuracy between 
online FMM and AcTraK (as well as offline FMM) is small, online FMM achieves 
these results with only one-pass learning through the data samples without retraining. 

Based on the experiments in Table 2, the average computational durations using an 
Intel Core™ i5 1.70GHz processor with 4GB RAM for a single run of offline and online 
FMM experiment were 3.5 and 4.3 seconds, respectively.  For the online learning 
performance of FMM, the average accuracy was calculated using a 100-moving window. 
Figs. 1 to 5 show the average accuracy for groups 1 to 5 vs the individual groups from 
data sets 20 to 24. In general, all accuracy rates are above 80%, indicating good 
performances of online FMM.  The numbers of hyperboxes increased with increasing 
number of data subsets.  This signified that FMM was able to absorb knowledge online 
when new data samples were presented incrementally on an online learning setting. 
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Table 2. Accuracy rates from different models 

1-5 vs TrAdaBoost [15] AcTraK [15] Offline FMM Online FMM 

20 89.76% 94.49% 94.72% 95.15% 
21 86.04% 94.48% 94.68% 95.08% 
22 90.50% 94.49% 94.75% 95.23% 
23 88.42% 94.49% 94.72% 95.18% 
24 90.70% 94.49% 94.78% 95.25% 

 

From Figs. 1 to 5, the performance goes up and down, but all above 80%.  Besides 
that, online FMM has a dip in its performance when the data distribution changes.  As 
an example, there was a reduction in performance when moving from one group of 
data samples to the next, e.g. from data sample 800 to 1000 in Fig. 1. It can also be 
seen the largest decrease in performance occurred when a new group of data samples 
was applied, e.g. from data sample 2600 onwards when data set 20 was first used.  
Being a truly online learning system, FMM quickly builds up knowledge from the 
incoming data samples; therefore stabilizing its accuracy rate. 

 

 
Fig. 1. Groups 1-5 vs 20 

 
Fig. 2. Groups 1-5 vs 21 

 
Fig. 3. Groups 1-5 vs 22 

 
Fig. 4. Groups 1-5 vs 23 
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Fig. 5. Groups 1-5 vs 24 

In addition to the individual experiments, a group-based experiment between 1 to 5 
vs 6 to 10 as in [15] was conducted.  The accuracy rates of all experiments were close 
(above 94%).  The accuracy rate was achieved by online FMM, followed by offline 
FMM.  The online learning performance of FMM is shown in Fig. 6.  Similarly, the 
accuracy rates became higher with increasing number of hyperboxes when more and 
more data samples were presented, indicating a truly online learning system. 

Table 3. Accuracy rates of the group-based experiment 

1-5 vs TrAdaBoost [15] AcTraK [15] Offline FMM Online FMM 

6-10 94.76% 94.49% 94.88% 95.32% 

 

 
Fig. 6. Groups 1-5 vs 6-10 

From Fig. 6, it can be seen that the accuracy rates are all above 80%, similar to 
those in previous experiments.  In Fig. 6, a number of sharp dips can be noticed, e.g. 
from data samples 2000 to 2400 owing to the change in the incoming data from 
groups 1 to 5 to groups 6 to 10.  In all figures, peaks and troughs in the online 
performance curves can be observed.  The decrease in accuracy rates occurs when the 
data samples drawn come from different sources.  However, FMM is able to absorb 
new information from the new incoming samples, as indicated by the increase in the 
number of hyperboxes; therefore regaining its performance.  Both offline and online 
FMM models produce better results than those reported in [15].  It should be noted 
that the online FMM model has the advantage of learning on-the-fly and in one pass 
through the data samples without the need of re-training.  The performance curves 
clearly demonstrate its effectiveness in handling transfer learning problems in an 
online learning environment.  This is the key benefit of the online FMM model, which 
constitutes the main contribution of this study. 

4 Conclusions 

The use of FMM in tackling transfer learning tasks has been presented in this paper.  
An online learning strategy that allows transfer learning to take place in FMM has 
been formulated.  A series of experiments using the Landmine data samples has been 
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conducted to evaluate the efficacy of online FMM in undertaking transfer learning 
tasks. Six experiments using individual and group-based data samples comparison 
have been conducted.  The performances of online FMM are very encouraging, as 
compared with the results from other methods published in the literature. 

In further work, the online FMM model will be explored to tackle transfer learning 
problems in various domains.  One such application is on condition monitoring of 
machine faults, where faults from different, but related, machines can be easily 
tackled. In addition, hardware implementation of the online FMM model can be 
accomplished to handle real-time transfer learning problems.  
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Abstract. This article proposes a supervised approach to evaluate the contribu-
tion of explanatory variables to a clustering. The main idea is to learn to predict
the instance membership to the clusters using each individual variable. All vari-
ables are then sorted with respect to their predictive power, which is measured
using two evaluation criteria, i.e. accuracy (ACC) or Adjusted Rand Index (ARI).
Once the relevant variables which contribute to the clustering discrimination have
been determined, we filter out the redundant ones thanks to a supervised method.
The aim of this work is to help end-users to easily understand a clustering of
high-dimensional data. Experimental results show that our proposed method is
competitive with existing methods from the literature.

1 Introduction

Everyday, huge amounts of data are generated by users via the web, social networks, etc.
Clustering algorithms are a tool of choice to explore these high-dimensional data sets.
However, their use is often hampered by the lack of understandability of the results. End-
users would like to identify the most relevant variables that suffice to explain the observed
clusters, but these are not easily detectable once a clustering has been performed. It is
therefore crucial to be able to evaluate the contribution of each descriptive variable to the
clustering process. Indeed, not all variables are relevant to the clustering: some may be
irrelevant, some may be noisy and some may be redundant or (and) correlated.

The purpose of this study is to find a simple way to assist the analysts in their interpre-
tation of a clustering result. The idea is to sort variables according to their contribution
to a clustering using a supervised approach. The importance of a variable is evaluated as
its power to predict the membership of each object to a cluster. In this paper, we restrict
ourselves to an univariate classifiers to obtain an univariate weight for each variable.

The paper is organized as follows: Section 2 describes briefly some related work. Then,
Section 3 presents the proposed method to score the contribution of variables to a clus-
tering. This section also presents an alternative method to eliminate redundant variables
among the relevant variables. The experimental results are presented Section 4. Finally,
the perspectives and the further research are presented as a conclusion in the last section.

2 Related Work

Recently, the measure of the importance of the variables has been increasingly stud-
ied in the unsupervised learning. The methods proposed in this context can mainly be
divided into two categories: features selection and validation indices.

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 159–166, 2014.
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Features selection methods can be grouped either as wrapper or as filter approaches.
The wrapper approach aims to incorporate the feature selection in the clustering pro-
cess, whereas, the idea of the filter approach is first to pre-select the features and then
to use the selected features in the clutering process. In the unsupervised context, the
wrapper methodology was initially proposed by Brodley in [1].

Inspired by the idea given in [1], Zhu et al. presented in [2] a novel method called
ULAC. This method is essentially based on the analysis of the correlation among
the variables. Moreover, some methods aim at removing the redundancy among vari-
ables. Accordingly, they rely on estimations of mutual information or of correlation
([3],[4],[5]). Mitra et al. proposed in [3] a method based on a measure of similarity be-
tween variables after elimination of the redundant variables. This measure is defined as
the lowest eigenvalue of the correlation matrix. In [4], Vesanto et al. used a visualiza-
tion tool (SOM-based approach) to detect the correlation between features. The same
approach is used by Guerif et al in [5]. The difference between the two approaches is
that Guerif et al. integrate a weight criterion in the SOM algorithm to reduce the effect
of redundancy.

Other approaches have been presented to evaluate the clustering performance intro-
ducing criteria such as validation indices which can be adapted to evaluate the variables
importance. Those approaches are divided in two main types: external and internal
[6]. The external approaches exploit the supervised information given by the ID-cluster
(identification given to each discovered cluster that can be subsequently used as a “la-
bel”). Among these approaches, we can cite: Adjusted Rand index [7], F-measure [8]
and MMI [9]. The internal approaches use unsupervised criteria like the inertia. Among
these methods, we can cite: Davies-Bouldin [10], Silhouette [11], Dunn-index [12], SD
[13], XB-index [14], I-index [14] and BIC [15] indices.

3 Contribution

In this section, we propose two supervised approaches which fall within the context of
the external validation indices. These approaches allow an interpretation of the cluster-
ing output based on relevant variables in case where the clsutering does not suffer from
a very bad quality (otherwise there is no sense to interpret the result). In the remainder
of this paper, we call this output (or the clustering result) ‘the reference clustering’. The
first supervised approach consists in measuring the variables importance with respect
to their predictive power regarding the cluster Ids. The second one aims at detecting the
redundant variables.

3.1 Variables Importance

The objective of this work is to propose a simple way to identify the most relevant
features from the output of a clustering. In order to retain all variables, we rank the
variables according to their importance without doing a selection. The main idea is to
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turn this problem into a supervised classification problem where the cluster member-
ship (ID-cluster) is used as a target class. Then, for each variable, we use a supervised
classification algorithm to predict the ID-cluster. We define the importance of variables
as their power to predict the ID cluster: a variable is relevant only if it is able to predict
correctly the ID cluster obtained from the reference clustering (i.e. clustering using all
variables). To measure the importance of each variable, we use two evaluation criteria:
Accuracy and Adjusted Rand Index:

– Accuracy (ACC) criterion: a variable is considered relevant if the associated accu-
racy value is high.

– Adjusted rand index (or ARI) is a popular cluster validation index proposed by Hu-
bert and Arabie [7]. It can be used to evaluate the performance of the classification
as in [16]. In this work, we calculate the ARI between: (i) the reference cluster-
ing (ii) the predicted membership (ID-cluster) associated to the variable of which
we want to measure the importance. The idea behind this is to compare the refer-
ence clustering with each predictive membership associated to each variable. So, a
variable is important if the associated predictive ID-cluster is highly similar to the
reference clustering, i.e. the ARI value is close to 1.

The algorithm 1 presented below provides a summary of our approach:
An interesting measure of importance must allow us to sort variables according to

their relevance in a clustering process and the least influent variables should only con-
tain little or irrelevant information to create the clusters. Consequently, the quality of the
obtained clustering which is deprived of these variables remains substantially the same
or even slightly better (less noise). In contrast, the removal of an important variable
deprives the algorithm of important information and leads to a poor clustering result.

Notations:
X: The training database constituted of N examples and d explanatory variables, (Xab is
the value of the variable b for the example a)
M : A supervised classifier
CLU : A clustering algorithm
Mref : The reference clustering model
IdClusters : A vector of the N memberships
R : Ranking of the d explanatory variables

XPRE ← preprocessing (X)
Mref ← train (CLU, XPRE)
IdClusters← Membership(XPRE, Mref )
for i=1 to d do

Mi ← train (XPRE.i , IdClusters)
ACCi ← computeAccuracy (Mi)
ARIi ← computeAdjustedRandIndex (Mi)

end
RACC ← sortInDescendingOrder (ACCi, i=1 to d)
RARI ← sortInDescendingOrder (ARIi, i=1 to d)

Algorithm 1. Algorithm for ranking
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To compare our proposed method to other existing methods from the literature, the
curve of the ARI values versus the number of variables used will be plotted. This curve
is obtained as follows:

For each iteration until one reaches the number of variables:

– Eliminate the less relevant variable with respect to the chosen criterion;
– New partition: run the clustering algorithm without this variable;
– Calculate the ARI value between the reference clustering and the new partition.

The review of the results can be visually made by observing the curve evolution (for
example, see Figure 1).

3.2 Redundant Variables

Once the variables that are the most informative for the clustering have been identified,
it is important to filter out the redundant ones in order to improve the understandability
of the result. To solve this problem, we propose a supervised approach.

The concept of redundancy is based on the similarity between partitions obtained us-
ing the ”predicted ID-Clusters” (using Algorithm 1) for each variable. The assumption
is: Xi and Xj are redundant if they produce similar partitions when considering their
”predicted ID-Clusters” (using Mi and Mj). A way to measure the similarity between
these two partitions is to use the ARI criterion. For example, the ARI criterion will be
close to 1 when it calculated between two partitions containing same ”predicted ID-
Clusters” or between two partitions containing symetric ”predicted ID-Clusters”. The
resulting algorithm is presented below (see Algorithm 2).

Notations:
X: The training database constituted of N examples and d explanatory variables
M.: d supervised classifier models coming from the Algorithm 1
PredId: A vector of size N of the predicted ID-Cluster for a given explanatory variable
RE: A matrix of size dxd values

XPRE ← preprocessing (X)
for i=1 to d do

PredId(d)← PredictionOfTheMembership (Mi, XPRE.i)
end
for all pairs of variable (l, m) do

RE(l,m)← computeAdjustedRandIndex (PredId(l),PredId(m))
end

Algorithm 2. Algorithm for redundant variables

4 Experimental Results

4.1 Protocol

To evaluate the behavior of our approach, we have selected 3 different datasets from the
UCI [17]: WINE, PIMA and WAVEFORM datasets. The two first datasets are used to
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illustrate the competitiveness of the proposed method to measure the variables impor-
tance comparing to two other methods from the literature. Among these methods, we
decide to use efficient and often used indexes from the literature: Davies-Bouldin [10]
and SD indexes [13]. The last dataset is used to illustrate the behavior of our approach
to detect the redundant variables.

We proceed as follows to evaluate the performance of our approach:

– the pre-processing used is standardization1;
– to obtain the reference clustering, the K-means algorithm [18] has been used where:

• K is equal to the number of target class for each used datasets (as in [19]);
• the method used to initialize the centroids is K-means++ algorithm [20];
• the number of replicates is 25 2.

– a decision tree (CART) [21] has been used to predict the ID-cluster3.

4.2 Variables Contribution

The first experimentation to test our approach is made using the WINE dataset which
is constituted of N = 178 sample points described with d = 13 variables and asso-
ciated with three different classes. The ARI obtained between the reference clustering
(using K-means algorithm, where K=3) and the target class is equal to 0.91. Figure 1
presents the evolution of the ARI curve for the three approaches (SD, DB and the su-
pervised approach using ARI or ACC to measure the contribution of variables in the
clustering results) versus the number of variables. The table 1 (left part) presents the
list of the ranked variables (from the most important to the least important) for the three
approaches.

Fig. 1. Evolution of the ARI criterion for the 4
methods (K=3)

Fig. 2. Evolution of the ARI criterion for the
four methods (K=2)

1 All the experimentation have been realized using R (http://www.r-project.org/)
and are easily reproducible.

2 The initialization process and the nature of the K-means algorithm does not guarantee to reach
a global minimum. Therefore the algorithm has to be run several times.

3 To evaluate the importance of the variables for the clustering, we need to choose a classifier
which does not modify the representation used to elaborate the reference clustering; i.e the
data after the pre-processing step.

http://www.r-project.org/


164 O.A. Ismaili, V. Lemaire, and A. Cornuéjols

Table 1. Ranking of the variables
Index Wine Pima
DB V7 V6 V10 V1 V12 V13 V9 V8 V4 V5 V3 V2 V11 V8 V2 V1 V3 V6 V5 V4 V7
SD V7 V6 V10 V1 V12 V9 V8 V13 V5 V4 V3 V2 V11 V8 V2 V1 V3 V6 V7 V4 V5
ARI-Tree V7 V13 V12 V1 V10 V6 V11 V2 V9 V4 V8 V5 V3 V8 V2 V1 V3 V5 V6 V4 V7
ACC-Tree V7 V13 V12 V1 V10 V6 V11 V2 V9 V4 V5 V8 V3 V8 V2 V1 V3 V5 V6 V4 V7

The PIMA data dataset contains N = 768 sample points described with d = 8
variables which are associated with two different classes. The ARI obtained between
the reference clustering (using K-means algorithm, where K = 2) and the target class
is equal to 0.11. Table 1 (right part) and Figure 2 present respectively the list of the
ranked variables (from the most important to the least important) and the evolution of
ARI curve for the three approaches (DB, SD and the proposed approach).

The results obtained on PIMA and WINE show that the proposed method is compet-
itive with regards to DB and SD approaches on these two datasets.

4.3 Redundant Variables

To test the ability of our approach to detect the redundant variables, we use the WAVE-
FORM dataset. This dataset consists of n = 5000 sample points described with 40
variables and associated with three different classes: only the first 21 variables are real
attributes for this database and most of these are relevant to a classification problem
whereas the last 19 variables are noisy standard centered Gaussian variables (for more
details see [21], page 43 - 49). Figure 3 shows that the proposed method identifies the
irrelevant set of variables W = V 1, V 21− V 37, V 39, V 40. The remaining variables
are all relevant variables for the clustering.

Fig. 3. Evolution of ARI criterion for the three methods (K=3)
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To identify the redundant variables, we use the method described in Section 3.2.
Table 2 presents the ARI values calculated between two pairs of relevant variables (the
20 variables identified by the proposed method using the ACC criterion). In this table,
if we consider only the values above 0.96 to focus the attention on the high values
of redundancy. The set of redundant variables is then : R = V 38, V 2, V 20, V 19, V 3.
Finally the set of relevant variables is V = V 4− V 18. These obtained results are
similar to those obtained using RD-MCM selection features method (see [19]). The
ARI value obtained between the predicted ID-cluster using all variables (41 variables)
and the predicted ID-cluster using the relevant variable (18 variables) is equal to 0.935.

Table 2. ARI values between pairs of relevant variables

V7 V15 V8 V14 V16 V6 V13 V12 V17 V9 V5 V10 V4 V18 V11 V3 V19 V20 V2 V38
V7 1,00 0,51 0,42 0,42 0,39 0,41 0,41 0,38 0,37 0,36 0,35 0,34 0,34 0,34 0,32 0,32 0,32 0,32 0,32 0,32
V15 1,00 0,66 0,62 0,59 0,59 0,58 0,54 0,52 0,50 0,49 0,46 0,46 0,46 0,44 0,44 0,44 0,44 0,44 0,44
V8 1,00 0,76 0,72 0,70 0,67 0,62 0,59 0,56 0,54 0,51 0,51 0,51 0,49 0,48 0,48 0,48 0,48 0,48
V14 1,00 0,81 0,78 0,75 0,67 0,62 0,59 0,57 0,54 0,53 0,53 0,51 0,51 0,50 0,51 0,50 0,50
V16 1,00 0,84 0,77 0,71 0,66 0,61 0,60 0,56 0,56 0,56 0,53 0,53 0,52 0,53 0,52 0,52
V6 1,00 0,86 0,75 0,68 0,63 0,62 0,58 0,57 0,58 0,55 0,54 0,54 0,54 0,54 0,54
V13 1,00 0,79 0,72 0,66 0,65 0,60 0,60 0,60 0,58 0,57 0,57 0,57 0,57 0,57
V12 1,00 0,88 0,81 0,78 0,74 0,73 0,73 0,69 0,69 0,68 0,68 0,68 0,68
V17 1,00 0,89 0,84 0,81 0,79 0,79 0,75 0,74 0,74 0,74 0,74 0,74
V9 1,00 0,91 0,86 0,85 0,84 0,80 0,79 0,79 0,79 0,79 0,79
V5 1,00 0,89 0,87 0,86 0,83 0,82 0,81 0,82 0,82 0,82
V10 1,00 0,94 0,91 0,88 0,87 0,86 0,86 0,86 0,86
V4 1,00 0,94 0,89 0,88 0,87 0,87 0,87 0,87
V18 1,00 0,92 0,89 0,88 0,88 0,89 0,88
V11 1,00 0,95 0,93 0,92 0,92 0,92
V3 1,00 0,96 0,95 0,93 0,94
V19 1,00 0,97 0,95 0,96
V20 1,00 0,97 0,97
V2 1,00 1,00
V38 1,00

5 Conclusion

This paper has presented a supervised method to measure the importance of the vari-
ables used in a clustering. This method turned the problem into a supervised classifica-
tion problem to sort variables according to their importance at the end of the clustering
convergence. The experimental results corroborated the competitiveness of the method
comparing to other methods from the literature. It has been incorporated successfully
in the process of marketing service in the french Orange company. Future works will
be done to incorporate the method in the convergence of the clustering algorithm and to
measure the variables importance as a multivariate supervised classification problem.
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Abstract. Computational modeling with biologically-plausible param-
eters has shown an association between the coherence of local field po-
tentials (LFP) in two cortical areas and the consistency of their spatial
firing patterns. In this study, the dynamic properties of this association
were evaluated. The association was strong for each input sequence, step
change in input, repetitive alternation of input, and continuous change of
input. The time constant of the spatially consistent firing was ∼100 ms,
and this was thought to be related to a winner-take-all process among
the neuronal subpopulations in each area. Furthermore, the results of
the phase-coupling analysis suggested that waves slower than 10 Hz in
the LFPs produced a time window for transmitting the spatial firing
patterns between areas.

Keywords: network model, cortical column, information transfer, long-
range synchronization, electroencephalogram.

1 Introduction

A local field potential (LFP) is an electrical potential of a neural population
that occurs within ∼250 μm. Similar to electroencephalograms that reflect neu-
ral activity within >1 cm2, the LFPs are known to change with changes in
the cognitive process, such as visual perception and memory. These signals are
thought to provide clues for understanding information processing in large-scale
neural networks.

Computational studies have shown associations between neural firing and
gamma-band LFPs by using neural models with biologically plausible parameters
[1–4] and such associations have been supported by physiological experiments
[5]. Mazzoni et al. (2008) [2] evaluated the data for the temporal patterns of LFP
and showed that channels with different frequency can transmit information in-
dependently. The author evaluated the association between LFP coherence and
spatial firing patterns between two cortical areas [4] and showed a strong asso-
ciation between them. This finding is thought to be important for bridging the
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LFP phenomena and the functional neural processes implemented in canonical
networks consisting of multiple cortical columns with lateral inhibition. However,
these evaluations have only been performed when the network was in a stable
state (∼1 s). It remains unclear whether the association between spatial firing
patterns and LFP coherence is stable for temporally changing input signals.

In this study, the relationship between the spatial patterns of firing and LFP
coherence in two cortical areas was evaluated by using a network model used in
the previous study [4] under the condition of temporally changing input signals.

2 Model

The model was originally proposed by Mazzoni et al. (2008) [2] and modified in
a previous study [4] with the newly introduced structure of two areas consisting
of two cortical columns. The network of an area consisted of 4,000 pyramidal
cells and 1,000 inhibitory cells. Each neuron was randomly connected to other
cells with fixed connectivity (the values of which are shown in Fig. 1) and each
received strong excitatory synaptic currents of background activity and external
input. All external currents were given by a random Poisson spike train.

Each neuron k is described by its membrane potential Vk that evolves accord-
ing to

τmV̇k = −Vk + IAk − IGk

where IAk is the AMPA-type excitatory synaptic current and IGk is the GABA-
type inhibitory current received by neuron k. When the membrane potential
crosses the threshold of 18 mV the neuron potential is reset at a value of 11 mV.
The synaptic currents are given by

τdAİAk = −IAk + xAk, τdGİGk = −IGk + xGk

τrAẋAk = −xAk + τm

(
Jpyr
k

∑
pyr

δ(t− tpyrk − τL) + Jext
k

∑
ext

δ(t− textk − τL)

)

τrGẋGk = −xGk + τm

(
J int
k

∑
int

δ(t− tintk − τL)

)

where δ(t) denotes the delta function and t
pyr/int/ext
k is the time that the spikes

are received from the pyramidal neurons/ interneurons connected to neuron k or
from external input that consists of background activity (1.2 spikes/ms), input
from inter-cortical connections, and additional input stimuli (ranging from 0 to
∼0.8 spikes/ms). The values of the model parameters are τm=20 ms (pyramidal)
or 10 ms (interneuron), the refractory period is 2 ms (pyramidal) or 1 ms (in-
terneuron), τdA= 2 ms (pyramidal) or 1 ms (interneuron), τdG= 5 ms, τrA=0.4
ms (pyramidal) or 0.2 ms (interneuron), τrG=0.25 ms, τL=1 ms (within the same
area) or 4 ms (otherwise), Jpyr

k =0.42 (pyramidal) or 0.7 (inter.), J int
k =1.7 (pyra-

midal) or 2.7 (interneuron), and Jext
k =0.55 (pyramidal) or 0.95 (interneuron).
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Input from high 
order cortexSensory input

E2 E2

Area 1 Area 2
Column

Column

Column

Column

0.2

0.05

0.045

0.015

0.03

Fig. 1. Basic structure of the model. Each oval represents the cell population, and E
and I denote pyramidal and interneuron subpopulations in an area, respectively. The
neurons in area 1 and 2 are sparsely connected, and their connection probabilities are
denoted along the arrow between the subpopulations. Areas 1 and 2 were assumed to
receive sensory input and input from higher order cortex, respectively.

For the instantaneous firing rate in a subpopulation in Area i at time
t, Ea/b,i(t) was calculated with a 5-ms bin, except for that described in Sec-
tion 3.3. The spatial pattern of neural firing in Area i was defined by a vector
Ei(t) = (Ea,i(t),Eb,i(t)), and the spatial consistency of the firing in the two
areas was given by the inner product E1(t)E2(t) that was associated with the
connection structure shown in Fig. 1.

The time-frequency power of the LFP was analyzed with a Morlet wavelet
transformation (width=5) and the LFP coherence between areas 1 and 2 was
calculated. The relationships between the LFP coherence and the spatial con-
sistency of firing, E1(t)E2(t), were evaluated with Spearmans correlation coeffi-
cients.

3 Results

3.1 Response to a Step Change in Input Signal

The first simulation evaluated the response of the model to a step change in
input signal, which was done to show the dynamic properties of the spatial
consistency of firing and the LFP coherence in the network (Fig. 2a). Figure
2b shows the temporal evolution of the model to a step input of 0.2 spikes/ms.
Figure 2c shows the LFP gamma coherence (30–80 Hz) between the two areas
for each condition of bias input to Area 2 (0, 0.1 and 0.2 spikes/ms), where
the rise time of the LFP coherence was found to be shorter for the larger bias
input. A similar tendency was found for the spatial consistency of firing (Fig.
2d). When the delay time of LFP coherence and spatial consistency was defined
by a time point that was half of the average value in the period of 100–200 ms
(Fig. 2e), the delay times were strongly correlated (R=0.85). According to the
regression line, the spatial consistency preceded the LFP coherence by ∼8 ms.
Figure 2f shows the correlation between the spatial consistency of firing and the
LFP coherence. The correlation was high (R=0.98) and were in agreement with
the results obtained with a stable input [4].
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Fig. 2. Response to a step change in the input signal. (a) Parameters of the input
sequence. (b) Temporal evolution of the model. The black and gray areas indicate the
instantaneous firing rate of the subpopulations of pyramidal neurons and inhibitory
neurons in each area, respectively. The solid and dotted lines indicate the local field
potential (LFP) in each area and the spatial consistency of the firing, respectively.
Two vertical lines denote onset and offset of the step input signal. (c, d) Temporal
evolution of the LFP coherence (30–80 Hz) and the spatial consistency of the firing.
The black, gray and pale gray lines denote the condition of the bias input 0, 0.1 and
0.2, respectively. (e) The relationship between the delay time of the spatial consistency
and those of LFP coherence. (f) The relationship between the spatial consistency and
the LFP coherence.

3.2 Response to the Repetitive Alternation of the Input Pattern

The second simulation investigated the temporal context effects of the model
by using input signals that repetitively changed to result in different spatial
patterns. In this simulation, two pairs of subpopulations, E1,a−E2,a and E1,b−
E2,b, were alternated with a cycle of 20, 100, 200 or 300 ms (Fig. 3a). Bias input
was added to subpopulation E2a to disturb the formation of spatially consistent
firing patterns (0, 0.1 or 0.2 spikes/ms).

Figure 3b shows the temporal evolution of the instantaneous firing rate, the
LFP and the spatial consistency of firing (cycle=400 ms). The firing rates in
subpopulations a and b were shown to alternate according to the change in the
input pattern. The rise time of the firing rate was shown at ∼100 ms, which
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Fig. 3. Response to the repetitive alternation of the input pattern. (a) The parameters
of the input signals. (b) The temporal evolution of the instantaneous firing rate (the
black, gray, and pale gray areas indicate the pyramidal cells in subpopulations a and b
and the inhibitory cells, respectively), the LFP (solid lines), and the spatial consistency
of the firing (dashed line). (e, d) The LFP coherence and the spatial consistency of
the firing for each condition of the input cycle. (c) Correlation between the spatial
consistency of the firing and the LFP coherence.

was longer than the delay time found in the previous section. The relationship
between the LFP coherence and the input cycle is shown in Fig 3c. The LFP
coherence increased for the longer cycle and reached a plateau at ∼200 ms. This
was thought to related to the time for formation of spatially consistent firing
patterns with temporal context. Interestingly, this profile was not affected by
bias input. The results were similar for the spatial consistency of firing (Fig.
3d).The correlation between the spatial consistency of firing and LFP coherence
was again strong in these conditions (R=0.95) (Fig. 3e).

3.3 Response to Continuously Changing Input Signals

In this section, the relationship between the spatial consistency of firing and
LFP coherence was evaluated with continuously changing input signals in which
four independent input signals were introduced to subpopulations in each area
(Fig. 1). Each input was given by random sequence with low-pass filtering (a
fourth order Butterworth filter with a cut-off frequency of 20 Hz) and regulated
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Fig. 4. Response to the countinuously changing input sequence. (a) Temporal evolution
of the input sequence (the bold and thin lines indicate the input to subpopulations a
and b, respectively), the firing rate, the LFP and the spatial consistency of firing. (b)
The LFP power in each area. (c) Correlation between the spatial consistency of firing
and the LFP coherence at each h frequency band. (d) Correlation between the spatial
consistency and the LFP coherence (30–80 Hz). (e) The correlation coefficient between
spatial consistency and the LFP coherence in relationship to the time window used in
the calculation of the firing rate and LFP coherence.

to have a mean value of 1.4 spikes/ms including background activity, and a
standard deviation of 1.0 spikes/ms.

Figure 4a shows the temporal evolution of the model. In different to results in
the previous sections (Figs. 2b and 3c), the spatial patterns of the firing in the
two areas were not always consistent. The lower frequency components in the
LFP powers in each area were strong according to the input signals (Fig. 4b),
but the strong correlation between the spatial consistency of firing and the LFP
coherence still appeared in the gamma band (Fig. 4c). This result agrees with
the findings of the previous study using stable input signals [4].

Figure 4d shows the relationship between the spatial consistency and the LFP
gamma coherence (30-80 Hz). The correlation was weaker (R=0.29) than those
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the spatial consistency of firing and the LFP coherence. (d) Correlation between the
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average LFP of 4 Hz.

reported in the previous section. This was thought to be due to the narrow
time window for the calculation of the firing rate (5 ms). When the time window
increased, the correlation coefficient increased and reached a plateau at a window
of ∼100 ms.

The phase coupling analysis was performed to examine the relationship of the
experimental evidence for the phase coupling betewen neural firing and the slow
waves in the LFP [5]. Here, the LFP phase was defined by the average of the
LFPs in the two areas. According to Mazzoni et al. (2010) [3], the large LFP
was defined to correspond to the negative phase. Figs. 5a and 5b show the phase
locking of the spatial consistency of the firing and the LFP gamma coherence
(30–80 Hz) at each frequency band. Both of them were found to be phase locked
to a slow wave of the LFP taht had a range of 4–16 Hz. The correlation between
the spatial consistency and the LFP coherence was strong in these conditions
(Fig. 5c). When the particular phase (π ∼ 1.5π) of a LFP of 4 Hz was analyzed,
the correlation between the spatial consistency and the LFP gamma coherence
became large (a time window of 50 ms was used for the calculation of the firing
rate).

4 Discussion

This study evaluated the relationship between the spatial consistency of firing
and the LFP coherence between two areas under conditions of temporally chang-
ing input signals. The results demonstrated for using step changes in the input
(Section 3.1), repetitive alternations in the spatially input pattern (Section 3.2),
and continuously changing input (Section 3.3) showed the strong correlation be-
tween the spatial consistency of firing and the LFP gamma coherence, which
agreed with previous results obtained with a stable input signal [4]. The time
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Spatial consistency 
of firing 

Fig. 6. Time window of the spatially consistent firing given by the slow wave in the
LFP

scale in the formation of the spatially consistent firing pattern was suggested
as ∼100 ms (Figs. 3c, 3d and 4e). According to the results reported in Sections
3.1 and 3.2, this time scale was thought to be associated with a winner-take-
all process within the subpopulations of neurons in each area. This result also
agreed with the phase-coupling analysis that showed that the firing and LFP
gamma were locked to the LFP components below ∼10 Hz. Interestingly, this
time scale appeared similar to the experimental observations obtained with a
phase-coupling analysis [6]. The current results supported the idea that the slow
oscillations produced units for transmitting spatial firing patterns between cor-
tical areas (Fig. 6).
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Abstract. Channel prediction is an important technique for compen-
sating fading channel in mobile communications. We proposed a channel
prediction method based on complex-valued neural networks as a previ-
ous work. In this paper, we introduce a penalty function to the weight
update in the complex-valued neural network to realize a learning dy-
namics that can self-optimize network structures according to fast chang-
ing communication environments. This presents an adaptive and highly
accurate channel prediction method. We demonstrate the ability of the
proposed method in a series of simulations.

Keywords: Fading, channel prediction, adaptive transmission,
complex-valued neural network, sparse representation.

1 Introduction

Performance of mobile communications often suffers from various fading phe-
nomena. To reduce the adverse effect, there are some techniques such as pre-
equalization and transmission power control. Such adaptive techniques require
channel prediction for the channel changes in time [7,5]. To realize a low-cost
and high-precision prediction, we proposed a new prediction method that sepa-
rates multipaths in chirp z-transform (CZT) [7] according to Jakes model [11],
and predicts them separately based on complex-valued neural networks (CVNN)
[3,4].

The learning ability of neural networks including CVNN is greatly affected by
the size of network structure[6]. For instance, a too large network for a problem
results in high calculation cost and a large generalization error. On the other
hand, a too small network structure cannot assure sufficient flexibility to express
a problem, and its learning convergence at a learning point is low.

In our proposed channel prediction method, the structure of the CVNN (the
number of input terminals and neurons in the hidden layer) was set according
to experience. However, in a real communication environment, communications
is forced to work in a variety of communication situations, and those situations
fluctuate complicatedly. The most suitable network structure in such situations
may also change. This is why we need an adaptive network structure in channel

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 175–182, 2014.
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prediction. There are various studies to get optimized structure[9]. For example,
pruning neural networks start learning with a large structure, and then prune
redundant connection weights and neurons to obtain an optimum network [8,12],
whereas growing neural networks raise the size of a structure from a small net-
work to a larger one [1]. In this paper, we propose to apply a penalty function to
connection weights update in the CVNN for realizing a network structure with
adaptive connection depending on the communication situations. A new chan-
nel prediction method with proposed CVNN structure presents highly accurate
predictions under fluctuating communication environments.

2 Channel Prediction Based on CVNN and Conventional
Network Structure

According to the Jakes model, a fading channel can be modeled as the summation
of sinusoids at a receiver, which are the multipath rays caused by scattering
and reflection. Each sinusoid can be characterized by a set of path parameters
such as amplitude am, Doppler frequency fm, and phase shift φm. The channel
characteristic c(t) as a function of time t is the summation of M complex signal
paths and expressed as

c(t) =

M∑
m=1

cm(t) =

M∑
m=1

amej(2πfmt+φm). (1)

Fig. 1 shows a fading channel observed at a receiver that changes irregularly in
the complex plane, and has difficulty in prediction. We decomposed this channel
characteristic into multiple channel characteristics of respective multipaths by
detecting peaks of Doppler frequency presented by CZT [13,10]. We also focused
that the separated channel characteristics cm(t) have rotary motion in the com-
plex plane as shown in Fig. 2, and proposed a new channel prediction method
based on CVNNs [6]. The CVNNs is a suitable framework for treating rotation
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in the complex plane, and can deal with channel characteristics of respective
paths as complex entities.

Fig. 3 shows the structure of the multilayer (ML) CVNN used in our previous
work. It has input terminals, a hidden-neuron layer and an output-neuron layer.
The input terminals of the layered CVNN distribute input signals, cm(t− 1), ...,
cm(t−IML), to the hidden-layer neurons as their inputs z0. In the same way, the
outputs of the hidden-layer neurons z1 are passed to the output-layer neuron as
its inputs. The outputs zl in layer l are given by adopting an amplitude-phase-
type activation function fap to weighted inputs zl−1 (zl = fap(zl−1 ·W l)).

We updated the connection weights W l in the CVNN as follows. The ML-
CVNN regards past channel characteristics of respective paths ĉm(t) estimated
by CZT as the teacher signal, and the previous channel characteristics ĉm(t −
1), ..., ĉm(t − IML) as the input signals. The output z2 was used to update the
weights under the steepest descent method. The steepest descent method up-
dates the weights to minimize the difference

El ≡ 1

2
|zl − ẑl|2 (2)

where zl are the output signals and ẑl are the teacher signals in layer l. The
teacher signals in the hidden layer ẑ1 are the signals obtained through the back-
propagation of the teacher signal ẑ2.

In the previous work, the structure of the CVNN represented as the number
of input terminals and neurons in the hidden layer was set according to re-
sults of numerical experiments. The combination of the input terminals and the
hidden layer was decided to maximize the prediction accuracy in various com-
munication situations. The final combination set also provided high prediction
ability in actual experiments [4]. However, in a real communication environment,



178 T. Ding and A. Hirose

0 0.2 0.4 0.6 0.8 1
1.2 1.4 1.6

1.8 2

-1-0.8
-0.6

-0.4
-0.2

00.2
0.4

0.6
0.8

1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time [s]Real

Im
ag

na
ry

-1

Fig. 4. Model signal for evaluating pro-
posed method

0 0.2 0.4 0.6 0.8 1
1.2 1.4 1.6

1.8 2

-1.5
-1

-0.5
0

0.5
1

1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Time [s]
Real

Im
ag

na
ry

Fig. 5. Model signal with white Gaussian
noise for simulating hard predicting con-
dition (SNR = 14 dB)

a communication system is forced to work in a variety of communication situa-
tions, and those situations fluctuate complicatedly. The most suitable network
structure in such situations may also change.

3 CVNN Dynamics for Self-optimization

In this paper, we propose a new network dynamics which can prune or grow
connections depending on communication situations.

Theoretically, if a network of a given size can express a channel characteristic,
a larger network can also express it. All the redundant connections or neurons
are expected to have zero strengths in an ideal structure. However, an actual
neural network spreads non-zero weights all over the network, and may cause
larger generalization error.

To overcome this effect, we introduce a penalty function to restrict the connec-
tion of networks in a suitable small size. The l0 norm to W l is the basic penalty
to restrict the number of the connection weights, but we can use l1 norm as a
substitute to l0 norm for a practical penalty function, and the difference at layer
l is expressed as

El ≡ 1

2
|zl − ẑl|2 + α‖W l‖1 (3)

where α is a coefficient to express the degree of the penalty function. This is
equivalent to (2) with l1 norm of W l, and minimizing this difference means the
restriction of non-zero weights to minimal number in the connections. In other
words, the penalty function introduces sparsity to weights update. This is can
also considered as a problems similar to the sparse representation [2]. We can
also use the steepest descent method to update the weights here.
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Table 1. Prediction Parameters of CVNN

Prediction Parameter Value

ML-CVNN input terminal number IML 30

ML-CVNN hidden neural number JML 30

Iteration of ML-CVNN weight update RML 10 times
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weights in the hidden layer versus signal
to noise ratio
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Fig. 7. Prediction-phase error versus sig-
nal to noise ratio

4 Numerical Experiments

4.1 Model Test for Evaluating Effectiveness of Sparse CVNN

The performance of the proposed channel prediction based on the CVNN with
the penalty function is discussed in this section. For the first, we test accuracy
of the proposed method in a modeled numerical experiment. We generate a
signal rotating in the complex plane in time shown in Fig. 4, and add white
Gaussian noise with various magnitude to get hard situation for prediction.
We evaluate and compare the accuracy of prediction based on the conventional
ML-CVNN and the ML-CVNN with proposed dynamics (Sparse-ML-CVNN).
Table 1 represents the network parameters used in the experiment.

Fig. 6 shows the number of non-zero weights (> max(W 1)/1000) in the hidden
layer versus signal to noise ration. In the ML-CVNN, almost all connection
weights play a part to represent input signals. On the other hand, in Sparse-ML-
CVNN, more connections are pruned for any SNR signals than in ML-CVNN.
This results show the added penalty term restricts the connections to small
number and the non-zero connection weights are sparse. Moreover, pruning in the
Sparse-ML-CVNN becomes stronger depending on a rise of the SNR. This means
that the network dynamics prunes more redundant connections automatically
according to the penalty function in easy situations for the prediction methods.

Fig. 7 shows the prediction accuracy versus signal to noise ratio. Here, we eval-
uate the accuracy by using prediction-phase error that is an important value in
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Fig. 8. Geometrical setup used in the sim-
ulation

Table 2. Simulation Parameters

Parameter Value

Carrier frequency fc 2 GHz

User speed v 14 m/s

Number of paths M 3

Table 3. OFDM Parameters

Parameter Value

QPSK symbol number 1612

QPSK symbol rate F 406.25 kHz

Number of carriers K 52

FFT Size 64

Carrier spacing F/K 7812.5 Hz

Spacing between carriers 3.98 MHz

Size of guard interval 16

TDD frame length 5 ms

TDD symbol number in a frame s 2500 symbol

Sampling rate 500 kHz

channel prediction. The prediction errors of ML-CVNN and Sparse-ML-CVNN
decrease with the increase of SNR, because the white noise decreases and the pre-
diction becomes easier in the larger SNR situations. Sparse-ML-CVNN presents
lower prediction error than ML-CVNN over 5 dB. By thinking with the results
shown in Fig. 6, Sparse-ML-CVNN can self-optimize its structure according to
prediction situations and improve the prediction accuracy.

4.2 Performance of Proposed ML-CVNN in Fading Channel
Prediction

In this section, we evaluate the fading channel prediction performance based on
combination of Sparse-ML-CVNN and CZT. The geometrical setup is shown in
Fig. 8 and the simulation parameters are shown in Table 2. We assume an or-
thogonal frequency-division multiplexing (OFDM) with QPSK modulation and
a time division duplex (TDD) as the communication scheme. Table 3 lists the
system parameters. We assume the same prediction parameters as those in Ta-
ble 1. Here, we name the prediction method based on combination of Sparse-ML-
CVNN and CZT as CZT-Sparse-ML-CVNN method, same structure without the
penalty function as CZT-ML-CVNN method, and different structure with the
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Fig. 10. Prediction-phase error versus
scatterers’ distance Δx

empirically decided input terminals IML = 11 and the hidden neural number
JML = 10 as CZT-ML-CVNN (empirical).

Fig. 9 shows the number of non-zero weights (> max(W 1)/1000) in the hidden
layer versus scatterers’ distance Δx. In CZT-Sparse-ML-CVNN, more connec-
tions are pruned for any Δx in comparison with CZT-ML-CVNN. In addition,
the structure size of the Sparse-ML-CVNN changes greatly with the change of
Δx.

Fig. 10 shows prediction-phase error curves accumulated in a unit TDD frame
versus scatterers’ distance Δx. This results show CZT-ML-CVNN is too large
to predict channel characteristics, but we can improve the prediction perfor-
mance by introducing the sparsity. The effectiveness of the sparsity especially
appears in the decrease of the maximum prediction error in Fig. 10. In addition,
CZT-Sparse-ML-CVNN has better prediction accuracy than CZT-ML-CVNN
(empirical) in the almost all Δx conditions. This result shows that the proposed
CZT-Sparse-ML-CVNN can adapt its network structure automatically even in
prediction conditions difficult for empirical structure. These results present that
the proposed method has a higher performance in fading channel prediction.

5 Conclusion

We proposed a new adaptive method for optimizing structure of complex-valued
neural networks according to fading channel changes. The proposed CVNN re-
stricts its connections to small number based on the added penalty function.
Therefore, the proposed CVNN can automatically change its network structure
depending on the change of communication environment, and the channel pre-
diction method based on it presents high prediction accuracy. A series of sim-
ulations demonstrated that the proposed method has better performance than
the conventional methods.
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Abstract. The behavior of neuronal and other biological systems is
determined by their parameter values. We introduce a new metric to
quantify the sensitivity of output to parameter changes. This metric is
referred to as invariant multiparameter sensitivity (IMPS) because it
takes on the same value for a class of equivalent systems. As a simplifi-
cation of neuronal membrane, we calculate, in parallel resistor circuits,
the values of IMPS and a previously studied metric of parameter sen-
sitivity. Furthermore, we simulate phase oscillator models on complex
networks and clarify the property of IMPS.

Keywords: Parameter Sensitivity, Complex Network, Phase Oscillator,
Synchronization.

1 Introduction

A large number of mathematical models have been proposed in order to explain
complex phenomena in brain including learning, chaotic behavior and synchro-
nization [1, 2]. Because these models have many parameters, it would be desirable
to know how changes of parameter values influence the output of a model. Infor-
mation about the relationship between parameter changes and output of models
is indispensable in designing models, fitting parameters and understanding the
dynamics of systems [3, 4].

In this paper, we investigate parameter sensitivity, that is, the response of out-
put to small changes of parameters. Parameter sensitivity has been intensively
studied in circuit theory, particularly in resistor-capacitor networks [4–7]. In bio-
chemical modeling, metrics of sensitivity are also used in quantifying robustness
of systems [8]. In neuronal modeling and machine learning, it is important to
estimate how sensitively output, such as firing rate and generalization error,
changes in response to small parameter changes.

Several metrics of parameter sensitivity have been proposed in previous stud-
ies. Single parameter sensitivity (SPS) allows us to quantify the output changes
in response to small change of a single parameter. Multiparameter sensitivity
(MPS) is a generalization of SPS to multiple parameters [9]. MPS is defined as
the square root of the sum of the square of SPSs. However, as will be shown later,
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Fig. 1. Circuit A and circuit B are equivalent if R = R′
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MPS gives different values for such equivalent electric circuits as in Fig. 1(A)
and Fig. 1(B).

We propose in this paper a new metric of sensitivity, which we call invariant
multiparameter sensitivity (IMPS). This paper is organized as follows. In sec-
tion 2, we introduce sensitivity metrics previously proposed and define IMPS.
Then we derive basic properties of IMPS. In section 3, we examine properties
of IMPS by applying it to a simple circuit. In section 4, we further investigate
IMPS for nonlinearly coupled oscillators. Since it was reported that networks in
brain are scale-free networks [10], in which the number of connections of each
vertex obeys a power-law distribution, we examine the system of oscillators on a
scale-free network. In section 5, we summarize our results and discuss potential
applications.

2 Parameter Sensitivity

Dynamical systems are expressed by first-order differential equations

ẋ = F (t,x,p) , (1)

where t is time, x = [x1, x2, x3, . . . , xn] is the state variable vector and p =
[p1, p2, p3, . . . , pm] is the parameter vector.

For the output q of the system, single parameter sensitivity for parameter pi,
which we call SPSi, is defined as

SPSi =
pi
q

∂q

∂pi
=

∂ ln q

∂ ln pi
. (2)

SPSi is the ratio of the change of output q to the change of parameter pi.
However, SPSi does not quantify sensitivity to the change of other parameters.
MPS, which is defined as

MPS2 =

m∑
i=1

SPS2i , (3)

is known as a metric to estimate sensitivity to the change of the whole parameter
set of the system [7, 9]. As shown in the next section, MPS often gives differ-
ent values for two equivalent models, and thereby MPS is not appropriate for
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comparing sensitivities between models. Thus, we introduce a new metric, invari-
ant multiparameter sensitivity (IMPS). IMPS is defined by the sum of absolute
values of SPSs as

IMPS =

m∑
i=1

|SPSi| . (4)

IMPS gives the same values for equivalent models in many cases. Assuming that
q(p1, p2, p3, . . . , pm) is a homogeneous function of degree k and that SPSs in
equation (4) have the same sign, we obtain

IMPS =

m∑
i=1

∣∣∣∣piq ∂q

∂pi

∣∣∣∣
=

∣∣∣∣∣
m∑
i=1

pi
q

∂q

∂pi

∣∣∣∣∣
= |k| , (5)

where we used Euler’s theorem

p1

(
∂q

∂p1

)
+ p2

(
∂q

∂p2

)
+ · · ·+ pm

(
∂q

∂pm

)
= kq(p1, p2, p3, . . . , pm). (6)

Hence IMPS is constant. IMPS is invariant for all models satisfying the fol-
lowing conditions: (1) the outputs are expressed by homogeneous functions of
parameters; and (2) SPSs take on the same sign.

3 Circuit Toy Models

In this section we examine circuit toy models. Consider that there is one resistor
R in a circuit as in Fig. 1(A). We denote the electric energy consumption by W
and the voltage of the voltage source by V . We assume that W is the output.
MPS of this circuit equals 1. The same current-voltage relationship as the circuit
shown in Fig. 1(A) can be realized by the circuits equivalent to it such as that
in Fig. 1(B) if R = R′

1R
′
2/(R

′
1 +R′

2). MPS of the circuit in Fig. 1(B) is given by

MPS2 =

n∑
i=1

SPS2i

=

2∑
i=1

(
R′

i

W

∂W

∂R′
i

)2

=

(
R′

2

R′
1 +R′

2

)2

+

(
R′

1

R′
1 +R′

2

)2

< 1. (7)
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Thus, MPS of the circuit in Fig. 1(B) is less than MPS of that in Fig. 1(A). In
contrast, IMPS of the circuit in Fig. 1(B) is given by

IMPS =

n∑
i=1

|SPSi|

=
R′

2

R′
1 +R′

2

+
R′

1

R′
1 +R′

2

= 1, (8)

which equals IMPS of that in Fig. 1(A). It can be easily shown that IMPS is
the same for the energy consumption of the equivalent RC circuits, by which the
electric properties of neuronal membrane have been modeled [1].

4 Nonlinear Model

In this section, we investigate the IMPS of the system of phase oscillators on a
Barabási–Albert network as an example of neuronal networks. Barabási–Albert
model is the most thoroughly studied scale-free network model [11]. We generate
Barabási–Albert networks with average degree of 4. We start from 2 vertices and
add a vertex with 2 edges in each step until we have N vertices.

We assume that N oscillators are connected to each other by the adjacency
matrix ABA of a Barabási–Albert network. The dynamics of oscillator i are
described by

dθi
dt

= ωi +

N∑
j=1

Kij sin(θj − θi), (9)

where Kij is the (i, j)-element of the connection weight matrix defined by K =
αABA and the natural frequency ωi is drawn from the Gaussian distribution with
unit variance. We assume that

∑N
i=1 ωi = 0 without loss of generality. Here, α

is the connection strength. We use the circular variance V of the oscillators

V = 1− r = 1− 1

N

√
C2 + S2 (10)

in the phase-locked state as an output, where r is the Kuramoto order parameter,
C =

∑N
i=1 cos θi and S =

∑N
i=1 sin θi.

In the phase-locked state, the right-hand side y′i of equation (9) is 0, that is,

y′ = 0. (11)

Here we derive the relationship between the connection weights and the phases
under the condition that equation (11) is satisfied. Assuming that ΔK is small,
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we obtain

y′i +Δy′i = ωi +
N∑
j=1

(Kij +ΔKij) sin(θj +Δθj − θi −Δθi)

≈ ωi +

N∑
j=1

(Kij +ΔKij) [sin(θj − θi) + cos(θj − θi)(Δθj −Δθi)] .

(12)

Subtracting y′i from both sides yields

Δy′i ≈
N∑
j=1

Kij cos(θj − θi)(Δθj −Δθi)

+
N∑
j=1

ΔKij [sin(θj − θi) + cos(θj − θi)(Δθj −Δθi)] . (13)

Thus we obtain

∂y′i
∂θj

≡ J ′
ij , (14)

∂y′i
∂Klm

=

{
sin(θm − θl) i = l

0 i �= l
, (15)

where

J ′
ij =

{
−∑N

s=1 Kis cos(θs − θi) i = j

Kij cos(θj − θi) i �= j
. (16)

J’ is of N−1 rank, because Laplacian matrices of connected graphs are of N−1
rank [12]. Adding the same value to all θi’s of a phase-locked solution results
in another phase-locked solution, and the latter cannot be distinguished from
the former in terms of V . Thus we cannot determine the unique phase-locked
solution for this model. However, we can set the average phase to 0, which
will not ruin the generality of our argument, because we are interested only in
circular variance V of the oscillators. Assuming

∑N
i=1 θi = 0, we can replace

equation (11) with

yi ≡ ωi +

N∑
j=1

Kij sin(θj − θi) +

N∑
j=1

θj = 0. (17)

Hence ∂yi/∂θj can be derived as

∂yi
∂θj

= J ′
ij + 1 ≡ Jij . (18)
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J is full rank. Thus we have

∂θi
∂Klm

= −
N∑
j=1

(J−1)ijδjl sin(θm − θl)

= −(J−1)il sin(θm − θl). (19)

Hence the derivative of V with respect to Klm is given by

∂V

∂Klm
= − 1

2N

(
C2 + S2

)−1/2
∂

[(∑N
i=1 cos θi

)2
+
(∑N

i=1 sin θi

)2]
∂Klm

=
1

N2r

(
S

N∑
i=1

cos θi(J
−1)il − C

N∑
i=1

sin θi(J
−1)il

)
sin(θm − θl). (20)

From the above analysis, we numerically obtain IMPS as

IMPS =
∑
〈lm〉

|SPSlm| =
∑
〈lm〉

∣∣∣∣Klm

V

∂V

∂Klm

∣∣∣∣ , (21)

where 〈〉 is the summation over the connected oscillator pairs. In the initial state,
all phases are uniformly distributed. When α is sufficiently large, the oscillators
are phase locked as shown in Fig. 2. We calculate the IMPS for various values
of α under phase-locked conditions.

 0

 0.5π

 π

 1.5π

 2π

 0  1  2  3  4  5

θ

Time

i

Fig. 2. Synchronization of 1000 oscillators on a Barabási–Albert network with average
degree of 4. Phases of 4 out of 1000 oscillators are shown. The connection strength α
is set to 2.

The IMPS of this model is shown in Fig. 3. IMPS gives similar values for
system size N = 1000 (Fig. 3A) and 10000 (Fig. 3B), whereas MPS exhibits
system-size dependency (Fig. 3C). Unlike the toy circuit model in section 3,
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Fig. 3. IMPS of oscillator networks with N = 1000 (A) and N = 10000 (B). Panel A
shows the results of networks generated by 5 different random seeds. Panel C shows
the MPS for N = 1000 (dashed line) and the MPS for N = 10000 (solid line).

IMPS for this system of phase oscillators does not take on a constant value be-
cause of the nonlinearity of this system. If α is sufficiently large, the nonlinearity
of sine coupling is ignorable. Therefore, as α increases, IMPS of this oscillator
system converges to 2 because the circular variance V of this model converges
to a homogeneous function of degree −2.

5 Discussion

In this paper, we have reviewed the previously proposed metrics, SPS and MPS,
which quantify parameter sensitivity. We have formulated an improved metric,
IMPS. IMPS gives the same value for equivalent models in many cases. This
gives IMPS a significant advantage over MPS, which gives different values for
equivalent systems. In the analysis of the simple circuits, IMPS has given the
same value for equivalent parallel circuits. Then we have applied IMPS to non-
linear complex systems. As a first step for applying IMPS to neuronal systems,
we have used the phase oscillator model and the Barabási–Albert model because
those two models are widely used in the previous researches [11, 13, 14].

Formerly, invariance of IMPS was reported only for RC network circuits [4–
7]. In this paper, we have shown its invariance in a wider setting than previous
studies. In the system of phase oscillators, IMPS is not always invariant because
of the nonlinearity. Our results suggest that IMPS is a metric reflecting both
structure and dynamics of the systems. Thus IMPS would allow us to estimate
the dynamics and excitability of individual neurons and synaptic connectivity
between neurons.

In a future work, it should be examined how structure and nonlinearity of sys-
tems are reflected in the value of IMPS. In particular, we will apply IMPS to the
system of neurons on a Watts–Strogatz small-world network [15]. Furthermore,
the relation between IMPS and previously proposed network metrics, such as
cluster coefficient and average path length [15, 16], should be investigated. The
application of IMPS to the real neuronal networks is also of interest.
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Abstract. Robust object tracking in crowded and cluttered dynamic
scenes is a very difficult task in robotic vision due to complex and change-
able environment and similar features between the background and fore-
ground. In this paper, a saliency feature extraction method is fused
into mean-shift tracker to overcome above difficulties. First, a spatial-
temporal saliency feature extraction method is proposed to suppress the
interference of the complex background. Furthermore, we proposed a
saliency evaluation method by fusing the top-down visual mechanism to
enhance the tracking performance. Finally, the efficiency of the saliency
features based mean-shift tracker is validated through experimental re-
sults and analysis.

Keywords: Saliency Feature, Mean-Shift, Object Tracking.

1 Introduction

Mean-shift was first proposed by Fukunaga[1] as a mode seeking method for data
clustering purpose in 1975. It was enriched by importing kernel function and
weight coefficient, and was applied into image processing field[2]. Comaniciu[3]
proposed kernel based mean-shift tracker, which has been quite successfully ap-
plied in many areas.

Mean-shift tracking algorithm has been proved to be efficient in many sce-
narios due its simplicity and and fast convergence property attributes. However,
there still have some problems needed to be solved to adapt to the complex dy-
namic environment. For example, the original weighted color histogram feature
in mean-shift tracker may lead to failure in target tracking when similar color
feature appears in background or the target appearance changes drastically.

Aiming to encode more information to enhance the robustness of visual rep-
resentation, multiple cues are fused in mean-shift tracking methods recently[4].
Wang[7] integrated color and texture-shape cues and embedded them into kernel

� This work is supported in part by the National Key Technology R&D Program
of China #2012BAI34B02, National Natural Science Foundation of China(NNSF)
Grants #61101221, #60725310, #61033011.
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based tracking with adaptive confidential coefficient. Leichter[8] focus on multi-
ple reference integrated histogram. Jia[6] introduced the histogram of gradient
(HOG) feature into kernel based tracking method. Multi-cues methods tend to
produce higher dimension combined histogram to represent target, which may
prevent these approaches from real-time applications. How to combine these cues
into mean-shift tracker framework[9][10]in a simple and efficient form to achieve
good performance is remaining an unsolved problem.

In this paper, we present an improved mean-shift tracker which embedded
spatial-temporal saliency feature extraction and evaluation methods. The spatial-
temporal saliency feature, composed of the spatial saliency feature and motion
saliency feature, is proposed to find the most distinguished features between the
target and background. The saliency evaluation mechanism could enhance the
tracking performance greatly in the cluttered and dynamic environment. An-
other important benefit of the proposed method is that the saliency feature map
could be easily fused with the traditional color histogram feature and embedded
into the mean-shift framework. By introducing the spatial-temporal saliency fea-
ture, our mean-shift tracker will be robust to the targets and scenes which has
identical texture feature and with different spatial and motion patterns.

The flowchart of proposed tracking method is given as follows.

Fig. 1. The flowchart of the proposed tracker. The blue part is the Saliency Evaluation
Mechanism.
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2 Spatial-Temporal Saliency Feature

Saliency attention feature have been extended to the applications in computer
vision, including: object detection[11] and object tracking[15]. There are many
methods to produce the saliency feature map. Itti[11] computed the saliency
under several features separately, and saliency is defined as the relative center-
surround contrast between object region and its neighborhood surroundings in
Gaussian kernel. Though the result of saliency maps meet the biological mecha-
nism in some degree, it is generally blurry and has high computation complexity.
Histogram based saliency[16] is based on global contrast and may cause unnec-
essary error.

Inspired by the superiority of saliency attention above and the characteristic
of mean-shift tracker, we propose a spatial-temporal saliency feature extraction
method to get the most distinguished saliency map for mean-shift tracker. Differ
from previous approaches, our saliency attention extraction method is closely
related to the tracking and take full advantages of the spatial structure and mo-
tion feature. The spatial-temporal saliency map will be fused with the traditional
color saliency map in mean-shift tracker by using an adaptive weight method.

2.1 Spatial Saliency Feature

According to the difference of feature domain, the spatial saliency feature extrac-
tion methods are divided into spatial domain based and frequency domain based.
Spectral residual[12] and image label[13] are fast by using the frequency meth-
ods. In this section, we use discrete cosine transform to extract the frequency
feature[14]. It is simple and fast.

The pulse discrete cosine transform of the target area X is given as follows.

X̂ = sign(DCT (X)) (1)

Inverse transform to the spatial domain:

X = IDCT (sign(DCT (X))) (2)

The spatial saliency map of the target could be computed through equ.3. The
example result could be seen in fig.2.

S = G ∗ (X ◦X) (3)

where G is the two dimension Gaussian filter, and it is used to smooth the
result. S is the spatial saliency map of target. ∗ is the Hadamard product. ◦ is
the convolution.

2.2 Motion Saliency Feature

The motion feature is very important to visual tracking. In this paper, the motion
feature is obtained from the difference between consecutive frames, which is
represented as equ.4.
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Fig. 2. Extraction of Spatial-Temporal Saliency Map

T = St − St−1 (4)

where T is the motion saliency map. St and St−1 are the spatial saliency map
in the tth and (t−1)th frame respectively. Therefore, the result of motion saliency
could be computed by using equ.3 to equ.4. The example temporal feature could
be seen in fig.2.

2.3 Spatial-Temporal Saliency Feature Fused with Color Feature

In the traditional color based mean-shift tracking method, color feature distri-
bution of the target(the center is xc) is often represented as Hc = {qcu}u=1,···,m.

qcu = C
n∑

i=1

k(‖xi − xc

ac
‖2)δ[bc(xi)− u] (5)

while
∑m

u=1 q
c
u = 1, function bc : R2 → {i = 1, · · · ,m} makes bc(xi) the

corresponding color index of xi. {xi}i=1,···,n denotes the coordinate of each pixel,
n is the number of pixels in the target, δ(·)is Dirac function, ac =

√
w2 + h2

represents size of the area, u = 1, · · · ,mmeans the arbitrary color index from 1 to
m, C is the normalization coefficient, k(x) is the Epanechnikov kernel function.

The spatial-temporal saliency feature histogram Hs = {qsu}u=1,···,m could be
gotten through the spatial-temporal saliency map by using the histogram com-
puting method.

qsu = Cs

n∑
i=1

k(‖xi − xs

as
‖2)δ[bs(xi)− u] (6)

The representation of the target could be described by fusing the spatial-
temporal saliency feature and the color feature(see equ.7).

Hcs = wcHc + wsHs = {qcsu }u=1,···,m (7)

wc and ws are the weights of the two feature. wc and ws could be set in a fix
weight or adaptively adjusted in the tracking process according to the type of
the environment.
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3 The Improved Mean-Shift Tracker and Saliency
Evaluation Mechanism

3.1 Similarity

The fused feature model of the target is Hcs = {qcsu }u = 1, · · · ,m, see euq.8.

qcsu = Ccs

n∑
i=1

k(‖xi − xcs

a
‖2)δ[bcs(xi)− u],

m∑
u=1

qcsu = 1 (8)

The fused feature model of the candidate could be represented as Hcsc =
{pcscu (y)}, u = 1, · · · ,m.

The similarity between the candidate and the target could be computed
through Bhattacharyya coefficient.

ρcsc =

m∑
u=1

√
pcscu (y)qcsu (9)

3.2 Mean-Shift Process

The principle of mean-shift tracker could be described as follows.
Set y0 is the position of the target in the last frame. The Taylor expansion of

Bhattacharyya coefficient in y0is:

ρ(csc) = 1
2

∑m
u=1

√
pcscu (y0)qcsu + Ccsc

2

∑n
i=1 wik(‖ y−xi

acsc
‖2) (10)

while Ccsc is the texture normalization coefficient, and

wi =

m∑
u=1

√
qcsu

pcscu (y0)
δ[bcsc(xi)− u] (11)

Using the mean-shift iteration method to reach the maximum similarity ρ, we
can get the local optimized target position:

y1 =

∑n
i=1 xiwig(‖ y0−xi

acsc
‖2)∑n

i=1 wig(‖ y0−xi

acsc
‖2) (12)

whereg(x) = −k′(x) is the kernel density estimation.

3.3 Saliency Evaluation Mechanism

Though the spatial-temporal saliency features are extracted by using the intrinsic
frequency characteristic of the input image and the motion feature of the tracking
task, it could not be proved that the selected saliency features are all important
to the target. Some part of the extracted saliency feature may be unrelated and
even bad to search the target due to the complexity and dynamics of the tracking
task.
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Frame 1 Frame 100 Frame 200 Frame 250 Frame 290

Fig. 3. Comparison of results of classic mean-shift tracker[3], improved color model
tracker[5], multi-cues tracker[7] and the proposed method(From top to down) by using
Caviar video in PETS 2004

To improve the robust of our tracker, a saliency evaluation mechanism is
introduced into the tracking process(see blue part in fig.1). The principle of the
evaluation is judging the importance of each pixel in the selected saliency feature
by using a criterion, and remove the unimportant pixels or give a small weight.
In this paper, we build the evaluation criterion by analysis the appearance of
the target and background in the early frames, and give a new weight to each
saliency point by the criterion. The proposed evaluation mechanism improve the
tracker greatly through our experiments.

4 Experimental Results and Analysis

To validate the performance of the improved mean-shift tracker, the proposed
algorithm is tested on the benchmark videos and actual videos with complex
scene, multi-Persons with mutual intersection. Four mean-shift based trackers
are implemented to make the comparison of the results. They are classic mean-
shift tracker[3], improved color model tracker[5], multi-cues tracker[7] and the
proposed method. The experimental results and discussion are given as follows.

4.1 WalkByShop1cor Video in CAVIAR Datasets

The frame rate of videos in CAVIAR is 25fps, and the image size is 384*288. The
scene of WalkByShop1cor Video is multi-persons with clutter background in a
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building, and there exists some instant occlusions. One person tracking result
and the comparisons are given in fig.3. The results show that the classic mean-
shift tracker failed in the one person tracking process. Our proposed method
could localize the object accurately.

4.2 Multi-persons with Mutual Intersection

In this part, the four algorithms are tested on the video with multi-person inter-
section. The results and comparisons are given in fig.4. It shows that the classic
mean-shift tracker and the improved color model tracker[5] are fails when the
intersection occurs, while our proposed method and the multi-cues tracker[7]
succeed.

Frame 1 Frame 158 Frame 193 Frame 232 Frame 302

Fig. 4. Comparison of results of classic mean-shift tracker[3], improved color model
tracker[5], multi-cues tracker[7] and the proposed method(From top to down) by using
the video with multi-person intersection

5 Conclusion

In this paper, spatial-temporal saliency feature and a saliency evaluation method
are introduced into mean-shift framework for reliable tracking. The spatial
saliency feature and motion saliency feature are fused to find the most dis-
tinguished features between the target and background. The saliency evaluation
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mechanism could enhance the tracking performance greatly in the cluttered and
dynamic environment. Finally, the efficiency of the proposed method is validated
by some contrast experiments and analysis.
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Abstract. A novel boosting based perceptron learning algorithm is pre-
sented that uses AdaBoost along with a new representation of decision
stumps using homogenous coordinates. The new representation of deci-
sion stumps makes perceptron an instance of boosting based ensemble.
As Boostron minimizes an exponential cost function instead of the mean
squared error minimized by the perceptron learning algorithm, it gives
improved performance for classification problems. The proposed method
is compared to the perceptron learning algorithm using several classifi-
cation problems of varying complexity.

1 Introduction

Single-node perceptron [1] is a simple mathematical model of neurons in the
human brain that stores the learned information as weights of the connections
and has been frequently used as a building block for more complex multi-layer
feed-forward neural networks [2, 3]. A single-node perceptron, as shown in Fig-
ure 1(a), has an (n+1)−dimensional vector x̄ = [x0, x1, x2, . . . , xn] as the input
and produces its output by taking a dot product of the input vector with a
(n + 1)−dimensional weight vector, W̄ = [w0, w1, w2, . . . , wn]. The component
x0 is permanently set to -1 and represents an external bias element. The percep-
tron output, y, is mostly computed using a non-linear activation function. For
example, the sign of the product is the predicted output if the target output is
±1 (binary classification). Mathematically, such output is given as,

y = sign
(
W̄ .x̄t

)
= sign

(
n∑

i=0

wi.xi

)
. (1)

where x̄t is the transpose of x̄.
To learn the weight vector W̄ , a perceptron is provided with a set of p labeled

training examples of the form (x̄i, yi); i = 1 . . . p. The weight vector elements

� On leave from the College of Engineering, Tanta University, Egypt.
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are initialized to 0’s and are iteratively modified for each misclassified training
example (x̄i, yi) using the perceptron learning law,

W̄new = W̄old + η.(yi − yi
′).x̄i. (2)

The perceptron learning law adapts the weight vector by minimizing the mean-
squared error over the training data [4]. The perceptron structure to handle a mul-
ticlass learning problem is typically as shown in Figure 1(b); it has (n+ 1) input
units directly connected to m output units corresponding to the m classes. The
weights of each output unit are learned independently using one-vs-remaining en-
coding of the classes.

(a) (b)

Fig. 1. Structure of a perceptron with (a) Single output, (b) Multiple outputs

The least mean squared criteria might fail to produce an optimal decision
boundary for linearly non-separable problems [5]. To solve this problem a novel
method, boostron, for learning a perceptron is introduced. The boostron mini-
mizes an exponential cost function [5] and hence results into a more accurate
classifier.

The remaining paper is organized as follows. Section 2 introduces the proposed
method. Section 3 provides the experimental setup, results and comparison of the
proposed method with the standard perceptron learning algorithm, and Section
4 concludes the paper.

2 Proposed Method

A short review of the AdaBoost algorithm followed by the proposed represen-
tation of decision stumps and the method of combining the decision stumps [7]
with AdaBoost to learn a perceptron is presented in this section.

We assume the standard supervised learning setting and hence the learning
algorithm is provided with p labeled training examples (x̄i, yi), i = 1...p each
consisting of n real-valued attributes xj

i and a binary class label yi ∈ {−1,+1}.
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2.1 The AdaBoost Algorithm

The AdaBoost algorithm [6], shown as Algorithm 1, is often used to construct
highly accurate classifier ensembles from a moderately accurate base classifier. It
takes p labeled training examples as input and iteratively selects T classifiers hk

by modifying a weight distribution, Dk, maintained on the training examples.
The final ensemble is constructed by taking a linear combination of the selected
classifiers using,

H(x̄) = sign

(
T∑

k=1

αk.hk(x̄)

)
, (3)

where the weight of each classifier, αk, is computed by using the error of the
classifier w.r.t. the running distribution used to select the classifier.

Algorithm 1. AdaBoost [6]

Require: Examples (x̄1, y1) . . . (x̄p, yp) where
x̄i is the i-th training instance features and yi ∈ {−1,+1}, and
parameter T = number of base learners in the ensemble

1: Set D1(i) = 1/p for i = 1 . . . p

2: for k =1 to T do
3: Select a classifier hk using the weights Dk

4: Compute εk = Pr[hk(x̄i) �= yi] w.r.t. Dk

5: Set αk = 1
2
log( 1−εk

εk
)

6: Set Dk+1(i) =
Dk(i) exp(−αkyi.hk(x̄i)

Zk
; where Zk is the normalization factor

7: end for
8: Output classifier H(x̄) = sign

(∑T
k=1 αk.hk(x̄)

)

The AdaBoost algorithm uses a binary classifier and has been extended by
Schapire and Singer [8] to handle confidence-rated outputs of a base classifier.
They presented a different criterion of selecting the base classifier and a new
method for computing the weight of the selected classifier by using,

αk =
1

2
ln

(
1 + rk
1− rk

)
, (4)

where rk is the difference of the weights of correctly classified instances and
incorrectly classified instances w.r.t. the running distribution Dk.

2.2 Boostron

Decision stumps have been frequently used as base classifiers in AdaBoost to con-
struct highly accurate classifier ensembles [8, 9]. A decision stump is a single node
decision tree thatmakes predictions based on only one of the feature values. It con-
sists of a feature index, say j, and a threshold, δ, such that all instances are parti-
tioned into two sets using an if-then-else rule of the following form:
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if xj
i ≤ δ then

Class = +ve/-ve
else
Class = -ve/+ve

end if

For x̄i ∈ Rn the above decision stump can be converted into an equivalent
classifier by using the inner product defined over Rn. For example, in the case
where +1 label is assigned if xj

i ≤ δ, we can represent the decision stump as,

s(x̄i) = −
(
w̄.x̄t

i − δ
)
. (5)

In equation 5, all components of the row vector w̄ = [w1, w2, ..., wn] are 0’s
except the component wi . The sign of s(x̄i) is the classification decision and its
magnitude is the confidence of prediction. Such a classifier can be represented
as a single dot product by representing instance x̄i and the vector w̄ using the
homogenous coordinates,

s(xi) = W̄ .X̄i
t
, (6)

where the vector X̄i = [x1
i , x

2
i , ..., x

n
i , 1] is obtained from the instance x̄i by

adding a 1 as the (n+1)st component and the vector W̄ = −[w1, w2, ..., wn,−δ]
obtained from w̄ by adding −δ as the (n + 1)st component. The final form of
boosted classifier, as given in Equation 3, using the new representation of decision
stump becomes,

H(x̄) = sign

(
T∑

k=1

αk.hk(x̄)

)
= sign

(
T∑

k=1

αk.
(
W̄k.x̄

t
))

. (7)

By using simple arithmetic manipulation, the above equation can be written as,

H(x̄) = sign
(
W̄ .x̄t

)
(8)

where the (n+1)−dimensional vector, W̄ =
∑T

k=1 (αk.W̄k) = [w1, w2, . . . , wn+1],
is the weighted sum of the selected decision stumps. The classifier given by
Equation 8 is equivalent to a perceptron as given in Equation 1.

3 Evaluation

This section provides a detailed description of the datasets, experimental settings
and results obtained for comparing the boostron with the perceptron learning
algorithm.

Table 1 shows detailed statistics and method of computing error rate estimates
for 7 binary and 12 multiclass learning datasets. These datasets cover a wide
variety of classification problems including a very small lung cancer dataset
that has only 32 training examples, and larger datasets including the letters
recognition and pen-digit recognition datasets.
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Table 1. Description of Datasets

Dataset Name Dimensions Training Test Total Classses Error Estimate
Instances Instances

Balance Scale 4 625 2 Cross Validation
Breast Cancer 30 569 2 Cross Validation
Spambase 57 4601 2 Cross Validation
EEG 14 14979 2 Cross Validation
Two Norm 20 2000 2000 2 Training/Test
Three Norm 20 1000 2000 2 Training/Test
Ring Norm 20 2479 2442 2 Training/Test
Iris 4 150 3 Cross Validation
Forest Fire 5 500 4 Cross Validation
Glass 10 214 7 Cross Validation
Vowels 10 528 372 11 Cross Validation
Land State 37 4435 2000 8 Training/Test
Wine 13 178 3 Cross Validation
Waveform 21 5000 3 Cross Validation
Pen digits 16 7494 3498 10 Training/Test
Letters 16 16000 4000 26 Training/Test
Segmentation 20 210 2100 8 Training/Test
Yeast 8 98 0 504 10 Training/Test
Lung Cancer 56 32 3 Cross Validation

In all our experiments the extension of AdaBoost algorithm [8] that uses
confidence rated predictions has been used along with decision stumps to create
the classifiers. The output of each decision stump has been normalized to obtain
confidence rated predictions in the range [−1, 1].

The first set of experiments compares the two algorithms for the 7 binary
classification problems. Table 2 summarizes the training and test accuracies of
the two perceptron learning algorithms for these datasets. The boostron based
learning algorithm considerably improved the performance of the resulting per-
ceptron for the six linearly non-separable binary classification problems including
the breast cancer detection, spambase recognition, heart disease detection(EEG),
balance scale, and the simulated two-norm and three-norm problems. In the case
of ring norm dataset the boostron converged to a degraded decision boundary.

Table 2. Error Rate Comparison for 7 binary classification Datasets

Training Error% Test Error%

Dataset

Balance Scale
Breast Cancer
Spambase
EEG
Two Norm
Three Norm
Ring Norm

Boostron Perceptron

6.56 7.68
9.72 16.95
24.73 39.34
41.53 51.27
2.25 5.05
26.81 35.6
45.25 30.83

Boostron Perceptron

7.32 9.73
9.14 16.87
24.67 39.43
44.53 55.27
2.65 5.0
29.05 35.7
46.71 31.58
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Table 3. Error Rate Comparison for 12 Multiclass Datasets

Training Error% Test Error%

Dataset

Iris
Forest Fire
Glass
Vowel
Land State
Wine
Waveform
Pen Digits
Letters
Segmentation
Yeast
Lung Cancer
KDD-CUP 99

Boostron Perceptron

7.36 34.07
16.62 22.71
18.22 37.34
71.02 66.29
28.88 76.80
29.40 55.25
18.08 27.43
26.90 8.57
62.81 54.87
16.19 46.19
43.88 58.33
3.7 1.25
6.35 11.81

Boostron Perceptron

7.66 40.27
17.73 24.24
18.82 39.52
73.59 73.38
31.05 77.65
30.08 56.76
18.24 27.62
31.33 13.84
64.90 56.00
16.48 48.76
48.02 69.08
38.33 36.67
11.22 18.31

The second set of experiments compares the two algorithms over the 12 mul-
ticlass learning datasets taken from the UCI machine learning repository [10]. In
these experiments, each multiclass problem has been decomposed into a number
of binary classification problems using one-vs-remaining encoding and, similar
to Figure 1(b), a perceptron has been learned for each of the resulting binary
classification problems. The class corresponding to the most confident positive
label has been the predicted class of an instance x̄.

The summary of results, given in Table 3, shows that boostron mostly con-
verged to a significantly improved decision boundary than the standard percep-
tron. However, for the three larger learning problems including letters, pen digits
and vowel recognition, the boostron converged to an inferior decision boundary.

3.1 Boostron Based Intrusion Detection System

The last experiment reports the performance of a multiclass boostron for a 23-
class Intrusion Detection System (IDS) used to monitor a TCP/IP network traf-
fic. This dataset has been adopted from the KDD Cup 99 (KDD99) dataset [11]
prepared and managed by MIT Lincoln Labs and is the most dominant intrusion
detection dataset used in the machine learning community [12–16]. The adopted
dataset has 494011 connections; each described using 41 attributes and a label
identifying the type of the connection (either normal or one of the attacks). The
dataset contains 3 dominant classes comprising of more than 98% of the total
training examples. A detailed summary of the dataset is shown in Table 4. To
measure the performance of boostron based system, the the dataset has been
partitioned randomly into a training set (3% of data) and a test set (remaining
97% data). The experiment has been repeated 10 times to obtain an average
performance of the intrusion detection system.

Table 5 gives the confusion matrix and the values of different measures for
the three dominant classes covering most of the dataset. The IDS achieved a
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Table 4. KDD99 Class Frequency

Class Frequency Class Frequency Class Frequency

1 2203 9 7 17 10
2 30 10 107201 18 1589
3 8 11 231 19 280790
4 53 12 97278 20 2
5 12 13 3 21 979
6 1247 14 4 22 1020
7 21 15 264 23 20
8 9 16 1040

Table 5. Test Performance of Intrusion Detection System for Three Dominant Classes

NEPTUNE NORMAL SMURF

+ve -ve

+ve 100006 3622

-ve 154 373761

+ve -ve

+ve 82205 11824

-ve 6381 377133

+ve -ve

+ve 271298 134

-ve 69 206042

Accuracy: 0.9921
Precision: 0.9985
Recall: 0.9650

Accuracy: 0.9619
Precision: 0.9280
Recall: 0.8743

Accuracy: 0.9996
Precision: 0.9997
Recall: 0.9995

test accuracy of 96.19% for the class representing normal TCP/IP traffic where
as the precision and recall rates are around 92% and 87%, respectively. For the
other two classes, the values of the accuracy and precision have been higher than
99% whereas the value of recall has been better than 96%. We also found that on
average the proposed IDS attained 99.6% accuracy, 95.34% precision and 95.34%
recall for the entire KDD99 dataset.

4 Conclusions

A boosting-based perceptron learning algorithm has been presented and com-
pared to the standard perceptron learning algorithm using several classification
tasks of varying complexity. The proposed method produced significantly accu-
rate decision boundaries for most of the considered problems.
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Abstract. Streaming data clustering is becoming the most efficient way
to cluster a very large data set. In this paper we present a new approach,
called G-Stream, for topological clustering of evolving data streams. G-
Stream allows one to discover clusters of arbitrary shape without any
assumption on the number of clusters and by making one pass over the
data. The topological structure is represented by a graph wherein each
node represents a set of “close” data points and neighboring nodes are
connected by edges. The use of the reservoir, to hold, temporarily, the
very distant data points from the current prototypes, avoids needless
movements of the nearest nodes to data points and therefore, improving
the quality of clustering. The performance of the proposed algorithm is
evaluated on both synthetic and real-world data sets.

Keywords: Data Stream Clustering, Topological Structure, Growing
Neural Gas.

1 Introduction

Clustering is the problem of partitioning a set of observations into clusters such
that observations assigned in the same cluster are similar (or close) and the inter-
cluster observations are dissimilar (or distant). The other objective of clustering
is to quantify the data by replacing a group of observations (cluster) with one
representative observation (or prototype). A data stream is a sequence of poten-
tially infinite, non-stationary (i.e., the probability distribution of the unknown
data generation process may change over time) data arriving continuously (which
requires a single pass through the data) where random access to data is not fea-
sible and storing all arriving data is impractical. Mining data streams can be
defined as the process of finding a complex structure in a large data. Clustering
data streams requires a process capable of partitioning observations continuously
with restrictions of memory and time. In literature, many data stream algorithms
have been adapted from clustering algorithms, e.g., the density-based method
DbScan [6,8], the partitioning method k-means [1], or the message passing-based
method AP [14]. In this paper, we propose G-Stream (Growing Neural Gas over
Data Stream), a novel algorithm for discovering clusters of arbitrary shape in an
evolving data stream, whose main features and advantages are described below:

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 207–214, 2014.
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• The topological structure is represented by a graph wherein each node rep-
resents a cluster, which is a set of “close” data points and neighboring nodes
(clusters) are connected by edges. The graph size is not fixed but may evolve.

• We use an exponential fading function to reduce the impact of old data
whose relevance diminishes over time. For the same reason, links between
nodes are also weighted by an exponential function.

• Unlike many other data stream algorithms that start by taking a significant
number of data points for initializing the model (these data points can be
seen several times), G-Stream starts with only two nodes. Several nodes
(clusters) are created in each iteration, the opposite of traditional GNG [7].

• All aspects of G-Stream (including creation, deletion and fading of nodes,
edges management, and reservoir management) are performed online.

• A reservoir is used to hold, temporarily, the very distant data points, com-
pared to the current prototypes.

The remainder of this paper is organized as follows: Section 2 is dedicated to
related works. Section 3 describes the G-Stream algorithm. Section 4 reports
the experimental evaluation on both synthetic and real-world datasets. Section
5 concludes this paper.

2 Related Works

This section discusses previous works on data stream clustering problems, and
highlights the most relevant algorithms proposed in literature to deal with this
problem. Most of existing algorithms divided the clustering process in two phases:
(1) Online, the data will be summarized, (2) Offline, final clusters will be gen-
erated. Both CluStream [2] and DenStream [6] use a temporal extension of the
Clustering Feature vector [13] (calledmicro-clusters) to maintain statistical sum-
maries about data locality and timestamps during the online phase. By creating
two kinds of micro-clusters (potential and outlier micro-clusters), DenStream
overcomes one of the drawbacks of CluStream, its sensitivity to noise. In the
offline phase, the micro-clusters found during the online phase are considered
as pseudo-points and will be passed to a variant of k -means in the CluStream
algorithm (resp. to a variant of DbScan in the DenStream algorithm) in order to
determine the final clusters. StreamKM++ [1] maintains a small sketch of the
input data using the merge-and-reduce technique. The merge step is performed
by a means of data structure, named bucket set. The reduce step is performed by
a significantly different summary data structure, the coreset tree. SOStream [8]
is a density-based clustering algorithm inspired by both the principle of DbScan
algorithm and that of the self-organizing maps (SOM) [9]. E-Stream [12] clas-
sifies the evolution of data into five categories: appearance, disappearance, self
evolution, merge, and split. It uses another data structure for saving summary
statistics, named α-bin histogram. StrAP [14], an extension of the Affinity Prop-
agation algorithm for data stream, uses a reservoir for saving potential outliers.
AING [5], an incremental GNG that learns automatically the distance thresh-
olds of nodes based on its neighbors and data points assigned to the concerned
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Table 1. Comparison between algorithms (WL: weighted links, 2 phases : on-
line+offline)

Algorithms based on topology WL phases remove merge split fade

G-Stream NGas � � online � � � �

AING NGas � � online � � � �

CluStream k -means � � 2 phases � offline � �

DenStream DbScan � � 2 phases � offline � �

SOStream DbScan, SOM � � online � � � �

E-Stream k -means � � 2 phases � � � �

StreamKM++ k -means � � 2 phases � � � �

StrAP AP � � 2 phases � � � �

node. It merges nodes when their number reaches a given upper bound. Table
1 summarizes the main features offered by each algorithm in terms of: basic
clustering algorithm, whether the algorithm identifies a topological structure or
not, whether links (if those exists) between clusters (nodes) are weighted, how
many phases does it adopt (online and offline), operations for updating clusters
(remove, merge, and split cluster), and the fading function.

3 Growing Neural Gas over Data Stream

In this section we introduce Growing Neural Gas over data Stream (G-Stream)
and highlight some of its novel features. G-Stream is based on Growing Neu-
ral Gas (GNG), which is an incremental self-organizing approach that belongs
to the family of topological maps such as Self-Organizing Maps (SOM) [9] or
Neural Gas (NG) [10]. It is an unsupervised algorithm capable of representing
a high dimensional input space in a low dimensional feature map. Typically,
it is used for finding topological structures that closely reflect the structure of
the input distribution. We assume that the data stream consists of a sequence
DS = {x1,x2, ...,xn} of n (potentially infinite) data streams arriving in times
T1, T2, ..., Tn, where xi = (x1

i , x
2
i , ...x

d
i ) is a vector in �d. At each time, G-Stream

is represented by a graph C where each node represents a cluster. Each node c ∈ C
has a prototype wc = (w1

c , w
2
c , ...w

d
c ) (resp. a distance threshold δc) representing

its position (resp. the distance from the node to the farthest data point assigned
to it). Starting with two nodes, and as a new data point is reached, the nearest
and the second-nearest nodes are identified, linked by an edge, and the nearest
node with and topological neighbors are moved toward the data point. Each
node has an accumulated error variable and has weight, which varies over time
using Fading function. Using Edge management, one, two or three nodes are in-
serted into the graph between the nodes with the largest error values. Nodes can
also be removed if they are identified as being superfluous. Figure 1 represents
a general diagram of the algorithm.

Fading Function: In most data stream scenarios, more recent data can
reflect the emergence of new trends or changes in data distribution [3]. There
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Fig. 1. Diagram of G-Stream algorithm.

are three models of window commonly studied in the data stream: landmark
window, sliding window and damped window. We consider, like many others,
the damped window model, in which the weight of each data point decreases
exponentially with time t via a fading function f(t) = 2−λ1(t−t0), where λ1 > 0,
defines the rate of decay of the weight over time. t denotes the current time
and t0 is the timestamp of the data point. The weight of a node is based on
data points associated therewith: weight(c) =

∑m
i=1 2

−λ1(t−ti0 ), where m is the
number of points assigned to the node c in the current time t. If the weight of
a node is less than a parameter value then this node is considered as outdated
and then deleted (with its links).

Edge Management: The edge management procedure performs operations
related to updating graph edges, as illustrated in steps 13-14 of the algorithm.
The way to increase the age of edges is inspired by the fading function in the
sense that the creation time of a link is taken into account. Contrary to the fading
function, the age of the links will be strengthened by the exponential function
2λ2(t−t0), where λ2 > 0, defines the rate of growth of the age over time. t denotes
the current time and t0 is the creation time of the edge. The next step is to add
a new edge that connects the two closest nodes. The last step is to remove each
link exceeding a maximum age, since these links are no longer useful because
they were replaced by younger and shorter edges that were created during the
graph refinement in steps 15-20.

Reservoir Management: The aim of using the reservoir is to hold, tem-
porarily, the far data points. As mentioned before, each node has a threshold
distance. The first bunch of data is assigned to nearest nodes without comparing
distances thresholds. The distance threshold of each node is learned by taking
the maximum distance of the node to the farthest point that it has been as-
signed. When the reservoir is full, its data is re-passed to the learning. They
are placed in the heap of the data stream, DS, to be dealt with first and the
distance thresholds of nodes are updated accordingly.

4 Experimental Evaluations

In this section, we present an experimental evaluation of G-Stream algo-
rithm. We compared our algorithm with the GNG algorithm and two relevant
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Algorithm 1. G-Stream

Data: DS = {x1,x2, ..., xn}
Result: set of nodes C = {c1, c2, ...} and their prototypes W = {wc1 ,wc2 , ...}

1 Initialize node set C to contain two nodes, c1 and c2: C = {c1, c2};
2 while there is a data point to proceed do
3 Get the next data point in the data stream, xi;
4 Find the nearest node bmu1 ∈ C and the second nearest node bmu2 ∈ C;
5 if ‖xi −wbmu1‖ > δbmu1 then
6 put xi in the reservoir;
7 if the reservoir is full then Reservoir management

8 else
9 Increment the number of points assigned to bmu1;

10 error(bmu1) = error(bmu1) + ‖xi −wbmu1‖2;
11 Move bmu1 and its topological neighbors towards xi:

wbmu1 = wbmu1 + α1.‖xi −wbmu1‖;
12 wc = wc + α2.‖xi −wc‖ for all direct neighbors c of node bmu1;
13 Increment the age of all edges emanating from bmu1 and weight them;
14 if bmu1 and bmu2 are connected by an edge then set the age of this

edge to zero else create an edge between bmu1 and bmu2, and mark its
time stamp Remove edges whose age is greater than agemax;

15 if the number of points passed is multiple of a parameter β then
16 for i=1 to 3 do
17 Find node q with the maximum accumulated error;
18 Find the neighbor f of q with the largest accumulated error;
19 Add the new node, r, half-way between nodes q and f ;
20 Insert edges connecting the new node r with nodes q and f , and

remove the original edge between q and f ;

21 Application of fading, delete outdated and isolated nodes;
22 Finally, decrease the error of all units;

data stream algorithms. Our experiments were performed on MATLAB platform
using real-world and synthetic datasets. Table 2 overviews all the datasets used.
The real-world databases were taken from the UCI repository [4]. DS1 is generated
by http://impca.curtin.edu.au/local/software/synthetic-data-sets.

tar.bz2. Uniform is generated with matlab code. The letter4 dataset is generated
by a Java code https://github.com/feldob/Token-Cluster-Generator. The
algorithms are evaluated using three performance measures: Rand, Normalized
Mutual Information and Accuracy (Purity) with the aim of maximizing each
measure [11]. As explained in section 3, GNG and G-Stream algorithms start
with two nodes. We used an online version of GNG but without the parameters
that we added and this, precisely, to show the interest and contribution of these
parameters in G-Stream. Therefore, we did experiments by initializing two nodes
randomly among the first 20 points and we repeated this 10 times. We used the
same initialization for both algorithms (G-Stream and GNG) and the average

http://impca.curtin.edu.au/local/software/synthetic-data-sets.tar.bz2
http://impca.curtin.edu.au/local/software/synthetic-data-sets.tar.bz2
https://github.com/feldob/Token-Cluster-Generator
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Table 2. Overview of all datasets

Datasets size #features #classes
DS1 9153 2 14

Uniform 24000 2 4
letter4 9344 2 7
Shuttle 43500 9 7

L-recognition 20000 16 26
KddCup1 49402 34 18

value with its standard deviation is reported in Table 3. These results show that
G-Stream algorithm outperforms the GNG algorithm on almost all the datasets.
For comparison purpose, we used CluStream with stream R package http://

cran.r-project.org/web/packages/stream/index.html. Comparison is also
performed with StreamKM++ [1]. Results are reported in Table 3. Again, with
reference to Table 3, it is noticeable that G-Stream’s Accuracies (Acc) are higher
for all datasets as compared to GNG, StreamKM++, and CluStream. The NMI
values are also higher than the other algorithms except for CluStream in DS1,
and for the two data stream algorithms in Uniform. The Rand values are also
higher than the other algorithms except in Uniform and shuttle. We remind that
G-Stream proceeds in one single phase whereas CluStream and StreamKM++
proceed in two phases (online and offline phase).

Table 3. Comparing G-Stream with different algorithms

Datasets GNG G-Stream StreamKM++ CluStream

DS1 Acc 0.511±0.251 0.993±0.006 0.675±0.018 0.701±0.028
NMI 0.491±0.132 0.712 ±0.004 0.702±0.021 0.723±0.022
Rand 0.621±0.122 0.846±0.001 0.844±0.004 0.845±0.007

Uniform Acc 1 ± 0 1 ± 0 0.998±0.004 0.995±0.012
NMI 0.492±0 0.568±0.003 0.777±0.007 0.787±0.015
Rand 0.754±0 0.765±0 0.855±0.003 0.868±0.011

letter4 Acc 0.577±0.201 0.991±0 0.687±0.026 0.934±0.026
NMI 0.529±0.074 0.607±0 0.553±0.022 0.264±0.034
Rand 0.686±0.084 0.812±0 0.794±0.014 0.341±0.004

Shuttle Acc 0.963±0.002 0.973±0.004 0.822±0.003 0.899±0.017
NMI 0.355±0 0.362±0.007 0.258±0.015 0.340±0.035
Rand 0.378±0.001 0.376±0.001 0.753±0.039 0.559±0.059

L-recognition Acc 0.077±0.068 0.408±0.019 0.161±0.009 0.181±0.009
NMI 0.046±0.096 0.437±0.015 0.239±0.015 0.267±0.011
Rand 0.541±0.139 0.956±0.001 0.861±0.006 0.851±0.007

KddCup1 Acc 0.929±0.085 0.998±0.001 0.768±0 0.998±0
NMI 0.655±0.319 0.602±0.032 0.012±0.003 0.022±0.002
Rand 0.824±0.206 0.655±0.045 0.623±0.003 0.369±0.083

http://cran.r-project.org/web/packages/stream/index.html
http://cran.r-project.org/web/packages/stream/index.html
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Figure 2a (resp. Figure 2b) compares G-Stream (red line with circle) with
GNG (blue line with cross) with respect to accuracy (resp. RMS error, number
of nodes). On almost all times, the accuracy value (resp. RMS error) of G-
Stream is higher (resp. is less) than the one of GNG. Figure 2c compares the
two algorithms in terms of number of nodes creating the graph. Despite this
we create several nodes at each iteration (against a single node for GNG), the
number of nodes created by G-Stream becomes steady (against a continuously
increase for GNG) due to the application of the fading function. The same result
can be shown on the rest of the datasets. The second row of Figure 2 shows the

(a) accuracy (b) RMS error (c) Nb nodes

Fig. 2. DS1 Experimentation. Accuracy, RMS error, and number of nodes for G-Stream
on DS1. The second row shows visual result of G-Stream on DS1 (dataset and topo-
logical result).

evolution of the creation of nodes by applying G-Stream on DS1 (green points
represent data points of the data stream and blue ones are nodes of the graph
with edges in blue lines). It illustrates that G-Stream manages to recognize the
structures of the data stream and can separate these structures with the best
visualization. Due to space limitations, we omitted the visual results about the
other datasets since they have the same interpretation as that we have shown.

5 Conclusion

In this paper, we have proposed G-Stream, an efficient method for topological
clustering an evolving data stream in an online manner. In G-Stream, nodes
are weighted by a fading function as well as edges by an exponential function.
Starting with two nodes, G-Stream confronts the arriving data points to the cur-
rent prototypes, storing the very distant ones in a reservoir, learns the threshold
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distances automatically, and many nodes are created in each iteration. Experi-
mental evaluation over a number of real and synthetic data sets demonstrates
the effectiveness and efficiency of G-Stream in discovering clusters of arbitrary
shape. Our experiments show that G-Stream outperformed the GNG algorithm
in terms of visual results and criteria as accuracy, rand and NMI. G-Stream is
also compared, in terms of clustering quality, to two relevant data stream al-
gorithms, results are promising. We plan in future to make adaptive windows,
make our algorithm as autonomous as possible and develop it in Spark or Storm
for testing on large datasets with other data stream algorithms.

Acknowledgments. This work has been supported by the French foundation
PIA Grant Big data ”Square Predict”.
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Abstract. Semi-supervised learning and active learning are important
techniques to solve the shortage of labeled examples. In this paper, a
novel active learning algorithm combining semi-supervised Learning with
Local and Global Consistency (LLGC) is proposed. It selects the example
that can minimize the estimated expected classification risk for labeling.
Then, a better classifier can be trained with labeled data and unlabeled
data using LLGC. The experiments on two datasets demonstrate the
effectiveness of the proposed algorithm.

Keywords: Active learning, semi-supervised learning, image classifica-
tion.

1 Introduction

In traditional machine learning approaches to classification, only labeled exam-
ples are used to train the classifier. But in many real-world applications, there
is a large number of unlabeled examples. Whereas labeled examples are usually
difficult and expensive to obtain. Two typical methods to address this problem
are semi-supervised learning [1] and active learning [2]. Semi-supervised learn-
ing combines both labeled examples and unlabeled examples to train a better
classifier. Active learning usually selects a set of unlabeled instances for experts
labeling, a better classifier can be trained by labeled examples afterwards.

The kernel of active learning is how to measure examples’ value and which ex-
amples should be selected for labeling. There are many criteria in active learning
to instruct examples selection. Uncertainty sampling is one of the most widely
used criterion that queries the examples whose labels are most uncertain under
the current classifier. Other criteria like variance reduction [3], Expected Model
Change [4], Expected Error Reduction [5][6], and diversity [7] have also been
widely applied to active learning.

With the same number of labeled examples, both active learning and semi-
supervised learning usually perform better than supervised learning. It may make
sense to utilize active learning in conjunction with semi-supervised learning.

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 215–222, 2014.
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Specifically, we firstly select a set of unlabeled examples to be labeled by experts.
Then, both labeled examples and unlabeled examples are used to train classifiers.
In [5], Zhu et al. combined active learning and semi-supervised learning using
Gaussian Fields and Harmonic Functions (GFHF). Active learning is performed
on top of the semi-supervised learning scheme by selecting examples to minimize
the estimated expected classification risk.

Since Learning with Local and Global Consistency (LLGC) [8] presents a
promising performance in semi-supervised learning, we explore the combination
of active learning and LLGC in this paper. In active learning process, the example
which can minimize the estimated expected classification risk is selected to be
labeled. Then, a classifier is learned by LLGC with labeled data and unlabeled
data. The experiments of image classification on two datasets demonstrate the
effectiveness of the proposed algorithm.

The rest of this paper is organized as follows: In Section 2, we review semi-
supervised Learning with Local and Global Consistency. The combination of
active learning and LLGC is introduced in Section 3. In Section 4, we present
the experimental settings and results. Finally, the conclusion and future work
are discussed in Section 4.

2 Semi-supervised Learning with Local and Global
Consistency

We begin by briefly describing the semi-supervised learning method LLGC [8].
Suppose there are l labeled examples (x1, y1), ..., (xl, yl) and u unlabeled ex-
amples xl+1, ..., xl+u; usually l � u. yi is the label of example xi. For a c-class
classification problem, yi ∈ {1, 2, ..., c}, i = 1, ..., l. The labeled set and unlabeled
set are denoted by L and U , and n = l + u. The goal is to predict the labels of
the unlabeled examples.

Let F denote the set of n × c matrices with nonnegative entries. Define a
n × c matrix Y ∈ F with Yij = 1 if xi is labeled as yi = j and Yij = 0
otherwise. A matrix F ∈ F is a matrix that labels all examples xi with a label
yi = argmaxj≤cFij . If F is defined as F = [FT

1 , ..., FT
n ]T , F can be understander

as a vectorial function which assigns a vector Fi to each example xi. The LLGC
algorithm is as follows:

1. Constrcut the affinity matrix W defined by Wij = exp(−||xi − xj ||2/2σ2) if
i �= j and Wij = 0 if i = j.

2. Compute S = D−1/2WD−1/2 where D is a diagonal matrix with Dii =∑n
j=1 Wij .

3. Iterate F (t+1) = σSF (t)+(1−σ)Y until convergence, where σ is a parameter
in (0, 1).

4. Define F ∗ = lim
t→∞F (t). The label of xi is predicted as yi = argmax

j≤c
F ∗
ij .

We firstly construct a graph G = (V,E) on L ∪ U , where the vertex set V is
the set of all examples and the edges E are weighted by W . Then, the weight
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matrix W is normalized symmetrically. In the iteration, each examples receives
information from its neighbors (first term), and retains its initial information
(second term). The information is spread symmetrically since S is a symmetric
matrix. Finally, the label of each unlabeled examples is predicted as the class of
which it has received most information during the iteration process.

By computing the limit of the sequence {F (t)}, we can obtain

F ∗ = (1− α)(I − αS)−1Y (1)

for classification, which is equivalent to

F ∗ = QY (2)

where Q = (I − αS)−1. Since S is fixed, Q is also fixed in the learning process.
A regularization framework was also proposed by Zhou et al. for this method.

The cost function associated with F with regularization parameter μ > 0 is
defined as

Q(F ) =
1

2
(

n∑
i,j=1

Wij‖ 1√
Dii

Fi − 1√
Djj

Fj‖2 + μ

n∑
i=1

‖Fi − Yi‖2) (3)

The optimal decision function is F ∗ = argminF∈F Q(F ). More on this semi-
supervised learning framework can be found in [8].

3 Active Learning

In this section, we propose to perform active learning with LLGC. The basic
idea of the proposed active learning is to select the example that can minimize
the classification risk of the examples.

With both labeled examples and unlabeled examples, we can train a classifier
(decision function F ) using LLGC. The class of unlabeled example xi is predicted
as yi = argmaxj≤c F

∗
ij . Suppose P (yi|xi) is the probability distribution of the

examples’ labels. We assume that the distribution P (yi|xi) can be estimated
based on decision function F .

P (yi = j|xi) =
Fij∑c
t=1 Fit

(4)

We define the true risk R(P ) of the classification based on labels’ distribution
P . Thus

R(P ) =

n∑
i=1

(1− max
j=1,...,c

P (yi = j|xi)) (5)

If we perform active learning to select an unlabeled example xk for experts
labeling, we will receive an answer y∗k (y∗k ∈ {1, ..., c}). Before we selecting xk

for labeling, Ykj = 0 (j = 1, ..., c). After labeling xk and adding (xk, y
∗
k) to

labeled set, the matrix Y should be updated and denoted by Y +(xk,y
∗
k) where
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Y
+(xk,y

∗
k)

k,y∗
k

= 1. The decision function F and the probability distribution P will

also change

F+(xk,y
∗
k) = QY +(xk,y

∗
k) (6)

P+(xk,y
∗
k)(yi = j|xi) =

F
+(xk,y

∗
k)

ij∑c
t=1 F

+(xk,y∗
k)

it

(7)

If (xk, y
∗
k) is added to the labeled set, the estimated classification risk is

R(P+(xk,y
∗
k)) =

n∑
i=1

(1− max
j=1,...,c

P+(xk,y
∗
k)(yi = j|xi)) (8)

Before we querying experts about the label of xk, the true label y
∗
k is unknown.

But we can obtain the labels’ distribution P (yi|xi) from decision function F .
Therefore, the expected classification risk after querying xk is estimated as

R(P+xk) =

c∑
j=1

P (yk = j|xk)R(P+(xk,j)) (9)

We aim to select the example that can minimize the expected estimated risk.
Therefore, the index of the selected example is

s = argmin
k∈{l+1,...,n}

R(P+xk) (10)

Once the label y∗s of the example xs is queried from experts, (xs, y
∗
s ) will

be added to the labeled set. The label matrix Y will be updated to Y +(xs,y
∗
s )

and the decision function will be retrained by equation (6). In fact, the update
operation of label matrix Y is only to change one element in Y , namely set Ys,y∗

s

to be 1. The retraining step F+(xs,y
∗
s ) = QY +(xs,y

∗
s ) is equivalent to update the

y∗s -th column of the matrix F .

F
+(xs,y

∗
s )·y∗

s
= F·y∗

s
+Q·y∗

s
(11)

where F·y∗
s
and Q·y∗

s
denote the y∗s -th column of matrices F and Q. Of course

F
+(xs,y

∗
s )

·j = F·j if j �= y∗s . It is easy to prove that the equation (6) is equivalent
to equation (11). But the computation of equation (11) is much faster than
equation (6).

The process of the proposed active learning combining LLGC is concluded
in Table 1. It is the procedure of selecting one example for experts labeling.
In applications, the examples selection often repeats many times until the stop
criterion is reached.

4 Experiment

In order to assess the effectiveness of the proposed technique, we evaluate and
compare five active learning methods:



Combining Active Learning and Semi-supervised LLGC 219

Table 1. The process of the proposed active learning algorithm

Input:
Initial labeled data set (x1, y1), ..., (xl, yl), unlabeled data set xl+1, ..., xl+u,
the guassian kernel parameter σ, the tradeoff parameter α

Output:
The selected example

Procedure:
Construct label matrix Y , compute weight matrix W and S, Q, F
For k = l + 1 : n

For yk = 1 : c

F+(xk,yk) = F , F
+(xk,yk)·yk = F·yk +Q·yk

P+(xk,yk)(yi = j|xi) =
F

+(xk,yk)
ij∑

c
t=1 F

+(xk,yk)

it

R(P+(xk,yk)) =
∑n

i=1(1−maxj=1,...,c P
+(xk,yk)(yi = j|xi))

End

R(P+xk) =
∑c

j=1 P (yk = j|xk)R(P+(xk,j))

End
s = argmin

k∈{l+1,...,n}
R(P+xk)

Return xs

– Random Sampling with LLGC classifier (RS+LLGC), which randomly selects
examples for labeling and uses LLGC classifier.

– Most Uncertain with LLGC classifier (MU+LLGC), which selects the most
uncertain example from LLGC classifier for labeling. The index of the most
uncertain example is

s = argmin
i=l+1,...,n

Fij1 − Fij2 (12)

where j1 = argmax
j=1,...,c

Fij , j2 = argmax
j=1,...,c,j �=j1

Fij .

– Multiclass-level uncertainty with SVM classifier (MCLU+SVM), which was
proposed in [9].

– MinRisk+GFHF, which was proposed in [5].
– MinRisk+LLGC, which is proposed in this paper. The parameter α is set to

0.99 and σ is set to 0.1.

In the following sections, we carry out classification experiments on two real-
world data sets to compare different active learning algorithms quantitatively.

4.1 Handwritten Digits Recognition

The USPS handwritten digits data set is used in this experiment. The data
set contains 8-bit gray-scale images of ’0’ through ’9’. The size of each image is
16×16 pixels. Thus, each digit image is represented as a 256-dimensional vector.

On this data set, we used digits 1, 2, 3, and 4 in our experiments as the
four classes. 500 examples from each class are randomly selected so there are
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totally 2000(500 × 4) examples. Only 1 example from each class is randomly
selected as initial labeled example. Thus there are 4 labeled examples and 1996
unlabeled examples. We apply each active learning algorithm to select k (k =
1, 2, ..., 10) examples for labeling. A classifier can be trained with LLGC or SVM
method. Lastly, we predict the labels of the rest unlabeled examples and compute
the classification accuracy. The experiments are repeated for 30 times and the
average accuracy is obtained.
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MinRisk+LLGC

Fig. 1. The average classification accuracy on usps dataset

Fig.1 shows the average classification accuracy versus the number of examples
selected by active learning methods. As can be seen, our MinRisk+LLGC algo-
rithm significantly outperforms the other active learning algorithms. MU+LLGC
performs the second best. The active learning combining GFHF (MinRisk+
GFHF) is not better than our proposed method. MCLU+SVM is worse than
others since it is unable to use unlabeled examples to train a classifier.

4.2 Terrain Classification

In this section, we apply active learning algorithms to terrain classification prob-
lems. Terrain image dataset used in the experiment was constructed by us from
the Outex Database [10], which consists of two data sets: Outex-0 and Outex-1.
Each of them includes 20 outdoor scene images and the size of each image is
2272× 1704. The images are marked as one type of bush, grass, tree, sky, road,
and building. The marked area of each image is cut into patches with size 64×64
and each patch is regarded as an example. Two examples of each class are shown
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in Fig. 2. Both color histogram feature and LBP feature are extracted and com-
bined to represent each example. We extract 100 patches of each class (totally
600 patches) to construct a pool of unlabeled data set for examples selection.
Firstly, only 1 example of each class is labeled as initial labeled set. Then, ac-
tive learning is used to select k (k = 1, 2, ..., 10) examples for labeling. Lastly, a
classifier is trained and the labels of the unlabeled examples are predicted.

Fig. 2. Examples of Outex from categories: sky, tree, bush, grass, road, and building

The average classification accuracies on Outex-0 and Outex-1 are shown in
Fig.3. As can been seen, our MinRisk+LLGC outperforms the other algorithms
in most of the cases. MinRisk+GFHF performs the second best on Outex-0 while
worse than MU+LLGC on Outex-1. MCLU+SVM performs the worst on two
datasets since it is a supervised learning method that does not use unlabeled
data in learning.
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(a) The classification accuracy on Outex-0
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(b) The classification accuracy on Outex-1

Fig. 3. The average classification accuracy on Outex-0 and Outex-1

To sum up, semi-supervised learning (LLGC, GFHF) performs better than su-
pervised learning (SVM) with the same number labeled examples. Our proposed
MinRisk+LLGC outperforms MinRisk+GFHF, MU+LLGC, and RS+LLGC in
most of the cases.
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5 Conclusion

In this paper, a novel active learning algorithm which combining semi-supervised
learning with LLGC is proposed. The example that can minimize the estimated
expected classification error is selected for labeling. Experiments on two datasets
indicate that the proposed algorithm can be highly effective.

MinRisk+LLGC is a single-mode active learning algorithm that selects only
one example each time. In the future, we will expend this method into a batch-
mode active learning.
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Abstract. This invited paper presents and discusses the recent progress, present
and prospective applications, and the future directions of complex-valued neural
networks (CVNNs) including hypercomplex-valued neural networks (HVNNs).

1 Introduction

Complex-valued neural networks (CVNNs), including hypercomplex-valued networks
(HVNNs), have been making extensive progress in these years. Correspondingly some
special issues have also been planned and published in, e.g., IEEE Transactions on
Neural Networks and Learning Systems [1]. Special sessions are also held constantly
in conferences such as ICONIP and IJCNN. In addition, many books have been pub-
lished [2] [3] [4] [5] [6] [7]. This invited paper presents the recent progress and the
future directions of CVNNs by describing two technological points: compatibility with
the wave nature and the sparsity existing essentially in a complex number. Besides,
we review one of the most recent advanced applications in quaternion neural networks
(QNNs), a type of HVNNs, applied in the field of radar imaging to contribute to solving
environmental issues [8]

2 Features Specific to CVNNs: Two Key Points among Others

2.1 Compatibility with the Wave Nature

Fig. 1 is a diagram showing the specific features and application fields of CVNNs.
CVNNs show excellent generalization characteristics in particular to deal with waves
such as electromagnetic, sonic and generally quantum waves as well as to process wave-
related information [9] [10]. Focusing on the wave nature, we can trace back the CVNN
history to the middle of the 20th century. The first introduction of phase informa-
tion into computational systems was made by Eiichi Goto in 1954 in his invention
of “Parametron” [11] [12] [13]. He utilized the phase of a high-frequency carrier to
represent binary or multivalued information. However, the computational principle em-
ployed there was “logic” of Turing type, or von Neumann type, based on symbol
processing, so that he was indifferent to making further extensive use of the phase.

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 223–230, 2014.
c© Springer International Publishing Switzerland 2014

http://www.eis.t.u-tokyo.ac.jp/


224 A. Hirose

N
e
w

 f
ie

ld
s
 o

f 

c
h
a
o
s
 a

n
d
 f
ra

c
ta

ls

H
ig

h
e
r-

 

o
rd

e
r 

c
o
m

p
le

x
 

p
ro

c
e
s
s
in

g

P
ro

c
e

s
s
in

g
 

b
a

s
e

d
  
o

n
 

c
o

m
p

le
x
it
y
 

in
 a

m
p

tl
it
u

d
e

 

a
n

d
 p

h
a

s
e

3
-d

im
e
n
s
io

n
a
l

ro
ta

ti
o
n
 i
n
 

ro
b
o
ti
c
s
 a

n
d
 

m
e
c
h
a
n
ic

s

B
a
s
ic

 p
ro

p
e
rt

ie
s

 a
n
d
 d

y
n
a
m

ic
s

R
e
la

te
d
 p

h
y
s
ic

a
l 
e
x
is

te
n
c
e

 o
r 

a
p
p
lic

a
to

in
 f
ie

ld
s

C
o

h
e

re
n

t 
n

e
u

ra
l 
n

e
tw

o
rk

s
 

fo
r 

p
ro

c
e

s
s
in

g
 w

a
v
e

s

G
o
o
d
 c

o
rr

e
s
p
o
n
d
e
n
c
e
 b

e
tw

e
e
n
 i
n
fo

rm
a
ti
o
n
 r

e
p
re

s
e
n
ta

ti
o
n
  

a
n
d
 p

h
y
s
ic

a
l 
e
x
is

te
n
c
e
 /
 w

a
v
e
 p

h
e
n
o
m

e
n
a

C
o
n
tr

o
lla

b
le

a
d
a
p
ta

b
ili

ty

P
e
ri
o
d
ic

 

to
p
o
lo

g
y

in
 p

h
a
s
e

S
ta

b
le

 

d
y
n
a
m

ic
s

2
-d

im
e
n
s
io

n
a
lit

y
 

a
n
d
 d

ir
e
c
ti
o
n
-

p
re

s
e
rv

a
ti
o
n
 

E
le

c
tr

o
n
 w

a
v
e

S
o
n
ic

 /
 U

lt
ra

-

s
o
n
ic

 w
a
v
e

E
le

c
tr

o
m

a
g
n
e
ti
c
 w

a
v
e

L
ig

h
tw

a
v
e

C
o
m

p
a
ti
b
ili

ty
 o

f 

a
d
a
p
ta

b
ili

ty
 a

n
d
 

c
o
n
tr

o
lla

b
ili

ty

M
e
m

o
ry

 

a
n
d
 r

e
c
a
ll

T
im

e
-s

e
ri
e

s
 

p
ro

c
e

s
s
in

g

Im
a
g
e
 

p
ro

c
e
s
s
in

g

C
la

s
s
if
ic

a
ti
o
n
 /

s
e
g
m

e
n
ta

ti
o
n

L
e
a
rn

in
g
 

q
u
a
n
tu

m
 

d
e
v
ic

e
s

Q
u
a
n
tu

m
 

c
o
m

p
u
ti
n
g
 

d
e
v
ic

e
s

A
d
a
p
ti
v
e
 

s
e
n
s
o
rs

 a
n
d
 

im
a
g
in

g
 d

e
v
ic

e
s
 /

s
y
s
te

m
s

A
c
ti
v
e
 a

n
te

n
n
a
s
, 

a
d
a
p
ti
v
e
 m

o
b
ile

 

c
o
m

m
u
n
ic

a
ti
o
n
s
, 

ra
d
a
r 

s
y
s
te

m
s

P
la

s
ti
c
 o

p
ti
c
a
l 

c
o
n
n
e
c
ti
o
n
, 

o
p
ti
c
a
l 
ro

u
ti
n
g
, 

e
q
u
a
liz

a
ti
o
n

H
ig

h
ly

 
fu

n
c
ti
o
n
a
l 

o
p
ti
c
a
l 

in
fo

rm
a
ti
o
n
 

p
ro

c
e
s
s
in

g

C
o
n
te

x
t-

d
e
p
e
n
d
e
n
t 

b
e
h
a
v
io

r

S
ig

n
a
l 
p
ro

c
. 

b
a
s
e
d
 o

n
 

p
e
ri
o
d
ic

 

m
e
tr

ic
s

S
ta

b
le

 

re
c
u
rr

e
n
t 

p
ro

c
e
s
s
in

g
 

a
n
d
 c

o
n
tr

o
l

R
e
la

ti
v
e
-

d
ir
e
c
ti
o
n
-

p
re

s
e
rv

in
g
 

im
a
g
e
 

tr
a
n
s
fo

rm

C
o
m

p
le

x
- 

d
o
m

a
in

 

a
d
a
p
ti
v
e
 

c
la

s
s
if
ic

a
ti
o
n

L
e
a
rn

in
g
 /
 S

e
lf
-o

rg
a
n
iz

in
g
 e

le
c
tr

o
n
ic

s
, 
d
e
v
ic

e
s
, 

in
te

rf
a
c
e
s
, 
s
e
n
s
o
rs

, 
a
n
d
 o

th
e
r 

s
u
b
s
y
s
te

m
s

B
ra

in
lik

e
 s

y
s
te

m
s
 

A
d
a
p
ti
v
e
 p

ro
c
e
s
s
in

g
 b

a
s
e
d
 o

n
 n

a
tu

ra
l 
to

p
o
lo

g
y
 

a
n
d
 c

o
n
s
is

te
n
t 
re

la
ti
o
n
s
h
ip

 a
m

o
n
g
 s

ig
n
a
ls

 a
n
d
 i
n
fo

rm
a
ti
o
n

A
d
a
p
ti
v
e
  

c
o
lo

r 

p
ro

c
e
s
s
.

P
o
ra

liz
a
ti
o
n
 

p
ro

c
e
s
s
in

g

in
 o

p
ti
c
s
  

a
n
d
 r

a
d
a
r

C
o
m

p
le

x
- 

a
n
d
 H

y
p
e
rc

o
m

p
le

x
- 

v
a
lu

e
d
  
n
e
u
ra

l 
n
e
tw

o
rk

s

H
y
p

e
rc

o
m

p
le

x
 n

u
m

b
e

rs

(Q
u

a
rt

e
rn

io
n

, 
e

tc
.)

N
o
n
-c

o
m

m
u
ta

ti
v
it
y
 

a
n
d
 r

o
ta

ti
o
n
 i
n
 3

 d
im

e
n
s
io

n

in
 q

u
a
te

rn
io

n
 

C
h
a
o
s
 a

n
d
 f
ra

c
ta

ls
 

in
 c

o
m

p
le

x
 d

o
m

a
in

A
d
a
p
ti
v
e
 3

-d
im

e
n
s
io

n

p
ro

c
e
s
s
in

g

F
ig

.1
.

S
pe

ci
fi

c
fe

at
ur

es
an

d
ap

pl
ic

at
io

n
fi

el
ds

of
co

m
pl

ex
-

an
d

hy
pe

rc
om

pl
ex

-v
al

ue
d

ne
ur

al
ne

tw
or

ks
cl

as
si

fi
ed

by
ph

ys
ic

al
ex

is
te

nc
e

as
w

el
la

s
ne

ur
al

dy
na

m
ic

s
(R

ef
.[

3]
,m

od
ifi

ed
)



CVNN – Recent Progress and Future Directions 225

In the present CVNN fields, contrarily, researchers extend the world of computation to
pattern processing based on a novel use of the structure of complex-amplitude (phase
and amplitude) information. This is an important technological point also in optical
and/or quantum computing to develop new algorithms where the physical field exists as
the superimposition of quantum wave [14] [15] [16] [17] [18] [19] [20].

The application fields are very wide in a diverse range of wave engineering such as
wireless communications [21] [22] [23] [24] [25] [26] [27] [28] [29], electromagnetic-
wave imaging [30] [31] [32] [33] [34], in particular, in ground penetrating radar systems
[35] [36] [37] [38] [39] [40] and ultrasonic sensing [41] [42] [43]. Even in the process-
ing of ordinary images and signals, the CVNNs work very effectively when we employ
a periodic representation of information in frequency or real domains [44] [45]. Wave
informatics will remain the most important application field.

2.2 The Sparsity Existing Essentially in the Number Itself

The origin of the wave compatibility of complex number is “sparsity in itself,” i.e.,
sparsity lying in the number representation. We follow the discussion in Ref.[9]. As
we focus on multiplication out of the four arithmetic operations of complex numbers,
we can represent a complex number as a real 2×2 matrix. That is, with every complex
number c = a+jb, where a and b are real numbers and j is imaginary unit, we associate
a C-linear transformation Tc of z = x+ jy as

Tc : C → C, z �→ cz = ax− by + j(bx+ ay) (1)

If we identify C with R2 by

z = x+ jy =

(
x
y

)
(2)

it follows that

Tc

(
x
y

)
=

(
ax− by
bx+ ay

)
=

(
a −b
b a

)(
x
y

)
(3)

In other words, the linear transformation Tc determined by c = a+ jb is expressed by
a matrix that means phase rotation and magnitude amplification or attenuation as(

a −b
b a

)
= r

(
cos θ − sin θ
sin θ cos θ

)
(4)

where r ≡ √a2 + b2 and θ ≡ arctan b/a denote amplification or attenuation of ampli-
tude and rotation angle applied to the complex signal z, respectively.

Let us consider a set of weights in a neural network. In comparison with the fact that
a general 2×2 matrix has four independent parameters (complonents), the above rela-
tionship means the reduction of the parameter number to two. This is the sparsity that
the complex representation possesses in itself. The sparsity brings about the excellent
generalization ability. The utilization of this essential sparsity is one of the key points
in the future development.
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Wavelength of 

electromagnetic wave

Phase-sensitive eyes

"The Superbrain"

       Phase & Polarization 

Fig. 2. Geographical profile acquisition using phase-
and polarization-sensitive eyes and a superbrain
brought up with the special eyes [3] (modified)

(a)

(b)

Fig. 3. (a) Google photo of Fujisusono
area with teacher areas indicated by rect-
angles, and (b) its sketch [8]

3 Quaternion Neural Networks in Adaptive Polarimetric Synthetic
Aperture Radar Systems

As described above, radar imaging is one of the most important technological fields,
to which the CVNNs contribute actively and widely, since microwave and millimeter-
wave sense and carry information of imaging targets not only in its amplitude but also
in its phase and polarization. Adaptive complex-valued filters play a significantly im-
portant role. Among others, CVNN framework is extremely useful for elimination of
interference noise and distortion [46] [47] [48].

Here, in this paper, we briefly review an recently developed adaptive land-vegetation
classification technique based on a quaternion neural network (QNN) in a polarimet-
ric synthetic aperture radar [8] [49] [50] [51] . This type of airborne/satellite-borne
radar system realizes the so-called full polarimetric observation by transmitting hor-
izontally and vertically polarized waves one after the other, and by receiving waves
scattered at earth surface with horizontal and vertical polarization antennas simultane-
ously [52]. The state of polarization (SoP) is represented on/in Poincare sphere space
without excess or deficiency. The change or difference of SoP is presented by the mo-
tion/difference of vectors mostly on the Poincare sphere, or on a spherical shell inside,
in three dimension. This fact leads to a high compatibility of SoP with QNNs since
QNNs deal with three-dimensional rotations with excellent generalization ability.



CVNN – Recent Progress and Future Directions 227

(a) (b)

(c) (d)

LakeLake GrassGrass ForestForest TownTown

Fig. 4. Classification results for the Fujisusono area generated by (a) Coherency matrix with
Wishart classifier (C-Wishert, conventional); (b) Coherency matrix with real-valued neural net-
work (C-RVNN); (c) Poincare vectors with real-valued neural network (P-RVNN); and (d) Pin-
care vectors with quaternion neural network (P-QNN) [8]

Fig. 2 is an example of observation area. A QNN classifies the earth vegetation
adaptively based on the full polarimetric imaging data with supervised learning. Fig. 4
compares the result with conventional ones. That is, Fig. 4(a) presents the result of
conventional method combining coherency matrix representation and Wishert classi-
fication, while (b) the result of coherency matrix with a real-valued neural network
(RVNN), (c) the result of Poincare sphere representation with a RVNN, and finally (d)
the result of Poincare representation with a QNN. The QNN result is found clearly su-
perior to others. This technology will contribute to solving CO2 and hydrological cycle
issues as well as to disaster monitoring. Please refer to, e.g., Ref. [8] for details.

4 Summary

We briefly presented and discussed the recent progress and the future directions of the
complex-valued neural networks including the hypercomplex-valued networks. We also
reviewed a quaternion neural-network based polarimetric radar imaging system that
shows excellent vegetation classification ability.

Acknowledgment. This work was partly supported by KDDI Foundation.
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Neural Networks and Its Sparsification
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Abstract. This paper studies a cascade system of two simple dynamic
binary neural networks characterized by signum activation function and
ternary connection parameters. In order to store a desired binary periodic
orbit, we present a simple method based on the correlation learning.
In order to sparsify the network connection, we present a simple method
based on the genetic algorithm. The sparsification can be effective to
reinforce stability of the stored periodic orbit.

Keywords: Digital dynamical systems, stability, power electronics.

1 Introduction

This paper presents a cascade system of two simple dynamic binary neural net-
works (SDNNs [1]-[3]). The SDNN is a two-layer network with delayed feedback.
It is characterized by signum activation functions [4] [5], ternary connection pa-
rameters, and integer threshold parameters. The cascade system (CSDN) can
generate a variety of binary periodic orbits (BPOs) and is basic to develop deep
systems of the SDNNs [3]. The CSDN is an example of digital dynamical systems
such as cellular automata [6]. Such digital systems can output various phenom-
ena and are applicable to engineering systems, e.g., information compressors [7],
image processors [8], communication systems [9], and switching circuits [10]-[12].

This paper studies learning and sparsification of the CSDN. As a basic learn-
ing problem, we consider storage of one desired BPO. The BPO is applicable to
a control signal of switching circuits [12]. For the storage, we present a simple
method based on the correlation (CL) learning [13] [14]. The CL-based learning
guarantees storage of a class of BPOs. Next, we consider sparsification of the
CDNN and stabilization of the stored BPO. For the sparsification, we present
a simple method based on the genetic algorithm (GA). The GA-based method
can sparsify the connection of the CSDN. The sparsification can be effective to
reinforce stability of the stored BPO. Performing fundamental numerical exper-
iments for two typical examples, the algorithm efficiency is confirmed.

Note that this is the first paper of sparsification and the CSDN. In Ref. [2],
sparsification is applied to single SDNN (not to CSDN) and the algorithm is
different from this paper. In Ref. [3], the deep system is not sparsified and the
stability of the stored BPO is weak. In Ref. [12], the three-layer dynamic binary
neural network employs neither CL-based learning nor sparsification.

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 231–238, 2014.
c© Springer International Publishing Switzerland 2014
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2 The Cascade System

The dynamics of the CSDN is described by

1st layer: xt+1
i = sgn

⎛⎝ N∑
j=1

w1
ijx

t
j − θ1i

⎞⎠ ab. xt+1 = F1(x
t)

2nd layer: xt+2
i = sgn

⎛⎝ N∑
j=1

w2
ijx

t+1
j − θ2i

⎞⎠ ab. xt+2 = F2(x
t+1)

sgn(x) =

{
+1 for x ≥ 0
−1 for x < 0

i = 1 ∼ N

(1)

where xt ≡ (xt
1, · · · , xt

N ), xt
i ∈ {−1, 1} ≡ B, is a binary state vector at discrete

time t. The signum activation function realizes the binarization. The weighting
parameters are ternary wl

ij ∈ {−1, 0, 1} and the threshold parameters are integer

θli ∈ Z (i = 1 ∼ N , j = 1 ∼ N , l = 1, 2). As an initial state vector x1 is given,
the first layer outputs x2, the second layer outputs x3. The x3 is fed back to
the first layer. Repeating in this manner, the CSDN can generate various binary
sequences. As shown in Fig. 1, the CSDN is a cascade system of two different
SDNNs F1 and F2:

SDNN : xt+1 = F1(x
t), xt+1 = F2(x

t)

CSDN : xt+2 = FD(xt) ≡ F2(F1(x
t))

(2)

where t takes integer values for the SDNN and t takes odd integer values for
the CSDN. The SDNN can generate various BPOs and the CSDN can generate
richer BPOs than SDNN. Since the number of lattice points in the domain of FD

is 2N , direct memory of all the inputs/outputs of FD becomes hard/impossible
as N increases. However, in the CSDN, the number of parameters is polynomial
2× (N2+N). Since the number of inputs/outputs of the FD is finite, the steady
state of the CSDN is a BPO.

Fig. 1. (a) SDNN. Red and blue segments represent wij = +1 and wij = −1, respec-
tively. wij = 0 means no connection. The threshold parameters θi are shown in the
circles. (b) The cascade system of two SDNNs.
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3 Learning of Binary Periodic Orbit

We consider a basic learning problem: storage of one BPO with period 2T :

z1, z2, · · · , z2T ; z2T+1 = z1; zt = (zt1, · · · , ztN) ∈ BN (3)

The learning problem is determination of the parameters wl
ij and θli to store

the BPO where i = 1 ∼ N , j = 1 ∼ N , and l = 1, 2. This BPO is the teacher
signal and its storage is divided by the 1st and 2nd layers as the following:

1st layer: (ξ11 , ξ
1
2) ≡ (z1, z2), (ξ21 , ξ

2
2) ≡ (z3, z4), · · · , (ξT1 , ξT2 ) ≡ (z2T−1, z2T )

2nd layer: (ξ13 , ξ
1
4) ≡ (z2, z3), (ξ23 , ξ

2
4) ≡ (z4, z5), · · · , (ξT3 , ξT4 ) ≡ (z2T , z1).

where ξτj ≡ (ξτj1, · · · , ξτjN ), j = 1 ∼ 4 and τ = 1 ∼ T . The CL-based learning of
the 1st layer is defined as the following:

w1
ij =

⎧⎨⎩
+1 for cij > 0
0 for cij = 0
−1 for cij < 0

, cij =

T∑
τ=1

ξτ2iξ
τ
1j , θ1i =

Ri + Li

2

Ri = minτ
∑N

j=1 wijξ
τ
1j for ξτ2i = +1, Li = maxτ

∑N
j=1 wijξ

τ
1j for ξτ2i = −1

(4)
The weighting parameters w1

ij are given by ternarising the correlation matrix

elements cij . After w1
ij are given, the threshold parameters θ1i are determined

by the quantities Ri and Li. Note that Ri (Li) exists if ξτ2i = +1 (ξτ2i = −1)
for some τ . If ξτ2i = −1 (ξτ2i = +1) for all τ then Ri (Li) does not exist and
let θ1i = N + 1 (θ1i = −N − 1). Replacing (ξτ1 , ξ

τ
2 ) with (ξτ3 , ξ

τ
4 ), we obtain the

CL-based learning of the 2nd layer. Storage of the BPO is guaranteed if

Ri > Li is satisfied for i such that both Ri and Li exist. (5)

In order to consider the CL-based learning, we consider two teacher signals
of N = 9. The first one is the BPO1 with period 6 in Table 1. Applying the
CL-based learning, the BPO1 can be stored into the SDNN in Fig. 2 (a).

In order to visualize the dynamics of the SDNN, we introduce the Grey-
code-based return map (Gmap). As shown in Eq. (2), the SDNN is described
by the mapping F1 from BN to itself. Applying the Grey code to express 2N

elements of BN , F1 can be expressed by a mapping from a set of lattice points
L ≡ (C1, · · · , C2N ) to itself. This is the Gmap from L to L. Figure 3 (a) shows
an Gmap of the SDNN where storage of BPO1 can be confirmed.

For the Gmap, we give basic definitions. For a Gmap G : L → L, we will
say p ∈ L is a binary periodic point (BPP) with period k if Gk(p) = p and
Gl(p) �= p for 0 < l < k where Gk is the k-fold composition of G. A sequence of
BPPs (G(p), · · · , Gk(p) is referred to as a binary periodic orbit (BPO). We will
say q ∈ L is an eventually periodic point (EPP) of a BPO if it is not a BPP and
falls into the BPO. BPO and EPP characterize the steady and transient states,
respectively.

The second example is the BPO2 with period 12 in Table 2. Note that BPO2
corresponds to control signal of a basic ac-ac converter in power electronics [11].
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Table 1. Teacher signal BPO1

z1 (−1,+1,−1,−1,+1,−1,−1,−1,+1)

z2 (+1,−1,−1,−1,+1,−1,−1,+1,−1)

z3 (+1,−1,−1,+1,−1,−1,−1,+1,−1)

z4 (−1,−1,+1,+1,−1,−1,+1,−1,−1)

z5 (−1,−1,+1,−1,−1,+1,+1,−1,−1)

z6 (−1,+1,−1,−1,−1,+1,−1,−1,+1)

Table 2. Teacher signal BPO2

z1 (−1,−1,+1,−1,+1,−1,−1,−1,+1)

z2 (+1,−1,−1,−1,+1,−1,−1,+1,−1)

z3 (+1,−1,−1,+1,−1,−1,−1,+1,−1)

z4 (−1,−1,+1,+1,−1,−1,−1,−1,+1)

z5 (−1,−1,+1,+1,−1,−1,+1,−1,−1)

z6 (−1,−1,+1,−1,−1,+1,−1,+1,−1)

z7 (−1,+1,−1,−1,−1,+1,−1,+1,−1)

z8 (−1,+1,−1,+1,−1,−1,+1,−1,−1)

z9 (−1,+1,−1,−1,+1,−1,+1,−1,−1)

z10 (+1,−1,−1,−1,−1,+1,+1,−1,−1)

z11 (+1,−1,−1,−1,−1,+1,−1,−1,+1)

z12 (−1,+1,−1,−1,+1,−1,−1,−1,+1)

Fig. 2. (a) SDNN and (b) CSDN after the CL-based learning

Applying the CL-based learning, BPO2 can be stored into the CSDN in Fig.
2 (b) (cannot be stored into the SDNN). Figure 3 (c) shows Gmaps of the 1st
and 2nd layers F1 and F2. Applying the two Gmaps alternately, we obtain the
dynamics of the CSDN. In the figure, we can confirm that BPO2 with period 12
is stored. Figure 3 (b) shows composition of the two Gmaps (FD = F1 ◦ F2).

4 Sparsification and Stability

Here, we consider sparsification of the connection of the CSDN (SDNN) and
stability of the stored BPO. In order to control the sparsity, we present a simple
method based on the genetic algorithm (GA). The GA has the chromosome
{clij} which correspond to the weighting parameter {wl

ij} where i = 1 ∼ N ,
j = 1 ∼ N , and l = 1, 2. Each chromosome consists of N ×N × 2 genes. In the
update of the chromosomes, the following two fitness functions are used.

Convergence rate (CR):

F1(c
l
ij) = ( (#EPPs + #BPPs) of teacher signal)/2N × 100

Sparsity rate (SR): F2(c
l
ij) = (#zeros in {clij})/(N ×N × 2)× 100

(6)
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Fig. 3. Gmaps after the CL-based learning. (a) SDNN with BPO1 (red orbit).
(b) CSDN with BPO2 (red orbit). (c) 1st and 2nd layers of CSDN with BPO2.
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where the denominator of F2 isN×N for the SDNN. The first fitness F1 measures
the domain of attraction to the teacher signal BPO. If F1 increases, the stability
of the stored BPO can be reinforced. If F1 = 100 then all the initial points fall
into the BPO: the BPO is stabilized completely. Note that the CSDN can handle
2N binary vectors. Direct memory of all the vectors spends much larger storage
units than 2N2 connection parameters wl

ij of the CSDN. The second fitness F2

measures the sparsity of (wl
ij).

Let g be the generation. At g = 0, we prepare Ge pieces of chromosomes
and assign them the same value given by the CL-based learning. That is, the
result of the CL-based learning is the initial value of the chromosomes and the
GA-based method must give better (or equal) CR than the CL-based learning.
For simplicity, we omit the crossover operation and use the mutation operation.
In the mutation, Ng% of genes are selected randomly from each chromosome and
their values are the object to change. If the value is not 0 then it is changed into
0 (this is the sparsification by 0-insertion). If the value is 0 then it is preserved.
Although the selection rate Ng is constant, the practical rate of 0-insertion tends
to be lower automatically as g evolves if sparsified chromosomes tend to have
higher evaluation. After the mutation, we sort the chromosomes before/after
the mutation by the elite strategy. First, if some chromosomes do not satisfy
Condition (5) then they are removed. Second, the chromosomes are evaluated
by the first fitness F1. Third, in the tie-break of the F1, the second fitness F2

is used. The top of Ge chromosomes are preserved. The algorithm is repeated
until the maximum generation Gmax.

In order to investigate effects of the GA-based method, we have performed
basic numerical experiments. After the trial-and-errors, the GA parameters have
been selected as Gmax = 500, Ge = 20, and Ng = 4%.

First, we consider the teacher signal BPO1. After the CL-based learning, the
BPO1 is stored into the SDNN and the weighting parameters w1

ij are not zero
(SR=0). 144 out of 512 initial points fall into the BPO1 (CR=28%). Other
initial points fall into other steady states. We use this connection parameters
as an initial value of the chromosomes. Note that CR=28% means that the
BPO is stabilized automatically even if the teacher signal does not include any
information of stability. However, the domain of attraction is not large.

In order to increase the CR and SR, we have applied the GA-based method.
Figure 4 (a) shows a typical result of the SDNN at g = 100: all the initial points
fall into BPO1 (CR=100) and the BPO is stabilized completely. The number of
the zeros is 56 (SR=56/81×100 ≈ 69). As generation g evolves, the SR increases
and SR≈ 83 is achieved at g = Gmax = 500.

Next, we consider the teacher signal BPO2. After the CL-based learning, the
BPO2 is stored into the CSDN and the weighting parameters w1

ij , w
2
ij are not

zero (SR=0). 120 out of 512 initial points fall into the BPO2 (CR=23%). We
use these connection parameters as initial values of the chromosomes. We have
applied the GA-based method and Fig. 4 (b) shows a typical result of the CSDN
at g = 100: all the initial points fall into BPO2 (CR=100) and the number of
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Fig. 4. (a) SDNN. (b) CSDN after the GA-based method.

Fig. 5. Evolution process of the best chromosome for the teacher signal BPO1. Left:
F1(convergence rate), right: F2(sparsity rate).

Fig. 6. Evolution process of the best chromosome for BPO2. Left: F1, right: F2

zeros is 90 (SR=90/162× 100 ≈ 55). As g evolves, the SR increases and SR≈ 79
is achieved at g = Gmax = 500.

Figures 5 and 6 show the evolution process of CR and SR, respectively. In the
figure, the initial generation g = 0 means the result of the CL-based learning.
As the generation g evolves, the first fitness F1 of CR increases rapidly in the
early stage. After the CR is saturated, the second fitness F2 of SR can increase.
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5 Conclusions

Learning and sparsification of the CSDN have been studied in this paper. The 1st
and 2nd layers of the CSDN share the output of BPOs. Applying the CL-based
learning, a class of BPO can be stored into the CSDN. Applying the GA-based
method, the connection of CSDN is sparsified and stability of the stored BPO can
be reinforced. Performing numerical experiments for typical two examples, the al-
gorithmperformance has been investigated. It should be noted that the CSDN can
realize variousBPOs that correspond to control signal of various switching convert-
ers. Although this paper considers two examples only, the CSDN can be developed
into reconfigurable and robust control circuits for various switching circuits.

Future problems include analysis of learning and sparsification process, analy-
sis of effects of sparsitication on the stability, analysis of effects of GA parameters,
and application to control signals of various switching circuits.
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Abstract. Area V4 lies in the middle of the ventral visual pathway in
primate brains. It is an intermediate stage in the visual processing for
object discrimination. V4 neurons exhibit selectivity to complex bound-
ary conformation. In this paper, we propose a novel model of V4 neu-
rons based on sparse coding. The model is a multi-layer neural network
of which the output layer consists of laterally connected V4 units. We
provide an informal proof for sparse coding with intra-layer inhibitory
connections and show experimentally that this model successfully repro-
duces shape selectivity observed in V4 neurons. The model provides clues
to the high level representation of visual stimuli in the brain.

Keywords: Visual pathway, V4, sparse coding, receptive field, shape
selectivity, image representation.

1 Introduction

Primate brains possess two distinct visual systems. As visual information exits
the occipital lobe, it follows two main pathways [7,14]. The dorsal pathway ter-
minates in the parietal lobe and is involved with processing the object’s spatial
location relevant to the viewer. The ventral pathway travels to the temporal lobe
and is involved with object discrimination and recognition. Cortical area V4 lies
in the middle of the ventral pathway. At lower levels of the pathway (V1 and
V2), objects are represented in terms of local orientation [11,12]. At the final
stages in IT, neurons tend to selectively respond to complex objects like faces
and body parts [1,2]. Area V4 is an intermediate stage in which local orientation
signals from lower levels are transformed into complex object selectivity at the
final stages. V4 plays a crucial role in the hierarchy of visual shape perception.
Understanding the mechanism and constructing models of V4 help to reveal the
object recognition mechanism of the ventral visual pathway.

Neurophysiological studies have not produced consistent descriptions of V4
selectivity. V4 neurons are known to be selective about color, shape, depth
and even motion [21]. In this paper, we focus on the V4 selectivity for shapes.
Early experiments examined the selectivity of cells in V4 with classical stimuli
including bars and sinusoidal gratings [6]. Similar to earlier processing stages,
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V4 cells are tuned for orientation and spatial frequency of edges and linear sinu-
soidal gratings. However, V4 neurons are also sensitive to more complex shape
properties. Later experiments reported that V4 neurons display a clear bias in
their responses in favor of non-Cartesian gratings and they show a significant
degree of invariance in their selectivity across changes in stimulus position [10].
More recent experiments showed that V4 neurons can be strongly selective about
curvature of contours and angular position of acute curvatures [18,19]. These ex-
periments also suggested that V4 neurons are not sensitive to small displacement
of the stimulus within the receptive field.

In section 2, we review some previous models of area V4. In section 3, we
propose a novel model of V4 shape selectivity based on sparse coding. This is
a multi-layer neural network model. The layer of V4 units gets input from the
afferent layer of complex cells and achieves sparse coding by intra-layer inhibitory
connections. We give an informal proof for the emergence of sparse codes from
lateral inhibition and show experimentally that complex cells’ output provides
sufficient information for the emergence of V4 shape selectivity. In section 3.4,
we demonstrate that the sparse codes obtained with this model form a novel
kind of representation of local image structures, which provides important clues
to the high level presentation of visual information in the ventral visual pathway.
The conclusion is summarized in section 4.

2 Previous Models of Area V4

Several models have been proposed to explain the shape selectivity and invariance
of V4 neurons.

The spectral receptive field (SRF) is one model for shape selectivity of V4
neurons [5]. It explains many observations of V4 response patterns. The SRF
describes tuning in terms of the orientation and spatial frequency spectrum.
The model is based on the fact that V4 neurons have large orientation and
spatial frequency bandwidth. They respond selectively to stimuli such as contour
conformations and non-Cartesian gratings, which generally consist of multiple
orientations and spatial frequencies. The spectral model is also invariant to small
changes in stimulus position and thus should explain the invariance property of
V4 response patterns. The model is powerful in describing the shape selectivity
of V4 neurons. However, it provides little explanation for the emergence of the
selectivity.

The hierarchical MAX-pooling (HMAX) model is a generic model for object
recognition in the visual cortex [20]. It was also adopted as a model for V4
shape selectivity and invariance [4]. The selectivity of earlier stages in the visual
pathway can be well modeled as linear filters such as Gabor filters [9] for simple
cells. The HMAX model processes complex stimuli by concatenating multiple
layers of linear filters and inserts maximum operations between these layers in
order to achieve non-linearity. This model conforms to the neuronal connectivity
in the visual pathway but provides no evidence for the maximum operation in
neuroscience.
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3 Shape Selectivity Model Based on Sparse Coding

3.1 Sparse Coding

Neural codes in mammalian visual cortex are sparse [22]. Computational models
of primary visual cortex have demonstrated that sparse coding can explain the
emergence of neurons with localized oriented receptive fields [8,17].Sparse coding
even replicates complex neuroscience phenomena that are not well explained by
simple linear models of primary visual cortex [13].

Sparse coding can be seen as recovering the code h∗ associated with an input
x via:

h∗ = argmin
h

||x−Wh||22 + λ||h||1, (1)

where x ∈ Rdx , h ∈ Rdh and λ is a penalty to enforce the sparsity of the
code. Learning the dictionary W can be accomplished by minimizing

∑
t ||x(t)−

Wh∗(t)||22 over the training input x(t) and corresponding sparse code h∗(t) deter-
mined by equation (1).

Sparse coding can be achieved by a layer of competitive neurons with intra-
layer lateral inhibitory connections which are found in visual cortex [3].We use a
two-layer neural network model (Fig. 1) to explain how sparse coding is achieved
via recurrent inhibitory connections in the output layer. The network consists of
an input layer and an output layer. The input layer has dx units: xi, i = 1 . . . dx.
The output layer has dh units: hj , j = 1 . . . dh. The weight of the excitatory feed-
forward connection from the i-th input unit to the j-th output unit is WEi,j .
The weight of the inhibitory recurrent connection from the j-th output unit to
the k-th output unit is WIj,k . Suppose the output units are linear, the output
vector h can be obtained by solving the following equation.

h = WEx−WIh, (2)

where x is the input vector and h is the output vector.

Output layer

Input layer

h1 h2 h3

x1 x2 x3 x4 x5

Excitatory connection

Inhibitory connection

Output unit

Input unit

Fig. 1. The neural network model for sparse coding.

We show that iteratively solving the equation (2) minimizes the objective
function defined in equation (1). Let F = ||x−Wh||22 + λ||h||22 be the objective
function to be minimized. The L1 penalty is replaced with a squared Euclidean
norm for simplicity. We then calculate the partial derivative of F with respect
to hk for k = 1 . . . dh.
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∂F
∂hk

=
∂

∂hk

∑
i

⎛⎝xi −
∑
j

Wi,j · hj

⎞⎠2

+
∂

∂hk
λ
∑
j

h2
j

= 2
∑
i

⎛⎝∑
j

Wi,j · hj − xi

⎞⎠Wi,k + 2λhk

= 2
[
W� (Wh− x) + λh

]
k
. (3)

After each iteration, the change in h is Δh = (WEx−WIh− h) and thus the
change in the objective function F is approximated as follows.

ΔF =
∑
k

Δhk
∂F
∂hk

= 2(WEx−WIh− h)� · [W� (Wh− x) + λh
]

= 2 [WEx− (WI + 1)h]
� · [(W�W + λ)h−W�x

]
. (4)

The change in F is a scalar product of two vectors. Since the weight matrices
and sparse bases consist of non-negative values, the two vectors point to opposite
directions and thus the scalar product remains negative over every iteration.
This explains that the output h of the recurrent network is the sparse code of
the network input x.

3.2 Multi-layer Model of V4

According to the hierarchy of the ventral visual pathway, area V4 receives input
from the lower levels including area V1 and V2. These areas have been well
studied since 1960s by the Nobel Prize winners [11,12] and successive researchers.

Neurons in V1 and V2 respond to local orientations. They fall into two cate-
gories, simple cells and complex cells. The receptive fields of simple cells can be
understood as linear filters modeled as Gabor functions [9],

gθ(x, y;λ, σs) = exp

(
−x′2 + y′2

2σ2
s

)
cos

(
2π

x′

λ
+ ψ

)
, (5)

where x′ = x cos θ+y sin θ, y′ = −x sin θ+y cos θ. In the equation, λ is the wave-
length of the sinusoidal factor, ψ is the phase offset, θ represents the preferred
orientation and σs approximates the radius of the receptive fields. Simple cells
respond primarily to oriented edges and gratings [11]. Complex cells differ from
simple cells in that a stimulus is effective wherever it is placed in the receptive
field, provided that the orientation is appropriate [11]. The complex cells receive
input from simple cells with the same preferred orientation and thus have larger
receptive fields [16]. They are modeled as Gaussian filters,

f(x, y;σc) =
1

2πσ2
c

exp

(
−x2 + y2

2σ2
c

)
, (6)

where σc represents the radius of the complex receptive fields.
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We construct a two-layer neural network to imitate simple cells and complex
cells and the network provides input for the V4 units in our model (Fig. 2). Given
I as an input image, the output of complex cells with the preferred orientation
θ is defined as the following convolution.

Cθ = |I ⊗ gθ| ⊗ f. (7)

The output of complex cells with different preferred orientations are fed into V4
units as input.

Gabor

Gabor

Gabor

Gabor

Gabor

Gabor

Simple cells

+

+

+

+

+

Complex cells

Image patches

V4 sparse coding network

Neuronal response pattern

Image features

Feedforward connection

Inhibitory feedback

Fig. 2. Multi-layer neural network model of V4

3.3 V4 Sparse Coding Network

An image patch that is covered by a V4 receptive field is fed into the multi-layer
neural network model (Fig. 2) and is processed by the first two layers of sim-
ple cells and complex cells. The output of complex cells of the same preferred
orientation is a matrix defined by equation (7). The values in the matrices corre-
sponding to different preferred orientations are lined-up in a single vector. Sparse
codes of such vectors are obtained by the V4 layer by feeding the vectors as input
to the V4 sparse coding network.

We examine experimentally that the complex cells’ output is sufficient for the
emergence of neuronal response pattern of V4. A perceptron model is used in the
examination. The perceptron takes the same input with the V4 sparse coding
network. It is trained with shapes presented to V4 neurons in [19]. The two
shapes are shown in Fig. 3a. The shapes are moved randomly within the receptive
field before they are fed to the network so that the perceptron shall be invariant
with respect to small changes in stimulus positions. The trained perceptron
exhibits strong bias towards the shape with convex to the top right and shares
the same preference with the actual V4 neuron. The response map is shown in
Fig. 3a where dark colors indicate stronger responses. The weight of the afferent
connections to the perceptron is shown in Fig. 3b. The weight of connections from
complex cells of different orientations is plotted respectively in different blocks.
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(a) (b) (c)

Fig. 3. Model of V4 neurons. (a) A perceptron is trained to simulates the response
pattern of a V4 neuron that selective responds to sharp convex to the top right. (b)
The weight of afferent connections from complex cells to the perceptron. (c) The weight
matrices obtained from sparse coding, which show similar distribution to that of the
perceptron.

(a) (b)

Fig. 4. Clusters of V4 sparse codes

The experiment demonstrates that complex cells provide sufficient information
for V4 neurons to show selectivity observed in neurobiological experiments.

The sparse coding network of V4 is trained with Hebbian rules for excitatory
connections and anti-Hebbian rules for inhibitory connections [8]. Images patches
of natural images are used in the training. One of the sparse bases is shown
in Fig.3c. Sub-vectors of the basis corresponding to complex cells’ output of
different orientations are reshaped into matrices and plotted in different blocks.

3.4 Image Representation in V4

We demonstrate the property of V4 sparse codes in processing images of real ob-
jects. We use images of a car from the ETH-80 datasets [15]. In this experiment,
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the receptive field radii of simple cells and complex cells are 4 and 9 pixels re-
spectively. The preferred orientations that are sampled by these cells start from
0◦ to 170◦ in steps of 10◦. The V4 sparse codes at the position of edge points
are clustered by the K-means algorithm. These clusters are plotted in different
colors as shown in Fig. 4a.

The clusters of adjacent points are labeled in Fig. 4b. The labels show clear
matching of the same physical position in different views of the car. For instance,
clusters labeled 6 appear at the rear of the car and clusters labeled 9 appear at
the side of the front window. This experiment demonstrates that similar sparse
codes correspond to similar image structures, which implies that the V4 sparse
codes form an intermediate representation of the object or shape conformation
for object discrimination in the ventral visual pathway.

4 Conclusion

In this paper, we propose a novel model of V4 neurons based on sparse coding.
This multi-layer neural network model conforms to the neuronal connectivity
in the visual cortex and explains the shape selectivity observed in V4 neurons.
We give an informal proof for the emergence of sparse coding in area V4 and
demonstrates that the sparse codes provide important clues to the high level
representation of visual stimuli in the brain.
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Abstract. In this paper we propose a quick and memory-efficient im-
plementation of the TRIBE-MCL clustering algorithm, suitable for accu-
rate classification of large-scale protein sequence data sets. A symmetric
sparse matrix structure is introduced that can efficiently handle most
operations of the main loop. The reduction of memory requirements is
achieved by regrouping the operations performed during the expansion
matrix squaring. The proposed algorithm is tested on synthetic protein
sequence data sets of up to 250 thousand items. The validation process
revealed that the proposed method performs in 30% less time than previ-
ous efficient Markov clustering algorithms, without losing anything from
the partition quality. This novel implementation makes it possible for
the user of an ordinary PC to process protein sequences sets of 100,000
items in reasonable time.

Keywords: Protein sequence clustering, Markov clustering, Markov
processes, efficient computing, sparse matrix.

1 Introduction

Markov clustering performs a hierarchical grouping of input data based on a
graph structure and its associated connectivity matrix. When the input data
consists of protein sequences, each sequence will be associated to a node of the
graph, and edge weights will be the pairwise similarity values computed with
existing alignment methods like: Needleman-Wunsch [5], Smith-Waterman [6],
and BLAST [1]. In case of large-scale data sets, the BLAST similarity measures
are preferred due to its sparse nature, which allows for quick and memory-
efficient processing.

TRIBE-MCL is a clustering method based on Markov chain theory [3], which
assigns a graph structure to the protein set such a way that each protein has a
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11/1/KONV-2012-0001 project, which is funded by the European Union, co-financed
by the European Social Fund.

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 247–254, 2014.
c© Springer International Publishing Switzerland 2014
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corresponding node. Edge weights are stored in the so-called similarity matrix
S, which acts as a stochastic matrix. At any moment, edge weight sij reflects
the posterior probability that protein i and protein j have a common evolution-
ary ancestor. TRIBE-MCL is an iterative algorithm, performing in each loop
two main operations on the similarity matrix: inflation and expansion. Inflation
raises each element of the similarity matrix to power r > 1, which is a previously
established fixed inflation rate, favoring higher similarity values in the detriment
of lower ones. Expansion, performed by raising matrix S to the second power, is
aimed to favor longer walks along the graph. Further operations like column or
row normalization, and matrix symmetrization are included to serve the stabil-
ity and robustness of the algorithm, and to enforce the probabilistic constraint.
Similarity values that fall below a previously defined threshold value ε are
rounded to zero. Clusters are obtained as connected subgraphs in the graph.

Handling matrices of tens or hundreds of thousand rows and columns is pro-
hibitively costly in both runtime and storage space. Recent fast TRIBE-MCL
implementations (e.g. [10]) significantly reduced runtime, but the memory lim-
itations still exist. The main goal of this paper is to introduce a novel fast
TRIBE-MCL approach that uses only sparse matrices to store similarity values
and a one-dimensional array to store intermediate values of a single row during
expansion. This change can upgrade the size of processable data sets by an order
of magnitude, and may also improve processing speed. The proposed method will
be validated using the protein sequences of the SCOP95 database [7,4,2], and
larger synthetic protein data sets [8] derived from SCOP95.

The remainder of this paper is structured as follows. Section 2 presents the
details of the proposed efficient TRIBE-MCL algorithm. Section 3 thoroughly
evaluates the behavior of the proposed method and discusses the achieved results
and outlines the role of each parameter, while section 4 concludes this study.

2 Methods

In this paper we introduce a highly efficient implementation of the TRIBE-MCL
algorithm, which also focuses on requiring reduced amount of memory storage.
Any kind of TRIBE-MCL needs two instances of the similarity matrix: inflation,
normalization, and symmetrization can be performed in a single matrix, but the
expansion needs separate matrix instance for the input and the output data.
Quick solutions existing so far use a sparse matrix and a two-dimensional array,
which is not quite effective in reducing memory needs. The solution introduced
here employs two instances of sparse matrix and an extra array that stores a
single line of the similarity matrix during expansion.

The data structure employed for sparse matrix representation, shown in Fig. 1,
is similar to the sparse supermatrix introduced in our previous work [10]. Each
nonzero element of the sparse matrix (sij) is stored together with an approx-
imated value of its symmetrically situated element in the matrix (tij ≈ sji).
Rows are stored concatenated in an array of records, each such record describ-
ing a nonzero element in the matrix. The starting address of each row is stored
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Fig. 1. The employed sparse matrix data structure: (a) the record for storing a single
nonzero element; (b) array containing concatenated rows of the matrix

in a separate array of row heads. This whole data structure assures easy pars-
ing of the matrix for all operations. With the exception of expansion, none of
the operations increases the nonzero elements in any row. Normalization and
inflation keeps the amount of nonzero elements constant, while symmetrization
eliminates values under the chosen threshold ε. During the expansion, the sparse
matrix is completely rewritten, as presented in Section 2.3.

2.1 Inflation

During inflation the sparse matrix is parsed record by record and both the sij
similarity value and its approximated transposed value tij are raised to the r-th
power. New values overwrite old ones in the same sparse matrix.

2.2 Normalization and Symmetrization

Normalization requires parsing the sparse matrix twice. In a first step, the sum
of the similarity values is computed in each row. Let us denote by σi the sum
of values in row i, ∀i = 1 . . . n, computed as: σi =

∑
j∈rowi

sij . In the second
step, each element in the sparse matrix is divided by the corresponding sum:

s
(new)
ij = sijσ

−1
i and t

(new)
ij = tijσ

−1
j , ∀i = 1 . . . n and ∀j ∈ rowi. New similarity

values overwrite the old ones in the same instance of sparse matrix.
The approximate symmetry of the similarity matrix S is assured by an itera-

tive process in the main loop, situated between inflation and expansion. In each
main loop, the symmetrization step is performed q times, and each symmetriza-
tion step is followed by a normalization. One symmetrization step requires a
single parsing of the sparse matrix, and computes the following:

s
(new)
ij =

{√
sijtij if sijtij ≥ ε2

0 otherwise

t
(new)
ij = s

(new)
ij

∀i = 1 . . . n,
∀j ∈ rowi.

(1)

Parameter q determines how accurate is the approximation of matrix sym-
metry, while ε is responsible for neglecting unimportant low values of similarity.
Neglected values are not just overwritten by zero but completely eliminated from
the sparse matrix, so that the time consuming expansion can operate on as few
data as possible.
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2.3 Expansion

Expansion is the only operation in the whole algorithm, which may raise the
number of nonzeros in the similarity matrix, and thus requires a complete rewrit-
ing of the sparse matrix. Further on, our approach computes the expanded matrix
row by row, and may need all rows of the input matrix as long as the last row of
the output gets computed. This way we need two instances of the sparse matrix.

As long as a row of the expanded matrix is getting computed, it is stored in
an n-element array. When the row is ready, nonzeros are transferred into the
output sparse matrix. Let us denote the elements of this output matrix by sij ,
i, j = 1 . . . n, while si and si will stand for row i of the input and output matrix,
respectively. Since ∀i, j = 1 . . . n, sij =

∑
k∈rowi

sikskj , we may compute row
with index i (i = 1 . . . n) as

si =
( ∑

k∈rowi

siksk1
∑

k∈rowi

siksk2 . . .
∑

k∈rowi

sikskn
)
=

∑
k∈rowi

siksk . (2)

Thus by parsing row i and computing a linear combination of rows with index
k, where k ∈ rowi we obtain a whole row of the expansions’ output matrix. Even
after having parsed all rows and obtained si (∀i = 1 . . . n), this is only half the
job of expansion, because the new tij values are also needed in the next iteration.
These tij values are obtained from the output sparse matrix. A pointer to the
current element in each row is needed, initially set to the first element of the row.
Then the sparse matrix is parsed row by row, and for each sij existing nonzero in
the sparse matrix, the transposed value should be the current element pointed in
row j. If there is a correspondence in coordinates, tij gets the pointed sji value,
and the pointer in row j steps to the next element. When the row parsing gets
to the end of the last row, each current element pointer reaches the end of its
own row, and all nonzeros have received their transposed values.

2.4 Algorithm

Let us summarize the proposed approach of the TRIBE-MCL algorithm:

1. Initialize the parameters of the algorithm with the desired values: inflation
rate r, similarity threshold ε, and symmetrization steps in each loop q.

2. Load initial similarity matrix and store it as a sparse matrix.
3. Normalize the values in the sparse matrix as described in section 2.2.
4. Perform inflation as described in section 2.1.
5. Normalize and symmetrize the sparse matrix in q steps as indicated in section

2.2, beginning and ending with normalization.
6. Perform expansion as presented in section 2.3.
7. Go back to step 4 unless convergence is achieved.
8. Clusters are obtained as isolated subgraphs in the final similarity graph.

At the convergence point, all isolated subgraphs are complete with approxi-
mately equal edge weights within the group.
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Fig. 2. Duration of first 50 iterations for various test data sizes at r = 1.5 and ε = 10−3.
The test with 250,000-item data set used r = 1.7.

3 Results and Discussion

The proposed algorithm was engaged in a series of numerical tests using synthetic
protein data sets of various sizes in the range of 20-250 thousand items, created
with the method given in [8]. For each test data size, 15 instances were created
and the one with median number of nonzero values was chosen for the test.

Figure 2 exhibits the duration of each of the first fifty iterations in case of
various matrix sizes, at inflation rate fixed at r = 1.5 and similarity threshold ε =
10−3. As long as most nodes of the graph are connected together, namely in the
first 5-6 loops, the computational load is somewhat higher, but it considerably
falls thereafter, being virtually constant and low from the 10th loop.

Figure 3 exhibits the effect of the main parameters on the computational load
of the algorithm. The input data here consisted of 50 thousand items having a
similarity matrix of median density. Figure 3(a) indicates the total runtime of
clustering performed in 50 iterations. As the inflation rate grows, the similarity
matrix becomes sparser and thus the total runtime and also the length of late
iterations is shorter. A lower value of the similarity threshold keeps small simi-
larity values longer in the matrix, and consequently the processing needs more
time (Fig. 3(b)).

The ratio between total runtime (duration of 50 iterations) and the length of a
late iteration, exhibited in Fig. 3(c) shows us how much longer the first iterations
are compared to late ones. This ratio would be 50 if the first loops were not at all
computationally harder than the late ones. At ε = 10−3 this ratio stays below 60,
indicating that the algorithm quickly gets rid of unnecessary edges in the graph.
At ε = 10−4 this ratio can become 100, indicating that lots of computations are
done in the first iterations to tear the graph into isolated subgraphs. Considering
the fact that final clusters hardly differ from ε = 10−4 to ε = 10−3, choosing a
low similarity threshold proves to be a waste of time.
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Fig. 3. Benchmark figures for a median density data set of 50k items, showing the
influence of r and ε: (a) total runtime plotted vs. inflation rate; (b) average duration
of one late iteration plotted vs. inflation rate; (c) the ratio between total runtime and
duration of a late iteration plotted vs. inflation rate

Fig. 4. Total runtime on various test data sizes, plotted against inflation rate, at con-
stant similarity threshold value ε = 10−3

Fig. 5. The amount of proteins in mixed clusters found in a median density data set
of 50k items, plotted against inflation rate, at constant ε = 10−3
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Figure 4 exhibits total runtime values plotted against inflation rate for input
data set sizes ranging from 30,000 to 250,000 items, having the similarity thresh-
old fixed at ε = 10−3. Clustering at r = 1.3 takes 50-100% more time than at
r = 2. Data sets of up to 250k items can be processed in an hour. Doubling the
data size seemingly leads to four times longer processing.

Runtime benchmarks indicate that the proposed algorithm performs cluster-
ing in 30% less time than our previous high speed solution [10]. All efficiency
tests were carried out on a notebook with quad core Haswell i7 processor run-
ning at 2.2GHz frequency and 24GB RAM memory, using a single core of the
microprocessor.

The main goal of protein clustering is to reveal hidden similarities among pro-
teins. When evaluating the output partition quality, one can count the number of
mixed clusters (those which contain proteins from two or more different families)
and their cardinality.We have shown in the previous work [9,10], that the inflation
rate is the main factor to influence the amount of mixed clusters. The approach
proposed here computes the same partitions as the conventional TRIBE-MCL, in
a seriously more efficient way. Having drastically reduced the execution time of
conventional TRIBE-MCL enabled us to perform a very detailed evaluation of the
amount and nature of the mixed clusters in the output partition using synthetic
data sets of several tens of thousand items.

Our synthetic data sets inherited the most important properties of SCOP95
proteins database, in which the proteins are organized in four-level hierarchy:
classes, folds, superfamilies and families. Test data sets contain up to two dozens
of classes, each of them containing several folds, the majority of which contain
several superfamilies that are structured into families of proteins. Clusters estab-
lished by TRIBE-MCL are called pure if all members belong to the same family.
Alternately, there can be mixed clusters, which contain proteins of various fam-
ilies. Further on, mixed clusters may be mixtures of any of the four levels: e.g.
if a mixed cluster contains proteins of different folds of a single class, then the
mixture is called of the level of folds. The partition quality of a clustering algo-
rithm may be characterized by the number of mixtures it produces, and their
distribution among the four levels.

Figure 5 gives a detailed report on mixed clusters found in a 50,000-item
data set of median density, for various inflation rates and a similarity threshold
ε = 10−3. The amount of mixed proteins highly depends on the inflation rate r,
and in a very modest way on the similarity threshold ε. As the inflation rate rises,
the number of mixed clusters and their cardinality drops quickly. At r = 1.7 there
are no more mixtures at the level of classes and above r = 1.83 there are no more
mixtures of any kind. As an effort to extract biologically useful information, it is
recommendable to choose such an inflation rate, which produces mixtures and
reveals hidden similarities among proteins of various known or unknown origins.
Depending on the level and amount of mixtures we are looking for, the ideal
inflation rate should be chosen in the range 1.4− 1.7.

The upper limit of processable data size is constrained by the memory of the
used computer. The main determining factor is the number of nonzero values in
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the similarity matrix after the first expansion. After 2-3 iterations, the memory
necessity stabilizes at a much lower level. With the current version of the algo-
rithm, an ordinary PC with 2GB RAM can process a graph of 30,000 nodes,
while 250,000 nodes require an upper class PC with 24GB RAM.

4 Conclusions

In this paper we have proposed an efficient approach to the graph-based TRIBE-
MCL clustering method, a useful tool in protein sequence classification.
The proposed approach proved extremely quick, and its memory needs are
strongly reduced since previous versions. This novel implementation represents a
major step of TRIBE-MCL towards handling huge data sets in reasonable time.
We have shown that in case of the SCOP95 database and synthetic data sets
derived from it, the most useful biological information can be extracted in case
of inflation rates in range of 1.4 − 1.7. Further enhancement of the algorithm’s
efficiency may be achieved via parallel implementation in CPUs or GPUs.
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10. Szilágyi, S.M., Szilágyi, L.: A fast hierarchical clustering algorithm for large-scale
protein sequence data sets. Comput. Biol. Med. 48, 94–101 (2014)

http://scop.mrc-lmb.cam.ac.uk/scop


Hopfield-Type Associative Memory

with Sparse Modular Networks

Gouhei Tanaka1,�, Toshiyuki Yamane2, Daiju Nakano2, Ryosho Nakane1

and Yasunao Katayama2

1 Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
gouhei@sat.t.u-tokyo.ac.jp

nakane@cryst.t.u-tokyo.ac.jp
2 IBM Research - Tokyo, Kawasaki, Kanagawa 212-0032, Japan

{tyamane,dnakano,yasunaok}@jp.ibm.com

Abstract. Modular structures are ubiquitously found in the brain and
neural networks. Inspired by the biological networks, we explore Hopfield-
type recurrent neural networks with sparse modular connectivity for as-
sociative memory. We first show that an iterative learning algorithm,
which determines the connection weights depending on the network
topology, yields better performance than the one-shot learning rule. We
then examine the topological factors which govern the memory capacity
of the sparse modular neural network. Numerical results suggest that
the uniformity of the number of connections per neuron is an essen-
tial condition for good performance. We discuss a method to design an
energy-efficient neural network.

Keywords: Associative memory, Modular structures, Sparse networks,
Iterative learning algorithms, Bio-inspired computing.

1 Introduction

Artificial neural networks are the computational intelligence based on a simpli-
fied mathematical model of biological neural networks in the brain. They are
suitable for a wide variety of computational tasks that are not well handled by
ordinary rule-based programs, such as pattern recognition, classification, data
fitting and prediction, and feature extraction [1]. Although artificial neural net-
works are expected as a powerful framework of machine learning [2], it is still
challenging to achieve a good balance between high performance and energy
efficiency for their practical use. At present, a hardware implementation of nu-
merous interconnections is particularly hard due to the limitation of technology
and its high power consumption [3]. A possible approach for overcoming this
problem is to reduce the number of individual neuron units and/or the con-
nections between the neuron units while maintaining the computational ability.
In this context, an attention has been paid to the gap between the network
architecture of the computing system and the connectome of the brain [4].
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The Hopfield neural network is a class of recurrent artificial neural networks,
which have been widely applied to associative memory, pattern recognition, and
combinatorial optimization problems [5]. The Hopfield-type neural network has
been highly developed by the proposal of new learning algorithms [6] and the
extension to the complex domain [7, 8]. In associative memory, the Hopfield net-
work preliminarily stores the information of a set of patterns (memory patterns)
in the connection weights using a learning algorithm. When receiving an input
pattern close to a memory pattern, the network produces an output pattern af-
ter repeated updates of the neuronal states. If the network output matches the
corresponding memory pattern, then the memory association is regarded to be
successful. The maximum number of patterns, which can be successfully memo-
rized in the Hopfield network with N neurons, is approximately given by 0.14N
[9]. Since the original Hopfield model is designed with a fully connected (all-to-
all) structure without self-connection, the number of unidirectional connections
is given by N(N −1) ∼ N2. This means that the number of connections approx-
imately increases with the square of the system size. Particularly in a large-scale
network, the dense connectivity is a serious problem in terms of energy efficiency
as well as difficulty in hardware implementation [10].

Modifications of the network structure of the original Hopfield network have
been often made to seek its biological plausibility. The performance of associative
memory with randomly diluted Hopfield networks has been intensively studied
[11–14]. It is shown that, for random dilution of connections, the storage capacity
decreases in proportional to the percentage of dilution [11]. Namely, the storage
capacity is proportional to the number of connections. Following the develop-
ment of network science and complex network theory, much attention has been
paid to the Hopfield model with small-world [15], scale-free [16], and other com-
plex topologies [17–19]. These networks can be regarded as non-randomly diluted
networks. In these studies, the effect of the network structure on the computa-
tional performance is examined with the one-shot Hebbian learning rule [20].
However, other learning algorithms have not yet been fully considered for the
diluted Hopfield networks.

Recent studies on the brain and neuronal networks have revealed that the con-
nectivity of such networks can be characterized by sparseness and modularity
[21–25]. There is a possibility that modular structures arise in biological net-
works due to a selection pressure to reduce the number of connections between
network nodes [26]. Motivated by these findings, we explore an energy-efficient
Hopfield-type neural network for associative memory using sparse modular struc-
tures. Instead of the one-shot Hebbian learning rule assuming a full connection,
we use an iterative local learning algorithm [27] which determines the connection
weights depending on the network structure. We show that the iterative learning
algorithm outperforms the one-shot learning in the storage capacity of the as-
sociative memory. We also examine the effect of different topologies of modular
networks on the associative memory performance.

In Sec. 2, we describe the learning algorithm and the retrieval process in the
Hopfield-type associative memory with a sparse modular structure. In Sec. 3,
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we show numerical results of the associative memory tests. In Sec. 4, we sum-
marize this study and mention future works.

2 Methods

2.1 Learning Algorithms

We consider a Hopfield-type neural network consisting of N neurons which are
interconnected in a sparse modular structure. The total number of unidirectional
connections is represented asDN2 with 0 ≤ D ≤ 1, whereD is the dilution factor
denoting the proportion of the number of existing connections to the possible
maximum number of connections [4]. For the original Hopfield network with a
full connection, D = 1 in the limit N →∞. The average number of connections
per neuron is given by DN . The weight of the connection between neurons i and
j is denoted by wij , which is assumed to be symmetric, i.e. wij = wji. If neurons
i and j are not connected, then we set wij = 0.

An associative memory model stores a set of training patterns by embedding
the patten information into the connection weights. This is called a learning
phase. The set of training patterns to be stored are given by binary vectors

s(k) = (s
(k)
1 , . . . , s

(k)
N )T for k = 1, . . . , P , where P is the number of stored patterns

and s
(k)
i = 1 or − 1 for i = 1, . . . , N .

In the one-shot Hebbian learning rule [20], the connection weights are deter-
mined as follows [5]:

wij =

{
1
N

∑P
k=1 s

(k)
i s

(k)
j for i �= j,

0 for i = j.
(1)

The distribution of the weights is given by a Gaussian distribution including
negative values [6]. Since the full connection is assumed in this learning algo-
rithm, non-zero values can be assigned even to the non-existing connections, for
which the corresponding weights are neglected in the retrieval phase. This is
often referred to as a one-shot algorithm because the weights are calculated in
a single step from the training set.

In order to set the connection weights in a topology-dependent way, we adopt
the perceptron-style iterative learning algorithm based on Hebb’s rule [27]. The
local fields for each training pattern are adjusted to be appropriate for a correct
retrieval. Initially we set wij = 0 for all the connections. For a randomly chosen
training pattern k, the weight corresponding to the existing connection between
neurons i and j is updated as follows [27]:

w′
ij = wij +

1

N
s
(k)
i s

(k)
j , (2)

until the following condition is satisfied:

h
(k)
i s

(k)
i ≥ T for i = 1, . . . , N and k = 1, . . . , P. (3)
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The local field h
(k)
i is defined as h

(k)
i =

∑
j∈Vi

wijs
(k)
j , where Vi denotes the set

of neurons connected to neuron i, i.e., Vi = {j | wij �= 0}. This is the perceptron-
style learning with a fixed margin T and a learning rate 1/N . The weight will
converge to an appropriate value if it exists, for which pattern k is guaranteed to
be locally stable. We repeat the above procedure for all the stored patterns until
inequality condition (3) is satisfied or the number of updates reaches P × tL.

2.2 Memory Retrieval

Once the connection weights are determined, a randomly chosen stored pattern
(the target pattern) is modified by adding noise, or flipping a proportion n of
the components, and then given to the network as an input. The states of the
neurons are represented by a real vector x = (x1, . . . , xN )T with −1 ≤ xi ≤ 1.
The state of neuron i is updated as follows:

x′
i = f

⎛⎝∑
j∈Vi

wijxj − θi

⎞⎠ , (4)

where the activation function f is given by the sigmoid function f(x) = 2/(1 +
exp(−x/ε)) − 1 and θi stands for the threshold for firing. The discretized state
of neuron i is 1 if xi > 0 and 0 otherwise, for i = 1, . . . , N . The state update is
repeated asynchronously until the network state converges to the target pattern
or the number of update steps reaches tR.

3 Results

We generate a sparse modular network consisting of M modules, in each of which
the neurons have the same number of connections. The number of neurons in
module l is denoted by Nl for l = 1, . . . ,M . The size of the modules is assumed to
be different according to biological networks [21–25]. The number of connections

per neuron in module l is given by DlN , satisfying
∑M

l=1 DlNl/N = D. The
connections are separated into intramodule ones and intermodule ones, i.e., Dl =
Dintra

l +Dinter
l . The adjacency matrix for an example of sparse modular networks

consisting of 4 modules is shown in Fig. 1(a). The stored patterns with binary
components are randomly generated to avoid strong correlations between the
patterns. The parameter values are set at N = 1024, D ∼ 0.05, ε = 0.1, θi = 0
for all i, T = 1, and tL = tR = 50000.

3.1 Comparison of the Learning Algorithms

First, we compare the one-shot and iterative leaning algorithms in associative
memory tests using the sparse modular Hopfield networks. Figure 1(b) shows
the final overlap m between the retrieved pattern sr and the target pattern st,
evaluated as m =

∑N
i=1 s

r
i s

t
i/N . We observe that the iterative algorithm is much
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Fig. 1. (a) A representation of the adjacency matrix of a modular network with M = 4
modules, where a black point is plotted at (i, j) if wij �= 0. (b) Overlap m versus the
number P of the stored patterns for the one-shot learning (red crosses) and the iterative
learning (blue open circles) in the modular network where M = 4, (N1, N2, N3, N4) =
(512, 256, 128, 128), Dintra

l ∼ 0.04 and Dinter
l ∼ 0.01 for l = 1, . . . , 4, and n ∼ 0.03. The

red solid and blue dashed curves correspond to the average over 10 simulations. (c)
Learning time versus the number of stored patterns. (d) The maximum number Pmax

of stored patterns with variation of the initial error rate n.

better than the one-shot algorithm in terms of the maximum number Pmax of
correctly retrieved patterns, i.e., m = 1 for P < Pmax. Whereas the final over-
lap for the one-shot algorithm starts decreasing at around P ∼ 5, the iterative
algorithm can achieve the perfect retrieval until the performance degradation
at around P ∼ 30. The rapid performance degradation suggests that inequal-
ity condition (3) is not satisfied before the maximum step is reached, because
a successful memory association is guaranteed for a small initial error once a
solution of the inequality condition is found. As shown in Fig. 1(c), the learn-
ing time for the one-shot algorithm is short and linearly dependent on P , while
that for the iterative algorithm seems to grow exponentially with P . The lat-
ter is related to the time to find a solution of inequality condition (3). These
results show that there is a trade-off between the performance of the success-
ful memory retrieval and the computation time. Figure 1(d) shows the maxi-
mum number Pmax of stored patterns with variation of the initial error rate n.
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The advantage of the iterative algorithm is more remarkable for a smaller initial
error rate. The decrease in Pmax indicates that the global stability of the fixed
point attractors corresponding to the stored patterns is gradually lost with an
increase in the number of stored patterns.

3.2 Variations of the Modular Structure

Next, we explore the effect of the connectivity of the sparse modular structure
on the performance of associative memory with the iterative learning algorithm.
Figure 2 compares the performance of three different modular networks with
M = 4, where the connection density D of the whole network is the same
but the balance of connection densities within the modules are different. The
neurons in the largest module have more connections in Case 1, the neurons in
all the modules have the same number of connections in Case 2, and the neurons
in the smallest modules have more connections in Case 3. Among the three
cases, the largest value of Pmax is obtained for Case 2. This is consistent with
the consequence that homogeneously connected networks have better memory
capacity than heterogeneously connected networks in associative memory [17].
Therefore, the uniformity of the number of connections per neuron is thought to
be a key property for good performance.

To check the importance of this property, we consider other topologies of the
modular structure while keeping the uniformity of the number of connections
per neuron. Figure 3(a) shows the effect of the number of modules on the final
overlap. The result indicates that the performance is not altered by the number
of modules as long as the connection uniformity is maintained. Figure 3(b) shows
the effect of the balance between the number of intermodule and intramodule
connections per neuron. Even if the network structure is varied from a highly
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Fig. 2. The parameters are fixed at M = 4 and (N1, N2, N3, N4) = (512, 256, 128, 128),
and Dinter

l ∼ 0.01. (Case 1) The larger module is more densely connected.
(D1, D2, D3, D4) ∼ (0.06, 0.03, 0.15, 0.15). (Case 2) The number of connections per
neuron is uniform. (D1, D2, D3, D4) ∼ (0.04, 0.04, 0.04, 0.04). (Case 3) The smaller
module is more densely connected. (D1, D2, D3, D4) ∼ (0.02, 0.04, 0.08, 0.08).
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Fig. 3. (a) The effect of the number of modules. (b) The effect of the balance between
the number of intermodule and intramodule connections.

modular structure to a random structure by changing the ratio Dinter
l /Dl of

the intramodule connections, the performance is almost the same for the wide
range of P . These results support the consequence that the uniformity of the
number of connections per neuron is an essential factor for good performance of
the Hopfield-type associative memory with iterative learning algorithm.

4 Conclusions

As a first step towards a realization of bio-inspired energy-efficient computing
systems, we have examined the Hopfield-type neural associative memory using
sparse modular structures. We have found that the uniformity of the number of
connections per neuron governs the performance of the associative memory based
on the iterative learning algorithm. This property is considered to be related to
the solvability of inequality condition (3). The generality of the property can be
checked, for instance, using correlated patterns like real images. Through such an
effort, we aim to establish a design method of neural network architectures, which
are energy-efficient, cost-effective, and amenable to hardware implementation.
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Abstract. In online machine learning, the ability to adapt to new concept quickly 
is highly desired. In this paper, we propose a novel concept drift detection  
method, which is called Anomaly Analysis Drift Detection (AADD), to improve 
the performance of machine learning algorithms under non-stationary environ-
ment. The proposed AADD method is based on an anomaly analysis of learner’s 
accuracy associate with the similarity between learners’ training domain and test 
data. This method first identifies whether there are conflicts between current 
concept and new coming data. Then the learner will incrementally learn the non-
conflict data, which will not decrease the accuracy of the learner on previous 
trained data, for concept extension. Otherwise, a new learner will be created 
based on the new data. Experiments illustrate that this AADD method can detect 
new concept quickly and learn extensional drift incrementally. 

Keywords: Adaptive Intelligent Systems, Online Machine Learning, Incremental 
Learning, Concept Drift. 

1 Introduction 

In the real world, there are a growing number of applications generating data conti-
nuously and requiring efficient machine learning algorithms to cope with this data. 
For example, personal assistance applications dealing with information filtering, ma-
croeconomic forecasting, bankruptcy prediction or individual credit scoring [1]. 
Moreover, the fast pace of preference changing of the target customers (concept drift) 
is also a challenge to existing learning algorithms. As a result, conventional machine 
learning algorithms, which hold a stationary distribution assumption, will be replaced 
by more efficient online learning algorithms, which have the ability to adapt to new 
environment quickly, sooner or later. 

The issue of concept drift refers to the change of the distribution underlying the da-
ta at different time steps [2], in which the term concept refers to the distribution of a 
problem at a certain time step. Concept drift will lead to the predictions of well-
trained classifiers become less accurate as time passes. More formally, lets denote the 
feature vector as x and the class label as y, then an infinite sequence of (x, y) presents 
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the data stream, pt(x, y) is the distribution of data chuck at time step t, the term con-
cept drift means that pt(x, y) ≠ pt+1(x, y) [3]. Recall the Bayesian Probability Theory, 
p(x, y) can be decompose as p(x, y) = p(x) × p(y | x). In Kelly, et al. [4] publication, 
they concluded that concept drift can be caused by the drifting of p(x) over time t  
(it can also be written as p(x | t)), or the drifting of p(y | x), which is the conditional 
probability of feature x, or both. Virtual concept drift is neither the change of p(x | t) 
nor p(y | x). It is caused by the sampling shift of current p(x | t) or p(y | x), or both. 

Concept drift can be categorized into different types based on different criteria as 
shown in the literatures. Minku, et al. [4] proposed that concept drift could be catego-
rized into 14 types based on the drifting speed, severity, predictability, frequency and 
recurrence. In the real-world applications, the types of concept drift can be varied and 
mixed. In addition, in some special cases, virtual drift may have the same effect  
on learning model as concept change. For example, pt+1(x | t) is the sampling shift of 
pt(x | t) and they are not equal, they might be treated as two different concepts and 
assigned to two learners separately. If the data chuck at t+2 with distribution of mixed 
pt+1(x | t) and pt(x | t), neither classifiert nor classifiert+1 would achieve a high accuracy. 
These issues have made concept drift even difficult to be solved. Current ensemble 
drift detection and handling approaches treats virtual concept drift and real concept 
drift as the same problem. These approaches detect drifts based on the outputs of  
learner at each time step without considering whether the drift is a sampling shift or a 
new one. As a result, their performances are limited. 

Motivated by these issues, we propose a novel drift detection method for online 
learning algorithms, which runs anomaly analysis on the accuracy associate with the 
similarity between training domain and test data. In the anomaly analysis, we focus on 
the data that was correctly classified by existing learners. We compare the similarity 
of the distribution between the old correctly classified data and the new data. Under 
normal circumstances, including virtual concept drift, the similarity and the accuracy 
should stay at a stable ratio. Otherwise, it can be either a concept change or noise.  
Our approach is capable to high light the data with unknown distribution and identi-
fies the conflicts instances. Therefore, both virtual drift and real concept drift could be 
handled well. 

The organization of this paper is as follow: In the next section, we survey the state 
of art drift detection methods based on learners’ outputs. Section 3 explains and 
presents the details of our new proposed AADD method. Section 4 presents the prelim-
inary and the evaluation results of the proposed AADD method. Section 5 concludes 
this paper and discusses some future works. 

2 Related Work 

This section formally presents the problem of concept drift, and analyzes the advan-
tages and drawbacks of established literature with regard to concept dirt detection 
based on learners’ outputs. 
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2.1 Problem Description: Concept Drift 

We reference the definition from a most recent concept drift review which was given 
by Zliobaite [1], to present concept drift. In classification problems, at every time step 
t we have historical data (labelled) available xH = (x1, … , xt). For each time increas-
ing t+1, a new instance xt+1 arrive. The task is to predict a label ci, where ci, c2, … , ck 
is the set of class labels, for every new coming instance xt+1. The optimal classifier to 
classify x → ci is completely determined by a prior probabilities for the classes p(ci) 
and the class-conditional probability density functions (pdf) p(x|ci), i = 1, …, k. They 
define a set of prior probabilities of the classes and class-conditional pdfs as concept 
or data source, denote it S: 

S = (p(c1), p(x|c1)), (p(c2), p(x|c2)), … ,(p(ck), p(x|ck))             (1) 

Every instance xt is generated by a source St. If all the data is sampled from the 
same source, i.e. S1= S2 = … = St+1 = S we say that the concept is stable. If for any 
two time points i and j exists Si ≠ Sj, we say that there is a concept drift.  

However, for some special situation Snew, Si ≠ Sj and Si ׫ Sj = Snew, if we treat them 
as three different concepts, we will have to train three different learners. Moreover, 
Snew would not be able to take the advantages of previous concept or data source Si and 
Sj. Therefore, we suggest learning this type of drift incrementally. 

2.2 Drift Detection Methods by Outputs of Learners 

To the best of our knowledge, explicit drift detection can be categorized into three 
groups, detecting drift by data distribution [5], learner outputs [6, 7] and competence 
model [3]. A more comprehensive literature review can be found in [3]. Comparing 
with other types of drift detection methods, drift detection by learners’ outputs is the 
most intuitive and has a relative low computational cost. On the other hand, this type 
of drift detection method can only take reactions after drift. In this section, we will 
give a literature review on the drift detection by learners’ outputs. 

Drift Detection Method (DDM), which proposed by Gama et al. [7], detects concept 
drift by tracing the online error rate of the learning algorithm. It treats the error of a set of 
examples as a Bernoulli trail random variable. The number of errors in a sample set 
should follow Binomial distribution. The changes in the errors of the algorithm indicate 
the changes of the class distribution. Since DDM assesses a learner through its overall 
performance, it is more suitable for identifying concept change and rebuilding models 
rather than updating an existing learner, which means that it cannot handle slowly gra-
dual drift [6]. Hence, Baena-García et al. [6] proposed a upgraded version of DDM, Early 
Drift Detection Method (EDDM), to improve the detection in the presence of gradual 
concept drift. The difference is that EDDM considers the distance between two consecu-
tive erroneous classifications instead of the overall error rate. They assume that the 
change of the distance reflects the changes of the current concept. Moreover, they applied 
a warning system to reduce the error detections caused by noise. In spite of that, EDDM 
is still very sensitive to noisy examples [8]. 
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3 Anomaly Analysis Drift Detection Methods 

This section presents the AADD method. In Section 3.1, we give an intuitive explana-
tion of the proposed method. In Section 3.2, a detailed description of the AADD  
method is explained. 

3.1 The Idea of AADD 

The main reason why concept drift would lead to well-trained learner becoming  
inaccurate is either the test data distribution is not learned sufficiently or the class 
labels changed with the same distribution. If the environment is not noise free, it can 
also cause the same problem. Therefore, from this point of view, we believe that if we 
could monitor the performance of a learner on its confident data distribution on which 
the learner always have a high accuracy, we would be able to quickly identify what 
caused the drop of accuracy. For example, if a batch of data chuck is from a new dis-
tribution and has no conflict with current learner, the similarity would be low and the 
accuracy would be low as well. We use a table to illustrate the differences. 

Table 1. Concept drift similarity & accuracy analysis 

Drift or Noise Similarity Change Accuracy Change 
Noise No change Fluctuating 

Concept extension 
(Distribution extended) 

Decreasing Decreasing 

Concept change 
(Conflicts under the same distribution) 

No change Decreasing 

The core idea of AADD method is that monitoring the similarity and accuracy of 
the new available sample data at each time step. By taking the similarity into consid-
eration, AADD would be able to identify whether the incorrect predictions is caused 
by the conflicts between current learning model and new concept or they are caused 
by unlearned distribution or noise. In addition, with similarity functions, data can be 
only trained and analyzed once in an online manner. 

3.2 The Method Description 

At each time step of the data stream, we assume that there are 2 batches of data, Dtrain(t), 
Dtest(t). The Dtrain(t) can be a subset of Dtest(t) with known labels or they share similar 
distributions. After utilizing Dtrain(t) to create and update a learner L (step 3, 8 and 11), 
we change the label of an instance in Dtrain(t) to TRUE if it be classified correctly by L, 
else to FALSE to form a new dataset D`train(t). And then we use D`train(t) to create or up-
date learner L’s similarity function (step 4, 9 and 12). For each new coming train data 
chuck, we run anomaly analysis to verify the ratio of the similarity and the accuracy, 
incremental learning it if no conflict with current learner, otherwise, build new learner 
base on it, Step 6. The AADD method is described as follows: 
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Anomaly Analysis Drift Detection: 

Input:  

Noise sensitive parameter θ 

Updateable learning algorithm 

For each time step Dtrain, Dtest 

Output: 

Predictions of Dtest 

1. For t = 0: numBatch 

2.     If t = 0 

3.       buildNewLearner(Dtrain(t)) 

4.       buildSimilarityFunctions(D`train (t)) 

5.     Else  

6.       conflictDetection(D train (t)) 

7.       If no conflict 

8.         incrementalLearning(currentLearner, Dtrain (t)) 

9.         incrementalLearning(similarityFunction, D`train (t)) 

10.       Else 

11.         buildNewLearner(Dtrain (t)) 

12.         buildSimilarityFunctions(D`train (t)) 

13.         End  

14.     End  

15. End  

16. classification(currentLearner, Dtest(t)) 

The conflict between active learner and new coming data is identified by the follow-
ing function, which indicates the abnormal data batch: 

accDtrain × similarityDtrain < acclearner × similarityDtrain - θ× (1- similarityDtrain)   (2) 

where accDtrain is the accuracy of the training data, similarityDtrain is the similarity of 
the training data, acclearner is the stable accuracy of current learner, θ is a parameter to 
control the sensitive to noise, the smaller value the θ is, the more sensitive to noise. 

4 Experiments and Result Analysis 

In this section, we present our experiment results of AADD method. First, in Section 
4.1, we give the configuration details of the experiments. Secondly, in Section 4.2, we 
show the accuracy change caused by concept drift and plot the anomaly points at each 
time step on a graph. 

4.1 Experiment Setup 

In order to test AADD method, we applied it on the SEA Concepts [9], which has been 
used by many researchers as a standard to test algorithms for concept drift. This dataset 
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have two class values and three features, with only two features being relevant and the 
third one being noise. Class values are assigned based on the sum of the two relevant 
features. If the sum of these two features of one instance is lower than a given threshold, 
this instance will be assigned to class 1. Otherwise, it will be assigned to class 2.  
The threshold will be updated after a predefined time step to simulate an abrupt shift in 
the class boundary. The values of the three features are uniformly distributed between 0 
and 10, and the threshold is changed three times throughout the experiment with increas-
ing severity 8→9→7.5→9.5. For example: 

Table 2. SEA Concepts 

attribute 1(0 - 10) attribute 2 (0 - 10) attribute 3 (noise) (0 - 10) Class {1, 2} 
Threshold = 8 (if attribute1 + attribute2 < 8 then class 1, otherwise class2) 
8.498129 1.243221 5.675182 class 2 

… … … … 
Threshold = 9.5 (if attribute1 + attribute2 < 9.5 then class 1, otherwise class2) 

1.406376 0.738125 2.598439 class 1 
… … … … 

Our testing procedure is identical to that described in [9]: 50000 instances training 
data, 250 instances each time step. In our experiment, we used the weka naive bayes 
updateable classifier as the base learner and the similarity functions. We run the test 
10 times and calculate the average accuracy as the final result. The θ we used here is 
0.05.  Meanwhile, we also run a test with the same classifier but manually discard 
old learners and create new one at each drift time step. At last, we put our implemen-
tation of NSE++ [10] to demonstrate how a concept drift may affect the performance 
of learning model. The parameters of NSE are same as it was suggested in their paper, 
a = 10, b = 0.5 data size = 250, base learner is weka naive bayes updateable classifier. 

4.2 Experiment Results 

Fig 1 is the performance of three concept drift algorithms on SEA concept. As shown 
above, NB with known drift point was forced to drop old learner and create new one 
at each drift time step. Therefore, it is barely affected by the change of concept.  
The difference of accuracy between each concept period is caused by the concept 
itself (some concepts are easier to be predicted correctly). By contrast, NSE++ with 
same base classifier, which does not have active drift detection method, have a signif-
icant accuracy drop at each drift time step. After that, it recovers from drift gradually. 
Regarding to AADD, there is no significant accuracy drop at drift time step.  
However, indeed, there is a recovery period for AADD to get back to normal accura-
cy by incremental learning. This is because of that the AADD method can identify the 
conflict learners once there is a drift and abandon them before they could cause any 
negative effect on new concept predictions. 



 Concept Drift Detection Based on Anomaly Analysis 269 

 

Fig. 1. Compare AADD method with NB and NSE++ 

 
Fig. 2. Anomaly analysis of the accuracy associate with similarity 

Fig 2 shows the distribution of the accuracy of the current learner on new coming 
data and the similarity returned by its similarity function. We put all the 10 runs into 
one figure so that we could have enough drift points to present the differences  
between stable points and drifting points. As described in section 4.1, time step 50 is 
the time when threshold change from 8→9 (presented with diamond), time step 100 is 
9→7.5 (presented with square) and time step 150 is 7.5→9.5 (presented with trian-
gle). The points at time step 150 are easy to be understood. As it has the biggest con-
cept change absolute(7.5 – 9.5) = 2, the accuracy is much lower than the others with 
the same similarity. Regarding to time step 50 and 100, both of them have an accura-
cy drop compare to the normal data points. However, as time 50 has a relatively small 
change absolute(8 – 9) = 1, the shifts of similarity of these points are relatively stable. 
By contrast, time step 100 has a larger change absolute (9 – 7.5) = 1.5, so it would 
spread into a larger region. From fig 2, we can also see that after quick reaction to 
adapt to new concept, which is creating new classifier at time step 50, 100 and 150, 
the rest time step of these new concepts have go back to normal position. There is no 
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other anomaly point after concept change. In other words, time step 51…99, 101 … 
159 and 151… 200 are under stable concept. Regarding to those drifting points that 
are mixed with normal points, it is because of that the random data at that time does 
not have a clear drift distribution and the later time step was recognized as drift point. 

From the results above, it is manifest that anomaly analysis of the accuracy and the 
similarity would be helpful to identifying concept drift. 

5 Conclusion and Further Study 

This paper introduces a novel drift detection method, called AADD, based on the 
anomaly analysis of the learner’s accuracy corresponding to the similarity between its 
training domain and test data. It has the ability to distinguish between unknown dis-
tribution and conflict distribution and to solve them separately. The AADD method is 
capable to detect concept extension and change efficiently and highlights the conflict 
instances at the same time. It offers a great convince to drift handling. 

Our next attempt will aim to combine some drift handling approaches with AADD 
to research how to take the advantages of AADD for improving the performance of 
learning under non-stationary environment. 
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Abstract. Although there are some batch model learning algorithms for handling
the weight fault situation, there are few results about online learning for handling
this situation. Besides, a recent article showed that the objective function of the
weight fault injection algorithm is not equal to the training error of faulty radial
basis function (RBF) networks. This paper proposes an online learning algorithm
for handling faulty RBF networks with two types of weight failure. We prove that
the trained weight vector converges to the batch mode solution. Our experimental
results show that the convergent behavior of the proposed algorithm is better than
the conventional online weight decay algorithm.

Keywords: RBF networks, Weight Failure, Online Learning.

1 Introduction

Weight failure is unavoidable because a neural network cannot be implemented in a
perfect way. For instance, the finite precision in the trained weights introduces mul-
tiplicative weight noise [1]. Physical faults introduce open weight fault [2]. Although
many training methods have been developed, most of them focus on one kind of weight
failure only [3, 4]. In the real situation, different kinds of weight failure could hap-
pen in a singe neural network. There are some results related to the weight noise and
weight fault based on the weight decay approach [4]. In this approach, an appropriate
weight decay parameter is very important. In [4], a systematic method for selecting the
weight decay parameter was proposed. Since the training objective of this approach is
not equal to the training set error of faulty networks, the performance of this approach
is not optimal. Also, the selection method [4] is suitable for the batch mode learning
only.

The weight failure regularization (WFR) [5] is a batch mode approach. In terms of
training set error, it is optimal. However, the disadvantage of using the batch mode
learning is that it needs to store the entire input-output history. One way to solve this
problem is to develop an online algorithm, in which a key issue is the convergent con-
dition. For the RBF model, the online weight fault injection algorithm does not achieve
the desired result as we expect [6]. As shown in Figure 1, the performance of the online
weight fault injection algorithm is almost similar to that of the standard LMS algorithm.

This paper presents an online version for the WFR. One of the important issues
in online learning is the convergent behavior. The common requirement is that the con-
verged solution should be equal to the corresponding batch mode solution. We establish

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 271–278, 2014.
c© Springer International Publishing Switzerland 2014
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Fig. 1. Convergent behavior of various online algorithms. The details of the two data sets are
provided in Section 4.

the convergent condition for the online mode WFR algorithm. The organization of this
paper is as follows. Section 2 reviews the concept of RBF networks. Section 3 presents
the online mode WFR algorithm and the convergent analysis. The simulation results are
presented in Section 4. Section 5 concludes the paper.

2 Background

Denote the training data set as Dt = {(xi, yi) : xi ∈ �K , yi ∈ �, i = 1, 2, ..., N},
where xi and yi are the input and the target output of the i-th sample, respectively. We
assume that the output yi is generated by an unknown system, given by yi = f(xi)+εi,
where f(·) is the unknown nonlinear function and εi’s are the independent zero-mean
Gaussian random variables with variance of σ2

ε .
In the RBF approach, the unknown system is approximated by f(x) ≈ f̃(x,w) =∑M
j=1 wjφj(x) = φT (x)w, where M is the number of RBFs, w = [w1, · · · , wM ]T

is the weight vector, φj(x) = exp
(
− ‖x−cj‖2

s

)
is the j-th basis function, φ(x) =

[φ1(x), · · · , φM (x)]T , and cj is the center of the j-th basis function. We assume that all
the RBFs are with the same width s. For the fault-free case, the training set error is given
by 1

N

∑N
i=1(yi−φT (xi)w)2. The optimal weight vector for minimizing the training set

error is given by wls = H−1 1
N

∑N
i=1 φ(xi)yi, where H = 1

N

∑N
i=1 φ(xi)φ

T (xi).
In the real situation, an RBF network may suffer from multiplicative weight noise

and open weight fault at the same time [6]. This fault situation can be modelled as

w̃j,b,β = (wj + bjwj)βj ∀ j = 1, · · · ,M, (1)

where w̃j,b,β is the faulty weight. In (1) bj’s are independent zero-mean random vari-
ables with variance σ2

b and their density function are symmetric. Also, in (1), the open
fault factors βj’s are identical independent binary random variables. The probability
mass function of βj is given by

Prob(βj = 0) = p and Prob(βj = 1) = 1− p. (2)

Given a faulty weight vector w̃b,β , from (1), the training set error is given by

E(Dt)b,β =
1

N

N∑
i=1

(yi−φT (xi)w̃j,b,β)
2 . (3)
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From the definition of the fault model, we obtain 〈βj〉 = 〈β2
j 〉 = 1 − p, 〈βjβj′〉 =

(1 − p)2 ∀ j �= j′, 〈bj〉 = 〈bjbj′〉 = 0 ∀ j �= j′ and 〈b2j〉 = σ2
b , where 〈·〉 is the

expectation operation. Taking the expectation over b’s and β’s, we obtain the expected
training error of faulty networks, given by

Ē(Dt)b,β =
1−p

N

N∑
i=1

(yi−φT (xi)w)2+
p

N

N∑
i=1

y2i+(1−p)wT [(p+σ2
b )G−pH]w, (4)

where H = 1
N

∑N
i=1 φ(xi)φ

T (xi) and G = diag(H). Equation (4) shows the train-

ing error of faulty RBF networks. Since the first term 1−p
N

∑N
i=1(yi) in (4) is not a

function of w, we can define the training objective function as

L̄(w) =
1

N

N∑
i=1

(yi − φT (xi)w)2 +wT
[
(p+ σ2

b )G− pH
]
w (5)

In (5), the second term can be considered as a regularization term. Considering ∂L̄(w)
∂w =

0, we obtain the optimal weight vector, given by

w∗ =
[
(1− p)H + (p+ σ2

b )G
]−1 1

N

N∑
i=1

φ(xi)yi. (6)

3 Online Mode and Convergence

This paper considers the cyclic learning scheme. That is, in an iteration cycle, a sample
is learned exactly once according to a fixed order. Considering the i-th training sample,
from (5) the instantaneous objective function for this sample is given by

L̄i(w)= (yi−φT (xi)w)2+wT ((p+σ2
b )G

(i)−pH(i))w, (7)

where H(i) = φ(xi)φ
T (xi) and G(i) = diag(φ(xi)φ

T (xi)). Based on the gradient
∂L̄i(w)

∂w , the updating for this sample is given by

w(k,i) = (I − μkS
(i))w(k,i−1) + μkφ(xi)yi (8)

where S(i) = (p+σ2
b )G

(i)+(1−p)H(i)) and μk is the learning rate.
For online learning, one of the important issues is the convergent behavior. The ba-

sic requirement is that the algorithm should converge to a solution. Also, the converged
solution should be equal to the corresponding batch mode solution. Before we investi-
gate the convergence condition of (8), we state an important lemma [7] that was used in
the proofs of the convergence in the standard stochastic gradient and the standard least
mean square (LMS). Our proof will also use this lemma.

Lemma 1. Let {zk} is a sequence of real numbers, given by zk+1 = (1 − νk)zk +
O(ν2k), where z1 = r0, r0 is an arbitrary number, O(ν2k) is a function of νk and its
order is greater than ν2k , and {νk : 0 ≤ νk, k ≥ 1} is a decreasing sequence. If∑∞

k=1 νk =∞, and
∑∞

k=1 ν
2
k <∞, then limk−→∞ zk = 0.
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The convergent behavior of (8) is given by Theorem 1.

Theorem 1. For the online algorithm (8), let {μk} be a decreasing sequence and
limk−→∞ μk = 0. If

∑∞
k=1 μk = ∞ and

∑∞
k=1 μ

2
k < ∞, then w(k,i) −→ w∗ as

k −→ ∞, for all i, where w∗ =
[
(1− p)H + (p+ σ2

b )G
]−1 1

N

∑N
i=1 φ(xi)yi and

w∗ is the batch mode optimal solution.

(Proof:) We use the concept of the proof in [7] to prove our Theorem 1. Without loss
of generality, we consider that i = 1. The online rule is

w(k,1) = (I − μkS
(1))w(k−1,N) + μkφ(x1)y1 . (9)

Expressing (9) for one iteration cycle, we obtain

w(k,1) = (I − μk

N∑
i=1

S(i))w(k−1,1) + μk

N∑
i=1

φ(xi)yi +Ξ(μ2
k), (10)

where Ξ(μ2) is a vector valued function and the order of each element of Ξ(μ2) is
greater than μ2. Define

S ≡
N∑
i=1

S(i) =

N∑
i=1

(p+σ2
b )G

(i)+(1−p)H(i) = N((p+σ2
b )G+(1−p)H) . (11)

Equation (10) can be written as

w(k,1) = (I − μkS)w
(k−1,1) + μk

N∑
i=1

φ(xi)yi +Ξ(μ2
k) . (12)

Since H is a symmetric positive/semi-positive definite matrix and G is a diagonal ma-
trix with positive elements, S is a positive definite matrix. Applying the eigen decompo-
sition on S, we obtain S = ΘTDΘ = Θ−1DΘ, where Θ is an orthonormal matrix,
D is diagonal matrix and [D]jj = dj > 0 for all j. With the orthonormal matrix, (12)
can be rewritten as

ẇ(k,1) = (I − μkD)ẇ(k−1,1) + μk

N∑
i=1

φ̇(xi)yi + Ξ̇(μ2
k) . (13)

where ẇ(k,1) = Θw(k−1,1), φ̇(xi) = Θφ(xi) and Ξ̇(μ2
k) = ΘΞ(μ2

k).

Denote ẇ(k,1)
j as the j-th element of ẅ(k,1)

j , φ̇j(xi) as the j-th element of φ̈(xi) and

Ξ̇j(μ
2
k) as the j-th element of Ξ̈(μ2

k). Equation (13) can be rewritten in the element-
wise form, given by

ẇ
(k,1)
j = (1− μkdj)ẇ

(k−1,1)
j + μk

N∑
i=1

φ̇j(xi)yi + Ξ̇j(μ
2
k) for all j. (14)

Furthermore, equation (14) can be expressed as

zj,k = (1 − μkdj)zj,k−1 + Λ̈j(μ
2
k) (15)
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for all j, where zj,k = ẇ
(k,1)
j − 1

dj

∑N
i=1 φ̇j(xi)yi. Applying Lemma 1, we have

limk−→∞ zj,k = 0. Therefore, as k −→∞,

ẇ
(k,1)
j =

1

dj

N∑
i=1

φ̇j(xi)yi . (16)

Therefore, as k −→ ∞, ẇ(k,1)
j = D−1∑N

i=1 φ̇j(xi)yi. That means, w(k,1)
j = [(p+

σ2
b )G+(1−p)H)]−1 1

N

∑N
i=1 φj(xi)yi and w

(k,1)
j = w∗. The proof is complete. �

4 Simulations

Two common data sets, the nonlinear autoregressive (NAR) time series [8] and the
abalone (ABA) data set [9], are considered. The NAR series is generated by

z(t) =
(
0.8− 0.5 exp(−z2(t− 1))

)
z(t− 1)

− (0.3 + 0.9 exp(−z2(t− 1))
)
z(t− 2) + 0.1 sin(πz(t− 1)) + ε(t) , (17)

where ε(t) is a zero-mean Gaussian random variable with variance σ2
ε = 0.01. One

thousand samples, with z(0) = z(−1) = 0, are generated. The first 500 samples are
selected as the training set. The remaining 500 samples form the test set. The RBF
network is used to estimate yt = z(t) from the past two observations xt = [z(t −
1), z(t − 2)]T . The RBF width is equal to 0.1. The RBF centers are selected from the
training set based on the concept of the orthogonal least squares (OLS) algorithm [8].
Based on the sorted RBF centers from the OLS algorithm, we can obtain the test set
MSE versus the number of RBF nodes, shown in Figure 2(a). It can be seen that 45
RBF nodes are good enough. In the ABA data set, each sample has 7 input features and
one output (age). The data set has 4177 samples. The first two thousands samples were
used as the training set. The other samples form the test set. The RBF width is equal to
0.1. We use the OLS algorithm to select the centers. From Figure 2(b), it can be seen
that around 60 RBF nodes are good enough.

We test the convergent behavior of the online WFR algorithm under the fault situ-
ation: σ2 = 0.4 and p = 0.1. The results are shown in Figure 3. The first row of the
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Fig. 2. Using the OLS algorithm to select RBF nodes. (a) NAR example. (b) Abalone example. It
is seen that the number of the selected nodes in the NAR example should be 45. The number of
the selected nodes in the Abalone example should be 60.
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Fig. 3. Convergent Behavior. The first row is the convergence of weight vector. The second row
is the convergence of MSE.

figure shows the difference between the online WFR weight vector wk,1 and the batch
mode optimal solution w∗. Besides, we include the convergence of the mean square
error (MSE) of faulty networks in the second row of the figure. From the first row of the
figure, it is seen that as we increase the number of the learning cycles, the trained weight
vector is more close to the batch mode optimal solution w∗. This behavior agrees with
the expectation of Theorem 1. The convergent speed of the adaptive learning rate case
is very fast at the beginning phase of learning. It is because that the learning rate is large
at this phase of learning. For the NAR case, within hundreds of the learning cycles, the
trained weight vector is very close the optimal weight vector. For the ABA case, it is
seen that we need more training cycles to approach the optimal weight. In fact, from the
second row of Figure 3, in terms of MSE, the online WFR algorithm can settle down in
two hundred training cycles.

As a comparison, we also consider the online weight decay algorithm [10]. In the
online weight decay algorithm, one important parameter is the weight decay parameter.
Since there is no systematic way to set the weight decay parameter, we try 50 different
values in the range of [10−5, 10−1] in the logarithmic scale and then we select the best
weight decay parameter. The convergence of MSE is shown in Figure 4. It is seen that
the online WFR algorithm can settle down around one hundred learning cycles. Also,
the MSE performance of WFR algorithm is better than that of the online weight decay
algorithm (with optimized weight decay parameter).

We also investigate the performance distribution over the faulty networks. For each
trained network, we randomly generate 10, 000 faulty networks. We then measure the
test set and training set errors of the faulty networks. Table1 summarizes the mean
and standard deviation of the faulty network performances. For the online algorithm we
limit the number of learning cycles to 1,000. From the table, in general, the performance
of the online WFR learning algorithm is very close to that of the batch WFR algorithm.
Also, in terms of mean and standard deviation, the performance of the online WFR
algorithm is better than that of the online mode weight decay method.
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Fig. 4. Comparison between online mode WFR and online mode weight decay

Table 1. MSE of 10,000 faulty neural networks, where number of nodes is 200

NAR example
weight noise open fault batch WFR online WFR online weight

level σ2
b p decay

0.2 0.01 0.0221(0.0041) 0.0221(0.0041) 0.0227(0.0043)
Training 0.10 0.0270(0.0060) 0.0271(0.0353) 0.0317(0.0086)
Set MSE 0.4 0.01 0.0299(0.0071) 0.0300(0.0071) 0.0309(0.0075)

0.10 0.0352(0.0089) 0.0353(0.0090) 0.0396(0.0114)

0.2 0.01 0.0246(0.0043) 0.0247(0.0043) 0.0251(0.0046)
Test 0.10 0.0294(0.0062) 0.0294(0.0062) 0.0338(0.0086)

Set MSE 0.4 0.01 0.0322(0.0074) 0.0322(0.0073) 0.0329(0.0078)
0.10 0.0373(0.0094) 0.0374(0.0093) 0.0416(0.0118)

ABA example
weight noise open fault batch WFR online WFR online weight

level σ2
b p decay

0.2 0.01 6.1900(0.6709) 6.2096(0.6708) 7.0061(1.1164)
Training 0.10 6.7203(0.8572) 6.7530(0.8674) 8.3747(1.9833)
Set MSE 0.4 0.01 6.9941(0.9475) 7.0286(0.9526) 8.0965(1.6255)

0.10 7.5101(1.1532) 7.5287(1.1830) 9.3563(2.4420)

0.2 0.01 6.7183(0.6995) 6.7532(0.7227) 7.6156(1.1436)
Test 0.10 7.1832(0.8864) 7.2436(0.9238) 9.0379(1.9713)

Set MSE 0.4 0.01 7.4337(0.9731) 7.4965(1.0085) 8.6709(1.6667)
0.10 7.9075(1.1708) 7.9624(1.2352) 9.9685(2.4302)

5 Conclusion

The online WFR algorithm is proposed in this paper to handle faulty RBF networks
with the weight noise and weight fault. The convergent condition is also given. Let the
learning rates {μk} be a decreasing sequence and limk→∞ μk = 0. We show that if
∞∑
k=1

μk = ∞ and
∞∑
k=1

μ2
k < ∞, then the trained weight vector tends to the solution
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of the batch mode WFR algorithm. We then analyze the convergent behavior of the
algorithm under different fault levels based on some simulations.
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Abstract. Recently, the dual neural network (DNN) model has been used to
synthesize the k-winners-take-all (kWTA) process. The advantage of this DNN-
kWTA model is that its structure is very simple. It contains 2n + 1 connec-
tions only. Also, the convergence behavior of the DNN-kWTA model under the
noise condition was reported. However, there is no an analytic expression on
the equilibrium point. Hence it is difficult to study how the noise condition af-
fects the model performance. This paper studies how the noise condition affects
the model performance. Based on the energy function, we propose an efficient
method to study the performance of the DNN-kWTA model under the noise con-
dition. Hence we can efficiently study how the noise condition affects the model
performance.

1 Introduction

The winner-take-all (WTA) process is used to find out the largest number out of a list
of n numbers [1–3]. The generalized version of the WTA process is the kWTA process,
which is used for finding out the k largest inputs from n inputs. Among many mod-
els, the dual neural network (DNN)-based kWTA [4] is with the simplest structure. It
contains 2n+1 connections only, while conventional structures usually require n2 con-
nections. Owing to the model simplicity, various studies have been done regarding its
stability [4,5] and the bounds on its convergence time [6]. In [7], an analytical equation
for the convergence time was derived.

Due to its simple structure, the DNN-kWTA model is suitable for hardware imple-
mentation. However, circuit implementation has certain limitation [8–11]. For instance,
the thermal noise [10] may be injected into the model. Hence, we have studied the dy-
namic behavior of the DNN-kWTA model under the noise condition in [12]. However,
the effect of noise on the performance of the model is still not known.

This paper proposes a computationally efficient method to check whether the noisy
model works properly or not. With the method, we can efficiently study the probability
that the model produces the correct outputs. Hence we can know how the noise affects
the model performance. Section 2 presents the background information. Section 3 stud-
ies the performance of the model when the inputs do not have a minimum separation.
The paper is then concluded in Section 4.
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u1 u2 un

+

k

x1 x2 xn

y

Fig. 1. Structure of a DNN-kWTA network

2 Background

2.1 DNN-kWTA

The DNN-kWTA model, shown in Figure 1, consists of n inputs {u1, · · · , un}, n out-
puts {x1, x2, · · · , xn} and one hidden state y. Without loss of generality, we assume
that the inputs are all distinct and bounded by 0 and 1. The operation of the model is
given by

ε
dy(t)

dt
=

n∑
i=1

xi(t)− k, (1)

xi(t) = g(ui − y(t)) (2)

for i = 1, · · · , n, where ε is the characteristic time, and g(s) is a threshold comparator:

g(s) =

{
1 if s > 0
0 otherwise.

. (3)

Without loss of generality, we assume that ε = 1. Let {uκ1, · · · , uκn} be the sorted
inputs in ascending order and {κ1, · · · , κn} be the corresponding sorted index list.
Furthermore, let {xκ1 , · · · , xκn} be the corresponding outputs. By (1) and (2), y(t)
converges in finite time [5, 7]. For this model, at the equilibrium point, only k outputs
{xκn−k+1

, · · · , xκn} are equal to 1. Other n− k outputs are equal to zero.

2.2 Noisy DNN-kWTA and Its Existing Results

As hardware implementation can never be perfect [10, 11], there are some stochastic
behaviors. For instance, the thermal noise may be introduced into the inputs. Under this
situation, the ith input is given by

ũi(t) = ui + δi(t). (4)

It consists of a constant value ui and a random noise δi(t), where the probability density
function of δi(t) is given by

P (ũi(t)|ui) =

√
αI

2π
exp

(
−αI(ũi(t)− ui)

2

2

)
. (5)
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The parameter αI corresponds to the inverse of the noise power.
Besides, the output nodes may have the stochastic behavior. This behavior may come

from the random drift in the offset voltage of comparators [11]. Let x̃i(t) ∈ {0, 1} be
the ith output at time t. The dynamics are given by

dy

dt
=

n∑
i=1

x̃i(t)− k, (6)

where the conditional probability mass function of the output (given ũi(t)) is equal to

Probit(x̃i(t) = 1|y(t), ũi(t))

=

√
αO

2π

∫ ∞

y(t)

exp

(
−αO(z − ũi(t))

2

2

)
dz (7)

for i = 1, · · · , n. The parameter αO in (7) controls the shape of the probability mass
function. If the stochastic behavior comes from the random drift of the offset voltage,
the parameter αO corresponds to the inverse of the random drift’s variance.

In [12] we show that with the two defects, the dynamics of y(t) can be written in the
integral form, given by

y(t+ τ)− y(t) =
n∑

i=1

∫ t+τ

t

x̃i(τ)dτ − kτ, . (8)

For τ is small,

y(t+ τ) = y(t) + τ

{
n∑

i=1

Prob(x̃i(t) = 1|y(t), ui)− k

}
. (9)

where

Prob(x̃i(t) = 1|y(t), ui)

=

∫ ∞

−∞
Probit(x̃i(t) = 1|y(t), ũi)P (ũi|ui)dũi. (10)

In [12], we showed that the conditional probability mass function of the output (given
ui) is equal to

Prob(x̃i(t) = 1|y(t), ui) =

√
αOαI

2π(αO + αI)

∫ ∞

y(t)

exp

(
−αOαI(z − ui)

2

2(αO + αI)

)
dz.

Let

f(y(t), ui) = Prob(x̃i(t) = 1|y(t), ui) =
αOαI

αO + αI
. (11)

Then the conditional probability mass function (given ui) can be rewritten as

f(y(t), ui) =

√
α

2π

∫ ∞

y(t)

exp

(
−α(z − ui)

2

2

)
dz (12)
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where the parameter α describes the overall effect of the input noise and the output
node stochastic behavior. To sum up, we obtain

y(t+ τ) = y(t) + τ

{
n∑

i=1

f(y(t), ui)− k

}
(13)

for small τ . It should be noticed that f(y(t), ui) is the firing rate of the ith output node.
In [12], we showed the following theorems.

Theorem 1 (Existence of equilibrium). For any constantα, there exists a unique equi-
librium point y∗ such that

∑n
i=1 f(y

∗, ui)− k = 0.

Theorem 2 (Convergence). For any constant α, limt→∞ y(t) = y∗. Furthermore, if
α is sufficiently large, then limt→∞ y(t) = (uκn−k

+ uκn−k+1
)/2.

Theorem 3 (Energy Function). The dynamics are rewritten as

y(t+ τ) = y(t)− τ
∂V

∂y

∣∣∣∣
y=y(t)

. (14)

where

V (y) = (k − n)y +

n∑
i=1

∫
Φ
(√

α(y − ui)
)
dy (15)

is the energy function. Φ(s) can be expressed in term of the error function erf(s/
√
2)

as follows :

Φ(s) =
1

2
+

1

2
erf

(
s√
2

)
.

where erf(s) = 1√
π

∫ s

0
exp(−η2)dη.

One can easily show that V (y) is an U-shaped function. Figure 2 shows some exam-
ples of this energy function for the inputs equal to 0.5, 0.7, 0.8, 0.4, 0.1 and 0.3, respec-
tively. For finite α, V (y) has one global minimum. For α→∞, the model becomes the
conventional DNN-kWTA model. In this situation, V (y) is flat for y ∈ (0.5, 0.7).

In [12], we do not discuss how the noise condition affects the performance of the
network. In the rest of this paper, we address how the noise condition affects the per-
formance of the network.

3 New Results: Inputs with Continuous Distribution

In the noisy DNN-kWTA model, at the equilibrium point y∗ the outputs are not exact
equal to 0 or 1. The output x̃i(t)’s are with firing rate, given by f(y∗, ui)’s. That means,
we need some new definitions about winners and losers.

Definition 1 (Winner and Losers). Given a set of inputs {u1, · · · , un}, the ith output
node is called winner, if f(y∗, ui) ≥ 0.5. Otherwise, the ith output node is called loser.



The Performance of the Stochastic DNN-kWTA Network 283

0 0.2 0.4 0.6 0.8 1
1
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Fig. 2. The energy function V (y) against y for the cases that α = 20, 40, 100 and ∞. Here, the
number of winners is 2 (i.e. k = 2) and the inputs are 0.5, 0.7, 0.8, 0.4, 0.1 and 0.3 respectively.

Besides, we use the following definition to define whether a noisy DNN-kWTA net-
work works properly or not.

Definition 2 (Correct Operation). Given a set of inputs {u1, · · · , un}, the network
works properly, if the firing rates {f(y∗, uκn−k+1

), · · · , f(y∗, uκn−k+1
} are greater

than or equal to 0.5, and {f(y∗, uκ1), · · · , f(y∗, uκn−k
)} are less than 0.5.

From Definition 2, to study the performance of the noisy DNN-kWTA, we need to
simulate the network dynamics. Then we can know the firing rates at the equilibrium
point y∗. Hence, intensive network simulations on the network dynamics are required.
Instead of measuring the firing rates, we can use the following theorem to check whether
the network works properly or not.

Theorem 4 (Correct Operation). The network works properly if

uκn−k
< y∗ ≤ uκn−k+1

. (16)

Proof: From (12), we know that f(y∗, ui) =
√

α
2π

∫∞
y∗ exp

(
−α(z−ui)

2

2

)
dz is a Q-

function (the complement of the cdf of the normal distribution). Hence, if uκn−k
< y∗,

then {f(y∗, uκ1), · · · , f(y∗, uκn−k
)} are less than 0.5. And if y∗ ≤ uκn−k+1

, then
{f(y∗, uκn−k+1

), · · · , f(y∗, uκn)} are greater than 0.5. The proof is complete. �
Although we have Theorem 4, it is difficult to verify that the network can work

properly or not. It is because there is no an analytic expression on y∗. This difficulty
can be solved based on the property of the energy function V (y).

Since V (y) is a U-shaped function and it has one minimum point only, we can use the

values of dV
dy

∣∣∣
y=uκn−k

and dV
dy

∣∣∣
y=uκn−k+1

to check whether uκn−k
< y∗ ≤ uκn−k+1

or not.
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Fig. 3. Successful rates of working properly for the uniform distribution. For each n and each α,
we generate 100,000 sets of inputs. We then use Theorem 5 to check the performance of the noisy
DNN-kWTA model.

Theorem 5. For a noisy DNN-kWTA network, if

dV

dy

∣∣∣∣
y=uκn−k

< 0 and
dV

dy

∣∣∣∣
y=uκn−k+1

≥ 0 , (17)

then
uκn−k

< y∗ ≤ uκn−k+1
. (18)

Proof: From Theorems 1-3, we know that dV
dy is a strictly monotonically increasing

function of y. Also, dV
dy

∣∣∣
y=y∗

= 0. Hence, if dV
dy

∣∣∣
y=uκn−k

< 0, then uκn−k
< y∗.

Similarly, if dV
dy

∣∣∣
y=uκn−k+1

≥ 0, then y∗ ≤ uκn−k+1
. The proof is complete. �

Theorem 5 gives us a quick way to study the performance of the network instead of
simulating the network dynamics. With Theorem 5, we can studies how the noise level
value affects the performance of the model. We consider two cases. The first case is
that the inputs are uniformly distributed over 0 an 1. The second case is that the inputs
are with the Beta distribution: Betaa,b(u) =

Γ (a+b))
Γ (a)Γb u

a−1(1− u)b−1, where Γ (·) is the
Gamma function. The Beta distribution is a family of distribution functions defined on
the interval between 0 and 1. In this experiment, a and b are set to 1.

For each n and each α, we generate 100,000 sets of inputs. We then use Theorem 5
to check the performance of the noisy DNN-kWTA model. The performance of the
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Fig. 4. Successful rates of working properly for the beta distribution. For each n and each α, we
generate 100,000 sets of inputs. We then use Theorem 5 to check the performance of the noisy
DNN-kWTA model.

noisy DNN-kWTA model is shown in Figures 3 and 4. For the uniform distribution
with n = 5, if the standard deviation of the noise is equal to 1

50 , the chance of working
properly is equal to 99%. For the Beta distribution with n = 5, if the standard deviation
of the noise is equal to 1

60 , the chance of working properly is equal to 99%.

4 Conclusion

This paper proposed a method (Theorem 5) to check whether the noisy DNN-kWTA
model produces the correct firing rate or not. The advantage of the proposed method
is that we do not need to simulate the network dynamics. When a number of the input
samples are given, we can use this method to study the chance that the network works
properly. This method is suitable to predict the performance of the network when there
is no minimum separation in the inputs. One of the further directions is to study the
performance of the model when there is a minimum separation in the inputs.
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Abstract. Graphs are combinatorial structures suitable for modelling
various real systems. The high clustering tendency observed in many
of these graphs has led a large number of researches, among them, we
point out the modularity maximization-based community detection al-
gorithms. Although very effective a few studies suggest that, for some
networks, this approach does not find the expected communities due to a
resolution limit of the measure. In this paper, we propose a way to auto-
matically choose the value of the resolution parameter considered in the
modularity by using neural networks. In the computational experiments,
we observed that the proposed strategy outperformed another strate-
gies from the literature for hundreds of artificial graphs considering the
expected communities.

Keywords: community detection in networks, graph clustering, modu-
larity maximization, neural networks.

1 Introduction

A wide variety of real systems can be modeled into graphs or networks. Conse-
quently, one can perform their pattern analysis by identifying vertex partitions
in which the groups, also known as communities, are composed of highly related
vertices that are sparsely connected with the rest of the network. Moreover, the
community detection problem plays an important role in wide-ranging applica-
tions [5].

Efficiently detecting communities in networks poses as a challenge in pattern
recognition. To approach this issue, also known as graph clustering, different
algorithms were developed, among them we can underline: the edge betweenness
algorithm [5], Infomap [13], spin glass community detection strategy [12] and
modularity maximization based heuristics [5]. Modularity emerged as a break-
through on the graph clustering subject and the literature presents many mod-
ularity maximization based heuristics for detecting communities in networks [4].

Despite the reasonable mathematical foundation behind the modularity defi-
nition, for certain types of graphs it is subject to a bottleneck known as resolution
limit. This scaling problem causes a dependence between the size of the groups of
a clustering and the total vertex number [4]. Nevertheless, Newman [10] attested
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that even though modularity in its original form may be a biased measure, its
adjusted version, proposed in [12], does not depend on scaling matters.

In this paper, we propose a strategy to adjust the unbiased modularity for-
mulation proposed in [12] by using neural networks. In the computational ex-
periments, we employed a wide variety of graphs artificially generated by the
software described in [7]. Additionally, some topological analysis of these graphs
concerning their distribution model were performed and used for adjusting the
neural network. The results of this experiment showed a good efficiency of the
neural network for determining the λ values, outperforming the results achieved
by two other strategies widely employed to this end from the literature.

2 Modularity Maximization Problem

In this paper, a graphG = (V (G), E(G)) is represented by a set of vertices, V (G),
and a set of edges, E(G), where each edge e := (vi, vj) ∈ E(G) is associated with
a non ordered pair of vertices of G. Additionally, a given edge (vi, vj) ∈ E(G)
has as ends the vertices vi and vj , where i, j ∈ {1, 2, . . . , |V (G)|}. The number of
vertices and edges ofG are denoted in this paper by n(G) andm(G), respectively.
The degree of a vertex vi from G, here called dG(vi), corresponds to the number
of times that a vertex vi appears as an edge end in graph G. A graph induced
by a set of vertices X ⊆ V is denoted by G[X ].

The definition of a clustering relies on the k-way partition of the vertex set.
Let C = {V1, V2, . . . , Vk}, with 1 ≤ k ≤ n, be a k-way partition of V (G). The
induced graph G[C] = (V (G), E(G[C])), where E(G[C]) := ⋃k

i=1 E(G[Vi]) defines
a graph clustering.

A substantial number of studies have been published on this subject, primarily
with the purpose of refining the existing graph clustering. Major progress towards
in developing graph clustering methods was established by Newman et al. [11].
The authors described an assessment measure, named modularity, that ranks
the quality of a graph clustering. Of the many ways for defining this measure,
we present a formulation for modularity in Equation (1).

q(C) = 1

m(G)

k∑
i=1

[m(G[Vi])− p(G[Vi])] (1)

where p(G[Vi]) =
∑

∀vr �=vj∈Ci

dG(vr)dG(vj)
2m(G) +

∑
∀vr∈Vi

dG(vr)
2

4m(G) is the expected
number of edges between vertices from Vi in a random graph with the same
degree sequence as G. This difference provides an assessment measure that the
higher its value, the better the quality of the partition evaluated.

As it has been proven that the decision version of the modularity maximiza-
tion problem is NP-complete [2], heuristics are primarily used to tackle large
scale graphs [4,1]. In particular, a simple and efficient strategy developed to ad-
dress large scale graphs is the Louvain method [1]. Due to its good potential for
identifying communities in networks with over thousands of vertices [1], in this
paper, for attesting the quality of the proposed adjustment strategy by neural
network results, we employed this method in the computational experiments.
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2.1 Parameterized Modularity

Reichardt et al. [12] derived an assessment community measure that draws on
the exploration of the ground state of an infinity spin glass. In this sense, to
evaluate network communities, this measure states, as indicated in Equation
(2), that existing edges between vertices from distinct groups must be penalized
as well as the nonexistence of edges between vertices from the same group.

E(C) = −∑i�=j σijaijδ(vi, vj) +
∑

i�=j βij(1− aij)δ(vi, vj)

+
∑

i�=j αijaij [1− δ(vi, vj)] −
∑

i�=j γij(1 − aij)[1− δ(vi, vj)]
(2)

where C is the spin system; aij is the number of edges between vi and vj ; δ(vi, vj)
is a function that receives 1 if vertices vi e vj are in the same spin state, and 0,
otherwise; σij is the positive weight corresponding to the contribution of edge
(vi, vj); βij is the penalty of a pair of non adjacent vertices from a same group;
αij is the penalty with regard to the existence of an edge between vertices vi
and vj from different groups; and, γij is the weight related to the nonexistence
of an edge between a pair of vertices vi and vj which does not belong to a same
group.

Taking into account each existing and nonexistent edge with the same con-
tribution, i.e., αij = σij and γij = βij , one may observe that to solve the
community detection problem is sufficient to examine the number of existing
and nonexistent internal edges. Moreover, Reichardt et al. [12] found as suit-
able alternatives for the parameters’ weights σij and βij , respectively, the values
1− λpij and λpij . The additional parameter, λ, corresponds to the contribution
of an edge between vi and vj whereas pij concerns the probability of existing an
edge between two vertices vi and vj . Assuming these weights’ choice, Equation
(2) can be rewritten as indicated in Equation (3).

E(C) = −
∑
i�=j

(aij − λpij)δ(vi, vj) (3)

The probability pij can be set up according to the vertex degree distribution
of the studied graph. In particular, if we assume the null model proposed by Gir-
van and Newman [5], inducing to the edge probability dG(vi)dG(vj)/2m(G). By
observing Equation (3), we can notice the resemblance of its average with Equa-
tion (1) unless the parameter λ. These assumptions lead to a modified version
of modularity, here called parameterized modularity, detailed in Equation (4).

q(C) = 1

2m(G)

∑
i�=j

(
aij − λ

dG(vi)dG(vj)

2m(G)

)
δ(ci, cj) (4)

These results are considerably important since, depending on the graph topol-
ogy, the original modularity has drawbacks regarded to the communities size.

In line with these considerations, the main target of this paper is to attempt to
overcome the flaws in community identification by employing the parameterized
modularity. Additionally, the principal purpose of this study is to set out an
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automatic way for providing the best fit for the parameter λ from Equation (4)
through the neural network Multi-Layer Perceptron (MLP).

Among the wide range of possibilities to evaluate the graph structure, we
found the most suitable for this evaluation, one which enumerates the four sized
motifs within a network. We thoroughly describe this invariant in next section.

3 Structural Graph Analysis

In this paper, we designed our neural network to deal with complex networks,
which are graphs characterized by their large size and particular topological
traits that reveal a high clustering tendency. For appropriately investigating
structural patterns in a graph in order to provide the best fit for λ, in this paper,
we used the fact that some specific structures, the so-called network motifs, are
more recurrent in complex networks than in random networks [9]. Some authors
regard motifs as properties of a network, since these structures, that are induced
subgraphs of k < n nodes, have a statistically significant superior frequency of
occurrence in a given network than in a random graph. Consequently, according
to Milo et al. [9], they might be used to differentiate network classes.

Given a graph G, a network motif can be defined as a ν-node connected
subgraph of G induced by some set of edges. For example, if G is a K5, all
possible network four-sized motifs are illustrated in Figure 1.

Fig. 1. All possible four-sized motifs

Therefore, the graph analysis amounts to comparing the number of each ν-
sized motif and the average number of these motifs inside random graphs with
the same degree sequence as the original one. In this paper, we use the four-sized
motifs for extracting information about the networks [8]. Then, we use the occur-
rence histogram of each of the 6 four-sized network motif patterns feeding MLP
with this information. Section 4 shows the proposed learning process employed
for detecting suitable λ values depending on this graph topology analysis.

4 Artificial Neural Networks

Artificial Neural Networks (ANNs), also regarded in literature as connection-
ist networks, are computational models inspired in the central nervous system
(CNS) of the brain. In this sense, for achieving our goal of automatically de-
termining values for the parameter λ, we make use of an established ANN, the
Multilayer Perceptron Network (MLP) [14].
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4.1 Design of the MLP Algorithm

MLP is a well known supervised machine learning strategy, more specifically, a
neural network, which requires the training step for setting up its parameters.
To this end, we employed a widely adopted method, the Resilient backpropaga-
tion (Rprop), which is performed in two phases: feed-forward and feed-backward.
These phases are responsible for propagating and updating the network param-
eters according to the training dataset for which the outputs (clustering) are
known. Thus, for these steps, in our strategy we give for each network input, the
information about the graph topology. As expected solution (target), we provide
the most suitable λ for the input found by an efficient algorithm guided by the
parameterized modularity using a finite set of possible λ values. As the most
suitable λ we mean the λ which guided to the closest solution to the expected
output we had the knowledge. The Normalized Mutual Information (NMI) [3]
was the similarity measure between the clustering we used for assessing the
closeness between the partitions.

We turned discrete the interval [1, 5] for λ by considering the set {1, 1.1, 1.2,
. . . , 4.9, 5}. The main reason we fixed these values is that some preliminary
tests indicated the employed clustering algorithm achieved better results in the
case in which the algorithm was guided with these λ values. Additionally, as an
attempt to let the results more robust, we defined classes of λ for the training
step of the algorithm as it will be shown in the next section.

5 Computational Experiments

In order to attest the performance of the proposed strategy which aims at defin-
ing the most suitable λ values, we used an adapted version of a Louvain method
[1] for efficiently detecting clustering. Regarding the MLP architecture, we ex-
perimentally set up the following configuration: two hidden layers with 3 neurons
each an input with 6 neurons and 8 neurons at the output layer. As aforemen-
tioned, the output values were organized into classes of values. These classes
were labeled from 1 to 8 and correspond to, respectively, the following intervals
of λ: [1, 1.5], [1.6, 2], [2.1, 2.5], [2.6, 3], [3.1, 3.5], [3.6, 4], [4.1, 4.5] and [4.6,
5]. Hence, we named our strategy Gmod and employed the following steps to
provide the desired results:

Gmod. According to the class yielded by MLP, randomly choose a value
within the corresponding class (interval) for specifying the λ for this instance.
Find the clustering through the Louvain method guided by the parameterized
modularity with this λ.

A total of 800 graphs were artificially generated by using the benchmark
network generator software introduced in [7] for the experiments. The generated
graphs can be divided into two different classes: one composed by 400 of small-
sized clusters and another with 400 networks, but characterized by medium
to large-sized clusters. These graph features were chosen due to the intention
of exploring mainly the first group of graphs for which pure modularity has a
higher probability of flaws.
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In line with this, we designed two neural networks, the first for the small-
sized graphs and the second taking into account the remaining graphs. It is
worth mentioning that, for unlabeled graphs, we can easily differentiate these
two types of graphs by analyzing the proportion of vertices with degree lower
than their average degree. If the proportion is higher than 50%, it means that the
handled graph may have a significant number of small-sized clusters, otherwise,
the graph can be discussed as medium to large-sized clusters.

In addition to the analysis of the pattern accuracy rate, we investigate its
performance over three algorithms, Rmod, Mod and Infomap, each of them
explained next.

Rmod. This strategy randomly pick a λ within the interval [1, 5] and guides
the Louvain method by the parameterized modularity with this random choice.

Mod. This procedure is merely the Louvain method guided by the pure
modularity, i.e., with the value 1 for the λ parameter.

Infomap . It is a multi-level strategy based on the compression information on
the graph structure [13]. This strategy was chosen for comparison due to a com-
prehensive comparative analysis in [6] which concluded Infomap outperformed
the other algorithms.

For the first neural network, we set up the artificial graphs by employing the
following parameters for the software defined in [7]: number of vertices: 1000,
2000, 3000, 4000 and 5000; average degree: 20; maximum degree: 50; mixing
parameter (μ): {0.1, 0.2, . . . , 0.8} (the more defined the clusters, the lower this
parameter); minimum for the community sizes: 10; maximum for the community
sizes: 50;

For each possible combination of parameters we generated ten different graphs.
By applying the Louvain method guided by the parameterized modularity, we
could observe the following distribution of graphs among the 8 classes of λ: 152
from class 1, 95 from class 2, 66 from class 3, 26 from class 4, 13 from class 5,
21 from class 6, 10 from class 7 and 17 from class 8. Concerning the learning
of MLP, its training patterns included the minimum between 10 and the total
number of graphs of each of the classes. This choice was motivated by the desire
of covering as good as possible the graph topologies for accurately designing the
network during the learning process.

We employed almost the same configuration for generating the large-sized
artificial graphs as for small-sized clusters from the first MLP. The difference
between them is the average and maximum degrees which, in the latter graphs,
are, respectively, 20 and 50. Additionally, the graphs are distributed among the
classes according to their λ as follows: 294 from class 1, 23 from class 2, 20 from
class 3, 18 from class 4, 15 from class 5, 9 from class 6, 14 from class 7 and 7 from
class 8. Again, regarding the learning of MLP, its training patterns included the
minimum between 10 and the total number of graphs of each of the classes.

It is sensible to keep records that the first class is much denser than the
other classes. This behavior was expected, since modularity works pretty well
for medium to large-sized cluster graphs.



Modularity Maximization Adjusted by Neural Networks 293

(a) Results for the graphs with
small-sized clusters.

(b) Results for the large-sized clus-
ter graphs.

Fig. 2. Performance of the proposed strategy in comparison to three other strategies

The main conclusion drawn with the results of network was that, even though
it presented a reasonable pattern accuracy rate of 48% on average, it clearly
outperformed Rmod and Mod. To firmly establish its superior performance
regarding these other strategies, we summarized the average results in Figure 2a.
This graphic shows the relation between the average NMI and mixing parameter.
This means that we considered every graph of a certain mixing parameter (of
every sizes), calculated the average NMI of them and plotted these results.

Additionally, still in Figure 2a, we observe that, except for the graphs with
mixing parameter of 0.5, Gmod outperformed the other strategies. Nevertheless,
with mixing parameter of 0.5, Gmod still produced good quality results, achiev-
ing the second best ones on average. Moreover, Gmod was very competitive with
Infomap, being slightly worse than it for μ = 0.5, but slightly better for μ = 0.8.

Regarding the second neural network, it achieved a satisfactory 50% pattern
accuracy rate for this class of instances. Nevertheless, the results displayed in
Figure 2b show a much better accomplishment of Gmod since it outperformed
the other strategies on average considering every different type of graph we
designed, except for μt = 0.8 which it took the second best result.

6 Final Remarks

In this paper, we proposed an efficient strategy based on the MLP to automat-
ically proportionate values for an important parameter of a community assess-
ment measure [12]. For attesting its superior quality over other methods, we
guided the Louvain method with this measure for detecting communities and
compared its results with the partitions provided by Infomap and by the same
method, however, guided by two different objective functions. The first objec-
tive function is a measure extensively adopted for detecting communities, the
modularity. The other is the same as our method, however, by adjusting the
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mentioned parameter in a distinct fashion. As we have seen, the results are con-
sistently better than other strategies across the two separate experiments. The
overall evaluation leads to the conclusion that the proposed strategy is very
adequate for tackling different types of graph topologies.

Acknowledgments. The authors are grateful toFundação deAmparo àPesquisa
do Estado de São Paulo and Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior for the financial support.
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Abstract. Several kernel-based perceptron learning methods on a bud-
get have been proposed. In the early steps of learning, such methods
record a new instance by allocating it a new kernel. In the later steps,
however, useless memory must be forgotten to make space for recording
important and new instances once the number of kernels reaches an up-
per bound. In such cases, it is important to find a way to determine what
memory should be forgotten. This is an important process for yielding a
high generalization capability. In this paper, we propose a new method
that selects between one of two forgetting strategies, depending on the
redundancy of the memory in the learning machine. If there is redundant
memory, the learner replaces the most redundant memory with a new
instance. If there is less redundant memory, the learner replaces the least
recently used / least frequently used memory. Experimental results sug-
gest that this proposed method is superior to existing learning methods
on a budget.

Keywords: learning on a budget, regression, forgetting, virtual concept
drifting environments.

1 Introduction

Several researchers have recently developed kernel-based perceptron learning
methods on a budget [1] [2] [3]. These learning methods facilitate online learning
with a set of kernels, whose number is limited to a certain upper bound. Upon
reaching this upper bound, the most ineffective kernel is replaced with a new
one, and the new instance is recorded. This ability is measured by implementing
a cumulative error, which is the sum of errors in the presented samples.

Dekel et al. proposed the Forgetron, an algorithm for pruning the oldest ker-
nel [1] . Furthermore, the Forgetron shrinks the parameters associated with each
kernel to reduce the adverse effects caused by pruning the oldest kernel. Orabona
et. al. proposed the projectron, which projects current new instance on to the
space spanned by the existing kernels[2] . According to theoretical analysis, an

� This research was supported by JST Adaptable and Seamless Technology Transfer
Program through Target-driven R&D Exploratory Research AS221Z01499A.

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 295–303, 2014.
c© Springer International Publishing Switzerland 2014

http://sakura.cs.chubu.ac.jp/


296 Y. Kondo and K. Yamauchi

extended version of the Projectron, namely, Projectron++, outperforms exist-
ing methods. Wenwu et al. proposed a kernel-based perceptron method with
dynamic memory (PDM). PDM is an improvement to the Projectron. It is a
method for both projecting the new instance onto the space spanned by the
existing kernels and replacing the most ineffective kernel. To reduce the adverse
effects from the pruning process, decremental projection is performed prior to
pruning the kernel[3].

The kernel-based perceptron method, however, is nonetheless greatly affected
by pruning the existing kernel. To correct this problem, we have in our prior
work proposed a limited general regression neural network (LGRNN) [4] [5].
The LGRNN’s output function is virtually the same as that of the original
general regression neural network, and its behavior is similar to algorithms using
nearest neighbors. With this output function, the learner reduces the adverse
effects from replacing one of the kernels. To do so, the LGRNN manipulates four
learning options, including projection and the option to replace the kernel using
decremental projection.

Thus, existing methods, including our previous method, employ one of two
existing pruning strategies. One is to focus on how recently each kernel has been
activated. The other is to focus on redundant kernels.

In this paper, we propose an extended LGRNN method that is able to exploit
both pruning strategies. If there is redundancy, the extended LGRNN replaces
the redundant kernel with a new one, and if no redundant kernels are found, a
new kernel replaces the kernel judged to be old and infrequently used.

2 LGRNN Using Dynamic Pruning Policy

In our previous work, we proposed a limited general regression neural network
[4] [5] [6] . This LGRNN chooses the most ineffective kernel by estimating the
approximated linear dependency (ALD) of each kernel. The new LGRNN pro-
posed in this paper uses a dynamic policy, which is a combination of the ALD and
LRFU policies. In what follows, Section 2.1 provides an outline of the LGRNN,
and Section 2.3 describes the policy for choosing the most ineffective kernel.

2.1 Outline

The LGRNN is an extended GRNN. A GRNN normally allocates a new kernel
to the memory for learning a new instance. The LGRNN, however, continues to
learn new instances even with a limited memory capacity.

Although the LGRNN’s output function resembles that of the GRNN [7], we
represent the LGRNN’s output function using a vector in Hilbert space. Given
this, the output value y(x) is

y(x) =
〈ft,K(x, ·)〉
〈gt,K(x, ·)〉 , ft =

∑
j∈It

wjK(uj , ·), gt =
∑
j∈It

RjK(uj , ·), (1)
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where wj and Rj denote the output connection strength and the number of
learned samples of the j-th hidden unit. Let ft, gt be the functions after the t-th
iterations. It denotes the size of the support sets. We can regard each hidden unit

as a Gaussian kernel function such that 〈K(uj , ·),K(x, ·)〉 = exp
(
− ‖x−uj‖2

2σ2

)
.

In its initial state, LGRNN contains no kernels. When a new instance (xt, yt)
is presented, the LGRNN appends a new kernel to record the instance. If the
number of kernels reaches an upper bound, the LGRNN replaces the most inef-
fective kernel with a new kernel, whose center position is equivalent to the new
current input vector.

Unfortunately, there are cases in which the replacement process destroys a
part of the learned knowledge, degrading its generalization capability. To correct
this problem, the LGRNN adopts one of four learning options, according to the
predicted error, when the upper bound for the number of kernels is reached. The
four learning options are explained in the following sections.

2.2 Projection Based Learning

When the number of kernels reaches the upper bound, the LGRNN selects one
of four learning options either to modify, ignore, replace, or replace with a sub-
stitution according to the error expected post-learning. When replacement is
necessary, the LGRNN replaces the most ineffective kernel with a new instance.
In the next section, we describe the process for establishing the most ineffec-
tive kernel. This section describes the modification option. Modification involves
projecting the current new instance onto a space spanned by the existing ker-
nels. Thus, no kernels are consequently pruned by implementing this option.
Therefore,

ft = ft−1 + ytPt−1K(xt, ·), gt = gt−1 + Pt−1K(xt, ·), (2)

where Pt−1K(xt, ·) is the projected vector, which is described by a linear com-

bination of existing kernels: Pt−1K(xt, ·) =
∑B

i=1 aiK(ui, ·), where ai is a coef-
ficient for the i-th kernel. Let a = [a1 a2 · · · aN ]T , then a is

a = K−1
t−1kt−1(xt), δ =

{
1− kT (xt)a

}
, (3)

Kt−1 denotes the kernel matrix at round t−1 and [Kt−1]p,q = K(up,uq), where
p �= q, p ∈ It−1 and q ∈ It−1.

2.3 Pruning with Replacement

Although projecting a new instance updates the combination of existing kernels
to reduce the error, this option is sometimes insufficient for completely elimi-
nating the error. In such cases, the LGRNN prunes one of the existing kernels,
replacing it with a new kernel, whose center position is the new instance.

ft = ft−1−i + τwiPt−1−iK(ui, ·) + ytK(xt, ·),
gt = gt−1−i + τRiPt−1−iK(ui, ·) +K(xt, ·), (4)
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where τ ∈ {1, 0} is a coefficient for switching two replacement options: τ = 1
denotes selecting the “substitution and pruning with replacement” option, while
τ = 0 denotes selecting the “pruning with replacement” option. These two op-
tions are selected according to the expected error for each modes, as described
in 2.4. The option for“substitution and pruning with replacement” involves pro-
jecting the kernel to be pruned onto the space spanned by the remaining kernels.
In Eq(4), Pt−1−iK(ui, ·) denotes the projected vector defined in Eq(5).

The target kernel to be replaced is determined by two methods: redundancy-
based selection and frequency-based selection.

Finding Ineffective Kernel in Terms of Redundancy. If a kernel is redun-
dant, the LGRNN effectively replaces it, because, the LGRNN has the ability
to prune such kernels without making large changes to the output function of
the LGRNN. Let us assume that one of the vectors K(ui.·) can be written as a
linear combination of K(uj , ·) (j �= i). This suggests that K(uj , ·) is redundant
in this function approximation. Therefore, the system chooses the i-th kernel
that has the smallest value δi:

δi = min
ai

‖K(ui, ·)− Pt−1−ik(ui, ·)‖2 , Pt−1−ik(ui, ·) ≡
∑
j �=i

aijK(uj , ·) (5)

The kernel having the minimum δi value is suitable for being relieved of its duty
because the adverse effects from its substitution are minimal. The optimal values
of ai and δi are obtained from:

ai = K−1
t−ik(ui), δi =

{
1− kTt−i(ui)ai

}
, (6)

whereKt−i is a kernel matrix at round t, whose i-th row and column are removed:
[Kt−i]pq = K(up,uq) and kt−i(x) = [K(u1,x), · · · ,K(ui−1,x),K(ui+1,x), · · ·]T .

The system chooses the i-th kernel where i = argminj{δj}, and minj{δj} < θ.
Therefore, if a redundant kernel exists, the system replaces it with the new kernel.

Finding Ineffective Kernel in Terms of Activation-Frequency. If there
are no redundant kernels (minj{δj} ≥ ε), the LGRNN cannot prune one of the
kernels only by using a redundancy based pruning strategy. Without the pruning
process, the LGRNN yields large errors in cases where the distribution of new
instances differs from the distribution of past instances. To correct this problem,
the modified LGRNN uses a frequency-based pruning strategy: the LRFU policy.

In operating systems, an LRFU policy [8] is a combination of least recently
and least frequently used policies for the page replacement algorithm. Hence,
once the main-memory has reached its capacity, the operating system moves the
most useless memory page into the swap space on the hard-disk drive. LRFU is
a useful policy for selecting the most useless memory page.

In this study, we apply an LRFU policy for choosing the most ineffective
kernel in LGRNN. The LRFU policy is useful for detecting the least activated
and oldest kernel. It is probable that such kernels will not activate again for an



A Dynamic Pruning Strategy for Incremental Learning on a Budget 299

extended time, indicating that the cumulative error for the learner remains low
even if the kernel is pruned.

LRFU estimates the recency of each kernel’s activation time by calculating
the time difference between the time of activation, when the kernel center is the
nearest to the input, and the current time. Let tc be the current time and tj be
the j-th kernel’s activation time. The kernel’s effectiveness is measured by the
following weighting function fj [.].

Cj(tc) ≡
w∑

k=1

f [tc − tjk], where f [tc − tj ] ≡
(
1

2

)λ(tc−tj)

(7)

Note that 0 < f [nj] ≤ 1 and 0 ≤ λ ≤ 1. From this equation, we can obtain the
following recurrence formula.

C[j] :=

{
1 +

(
1
2

)λ
C[j] if j-th kernel center is the nearest to the input(

1
2

)λ
C[j] otherwise

(8)

Thus, we can detect the most ineffective kernel in terms of its recency as i =
argminj C[j]. λ was set 0.0005 in the experiments.

Unification of the Two Evaluation Objectives. The LGRNN manages the
two methods for finding ineffective kernels by using the rule here explained.
Because ALD and LRFU are effective policies for finding the most redundant
and the least frequently/recently used kernels, respectively, we use each policy
for a different purpose. On the one hand, where redundant kernels remain in the
LGRNN, ALD is the appropriate method for finding the target kernel, that is,
the kernel to be replaced. On the other hand, if there are no redundant kernels
in the LGRNN, LRFU is useful for determining the target kernel.

Nevertheless, the LGRNN cannot beforehand establish whether any redun-
dant kernels remain. Thus, the LGRNN applies ALD based kernel replacement
option at first, and after that, the LRFU based kernel replacement option is
applied (see “ignore option” in 2.4).

2.4 The Best Learning Option to Be Executed

When the number of kernels reaches the upper bound, the LGRNN selects the
best learning option of the four available: “modification,” “replacement” or “re-
placement with substitution,” and “ignore.” The best learning option is selected
in accordance with the expected loss for each of the four learning options.

To estimate predicted loss, each kernel also counts the number of learned
samples, Ni. Ni is typically a natural number but in cases where the i-th unit
substitutes other ineffective units, it is a real number . The LGRNN selects the
learning option with the least expected loss.

– Pruning with Substitution and Replacement: The expected loss under
this option is the sum of the loss due to projection and pruning. Therefore,
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esubstitute ≡
∑
j �=i

{
aji(w

∗
i − w∗

j )

Rj(t) +Ri(t)aji

}2

Nj +Ni(w
∗
Nearest(i) − yt)

2δi (9)

where i denotes the index of the most ineffective kernel and w∗
i is w∗

i ≡
wi/Ri. Ni denotes the number of samples, recorded by the i-th kernel. By
default, the number of Ni is one, but if the i-th kernel substitutes another
kernel, Ni increases: Ni := Ni +Nj|aji|/{

∑
k |ajk|}. Nearest(i) denotes the

kernel nearest to the i-th kernel.
However, if Rj + Riaij < 0 for j �= i, this option is passed over for the
candidate Rj to prevent it from being a negative value.

– Pruning with Replacement: A “Pruning with replacement” is the option
to replace the kernel without a projection process such that τ = 0. However,
the number of learned samples for the i-th unit is added to NNearest(i) prior
to replacement, where the latter is the number of samples learned by the
nearest kernel. NNearest(i) := NNearest(i) + Ni The expected loss from this
option is the loss due to pruning. Therefore,

eprune ≡ (w∗
Nearest(i) − w∗

i )
2Ni, (10)

After the replacement, Ni is reset to 1.
– Modification: The expected loss with this option is the sum of the losses

due to projection and pruning. Therefore,

emodify ≡
∑
j

{
ajnew(ynew − w∗

j )

Rj(t) + ajnew

}2

Nj +Nnew(w
∗
Nearest(New) − yt)

2δnew

(11)
where Nearest(New) denotes the kernel nearest to the new instance and
δnew = ‖K(xt, ·) − Pt−1K(xt, ·)‖2. Ni is updated by Ni := Ni +
|ainew |/{

∑
j |ajnew |}.

– Ignore: Under this option, the expected loss is the loss caused by doing
nothing.

eignore ≡ Nnew(yt − y(xt))
2 (12)

The LGRNN does nothing if eignore is the smallest of all. However, if eignore
is larger than a certain threshold ε, the LGRNN applies the pruning with
replacement option to the target kernel, selected using the LRFU evaluation
method. In the experiment, ε was 0.1.

Subsequent to the four estimation procedures, the option with the least ex-
pected loss is selected for incremental learning.



A Dynamic Pruning Strategy for Incremental Learning on a Budget 301

3 Experiments

The proposed LGRNN with dynamic pruning policy was compared with three
other kernel-based perceptron learning methods: Projectron++ [2], PDM [3] and
the original LGRNN [4]. These models were evaluated using the servo, housing,
hearta1, concrete, cpu-performance and mpg datasets for regression, stored in
the UCI machine-learning repository. A benchmark test was repeated 50 times
by changing the dataset sequence. The resulting cumulative errors were averaged
over 50 trials and 95% confidence intervals were estimated. Note that the projec-
tron++ and PDM are were modified to solve the regression problems since they
are originally designed to solve the clustering problems. Therefore, the label for
each instance yt was replaced with the residual error of the kernel perceptron
et = yt − 〈ft−1,K(xt, ·)〉, where ft is the function of the kernel perceptron at
the t-th step.

The learner’s performances under a virtual concept drifting environments was
also investigated. To assess this performance, the datasets were divided into
several clustered groups using an EM-algorithm and re-arranged them into the
order of the clusters. The method proposed and its competitors then learned
the re-arranged samples. Figure 1 provides an example of the performances for
hearta1 and concrete datasets, where the left and right parts are the results in
the cases of identically and independently distributed (i.i.d) samples and virtual
concept drifting samples, respectively. The cumulative errors after finishing the
learning are also listed in Table 1.
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Fig. 1. Cumulative errors for hearta1 and Concrete datasets. Upper bound on the
number of kernels: 10, vertical bar denotes 95% confidence interval. i.i.d data: left,
Virtual Drifting data: right.

In this example, the number of kernels was restricted to 10. The results in
Figure1 demonstrate that the proposed LGRNN with LRFU have smaller cumu-
lative errors than those for the original LGRNN in the case of virtual concept
drifting datasets, meanwhile these two models yield almost the same cumula-
tive errors under i.i.d. dataset. This result confirms that the proposed method is
stronger than the original LGRNN under virtual concept drifting environments.

Table 1 also suggest that LGRNN with LRFU performances were statistically
better than those of the other methods under the virtual drifting environments.
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Although LGRNN with LRFU performances were nearly the same as those of
the other methods under i.i.d. samples, the averaged performances were slightly
better than those of the others under the seven datasets in the twelve datasets.
Therefore, LGRNN with LRFU performances are better than or equal to the
other methods.

Table 1. Cumulative errors after the learning with 95% confidence interval: i.i.d. and
virtual concept drifting samples

Dataset Name Projectron++ PDM LGRNN LGRNN+LRFU

servo(i.i.d.) 13.5±0.1 13.5±0.1 11.0±0.6 11.3±0.4

housing(i.i.d.) 102.5±1.9 86.5±1.1 12.0±0.3 12.8±0.4

concrete(i.i.d.) 1212.3±1303.2 106.5±2.8 30.5±0.8 30.7±0.8

cpu performance(i.i.d.) 5.1±0.1 3.3±0.1 1.4±0.1 1.5±0.1

hearta1(i.i.d.) 120.9±0.328 120.4 ±0.4 23.0±1.1 24.9±0.9

mpg(i.i.d.) 89.093±23.8 10.0±0.3 4.0±0.1 4.2±0.1

servo(drifting) 14.3±0.04 13.6±0.1 7.8±0.1 7.9±0.2

housing(drifting) 105.8±0.04 65.4±0.8 15.6±1.0 12.8±0.5

concrete(drifting) 201.7 ± 5.1 60.6±1.2 33.6±2.3 25.7±1.4

cpu performance(drifting) 3.826±0.176 2.326±0.134 1.85±0.081 1.8±0.07

hearta1(drifting) 121.6±0.03 118.1±0.2 26.4±1.8 20.8±0.5

mpg(drifting) 133.6±125.8 7.9±0.1 10.9±0.8 7.7±0.7

4 Conclusion

In this paper, an extended LGRNN with a dynamic pruning strategy was pro-
posed and evaluated. This method is similar to that of the original LGRNN; it
differs in that it uses an LRFU-based pruning with replacement strategy when
adopting the option to “ignore.”
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Neural Computing with Concurrent Synchrony

Victor Parque, Masakazu Kobayashi, and Masatake Higashi

Toyota Technological Institute,
2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511, Japan

Abstract. Neural networks are important modeling tools to implement intelli-
gent behaviour in a wide variety of phenomena. We introduce the concept of
concurrent synchrony in spikes to enable the efficient representation of neural
networks to process sensory stimuli. Using different sensory modalities, we show
that information processing from stimuli can be represented compactly. This ap-
proach aims at introducing homeostasis into the behavior of neural populations
in order to construct diverse and sophisticated control rules without increasing
network complexity.

Keywords: synchrony, concurrency, spiking networks, neural representation.

1 Introduction

Neurons inspire natural models for intelligent behaviour in many applications. Over
the last century, the focused selection and inhibition of potentially competing motor
programs in the basal ganglia has been described using spikes, and this view has induced
important developments in computing, from the first neuron of McCulloh and Pitts in
the 1940’s[1] to more recent neural architectures for pattern recognition and decision
making[2,3]. Some widely known architectures include the Feed Forward Networks[1],
the Multilayer Perceptrons[4], the Recurrent Networks[5,6], the Radial Basis Function
Networks[7], the Time-delay Neural Networks[8], the Universal Learning Networks[9]
and the Spiking Neural Networks[10,11].

Broadly speaking, the firing rates mechanism has been widely adopted as a filtering
and mapping method; and a plethora of high performing algorithms for classification
and computer vision have been developed over the last decade. Nevertheless, there still
exists gaps that undermine the applicability to more general problems. First, it is un-
able to describe memory formation within the scope of Hebbian learning theories, for
which efficient learning algorithms and experimental observations exist. Second, neural
populations with the firing rates mechanism lack of plasticity to handle noise. Third,
it is unclear the role of synchrony and concurrency in computing with firing rates;
instead, asynchrony is a desired feature for speeding up the paralleling processing of
signals, where the heterogeneity of neurons, the spike timing and the concurrency of
neural pathways have a null contribution for detecting the invariants in sensor stimuli;
as results, the unit of computation is the neural population, not the neuron itself, and
the heterogeneity of neurons is reduced to ease the complexity of learning. Finally, the
representations using firing rates lack of specificity as to model and explain natural
phenomena such as hyperkinesia.

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 304–311, 2014.
c© Springer International Publishing Switzerland 2014
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To tackle the above issues, we propose in this paper a new model to compute with
spikes: using concurrency[12,13] and synchrony[14], where concurrency has the role of
activating multiple neural pathways, while synchrony has the role of detecting invariants
and structure in sensory stimuli. The unique point in our model is that action selection
is not only the net result of input stimuli, but also it emerges from the focused and
the concurrent activation of both excitatory and inhibitory pathways, enabling to depart
from causality principles and to consider counterfactuals[15] when designing neural
representations.

The organization of this paper is as follows. Section 2 describes and exemplifies the
main tenets in our model. Section 3 discusses simulation results on different sensory
modalities. Section 4 concludes the paper.

2 Neural Computing with Concurrent Synchrony

Let an agent, as shown in Fig. 1, evaluate complementary stimuli from sensors A and
B to decide on the execution of the motor program Go by using direct (excitatory, solid
line) and indirect (inhibitory, dashed line) pathways.

2.1 Concurrent Pathways

A concurrent pathway represents the set of conjunctive rules that activate to facilitate
the desired motor program,A→ promote Go, and to inhibit potentially competing mo-
tor programs, A → inhibit NoGo, as shown in Fig. 1, right column. Note that action
selection implies using both the direct and the indirect pathways, instead of the indepen-
dent and disjunctive rules as shown in Fig. 1, left column, thus defining rules for both
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inhibit

Indirect Transition

(a) Learning Agent

A

B

or

Conventional Proposed

Direct Transition

Environment Agent

GoNoGoGo

Go

Go

Aif promote

Bif

Direct 

Indirect
inhibit

and
Go

NoGo

Fig. 1. Basic comparison between the conventional and the proposed pathways
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why to Go and why not NoGo conjunctively. In this scheme, the receptors in B have a
different role: instead of being the logical negation of the receptors in A, they help in-
hibit the actions that would normally interfere with the desired action. Physiologically,
the receptors in A(B) represent the D1(D2) receptors in the striatum[16]. In terms of a
propositional system, concurrent pathways help modelling counterfactuality in knowl-
edge representation, where go/no-go decisions are triggered by conjunctive/concurrent
pathways coordinating to encode a meaningful rule set.

2.2 Decoding Synchrony

Consider a postsynaptic neuron Go receiving inputs from different presynaptic sensor
stimuli A and B as Fig. 1 shows. A synchrony receptive field of the neuron Go is the
set of stimuli inducing synchronous firing in the neuron[14], where synchrony can be
easily decoded by a coincidence detector in a noisy integrate-and-fire model:

τn
dv

dt
= −v + n (1)

τn
dn

dt
= −n+ σξ(t)

√
2

τn
(2)

where v is the membrane potential of the postsynaptic neuron, τn is the membrane
time constant, n(t) is a noise filter with standard deviation σ, and ξ(t) is a white noise.

In a population of heterogeneous neurons, a synchrony group is the group of neurons
that fire within a small time interval (they fire more when the input stimulus is coinci-
dent). Thus, a given stimuli divides the population into different synchrony groups,
where neurons in the same group project to a unique (single) postsynaptic neuron. This
feature brings benefits to encode information of stimuli that may not be represented
in individual receptive fields, since synchrony reveals sensory invariants, and the more
heterogeneity of neurons, the better (finer) precision to encode synchrony.

2.3 Computing with Concurrent Synchrony

Let a presynaptic neuron with rebound spiking be modeled with:

τ0
dv

dt
= El − v + gmaxg1(Ek − v) (3)

τ1
dg1
dt

=

[
1 + exp

(
Va − v

ka

)]−1

− g1 (4)

where τ0 and τ1 are membrane time constants; El is the leak reversal potential; Ek

is the reversal potential; g1 is the low-threshold conductance; Va is the half activation
voltage; ka is the activation factor and gmax is the maximal conductance. For simplicity,
we set Va = −70, ka = 5, El = −35, Ek = −90, and τ0 = U(10, 50) and τ1 =
U(100, 400). A spike is produced when Vt > −55, then the membrane potential is
reset at -70mV.
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Fig. 2. Example of a spiking neural network with concurrent synchrony

Let a population of postsynaptic neurons (coincidence detectors with τn = 5ms,
σ = 2, and Vt = 0.6) receive input from a population of presynaptic neurons with re-
bound spiking as shown by Fig. 2. Also, let the presynaptic neurons receive inhibitory
stimuli for 300ms, 400ms and 500ms, as shown by Fig. 2(a). Let the synchrony groups
be formed by the ensembles of neurons that fire within 2ms, each of which is colored
differently in Fig. 2 (a)-(b) (neurons that do not fire are white-dashed circumferences).
Then, presynaptic neurons in the same synchrony group, i.e., same color in Fig. 2 (a),
make pathways (synapses) onto the same postsynaptic neurons. For simplicity we omit
the synapses of synchrony groups with one neuron (grey color) and set the weight on
every synapse to 1/N , where N > 1 is the number of presynaptic neurons in the corre-
sponding synchrony group. Note that each stimuli duration induce different synchrony
groups: the two neurons colored in red for the 300ms stimulus are not synchronous for
the 400ms stimulus, thus each stimulus duration is associated with different groups of
postsynaptic neurons.

Let the postsynaptic neurons represent (possibly competing) motor programs. Also,
let one of them arbitrarily be the desired motor program1 (black for the 300ms stimulus,
blue for the 400ms stimulus and blue for the 500ms stimulus) and the rest be compet-
ing motor programs. Pathways projecting to the desired (competing) motor program are
direct (indirect) and have positive (negative) synapse weight. From Fig. 2(b), we can
easily note that for any kind of stimuli duration and when all pathways are concurrent
the selected action is the net result from direct pathways facilitating the desired motor
program, i. e., solid-lined arrows in Fig. 2(b), and indirect pathways inhibiting com-
peting motor programs i. e., dash-lined arrows in Fig. 2(b). The resulting membrane
potential of the postsynaptic neurons with concurrent synchrony is shown in Fig 2(c).

In the scheme of concurrent synchrony, it is natural to include synaptic plastic-
ity: positive (negative) rewards increase (decrease) synapse connections (weights of
the pathways projecting from the presynaptic neurons), being consistent with Hebbian
learning theories and observations in vivo of memory formation[17]. Also, modeling
with concurrent synchrony can explain the emergence of a number of natural phenom-

1 Representing a previously rewarding course of action.
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Fig. 3. Examples of natural phenomena in neural networks with concurrent synchrony

ena in real world neural populations. For example, assuming stimuli durations of the
same interval (400ms), the multiple activation of only direct pathways can lead to paral-
lel activation of postsynaptic neurons representing different (possibly complementary)
motor programs, as shown by the membrane potentials of postsynaptic neurons in the
left column of Fig. 3. Also, ablating or inhibiting all direct (indirect) pathways induces a
global and non-selective activation of indirect (direct) pathways, inhibiting (promoting)
most motor programs and not only undesired (desired) ones, thus leading to bradyki-
nesia (hyperkinesia), as shown in the membrane potentials of postsynaptic neurons in
the middle (right) column of Fig. 3. All spiking neurons were modeled with the Brian
simulator[18].

3 Computational Experiments

3.1 Odor Recognition

The purpose of these experiments is to show the applicability the proposed scheme for
classification (recognition) problems. For this purpose, we model odor concentration by
a half-wave rectified low-pass filtered noise (Ornstein-Uhlenbeck process)[14]:

τx
dx

dt
= −x+ ξ(t)

√
2τx (5)

with membrane time constant τx = 75ms, and odor concentrations proportional to
[x]+ and binding coefficients in U(10−7, 10−1).

Let N = 5000 presynaptic neuron receptors receive stimuli from odor fluctuations
transformed into spikes by the integrate-and-fire model:

τi
dv

dt
= −v + I(c) (6)

with τx = 20ms, c is the odor concentration, and I(c) is the transduction current:

I(c) =
Imaxc

n

cn +Kn
(7)
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Fig. 4. Computing with concurrent synchrony in olfaction

where Imax = [1 − exp(−(Fmaxτx)
−1)]−1 is the input current to produce a maxi-

mum firing rate Fmax = 40Hz, n = 3 is the Hill function constant, and K = 1 is the
half activation constant for relative odor concentrations.

Let M = 20 postsynaptic neurons be coincidence detectors with τn = 8ms, σ =
0.15, and voltage threshold Vt = 0.8. As in our previous example, the synchrony
groups are formed by ensembles of neurons that fire within 2ms; and the synapse
weights are set to 1/Ng, where Ng is the number of neurons in g-th synchrony group.

Let odors X , Y and Z be modeled by Eq. 5. Also, assume two odors X , Y be
previously learned odors by two (arbitrarily chosen) postsynaptic neurons. Odors are
presented in sequence every 2ms.: X alone, Y alone, Y alone with higher intensity, X
and distracting odor Z , and both X and Y . Fig. 4 shows different situations for odor
concentration (top), the activity of the 100 receptor neurons (out of the 5000), and both
the activation behaviour and the membrane potential of the postsynaptic neurons. Note
that when either (or both) X-Y odor is presented, the corresponding postsynaptic neu-
rons are activated, and odor intensity increases spiking behaviour. In contrast, tolerance
to a distracting odor Z (noise) is seen as the absence of spiking, thus no synchrony
group formation, instead of false spiking rates. In difference with previous results[14],
the use of both direct and indirect pathways within a synchrony detector, brings the
efficiency of using only one postsynaptic neuron for classification and not a population
of neurons.
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3.2 Hand Grasping

We consider the problem of hand grasping in order to show the learnability of comput-
ing with concurrent synchrony neurons. For this purpose, the goal is to learn a neural
net to hold a rotated object (cylinder) in Y-axis by y = {π, π2 , π4 , −π

4 } with a 5-fingered
robotic hand (20 junctions in active state)[19] and a reward function r defined by the
minimum singular value of the grasping matrix[19].

Grasping actions g = {g1, ..., g4} rotate the hand by −π
2 , π2 ,

−π
2 , π in X, Y, Z and

X-axis, respectively, and then close it until fingers and palm hold the object. Synaptic
weights are updated by:

s(a)Di ← s(a)Di + δ.Δsi.r (8)

s(a)Ii ← s(a)Ii − δ.Δsi.r (9)

where a is a grasping action, s(a)Di and s(a)Ii is the synaptic strength related to
action a in the direct and indirect pathways, respectively; δ = sgn(r) is the desirability
of the action, and Δsi is the updating step. For N = 4 actions, the initial values for
s(a)Di and s(a)Ii are set to 1

N and Δsi is set to 1
N2 . The spiking neural net considers

a integrate-and-fire model with refractory time set to 10ms, resting potential set to -1,
membrane threshold set to 2, and maximum potential threshold set to 2.

Fig. 5 shows (a) the object, (b) the initial position of the hand, (c) the studied topol-
ogy of the network, (d) the final weights and configuration of the learned network2, and
(e-h) the grasping actions for the object in the four rotation contexts y. We note that
for every input case, the network compactly encodes the best possible action and, at the
same time, which actions not to take. For example, when the context is y3, the network
recommends to perform action g2 and not g1, g3 or g4. Here, which pathway to execute
is dependant on the long-term learned strength on both direct and indirect pathways.

2 Solid lines represent direct pathways, dashed lines represent indirect pathways.
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4 Conclusion

We have proposed a new approach to model control rules using spiking neural net-
works using concurrency and synchrony during pathway activation. Computational ex-
periments show the robustness to noise signals, the efficiency in network representation
in an odor recognition problem; and the compactness of networks in a hand grasping
problem. Further development and comparison with the conventional learning strategies
and evaluations on diverse planning problems are part of our future agenda.
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Abstract. The Hopfield network is a classical and interesting type of artificial
neural networks that can be employed for storing multiple patterns. As such, the
Hopfield Network can serve as a content-addressable, auto-associative memory
(AAM) whereby a stored pattern can be retrieved from an incomplete or dam-
aged copy of itself. Recently, it has been demonstrated that a Hopfield Network
can be applied as an AAM for storing complex holograms. Despite the success,
the structure of the AAM is rather cumbersome as a pair of networks is required
for storing the real and the imaginary components of the complex hologram. In
this paper, we proposed an enhanced method to alleviate this shortcoming with
a single line-partitioned hetero-associative memory (LP-HAM). Briefly, the LP-
HAM is trained to memorize the imaginary components of a collection of binary
holograms, so that each of them can be recalled from its corresponding real com-
ponent. Subsequently, the input (real component) and the output (recalled imagi-
nary component) images will be combined to form the complex hologram.

Keywords: Auto-associative Memory, hetero-associative memory, hologram.

1 Introduction

Over the years, numerous research works have been conducted in different disciplines to
model and simulate the various functions of human brain. Amongst different schemes,
the Hopfield network invented by J. Hopfield [1] has provided an effective means for
understanding, as well as modelling the mechanism of engrams. The Hopfield network
is composed of a group of interconnected McCulloch-Pitts nodes (threshold logic units)
which mimics a simplified version of the massive interconnected neurons of the brain.
As such, the network can effectuate the content-addressable, autoassociative memory
(AAM) function whereby multiple patterns can be recorded by suitably adjusting the
connection weight (a process commonly known as learning or training) between each
pair of nodes. A stored pattern can be recalled by presenting a complete, or partial
version of itself.

Later, the AAM has been extended to the heteroassociative memory (HAM) [2–4].
Being different from an AAM, the HAM is capable of associating an input pattern
with a different store pattern. Training of the AAM can be conveniently conducted with
the Hebbian learning, with which the connection weight between a pair of neurons is
increased if they have similar activations, and vice versa. The emergence of the AAM
has instigated a lot of interesting applications in the area of 2-D image storage and
recognition (such as, but not limited to [5–7]).
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Recently, it has also been demonstrated that the AAM can be extended to the storage
of complex holograms representing 3-D object scenes [8]. In this approach, the real and
the imaginary images of the hologram to be recorded are first converted into binary 2D
arrays through error diffusion. Next, a pair of separate AAM is employed to record the
binarized 2D arrays with each element having a value of±1. The AAM is formed by an
array of sub-AAM, each storing a row of the input binary 2D array. It should be noticed
that the reconstruction images from the binary 2D array is still a grey level image.

As illustrated in [8] the decomposition of the AAM into sub-AAMs, which is referred
to as the line-partitioned AAM (LP-AAM), is over 4 order of magnitude smaller in size
as compare with the straightforward implementation, and also capable of recalling the
stored hologram with a noise contaminated or damaged copy of itself. The training
process is computationally efficient, as only a one-shot learning process is involved in
the storage of each hologram. Apparently, the fidelity of the holograms retrieved from
the LP-AAM is also superior to that obtained with existing approach based on the back-
propagated (BP) neural network [9].

On the downside, a pair of LP-AAMs is required to store the 2 orthogonal com-
ponents of the complex holograms. Recalling a hologram is cumbersome, as both the
real and the imaginary 2D arrays of the hologram have to be input to their respective
AAMs. In this paper, we presented a method to overcome the above-mentioned prob-
lems. Briefly, a single line-partitioned hetero-associative memory (LP-HAM) is em-
ployed to record the imaginary 2D array of the binarized holograms. Upon presenting
the real part of a hologram to the LP-HAM, the imaginary part will be recalled. Subse-
quently, the input and the output images will be combined into a complex hologram.

Organization of the paper is given as follows. In Section 2, the concept of hologram is
reviewed. Section 3 presents our proposed method. Section 4 presents the experimental
evaluation. The paper is then concluded in Section 5

(a) (b)

Fig. 1. Concept of a hologram. (a) Recording of the object wave with a hologram. (b) Optical
reconstruction of object image from hologram.
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2 Holography and Computer Generation Holography

Figure 1 illustrates the mechanism of holography. As shown in Figure 1(a), when a
3D scene is illuminated by a coherent light source, the scene scatters light field to the
surrounding environment. A hologram is a 2D media which records the scattered light
field. It records the fringe patterns that are resulted from the interference between the
object wavefront and a reference optical beam. In the traditional approach, the 2D media
is a high resolution photographic film.

A virtual image of the original 3D scene can be reproduced by illuminating the holo-
gram with a coherent optical wave, as shown in Figure 2(b). With the holography tech-
nique, we can store the 3-D information of the scene in a 2D media.

Nowadays, with the advancement of computing and optical technologies, the holog-
raphy technique can be implemented in a digital way. That is, we compute the amplitude
and phase of the optical wave that hits on each point on the hologram plane (2D media)
in a digital way. As a result, we have a 2-D array of complex terms (each referred to as
a hologram pixel). It is referred as the digital holograms.

The virtual image can be displayed on a high resolution device, such as a spatial
light modulator (SLM). From the light field emitted from the SLM, the user is able to
visualize the 3-D scene recorded in the digital hologram. As the technique of generating
a digital hologram is in the numerical way, we call the technique computer generated
holography (CGH) [10–12].

3 Proposed Line-Partitioned Hetero-Associative Memory for
Storing of Binary Hologram

For the sake of completion, we would like to outline the process of generating a binary
Fresnel hologram from a 3-D scene. Suppose the latter is comprised of a collection ofM
object points P = {p0, · · · , pM−1}, each having an intensity Ik (k = 0, · · · ,M − 1),
and located at a distance dk from the hologram. When the object scene is illuminated
with a coherent optical beam of wavelengthλ, the optical wave emitted from each object
point will propagate to, and superimposed on the hologram. The resultant diffraction
pattern on the hologram plane is given by [12]

H(x, y) =

M−1∑
k=0

Ik exp(j2πλ)

dk
. (1)

As the diffraction pattern on the hologram is complex, it can be split into a real and an
imaginary component as

H(x, y) = HR(x, y) +HI(x, y). (2)

Direct storing a Q-bits complex hologram into an associative memory involves huge
number of connection weights. To reduce the the number of connection weights, we use
the Floyd-Steinberg error diffusion [13] to convert the real and the imaginary compo-
nents of a complex hologram into two binary images HB

R (x, y) and HB
I (x, y), respec-

tively.
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We will only describe the conversion of the real componentHR(x, y) since an iden-
tical process is performed on the imaginary componentHI(x, y). In the error diffusion
process, a hologram is scanned along the top-to-bottom, and left-to-right manner. Each
visiting pixel is assigned a value of ‘1’ or ‘0’, given by

HB
R (x, y) =

{
1 HR(x, y) ≥ 0.5
0 otherwise

. (3)

The conversion of a visited pixel to a binary value results in an error, given by

e(x, y) = HR(x, y)−HB
R (x, y) . (4)

The error of the current pixel is then distributed to the neighboring unvisited pixels,
given by

HR(x, y + 1)←− HR(x, y + 1) + w1e(x, y) (5a)

HR(x+ 1, y − 1)←− HR(x+ 1, y − 1) + w2e(x, y) (5b)

HR(x+ 1, y)←− HR(x+ 1, y) + w3e(x, y) (5c)

HR(x+ 1, y + 1)←− HR(x+ 1, y + 1) + w4e(x, y) (5d)

where the operator “←−’ means to replace the term on the left hand side with the value
derived from the right hand side. The weighting coefficients wi’s are equal to {w1 =
716, w2 = 316, w3 = 516, w4 = 116} [13]. Since the input format of associative
memories is ±1, at the end of the binarization process, value ‘0’ is changed to ‘-1’.

Now, we describe our proposed LP-HAM for storing the binary holograms that are
generated with the previous steps. To begin with, the following notation are adopted.
The holograms are with resolutionN×N . The number of holograms is denoted as Nh.

An LP-HAM is composed of a number of HAMs. Each HAM store the association
between a particular row of the imaginary images and the corresponding row of the
real images of the binary holograms. The pixels at the k-th row of the real and the
imaginary images of the k-th hologram are represented with the column vectorsAi;k =
[ai;k;0, ai;k;1, · · · , ai;k;N−1]

T , and Bi;k = [bi;k;0, bi;k;1, · · · , bi;k;N−1]
T , respectively,

where is the number of pixels in a row. Each LP-HAM is composed of two layers of
neurons, fA,k and fB,k. The two layers are connected with a N × N matrix. In the
training stage, the weight matrix is trained with Hebbian rule to memorize a pattern
pair. Mathematically, the connection weight matrix of the k-th HAM is given by

Wk =

Nh∑
i=1

Bi;kA
T
i;k . (6)

The retrieval process is an iterative process that starts with a stimulus vector A(0)
k in

fA,k. The vector B(1)
k in fB,k is generated based on (the superscript (n) is the iteration

index):

B
(n)
k = sgn

[
WkA

(n−1)
k

]
, (7)
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where sgn(x) =

⎧⎪⎪⎨⎪⎪⎩
+1 x > 0
−1 x < 0
state unchanged (during recalling) x = 0
0 (during training) x = 0

.

The new state B(n)
k in fB,k is then fed backward to generate the state in fA,k:

A
(n)
k = sgn

[
WT

k B
(n)
k

]
. (8)

Kosko [2] proved that the sequence {(A(n)
k , B

(n)
k )} converges to one of the fixed points

in a finite number of iterations for any real connection matrix.

Table 1. Optical setting for generating the hologram

Size of the images 512× 512

Size of the hologram 512× 512

Pixel size of the hologram 12μm

Wavelength of optical beam 650 nm

4 Experiment

The performance of our proposed method is evaluated with a set of test images, shown
in Figure 2. For each image, the steps described in Section III are applied to generate a
binary complex hologram based on the optical setting listed in Table 1. The hologram
is parallel to the source image and located at a distance of 0.3m from the latter. For the
sake of simplicity, we have only selected the test image Mandrill in Figure 3(a) in our
illustration.

Fig. 2. The ten test images

The real and the imaginary images of the binary hologram representing the test im-
age, together with the numerical reconstructed image, are shown in Figures 3(b) to 3(d),
respectively.
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(a) (b) (c) (d)

Fig. 3. The hologram of the test image Mandrill. (a) test image Mandrill. (b) Real image of the
hologram. (c) Imaginary image of the hologram. (d) Reconstructed image of the hologram from
presenting real part.

(a) (b) (c) (d)

Fig. 4. Recall of the test image Mandrill. (a) Damaged real image of the hologram A(n). (b)
Imaginary image of the hologram, recalled from the LP-HAM after one iteration B(1). (c) Re-
constructed image (after one iteration). (d) final reconstructed image.

Next, the binarized holograms are taken to train the LP-HAMs, with the real im-
ages as the input and the imaginary images as the output of the network. To test the
effectiveness of our proposed method, we present the real part of the hologram repre-
senting the test image Mandrill to the trained LP-HAM. As shown in Figure 4(a), the
image has been damaged in several regions, and added with patches of random noise
patterns. After one iteration, the recalled imaginary image of the hologram is shown
in Figure 4(b). Subsequently, the initial input and the output images of the LP-HAM
are combined to recover the complex hologram, and the numerical reconstructed image
is shown in Figure 4(c). Comparing with the reconstructed image of the original holo-
gram, we observed that apart from some degradation around the defective parts of the
real image, the fidelity of the reconstructed image is preserved favorably. In addition,
after one more recall cycle, the original image is recovered.

5 Conclusion

This paper reported a method for storing a collection of complex Fresnel holograms into
a line partitioned HAM. First, a complex hologram is first reduced in size by binarizing
it with error diffusion. Next, instead of using a classical associative memory with (2 ×
N2 ×Q)2 interconnections to record the entire holograms. In our approach, we use N
HAMs to store the hologram. Each HAM stores the associative between a particular
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row of the real part and the corresponding row of the imaginary part. Hence, the total
number of interconnections can be reduced toN3. Using our experiment as an example,
we can reduce the number of interconnections from 4× 5124 × 82 (8 bit resolution) to
5123.

Acknowledgement. The work was supported by a grant from RGC Hong Kong (Project
No.: CityU 115612).

References

1. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational
abilities. Proc. Natl. Acad. Sci. 79, 2554–2558 (1982)

2. Kosko, B.: Adaptive bidirectional associative memories. IEEE Trans. on Systems, Man, and
Cybernetics 18(1), 49–60 (1988)

3. Leung, C.S., Chan, L.W., Lai, E.: Stability, capacity, and statistical dynamics of second-order
bidirectional associative memory. IEEE Trans. on Systems, Man and Cybernetics 25(10),
1414–1424 (1995)

4. Leung, C.S., Chan, L.W., Lai, E.: Stability and statistical properties of second-order bidirec-
tional associative memory. IEEE Trans. Neural Netw. 8(2), 267–277 (1997)

5. Ramya, C., Kavitha, G., Shreedhara, K.S.: Recalling of images using Hopfield neural net-
work model. In: Nat. Conf. Comp., Comm. Cont., vol. 11, pp. 2–4 (2011)

6. Costantini, G., Casali, D., Perfetti, R.: Neural associative memory storing Gray-coded
grayscale images. IEEE Trans. Neural Netw. 14(3), 703–707 (2003)

7. Singh, Y.P., et al.: Analysis of Hopfield autoassociative memory in the character recognition.
Int’l. J. Comp. Sci. Engg. 2(3), 500–503 (2010)

8. Tsang, P.W.M., Ng, K.T.: Efficient recording and retrieval of complex digital fresnel holo-
grams based on the line partitioned autoassociative memory. Neurocomputing (accepted)

9. Yang, G., Zhang, C., Xie, H.: Information Compression of Computer-Generated Hologram
Using BP Neural Network. In: Biomedical Optics and 3-D Imaging, OSA Technical Digest
(CD) (Optical Society of America) (2010)

10. Shimobaba, T., Nakayama, H., Masuda, N., Ito, T.: Rapid calculation algorithm of Fresnel
computer-generated-hologram using look-up table and wavefront-recording plane methods
for three-dimensional display. Opt. Express 18, 19504–19509 (2010)

11. Tsang, P.W.M., Cheung, W., Poon, T.C., Zhou, C.: Holographic video at 40 frames per second
for 4-million object points. Opt. Express 19, 15205–15211 (2011)

12. Poon, T.C., Liu, J.P.: Introduction to Modern Digital Holography: With Matlab. Cambridge
University Press (2014)

13. Floyd, R.W., Steinberg, L.: An adaptive algorithm for spatial grey scale. In: Proc. Soc. Info.
Disp., pp. 75–77 (1976)



A Unified Framework

for Privacy Preserving Data Clustering

Wenye Li

Macao Polytechnic Institute,
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Abstract. We study the problem of publishing a data table containing
personal information, while ensuring individual privacy and maintaining
data integrity to the possible extent. One popular technique in liter-
ature is through k-anonymization. A release is considered to preserve
k-anonymity if the record corresponding to any person cannot be distin-
guished from that of at least k − 1 other individuals whose information
also appears in the release. In order to achieve k-anonymity, we propose
an unsupervised learning framework. We further show an instantiation
of the framework, which leads to an exemplar-based clustering algorithm
for practical applications, and report promising results.

Keywords: k-Anonymity, Clustering, Linear Programming.

1 Introduction

Given the advances of intelligent data processing, there is increasing demand to
make data publicly available so that analytical methods might yield important
new discoveries. Unfortunately much personal information is inevitably involved
in such data. The disclosure of personal data obviously raises serious concerns
about privacy. The risks are real, as have been demonstrated by recent successful
re-identifications of individuals in published data sets [1, 2].

The threaten of disclosing personal privacy data is becoming even more no-
table recently, mostly due to the rapid development of world wide web, cloud
computing and big data processing [3]. More and more data are published in In-
ternet, which certainly facilitates numerous applications while at the same time
posing nontrivial danger of tracking back to specific persons from the published
data.

Increasing efforts are being devoted to avoid the risk of releasing privacy in-
formation. Technically, a number of techniques have been developed for privacy
preserving data publishing. A central idea is to remove personally-identifying
information that could be used for backtracking, based on the principle of k-
anonymity [4]. That is, reduce the granularity of data representation by mapping
each record to an equivalence class of at least k − 1 other records in the data

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 319–326, 2014.
c© Springer International Publishing Switzerland 2014

http://staff.ipm.edu.mo/~wyli


320 W. Li

collection. In this way, the probability of determining the identity of an individ-
ual (re-identification probability) is decreased. Unfortunately, for a given data
set, producing the optimal k-anonymized version is NP-hard [5, 6]. In practice,
therefore, researchers have resorted to approximating this by heuristic methods.
Common implementations of k-anonymity use transformation techniques such
as suppression and generalization [2, 4, 7].

In this paper, a unified framework is proposed to achieve k-anonymity in given
data. We model the task as a clustering problem [8, 9], which maps each data
record from a table to an element in a representation set. Each released element
has at least k associated records to ensure k-anonymity in the resulting data
representation. The framework is flexible. We are free to exert constraints for
different applications. Another nice property is that the required computation is
much less dependent on the anonymity parameter k than most other approaches,
which is often appealing in practice.

2 Background and Related Work

2.1 k-anonymity

The model of k-anonymity is closely related to the concept of quasi-identifiers.
Let X (A1, · · · , Ad) be a table with a finite set of attributes {A1, · · · , Ad} and
a finite number of records {x1, · · · , xm}. Each record xi is a sequence of values
with attributes {A1, · · · , Ad}. A quasi-identifier of X , written QX , is a sub-
set of attributes {A1, · · · , Ad} that can be used to identify individuals within
{x1, · · · , xm}.

A released data set is considered to preserve k-anonymity when for any quasi-
identifier, a record is indistinguishable from k− 1 others whose information also
appears in the release. An k-anonymized table protects individual privacy in the
sense that, even if an adversary has access to all the quasi-identifying attributes
of all individuals represented in the table, he would not be able to track down
an individual’s record further than a set of at least k records, in the worst
case. Without other information, the probability of back-tracing an individual
(re-identification probability) is kept no larger than ξ = 1

k as each individual
is hidden in a crowd with k − 1 other people. Thus, releasing a table with k-
anonymity prevents definitive record linkages with publicly available databases.

Formally, the k-anonymity is defined as follows:

Definition 1. Let X (A1, · · · , Ad) be a table and QX be any quasi-identifier as-
sociated with it. X is said to preserve k-anonymity if and only if each sequence
of values in X [QX ] appears with at least k occurrences in X [QX ], where X [QX ]
denotes the projection, maintaining duplicate tuples, of attributes QX in X.

Beyond k-anonymity, �-diversity [10] and a number of other models were fur-
ther developed, which are omitted here to simplify the discussion. The method
proposed in this paper, however, can be extended to work with �-diversity and
related models trivially.
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2.2 Suppression and Generalization

The k-anonymity is typically achieved through suppression and generalization.
The idea is to suppress/generalize some of the entries in the table so as to ensure
that for each tuple in the modified table, there are at least k − 1 other tuples
in the modified table that are identical to it along the quasi-identifiers. The
objective is to minimize the extent of suppression and generalization.

In suppression, each record xi in a table is mapped to x̃i by hiding some
components of xi, so that each x̃i is identical to at least k− 1 other x̃j ’s. In gen-
eralization, in addition to suppressing entry values, it is also allowed to replace
them with less specific but semantically consistent values. For example, a date
can be made less specific by omitting the day and only revealing the month and
year. In doing so, it is assumed that for each attribute, a generalization hierarchy
is provided as part of the input.

The two procedures provide a natural way in preserving k-anonymity. Unfor-
tunately the computation for optimal suppressions/generalzations is demanding
for large-scale problems and people have to seek approximations, due to the
following result [5, 6].

Theorem 1. Obtaining k-anonymity with suppression is NP-hard even for a
ternary alphabet, i.e., each attribute Ai has a value within {0, 1, 2}.

2.3 Clustering Algorithms

A number of clustering algorithms have been designed for privacy preserving
data publishing. Specifically, the work of [11] linked the concept of k-anonymity
to clustering in a metric space. The objective is to minimize the maximal ra-
dius among the clusters. The work of [12] studied a k-member clustering prob-
lem, with the objective of minimizing the intra-cluster pair-wise (point-to-point)
distances. The work of [13] studied a bipartite object-feature graph partition
problem with sub-modular objectives and developed a flow-based algorithm to
balance the number of nodes in partitions.

All these algorithms are designed for specific applications other than a generic
data anonymization procedure, and are not suitable for producing k-anonymized
data in general situations.

3 A Clustering Framework to Preserve k-anonymity

3.1 Model

We propose an unsupervised learning framework in preserving k-anonymity when
releasing the data. Given a table X with a finite set of attributes {A1, · · · , Ad}
and a finite set of records {x1, · · · , xm}, let Vi denote the set of possible values
Ai has. For another set of attributes {A′

1, · · · , A′
d′}, similarly let V ′

i to denote the
set of possible values A′

i has. A k-anonymity perturbation function f maps each
xi in X to an element f (xi) in a given representation set Y ⊆ V ′

1 × · · · × V ′
d′
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so that every f (xi) is identical to at least k − 1 other f (xj)’s. Among all such
functions F , we choose the one that minimizes the total perturbation cost, that
is,

min
f∈F

m∑
i=1

dxi,f(xi), (1)

where dxi,f(xi) is a positive value and denotes a known cost in mapping xi to
f (xi).

The freedom in choosing the representation set Y permits us to release the
k-anonymized data in different ways. For example, we can suppress the data by
taking A′

i = Ai, V
′
i = Vi ∪ {∗} and Y = V ′

1 × · · · × V ′
d . Here the “∗” value has

the effect of hiding the corresponding attribute value, which actually provides
a mechanism for suppression. If we further supply V ′

i with the generalization
hierarchies of the attribute value for Ai, we can also publish the data with
generalization.

3.2 ILP Instantiation

Next we show an instantiation of the framework, which leads to a clustering
algorithm developed in [14]. The framework in (1) can be expressed by an integer
linear program (ILP) when the representation set Y has a finite number of entries
{y1, · · · , yn}. Here let dij denote the cost of mapping xi to yj . Now the objective
is to seek a set of decision variables P = {pij} to

min
P

m∑
i=1

n∑
j=1

dij × pij (2)

satisfying

pij ∈ {1, 0} , for all i, j (3)

n∑
j′=1

pij′ = 1, for all i (4)

pij ≤ 1

k

m∑
i′=1

pi′j , for all i, j (5)

Each decision variable pij takes a value 1 or 0, and indicates whether a record
xi should be mapped to yj . Constraint (4) enforces that a record is mapped to
exactly one element in Y . Constraints (5) guarantees that a record is identical
to at least k − 1 other records after mapping.

This is a simple yet flexible model. Slight variations of the ILP make it pos-
sible to capture other objective functions and constraint equations on decision
variables. Any objective function that is a linear combination of the decision
variables can be used. By adding further linear constraints, it is also feasible to
implement other privacy models, such as �-diversity, without difficulty.
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3.3 LP Relaxation

To overcome the NP-hardness inherent in the ILP formulation, we resort to a
linear program (LP) relaxation, which can be solved efficiently. Each decision
variable is relaxed to a real number between 0 and 1, which gives

min

m∑
i=1

n∑
j=1

dij × pij (6)

subject to
0 ≤ pij ≤ 1, for all i, j. (7)

n∑
j′=1

pij′ = 1, for all i (8)

pij ≤ 1

k

m∑
i′=1

pi′j , for all i, j (9)

For the LP, we remark:

Lemma 1. If no solution exists for the LP relaxation (6), then there is no
solution to the problem (2).

Lemma 2. If the solutions {pij} to the LP relaxation (6) are all integers, that
is, pij ∈ {1, 0}, then {pij} is the optimal assignment to the problem (2).

With the first remark, if people could not find a solution to a relaxed instance,
there will be no solution to the original ILP problem.

The relaxed problem can be solved efficiently by modern mathematical opti-
mization packages. When the fractional solution is ready, the binary result can
be made by rounding it into binary decisions. In practice, an iterative rounding
strategy often reports excellent results for related problems [14–16].

3.4 Extension

Another instantiation example of the framework is to consider the case that Y
has an infinite number of elements. Each record xi ∈ Rd and the representation
set Y = Rd. The cost of mapping x to y is measured by their squared distance
‖x− y‖2. Now the problem becomes partitioning the points x1, · · · , xm. Let ci
denote the center of the group (the mean of all points in the group) that data
point xi belongs to. The objective becomes

min

m∑
i=1

‖xi − ci‖2 , (10)

such that each group has at least k points.
Unlike the classical clustering [8, 9], this model implicitly confines the maximal

cluster number by constraining the number of points in each cluster. Theoret-
ically this problem is again NP-hard, but in practice can be solved efficiently
through a convex relaxation approach, which will be reported in our separate
work.
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Table 1. Comparison of different clustering algorithms on UCI data sets. Each item
represents a maximal re-identification risk.

Dataset m k k-anonymized k-means k-centers

Pyrim 74 10 .100 .333 .250
20 .0500 .0588 .050

Iris 150 10 .100 .333 .333
20 .0500 .0833 .100

Wine 178 10 .100 .500 .500
20 .0500 .250 .0770

Triazines 186 10 .100 .100 .333
20 .0500 .200 .200

Sonar 208 10 .100 .500 1.00
20 .0500 .167 .167

Glass 214 10 .100 1.00 1.00
20 .0500 1.00 .500

4 Evaluation

We carried out preliminary experiments to show the necessity of the work. Es-
pecially, we hope to show previous popular clustering algorithms do not keep
k-anonymity. So specialized clustering algorithms are desired if preserving pri-
vacy is a concern.

Specifically, we compared the re-identification probabilities among k-means,
k-centers and our k-anonymity clustering algorithm (ref. Section 3.3)1. The k-
means algorithm requires that the data is from a vector space. It clusters the
objects into k partitions with the objective of minimizing the total distances
between each object to its center. The center of a cluster is averaged over the
objects that belong to the cluster. The k-centers algorithm differs from k-means
in that the centers are required to be real objects, and the data objects are not
required to be within a vector space [17–19].

We used UCI data sets [20]. The sizes (m) of the data sets vary from 74 to
214. Different privacy parameters k from 10 to 20 were used. For each k, the
number of clusters was set to be

⌊
m
k

⌋
for k-means and k-centers.

The results are summarized in table (1). It shows the maximal re-identification
probability among the clusters. From the results it can be seen that, although
k-means and k-centers algorithms have achieved lower costs, the two algorithms
cannot provide any guarantee on the privacy re-identification risk. Given k, the
risk is often far beyond the preferred threshold 1

k . Thus the two algorithms
cannot be applied directly where the privacy issue is a concern.

1 Here note the meanings of k are different for different algorithms.
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5 Conclusion

Publishing data without releasing sensitive information is important. To achieve
k-anonymity when releasing privacy data, we proposed a general unsupervised
learning framework for a variety of applications. We demonstrated algorithmic
approaches that perform efficiently. Without other information to help identify
individuals, our method provides strong guarantees that the re-identification risk
is below or equal to a user-specified threshold.

This paper focuses on the discussion of the framework itself. Preliminary
experimental results were reported to demonstrate the necessity of the work. In
the future, extensive verification of the work is expected.
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Abstract. In this paper we propose a lateral inhibitory spiking neural network 
for reward-based associative learning with correlation in spike patterns for con-
flicting responses. The network has random and sparse connectivity, and we  
introduce a lateral inhibition via an anatomical constraint and synapse rein-
forcement. The spiking dynamic follows the properties of Izhikevich spiking 
model. The learning involves association of a delayed stimulus pair to a re-
sponse using reward modulated spike-time dependent plasticity (STDP). The 
proposed learning scheme has improved our initial work by allowing learning in 
a more dynamic and competitive environment. 

Keywords: Lateral inhibition, Spiking neural network, Associative Learning, 
Spike-time dependent plasticity. 

1 Introduction 

It has been evidently known that, in many parts of the brain, networks are recurrent in 
nature with sparse connectivity, e.g., [6],[7]. In the systems with sparse representa-
tion, neurons cooperate and compete with each other to accomplish a task. It has also 
been proposed that lateral inhibition plays a key role in many of the brain's fundamen-
tal computational abilities. Nevertheless, the underlying mechanism in a neural  
system with such sparse representation still remains intriguing. In a dynamic and 
competitive environment, not much is known how a lateral inhibition acts as a filter-
ing apparatus in information processing to provide more intense representation of 
stimuli. 

In this study, we show how a lateral inhibition between neuronal groups can be 
solved via synapse reinforcement based on reward modulated learning. Given a learn-
ing setting with some degrees of correlation in spike patterns, during a response inter-
val time, the proposed learning scheme first triggers the network inhibitory response 
groups to depress activations of their competitors, and then strengthens the connectiv-
ity to its target excitatory response groups. The reinforcement signal is dependent on 
activation rate (i.e. firing activity) in response groups. The lateral inhibition results in 
stronger synapses in both target inhibitory and excitatory pathways.  
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1.1 Initial Work 

From our preliminary work [3], we introduced a pair-associate learning for stimulus-
stimulus-response (S-S-R) association. The learning scheme trains a spiking neural 
network to associate a delayed stimulus pair to a response. The first stimulus is pre-
sented to the network, followed by the second stimulus after a delay, the activity of 
the response subpopulations is then observed within an interval. The response group 
with highest activation rate is considered to be the winner.  

The simulation model was a spiking neural network with random and sparse con-
nectivity (probability p=0.1) consisting of 1000 neurons (80% of excitatory and 20% 
inhibitory neurons). The network has random synaptic transmission delays between 1 
to 20 ms [5],[8]. The spiking dynamics of a neuron follow the properties of Izhikevich 
model [4]. The excitatory synapses are plastic whilst, the inhibitory synapses are not 
plastic.The excitatory neurons population is divided into subpopulations of m stimulus 
groups S, n response groups R and non-selective neurons NS. In the initial model, the 
inhibitory subpopulation IH acts as global inhibition (Fig. 1).  

 
A. 

 
 
B. 

 

Fig. 1. (A) Schematic view of a recurrent spiking neural network consisting of 80% excitatory 
(NE) neurons and 20% of inhibitory (NI) neurons, with sparse and random connectivity, p = 0.1 
(no self-feedback),   i.e. NE→ {NE, NI} and NI→NE. Each synaptic transmission has random 
delay d∈ [1, 20]. (B) Neurons are divided into subpopulations of stimulus groups (S), response 
groups (R), non-selective neurons (NS) and inhibitory pool (IH). S and R are composed of 50, 
and 100 excitatory neurons, respectively. 

With a simple network structure in learning we implemented the winner-take-all 
(WTA) strategy via application of random excitatory bias signals to the winner of target 
response groups. With the WTA method, it could increase the probability of activation 
of some neurons in a target response group that had not been fired. This would conse-
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quently result in higher activation in the target response group compared to its competi-
tors. However, the simplicity of the structure has some limitations for learning with high 
competition. For learning with high correlation in spike patterns, the model performance 
decreased due to undesired causal firings, e.g. when the network was trained to asso-
ciate (S0, S1)  RA and (S0, S2)  RB, with two competing responses, i.e. neural subpo-
pulations RA and RB. Furthermore, strengthening of synaptic strength between Si→ RA 
could also lead to activation of neurons in response group RB due to triggering of syn-
apses RA→RB, i.e. firings of postsynaptic neurons of RA in RB.  

2 Network with Lateral Inhibition 

To improve the discrimination rate in a competitive learning, we suggest a modified 
network topology with a lateral inhibition mechanism (see Fig. 2). In the network 
(consisting of 1000 neurons) with lateral inhibition, we eliminate the excitatory syn-
aptic connections between response groups. Excitatory neurons in each response 
group, e.g. R+m,are connected to their inhibitory pool, e.g., R−m. The inhibitory pool 
provides inhibition to its competitor group(s) through negative synaptic connections.  

The synaptic strength from an inhibitory pool of a response group to the excitatory 
neurons in its competitor is set to -4.0 (a strong inhibition). Generally, each neuron 
has connectivity of 0.1 (i.e. 100 out of 1000 neurons). Each excitatory neuron in the 
response groups has 50 postsynaptic neurons from its inhibitory pool, and 50 postsy-
naptic neurons consisting of neurons from the same excitatory response group and/or 
excitatory neurons in the input module. Meanwhile each inhibitory neuron in the re-
sponse groups is connected to other 100 excitatory neurons of its competitor groups.  
By having such anatomical constraint in the response module, activation of any neu-
ron in a response group will invoke its inhibitory pool that eventually sends out some 
amount of inhibitory postsynaptic potentials to its competitor(s). 

 

Fig. 2. Recurrent spiking network with subpopulations of stimulus groups (S), response groups 
(R;R+ and R−), non-selective neurons (NS) and inhibitory pool (IH). Lines end with open circle 
show excitatory connections, and lines end with solid circle indicate inhibitory connections.  
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For synaptic connections in stimulus neurons population (i.e. S and NS), each exci-
tatory neuron has random connections to 100 neurons from the whole populations 
(from 1000 neurons), and each inhibitory neuron in this module is connected to 100 
excitatory neurons from the whole population as in the network without lateral inhibi-
tion in our earlier model. 

3 Stimulus-Stimulus-Response Associative Learning 

All training simulations presented in this paper were implemented in C++ and testing 
or probe trials were performed in MATLAB.  

3.1 Simulation Method 

For stimulus representation, we randomly select 50 neurons from each group to deliv-
er a superthreshold current of 20 pA, for example in group S0 consisting of 100 neu-
rons, 50 neurons are selected to be paired with 50 neurons from group S1 (out of 100 
neurons, chosen randomly). Hence for two stimulus pairs, e.g. (S0,S1) → RA and 
(S0,S2) → RB, the stimulus S0 might have a number of overlapping neurons.   

In a 20-minute simulated time, we implement an association of a set of stimulus 
pairs to their target responses. The learning is initialised with a random background 
activity for 100 ms. During the initialisation phase, we stimulate an arbitrary neuron 
with 20-pA (strong) current for every ms. With the same random background activity, 
we present to the network a pair of stimulus (Si,Sj), selected randomly, via intensifica-
tion of 1-pulse current (i.e. 20 pA) to all neurons in the selected stimulus groups.  
After that, a group Si is stimulated, followed by its associated pair Sj after an inter-
stimulus interval (ISI). An optimal ISI is chosen from a range of 10 – 50 ms based on 
a preliminary experiment.  

From the onset of the second stimulus, we count the number of activations in the 
response groups, Rk, within 20 mstime interval. The response group with the highest 
number of activations is considered to be the winner. The next learning pair is pre-
sented after a 100-ms delay from the offset of each response interval. The learning 
result reported in this paper, is an averaged performance of 10 simulated networks. 

For a testing phase also known as the “probe trial”, we run a simulation consisting 
of a number of trials for 200 ms each. In each trial, we present a stimulus pair to the 
network randomly with equal probability for each pair to be tested. We also apply 
some degree of distortion via smaller random activation of neurons in a learned stimu-
lus group i.e. with probability of less than 1.0.  

The network with some background activity (for the first 100 ms in each trial) as 
described before is then intensified with super threshold current of 20 pA applied onto 
the tested prime stimulus at some random time, t in between 100-120 ms, i.e. after the 
random activity. The stimulation of its pair group proceeds after the prime stimulus 
group depending on the tested ISI. The number of spike counts within the 20-ms re-
sponse interval (starts from the onset of the choice) is used to compute a winning 
response. The testing result expresses the averaged percentage of performance over a 
number of trials, i.e. performance = (number of correct recall/number of trials)*100. 
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3.2 Learning Rules 

The synaptic efficacy is dependent on the reward signal r(t) (2). The signal modulates 
the synaptic changes read from a spike-timing dependent plasticity (STDP) function 
(as in 1). 

 
 Δwstdp= Θ {A+e-Δt/τ+, Δt ≥ 0; A−eΔt/τ-, Δt < 0}            (1) 

 
From (1), the synapse is potentiated if the difference in firing times (Δt) between a 
postsynaptic neuron and its presynaptic neuron (i.e. tpost-tpre) is ≥ 0, otherwise the 
synapse is depreciated. The magnitude of potentiation (depression) is given by A+e-

Δt/τ+ (A−eΔt/τ-), where A represents the maximal change when the spike timing differ-
ence Δt is approaching 0, and τ is the time constant (in ms). For our STDP curve, τ+ = 
τ- = 20 ms, A+ = 0.1, and A- = 0.15 [2].  

The reward signalr(t) determines the amount of modulation to the summation of 
Δwstdp. Therefore, the reward modulated STDP learning holds [1], [2]: 

 

 Δw(t) = [α + r(t)] z(t) (2) 

where α is the activity-independent increase of synaptic weight, and z(t) represents 
the summation of Δwstdpobtained from (1). Excitatory and inhibitory weights are in-
itialised to 1.0 and -1.0, respectively. To avoid infinite growth, weights are kept to be 
in the range between 0 and 4 mV. 

3.3 Synapse Reinforcement 

Synapse reinforcement is implemented based on a reward policy. The reward policy 
determines the amount of synapse potentiation (i.e. strong or weak potentiation) or 
depression. The network is given a strong positive reward, r(t − 1) + 0.5, if a target 
response group, e.g. RA is the winner having neuron firing rate (F) in the groupgreater 
or equal than twice of its closest competitor, e.g. RB, or a weak reinforcement signal, 
1-(FR_A/ FR_B) if the neuron firing rate is greater than (and less twice of) its closest 
competitor. Meanwhile, the network receives a negative reward signal -0.1 if FR_A< 
FR_B. 

Synapse reinforcement is implemented in two phases. In the first phase, within the 
20-ms interval, we reward the network based on the number of activations in the re-
sponse inhibitory groups within the first 10 ms. This is to strengthen the synapses for 
connectivity between a stimulus and the target response inhibitory group for prevent-
ing the activation of response competitor groups. In the second phase, we reward the 
network for the number of activations in the response excitatory groups within the 20-
ms response interval for synapse reinforcement from the stimulus group to the target 
response excitatory group.  
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4 Results 

4.1 Correlation in Spike Pattern 

As discussed in Section 1.1, we initially trained a network with fully sparse and ran-
dom connectivity. We trained the network with a set of learning pairs consisting of 
exclusive stimulus neurons groups, Pair-Response = {(S0,S1)  RA, ( S2, S3)  RB, 
(S4, S5)  RA, ( S6, S7)  RB}. As a result of learning, the average number of spikes 
for target response groups is 9.98, when compared with the non-reinforced groups 
with 7.18 and the negatively rewarded groups with 3.15. The correct memory recall 
was achieved at 99.9%.  

We further experimented the learning with non-exclusive stimulus groups to see 
the effect of spike correlation for three conditions of learning pairs, condition I – 
shared the first stimulus, Pair-Response = {(S0,S1)→RA, (S0,S2)→ B}, condition II – 
interference from non-exclusivity with identical orthogonality, Pair-Response = 
{(S0,S1)→RA, (S0,S2)→RB, (S1,S0)→RB}, and condition III - non-exclusivity with 
asymmetrical difference, Pair-Response = {(S0,S1)→RA, (S0,S2)→RB, (S2,S1)→RA}. To 
create more interference effects due to neural spike train correlation, the ISI was set to 
10 ms as the average of synaptic delays in the range of 1 to 20 ms. The results are 
exhibited in Table 1. From Table 1, the results demonstrate the level of interference 
that could disrupt the stability of a pattern due to conflicting responses. The effect of 
non-exclusivity could be observed when any of learning pairs shared the first or 
second stimulus.  

4.2 Learning with Lateral Inhibition 

We repeated the learning experiment with non-exclusive groups for the network with 
lateral inhibition as described in Section 2.In all the three conditions, learning perfor-
mance could be improved through implementation of our proposed lateral inhibition 
(see Table 1). For training, the averaged discrimination rates in conditions I, II and III 
are 86.56%, 76.99% and 93.79%, respectively, in comparison with learning without 
the lateral inhibition, 53.89%, 46.30% and 78.26% for conditions I, II and III, respec-
tively.  

Table 1. Correct memory recall to target response for condition I – shared the first stimulus, 
condition II – interference from non-exclusivity with identical orthogonality, and condition III - 
non-exclusivity with asymmetrical difference 

Condition 
Correct memory recall (%) 

No lateral inhibition With lateral inhibition 
I 50.25 85.40 
II 47.33 73.73 
III 83.60 96.00 

 
We also ran memory recalls for noisy stimuli with only a fraction of neurons sti-

mulated randomly with 0.7 ≤p≤1.0. The results were as follows for the distorted test 
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pairs, 70.80%, 70.07% and 81.60% respectively (without lateral inhibition: 51.13%, 
44.40% and 70.13%). Furthermore, the network was also trained with non-exclusive 
stimulus groups with stimulus pairs as follows (multiple responses): Pair-Response = 
{(S0,S2)→RA, (S0,S3)→RB, (S1,S2)→RC, (S1,S3)→RD}. The correct recall rate was 
achieved at 78.47% and 78.70% for training and testing, respectively. 

5 Conclusion 

Initially, learning tasks only involved association to two response groups, RA and RB. 
In such cases, neurons in both groups act as the dopamine neurons whose activation 
within its group in an interval time could be a behavioural action in anticipation of the 
reward.  

There was a limitation due to high correlation of spike patterns that might cause in-
stability of learning pairs. We have analysed several levels of interference that can 
lead to high competition of responses. Even the performance in some cases was above 
chance, non-inclusivity in learning pairs could somehow affect discrimination of tem-
poral sequences. For example for a system with shared stimulus, e.g. Pair-Response 
∈{(S0,S1)→RA, (S2,S1)→RB}, any of the stimulus pairs could be dragged to an unde-
sired response. As an immediate solution, we introduced some anatomical constraints 
on the current network model by eliminating the excitatory connections and inserting 
inhibitory connections between neurons in response groups. This provides a solution 
to enhance the discrimination rate for some learning conditions with non-exclusive 
stimulus groups. As learning progresses, reinforcement of synapses is achieved not 
only to target response groups but also to its inhibitory pool from a triggered stimulus 
pair. Strengthening of synaptic connections to an inhibitory pool could facilitate dis-
crimination of a target group as neurons in the competitor groups will be suppressed.  

We have improvised the excitatory-inhibitory network as proposed in [2] and [11] 
by adding lateral inhibiton connections that can prevent activations of non-desired 
responses. Even though the biological interpretation of such an inhibition mechanism 
is not well defined in our model, this serves as an initial attempt for understanding the 
synapses of the anterior cingulate cortex (ACC) triggered on events related with con-
flict or error detection, e.g., [9], [10].  

We have also tested learning in environments with higher competition of res-
ponses. We extended the training to discriminate paired stimuli for four responses, i.e. 
RA, RB, RC and RD. Moreover, using the real images data, we have also performed 
learning for visual recognition task. The training result achieved at 89.46% and all 
image pairs were correctly discerned with 100.00% accuracy in probe trials [12]. 

The performance indicates some potential of our model in learning multiple input-
output mappings with high competition of outputs. Nevertheless, the increase in the 
number of responses requires greater number of spikes from the input neurons with 
minimum of 80% activation from each stimulus group. 

Acknowledgements. This research has been funded by the Ministry of Higher Educa-
tion (Malaysia). 
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Abstract. We construct fuzzy signature neural networks where fuzzy signatures 
replace hidden neurons in a neural network similar to a radial basis function 
neural network. We investigated the properties of a naïve and a principled ap-
proach to fuzzy signature construction. The naïve approach provides very good 
results on benchmark datasets, but is outperformed by the principled approach 
when we approximate the noisy nature of real world datasets by randomly eli-
minating 20% of the data. The major benefit of the principled approach is to 
substantially improve robustness of the fuzzy signature neural networks we 
produce. 

Keywords: fuzzy signature, neural network, RBF, clustering, salary selection, 
diabetes. 

1 Introduction 

Given k inputs, and at most T linguistic terms per dimension of X for the α-cover, the 
number of fuzzy rules covering X at least to α is |R| = O(Tk) which is very high, unless 
k is very small. The exponential explosion in rules is a major problem hindering the 
application of fuzzy techniques beyond control systems. We have previously 
developed and adapted techniques which partially address decreasing T, and of k (by 
rule interpolation and hierarchical rule bases respectively [1-3]. Encouraging results 
of our previous research give further motivation to continue along these lines, and to 
develop further new techniques that will be suitable for the solution of even harder 
problems. 

We have developed two kinds of approaches to the exponential explosion. First, 
sparse hierarchical fuzzy systems reduce both T and k simultaneously by finding (top-
down) sub-spaces in the data, which allows some dimensions and rules to be ignored. 
The use of sparse rule base allows proper fuzzy reasoning even if the rule set contains 
“gaps” [4]. For various technical reasons, eliminating dimensions and rules at the 
same time gives the best results from the produced rule bases and is at the same time 
the most efficient [5].  

The second is fuzzy signatures – constructing characteristic fuzzy structures, 
modelling the complex structure of the data points (bottom up) in a hierarchical manner. 
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We use various heuristics to restrict the number of clusters to 5, and use the cluster 
centroids to generate fuzzy signatures. In the naïve approach, 2 to n-1 input variables 
are chosen at random with aggregation function chosen from the set { max, min, ave } 
by calculation of the max, min and ave of the membership values and selecting as 
aggregation function the one with the smallest standard deviation [8]. In our 
principled approach, we use genetic programming to select both the number of 
variables and the aggregation functions used. 

Table 1. Genetic programming settings for constructing the fuzzy signatures 

Parameters Values 
Number of generations in GPLAB  10 
Number of individuals in GPLAB 50 
Number of fuzzy signature neurons  5 
Training epoch 100 
Percentage of training data 80% 
Percentage of testing data 20% 
Percentage of missing values 0% / 20% 

4 Results 

Four datasets are used for evaluation, two of which are Salary problems from Gedeon 
[9], one is Salary problem from Mendis [10], and the rest are Cancer and Diabetes 
problems from University of California Irvine (UCI) [11]. Table 2 below shows the 
general information about these datasets.  

4.1 Dataset Properties 

Table 2. Datasets used 

Dataset 
Number  
of input  

attributes 

Number of  
output  

columns 

Number of  
observations 

Diabetes 8 2 768 

High Salary (Gedeon) 3 2 200 

Medium Salary (Gedeon) 3 2 200 

Low Salary (Mendis) 3 2 135 

4.2 Clean Data 

We first used our two approaches on the clean datasets with no changes. 
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Table 3. Using principled approach to construct fuzzy signatures 

Dataset 
Testing 

Mean (%) StDv MSE 
Diabetes 68.5 0.0184 0.2406 
High Salary (Gedeon) 81.5 0.0141 0.1903 
Medium Salary (Gedeon) 83.0 0.0283 0.1423 
Low Salary (Mendis) 80.1 0.0406 0.1607 

Average 78.3 0.0254 0.1835 
 
We provide average prediction performance results only for rough comparison 

between our two techniques, as such averages do not make sense in general. 

Table 4. Using naïve approach to construct fuzzy signatures 

Dataset 
Testing 

Mean (%) StDv MSE 
Diabetes 68.2 0.0359 0.1987 
High Salary (Gedeon) 78.0 0.0622 0.1160 
Medium Salary (Gedeon) 88.5 0.0379 0.0876 
Low Salary (Mendis) 68.9 0.1425 0.1934 

Average 75.9 0.0696 0.1489 
 
We can see that the naïve approach is worse on average, though on the simplest 

dataset (medium salary) it performs the best. On the hardest dataset (low salary) it 
performs the worst. 

4.3 Damaged Data 

We then used our two approaches on the datasets with 20% of the data omitted at 
random. 

Table 5. Principled approach on damaged data 

Dataset 
Testing 

Mean (%) StDv MSE 
Diabetes 65.1 0.0147 0.2438 
High Salary (Gedeon) 83.0 0.0694 0.1428 
Medium Salary (Gedeon) 87.5 0.0530 0.1077 
Low Salary (Mendis) 74.8 0.1154 0.1805 

Average 77.6 0.0631 0.1687 
 
On the hardest dataset (low salary) and on the diabetes dataset, the performance 

has decreased but on the other two dataset including the easiest dataset, the  
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performance has actually increased. We believe this is due to elimination of some 
outliers from a dataset which otherwise has redundant data. We have seen such results 
in our previous work in heuristic pattern reduction and bimodal distribution removal. 
Overall, the principled approach is quite robust to the damaged data. 

Table 6. Naïve approach on damaged data 

Dataset 
Testing 

Mean (%) StDv MSE 
Diabetes 64.6 0.0461 0.2180 
High Salary (Gedeon) 79.5 0.0209 0.1485 
Medium Salary (Gedeon) 77.5 0.0467 0.1614 
Low Salary (Mendis) 55.6 0.0642 0.2388 

Average 69.3 0.0445 0.1917 
 
The naïve approach has reduced performance quite significantly overall, but has re-

tained its performance on one of the datasets. 

5 Conclusion and Future Work 

We have shown our proposed approach to produce fuzzy signature neural networks, 
with both a naïve and a principled approach to construction of the fuzzy signature 
neurons.  

The principled approach is more expensive computationally but is robust in the 
face of significant damage to the datasets of 20% deletion at random.  

On the other hand, the naïve approach is computationally cheap, and performed 
well on at least one dataset even with damage.  

Our future work will include identifying the applicability conditions where the 
naïve approach can be expected to perform well, and further improvements of our 
principled approach including particularly reduction of the computational complexity 
– it may be possible in certain circumstances which we intend to delineate to replace 
the global search of the evolutionary approach we used with a local gradient descent 
search. 
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Chandra and Wei Fan who contributed to early parts of this work. 
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Abstract. In this paper, we propose a Self-Organizing Map-based Prob-
abilistic Associative Memory (SOMPAM). The proposed SOMPAM is
based on Self-Organizing Map and it is composed of the Input/Output
Layer and the Map Layer. In this model, stored pattern sets are mem-
orized with its own brief degree, and probabilistic associations based
on brief degree for analog pattern sets including one-to-many relations
can be realized. And it can also realize additional learning. We carried
out a series of computer experiments and confirmed that the proposed
SOMPAM can realize probabilistic associations and additional learning.

1 Introduction

As the model which can realize probabilistic associations, the Boltzmann
machine[1] has been proposed. However, the learning of the Boltzmann machine
needs much time. Moreover, it cannot realize additional learning. On the other
hand, as the model which can realize one-to-many associations, we have pro-
posed the Kohonen feature map associative memory with area representation[2]
which is based on the Self-Organizing Map[3] and the Kohonen feature map as-
sociative memory[4]. This model can realize not only one-to-many associations of
binary patterns but also one-to-many associations of analog patterns. However,
this model cannot realize probabilistic associations and additional learning. In
contrast, the variable-sized KFM associative memory with refractoriness based
on area representation can realize additional learning. And, the variable-sized
Kohonen feature map probabilistic associative memory can realize probabilistic
associations and additional learning. However, the learning process of this model
is very complex.

In this paper, we propose the Self-OrganizingMap-based Probabilistic Associa-
tive Memory (SOMPAM). The proposed SOMPAM is based on Self-Organizing
Map and it is composed of the Input/Output Layer and the Map Layer. In this
model, stored pattern sets are memorized with its own brief degree, and proba-
bilistic associations based on brief degree for analog pattern sets including one-
to-many relations can be realized. And it can also realize additional learning with
simple process.

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 342–349, 2014.
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2 Self-organizing Map-Based Probabilistic Associative
Memory

Here, we explain the proposed Self-Organizing Map-based Probabilistic Associa-
tive Memory (SOMPAM).

2.1 Structure

Figure 1 shows the structure of the proposed SOMPAM. As shown in Fig. 1,
the proposed SOMPAM is composed of (1) Input/Output Layer and (2) Map
Layer. The Input/Output Layer is divided into M parts corresponding to M -
tuple pattern and one neuron corresponding to the brief degree. In the proposed
model, probabilistic association based on the brief degree can be realized.

2.2 Learning

The learning process of the proposed SOMPAM is based on that of the original
self-organizing map[3]. The learning procedure is as follows.

Step 1 : The connection weights are initialized randomly.
Step 2 : The Euclidean distance between the input vector x(p) and the connec-
tion weights of the neuron i in the Map Layer wi is calculated. The Euclidean
distance dL(x(p),wi) is given by

dL(x(p),wi) =

√√√√NIO−1∑
j=1

(xj − wij)2 (1)

where N IO is the number of neurons in the Input/Output Layer. In this calcu-
lation, the brief degree corresponding to the neuron N IO in the Input/Output
Layer is not considered.

... ...

Input/Output Layer

Map Layer

Pattern 1 Pattern M Brief 
Degree

...

Fig. 1. Structure of SOMPAM
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Step 3 : The winner neuron is decided based on the Euclidean distance calcu-
lated in Step 2. The winner neuron c is given by

c = argmin
i

dL(x(p),wi). (2)

Step 4 : The connection weights wi are updated by

wi ← wi + η · exp
(√

(xi − xc)2 + (yi − yc)2

δ(t)2

)
(x(p) −wi) (3)

where η is the learning rate, xi, yi are the coordinates of the neuron i in the Map
Layer and xc, yc are the coordinates of the winner neuron in the Map Layer.
δ(t) is the neighborhood function at the time t, and it is given by

δ(t) = δini ·
(
δfin

δini

) t
T

(4)

where δini is the initial size of neighborhood area, δfin is the final size of neigh-
borhood area and T is the maximum learning time.
Step 5 : Steps 2∼4 are repeated T times for all training patterns to be stored
T times.
Step 6 : The Euclidean distance between the input vector x(p) and the connec-
tion weights of the neuron i in the Map Layer wi, d

L(x(p),wi) is calculated by
Eq.(1).
Step 7 : The winner neuron c is determined by

c = argmin
i/∈CF

dL(x(p),wi) (5)

where CF is the set of neurons in the Map Layer whose connection weights are
fixed.
Step 8 : The connection weights of the winner neuron c is determined as follows:

wc = x(p) (6)

and those connection weights are fixed.
Step 9 : Steps 6∼8 are repeated for all patterns to be stored.

2.3 Recall Process

When the pattern x is given to the Input/Output Layer, the internal state of
the neuron i in the Map Layer uMAP

i is calculated by

uMAP
i = wiNIOg

(
1− dR(xIN ,wi)√

N IN ′

)
(7)
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where N IN ′
is the number of neurons which receives input in the Input/Output

Layer. And, dR(x,wi) is the Euclidean distance between the input vector xIN

and the connection weights wi and it is given by

dR(xIN ,wi) =

√√√√√ NIO∑
j=1

j:xj �=−1

(xINj − wij)2 (8)

In the recall process of the proposed SOMPAM, only a part of the Input/
Output Layer receives input and the part of the input which is not given to the
Input/Output Layer is set to −1. And the Euclidean distance is calculated only
considering the part where receives the input. And g(·) is given by

g(a) =

{
a, (a ≥ θR)
0, (a < θR)

(9)

where θR is the threshold.
And one winner neuron is selected based on the following probability:

P (xMAP
i = 1) =

uMAP
i

NMAP∑
i′=1

uMAP
i′

.

(10)

The output of the neuron j in the Input/Output Layer is determined as

xIO = wc (11)

where wc is the connections weights of the winner neuron c.

2.4 Additional Learning Process

In the proposed SOMPAM, when the new pattern is given after the learning,
the pattern can be stored additionally.
Step 1 : When the pattern xnew is given to the Input/Output Layer and all
neurons in the Input/Output Layer receives input, the Euclidean distance be-
tween the input xnew and the connection weights wi, d

L(xnew ,wi) is calculated
for all neurons in the Map Layer.
Step 2 : If

min
i
(dL(xnew,wi)) > θL (12)

is satisfied, the input pattern is regarded as a new pattern. If xnew is regarded
as a new pattern, go to Step 3.
Step 3 : The neuron which learns the new pattern xnew is determined.
(a) When the connection weights of all neurons in the Map Layer are
fixed
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If there is no neurons whose connection weights are not fixed, one neuron is
added in the Map Layer. The coordinate of the new neuron (xn, yn) is determined
as follows:

xn = (xc + x∗c)/2 (13)

yn = (yc + y∗c )/2 (14)

where (xc, yc) is the coordinate of the neuron c, and c is given by

c = argmin
i

dL(xnew,wi). (15)

And, (x∗c , y
∗
c ) is the coordinate of the neuron c∗, and c∗ is given by

c∗ = argmin
i : dic = min

j �=c
{djc}

dL(xnew,wi). (16)

where dic is the distance between the neuron i and the neuron c in the Map
Layer, and it is given by

dic =
√

(xi − xc)2 + (yi − yc)2. (17)

The connection weights of the new neuron wn is set to

wn = xnew. (18)

(b) When some neurons whose connection weights are not fixed exist
If some neurons whose connection weights are not fixed exist, the neuron c

whose connection weights is most similar to the input xnew is selected from all
neurons.

c = argmin
i

dL(xnew ,wi) (19)

And, the neuron cUF whose connection weights is most similar to the input x is
selected from the neurons whose connection weights are not fixed.

cUF = argmin
i∈CUF

dL(xnew,wi) (20)

where CUF is the set of the neurons whose connection weights are not fixed.
And, the neuron b whose connection weights are most different from the input
xnew is selected from all neurons.

b = argmax
i

dL(xnew ,wi) (21)

If the neuron cUF satisfies

dL(xnew ,wcUF )− dL(xnew ,wc)

dL(xnew,wb)− dL(xnew,wc)
< θL, (22)
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the neuron cUF is selected as the neuron which learns the new input.
The connection weights of the neuron cUF (wcUF ) is set to

wcUF = xnew. (23)

If the neuron cUF does not satisfy Eq.(22), new neuron added to the Map
Layer in the same way in (a).

3 Computer Experiment Results

Here, we show the computer experiment results to demonstrate the effectiveness
of the proposed SOMPAM.

3.1 Probabilistic Association

In this experiment, the analog patterns including one-to-many relations shown
in Fig.2(a) were memorized in the proposed SOMPAM composed of 801 neurons
in the Input/Output Layer and 9 neurons in the Map Layer. Figure 2(b) and (c)
show a part of the association results. From these results, we can confirm that
the proposed model can recall the corresponding plural patterns correctly.

Figure 3 shows the Map Layer after the pattern pairs shown in Fig.2 (a) were
memorized.

Table 1 shows the recall times of each pattern in the trial of Fig.2 (b)
(t=1∼1000) and Fig.2 (c) (t=1∼1000). In this table, normalized values are also
shown in ( ). From these results, we can confirm that the proposed SOMPAM
can recall each pattern by the probability according to the brief degree.

(a) Stored Patterns

t=1 t=2

t=3 t=4 t=5

(b) lion was given

t=1 t=2

t=3 t=4 t=5

(c) crow was given

Fig. 2. One-to-Many Associations
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Fig. 3. Stored Patterns in
Map Layer

Table 1. The Number of Recall Times

Input Output Brief Degree Recall Times

lion bear 5 (1.0) 333 (1.00)
monkey 5 (1.0) 330 (1.01)
mouse 5 (1.0) 337 (1.02)

crow hen 1 (1.0) 167 (1.00)
chick 2 (2.0) 333 (1.99)

penguin 3 (3.0) 500 (2.99)

1-A

1-B

2-C

2-D

3-E 3-F

(a) Before

1-A

1-B

2-C

2-D

3-E 3-F

1-G

1-H

1-I

2-J

2-K

2-L

3-M
3-N

3-O

(b) After

Fig. 4. Map Layer of Before and After Additional Learning

3.2 Additional Learning

In this experiment, the six pattern sets (1-A, 1-B, 2-C, 2-D, 3-E, 3-F) were
memorized first in the proposed SOMPAM which has 9 (=3×3) neurons in the
Map Layer. Figure 4(a) shows the Map Layer after these six pattern sets are
memorized. As shown in this figure, the pattern sets which has common term
(for example, 1-A and 1-B) are assigned to similar position. And then, nine
pattern sets (1-G, 1-H, 1-I, 2-J, 2-K, 2-L, 3-M, 3-N, 3-O) were memorized addi-
tionally and Fig.4(b) shows the Map Layer after all pattern sets are memorized.
In Fig.4(b), red circles shows new added neurons.

Tables 2 and 3 show the recall times of each pattern (t=1∼1000). In this table,
normalized values are also shown in ( ).

Table 2. The Number of Recall Times before Additional Learning

Input Output Brief Degree Recall Times

1 A 1 (1.0) 333 (1.00)
B 2 (2.0) 667 (2.00)

2 C 5 (1.0) 502 (1.00)
D 5 (1.0) 498 (1.00)

3 E 1 (1.0) 499 (1.00)
F 1 (1.0) 501 (1.00)
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Table 3. The Number of Recall Times after Additional Learning

Input Output Brief Degree Recall Times

1 A 1 (1.0) 60 (1.00)
B 2 (2.0) 120 (2.00)
G 3 (3.0) 199 (3.32)
H 4 (4.0) 265 (4.42)
I 5 (5.0) 355 (5.92)

2 C 5 (1.0) 196 (1.07)
D 5 (1.0) 193 (1.05)
J 5 (1.0) 202 (1.10)
K 5 (1.0) 183 (1.00)
L 5 (1.0) 225 (1.23)

3 E 1 (1.0) 66 (1.00)
F 1 (1.0) 68 (1.00)
M 5 (5.0) 300 (4.55)

0 N 5 (5.0) 280 (4.32)
O 5 (5.0) 285(4.24)

4 Conclusion

In this paper, we have proposed the Self-OrganizingMap-basedProbabilistic Asso-
ciativeMemory (SOMPAM). The proposed SOMPAM is based on Self-Organizing
Map and it is composed of the Input/Output Layer and the Map Layer. In this
model, stored pattern sets arememorizedwith its ownbrief degree, and probabilis-
tic associationsbased onbrief degree for analogpattern sets including one-to-many
relations can be realized. And it can also realize additional learning.We carried out
a series of computer experiments and confirmed that the proposed SOMPAM can
realize probabilistic associations and additional learning.
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Abstract. Pathway provides a deep insight into the mechanism of the bi-
ological process. With the increasing of high-throughout gene expression
monitoring technology, a lot of data driven methods have been proposed
to reconstruct the pathways from the observation data. Low reliability of
the discovered results, especially the direction of the regulatory relation, is
themain challenge of the existingmethods. In this work, a level-wise causal
search (LWCS) based disease pathway discovery method is proposed. The
following three steps are conducted in each searching level of LWCS to
locate the causal variables: firstly, in the parents and children (PC) dis-
covery step, structure learning approach is employed to discover the can-
didate causal genes; then, in the casual direction learning step, additive
noise models are explored to determine the direction of the edges, finally,
the trivial causal candidates are pruned and not contained in the further
level search. The proposed method is tested and verified on real life gene
expression data sets. The success of the proposed method reflects that the
causality is a proper model to present the regulatory relations among the
genes and phenotypes.

Keywords: Causality, Additive Noise Model, Gene Expression Data.

1 Introduction

The development of genomic techniques make it is possible to measure the en-
tire genome’s expression level in one experiment. Microarray and HiSeq are such
techniques [18], which have been widely used in diagnosing disease, discovering
the regulatory network among the genes, and so on applications [8]. Understand-
ing the behind mechanism of certain disease is one of the ultimate goal of gene
expression data analysis [2].

Identifying the differentially expressed genes is a traditional preprocessing for
the disease-related gene discovery method [11]. Typically methods includes, the
statistical based approaches [11] and machine learning based approaches [13].
Though the relations among the genes are already considered to reduce the
redundancy of the discovered, these methods only return a set of genes and the
critical problem, how the genes effects the genes, is still not answered [4].

Different from discovering of differentially expressed genes, disease pathway
reconstruction provides a convenient way to distill the information from the data
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set and an intuitive way to understanding the mechanism of the disease process
[17]. Bayesian network [12] and its extensions, such as dynamic Bayesian network
[9] are typical used models to learning the pathway skeleton from the data.
The main drawbacks of the Bayesian network based model includes, the large
samples sizes needed to find a reliable model, and the Markov Equivalent class
problems of the Bayesian network related model [7]. For example, the following
three local structures, g1 → g2 → g3 and g1 ← g2 → g3 belong to the same
Markov equivalent class, which means we can’t use the Bayesian network model
to determine the regulatory direction between g1 and g2.

Generally, there is no efficient computational model for the disease oriented
pathway reconstruction method. Fortunately, the recently developed causal dis-
covery method provides an inspiration for the problem. In detail, the gene reg-
ulatory relation and the gene-disease all can be considered as special cases of
causality. The recently developed Additive Noise Model provides a good solution
to determine the direction of the causalities, here is the regulatory direction of
the genes. Thus, the disease related pathway is modeled as a causal network
reconstruction problem on the gene expression level and the disease state, with
some significance constraint. Moreover, to reduce the complexity of the problem,
we only consider the partial pathway that is closely related to the diseases. Con-
sidering the example given in Figure 1, the abnormal express of genes g2 and g3
is the cause of the disease, and the partial pathway containing the dash nodes
is the concerns of the disease.

g2

g5 g6

g4g3

g1

g9

g8g7

Fig. 1. An example of Disease Pathway

Thus, a level-wise search causal pathway discovery method is proposed, which
search around level by level. Each level contains three main steps, in the PC step,
we use structure learning approach to discovery the candidate causal genes, then
in the casual learning step, we use additive noise model to determine the direction
of the edges, finally the candidate which is not differentially expressed is pruned
and not contained in the further level search. This level-wise search procedure
ensures the important genes are discovered in the early stage, and facilitates the
further discovery of the casual relation among the genes.

2 Related Work

Gene expression data analysis and causality model are two main backgrounds of
this work. Gene selection is one of most basic tasks and an important prepro-
cessing used in the gene expression data analysis, for example discovery of the
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differential expression genes across health v.s. disease samples [11]. The focus
of this task is controlling the falsely discovery rate and the redundancy of the
results [22]. Though some work has considered the interactions among genes to
reduce the redundancy, for example, the causal gene selection method [6], the
dynamic properties and the complex interactions are still not captured.

Different from the gene selection methods, the pathway reconstruction tries to
model the complex interaction among the genes and related entities. Data driven
and knowledge-driven are two main categories of pathway reconstruction [27].
Knowledge driven methods construct a pathway by integrating prior knowledge
from particular domains of interest. Data-driven pathway construction usually
generates relationship information of genes or proteins from the experimental
data, for example the gene expression data. Bayesian network based methods
[12,9], co-expression network [25], are typical used models to learn the pathway
skeleton from the data. Recently, a lot of integrated methods are also proposed by
considering the observed samples and prior knowledge in one model, for example,
the predictive network [14].

The work is also high related to causal discovery models. Causal Bayesian
network and Additive Noise Model are two main approaches. Pearl’s Inductive
Causality [21] provides the fundamental of causal Bayesian network based ap-
proaches. A large number of extensions are proposed, focuses on its applications
on the real problems, for example the work on the small sample size problems
[3], the large scale problem [16]. However, all these approaches are based on
independence conditional testing, and cannot distinguish two causality struc-
tures if they come from a so-called Markov equivalence class [20]. Additive Noise
Model can break the limitation of Markov equivalence class, by exploiting the
asymmetric property of the noises in the generative progress, for example, the
nonlinear non-Gaussian method [15] works when the data generating process is
nonlinear, the discrete model works on the discrete data [23]. The regression
model [19] and kernel independence test [28] are core steps of the additive noise
model.

3 Method

Assume a gene expression sample consists of the expression level of m different
genes, i.e. G = {g1, g2, · · · , gm}, and the disease state of the sample y. Let
D = {x1, x2, · · · , xn} denote the complete sample set. Each sample xi can be
denoted by a vector xi = (xi1, xi2, ..., xim, yi), where xij is the expression level
of the sample xi on gene gj, yi is the corresponding disease state. The disease
pathway is defined on the full gene set and the state of disease, i.e., V = G∪{y}.

The disease pathway discovery problem can be defined as finding a partial
causal graph closely related to the disease. For each gene in the pathway, the
following two conditions should be satisfied, 1) the genes appear in the pathway
should be direct or indirect causes of the disease; 2) the genes’ expression level
should be significantly differentially expressed across disease states. These two
conditions dramatically reduce the complexity of the original problem, and make
it is possible to provide a concise disease related pathway.



A Causal Model for Disease Pathway Discovery 353

Thus, the following Level-Wise Causal Search (LWCS) based disease path-
way discovery method is proposed. In LWCS, firstly the direct causes of the
disease are discovered. If the direct cause is differentially expressed, then its di-
rect causes are discovered similarly. There are several benefits of this level-wise
search method, firstly the important genes can be discovered in the early stages;
secondly, the early discovered causal genes facilitate the further discovery of the
pathway; finally, the level-wise search method can accelerate the mining process
for it only works on a constrained search space.

Figure 2 gives a running example of the level-wise search framework. Firstly,
the causal node of the target y, {g5, g6}, are discovered in Fig.2(a). Secondly,
because both g5 and g6 are differentially expressed, the causal node of g5, g6 are
discovered respectively as shown Fig.2(b) and Fig.2(c).

g2

g5 g6

g4g3

g1

g9

g8g7

(a) a

g2

g5 g6

g4g3

g1

g9

g8g7

g2

g5 g6

g4g3

g1

g9

g8g7

(b) b

g2

g5 g6

g4g3

g1

g9

g8g7

(c) c

Fig. 2. Level-wise Causal Search on the Example 1

In the algorithm, the causal structure is contained in the CS in the form of
direct edges and the candidate causal nodes are maintained and updated in Vt.
Here, the candidate causal nodes refer to the variables that are the causes of the
target variable and differentially expressed across different disease state.

In each iteration, the algorithm picks up one candidate causes vt, and expands
from this node. Given a target node vt, the following three main steps are used
to find the causal nodes of vt.

Firstly, in the PC discovery step (line 4), we use structure learning approach
to discovery the parents and children nodes of the target variables, for the parents
and children nose are the candidates of the causal genes. In this work, the PC
discovery framework proposed in is used [5]. For the gene expression data is
continuous, thus the kernel conditional independence test is used in the PC
framework [28]. For the binary disease state is mapped to -1, 1.

Secondly, in the causal direction learning step, we use additive noise model
(ANM) to determine the direction of the edges (line 6-7, 9), for its strong dis-
covery ability on causal discovery. In detail, given a target variable and its PC
set PC(vt), each variables in the PC(vt) is considered as the causal candidate
of vt and the following additive noise models are constructed to determine the
direction. Considering the additive noise model ANM(v → vt), the following
regression model v = f(vt) + n is constructed using Gaussian process regression
model, and the p value is obtained using the kernel independence test, n⊥vt.
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Finally, in the pruning step (line 8, 9), the candidate genes which are not
differentially expressed across the different diseases state are pruned and not
contained in the further level search. Different from the previous work on dif-
ferentially expressed genes, we focus on pruning the trivial causal candidates
and some redundancy is acceptable. Thus, the traditional χ2-test is used in this
work. This step will remove the suspicious causal candidates and improve the
algorithm’s performance on the large scale problem.

The full map of the algorithm is summarized in the Algorithm 1.

CS=LWCS (D, V , y)
Input: D: the data set, V : the variable index,y: the target variable index
Output: CS: the causal structure
CS = φ;
Vt = {y};
foreach vt ∈ Vt do

PC(vt)=FindPC(D, V , vt);
foreach v ∈ PC(vt) do

p1 = ANM(v → vt);
p2 = ANM(vt → v);
p3 = χ2Test(v, y);
if p1 > p2&p3 > α then

CS = CS ∪ {v → vt};
Vt = Vt ∪ {vt};

return CS;

Algorithm 1. Level-Wise Causal Search based Disease Pathway Discovery

4 Experiments

The effectiveness of LWCS is experimentally studied on real gene expression
data. All the experiments are conducted in Matlab 2011 environment, and sev-
eral existing open source packages are used in the experiments. In detail, the
Rasmussen and Williams’s implementation of the Gaussian process regression1

is used as the regression method in the ANM step, and Zhang’s implementation
of kernel independence test2 are used to detect the conditional independence
relations in both PC and ANM step.

Data Preparation. We test LWCS on two real gene expression data and verify
the results on the previous literatures. In detail, we run our analysis on DLBCL
dataset [26] and Colon data set [1]. The task of DLBCL is to find the causal
pathway for the difference of lymphoma, diffuse large B-cell lymphoma(DLBCL)
and follicular lymphoma(FL). The aim of Colon dataset is to find the causal
pathway for the colorectal cancer. Please refer to the original references for the
details of the datasets.

1 http://www.gaussianprocess.org/gpml/code/matlab/doc/
2 http://people.tuebingen.mpg.de/kzhang/KCI-test.zip
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Results. The discovered pathway on the DLBCL data set is shown in Figure
3(a). Most of the genes have been reported in the previous research of DLBCL or
FL, for example, Z21966 at is considered as cause gene of FL in [26]; U68030 at
and L42324 at are considered as the causal genes of DLBCL in [24]. One of the
interesting discovery of our work is the gene, M14328 s at. Though M14328 s at
has already been reported differentially expressed in DLBCL but not on FL,
the detail mechanism is still not clear. The discovered pathway shows that the
M14328 s at effects the disease through the gene U68030 at, which provides a
new explanation of the confusing observation. The detail descriptions of the
related genes are listed in Table 1.

L42324_atU68030_at D87119_at Z21966_at

M14328_s_at

DLBCL/FL

(a) DLBCL

U09564J02854 H28704

U25265

Colon

(b) Colon

Fig. 3. Disease Pathway Discovered on DLBCL and Colon

Table 1. Results on DLBCL Data Set

Probe ID Description

U68030 at Human G protein-coupled receptor (STRL22) mRNA

D87119 at Human cancellous bone osteoblast mRNA for GS3955

L42324 at Homo sapiens G protein-linked receptor gene (GPCR) gene

Z21966 at H.sapiens mPOU homeobox protein mRNA

M14328 s at Human alpha enolase mRNA

Figure 3(b) gives the pathway discovered on the Colon dataset. In the path-
way, the gene J02854 and H28704 have been reported as the cause gene of col-
orectal cancer [1]. MEK5 (U25265) is the upstream activator of ERK5 in colon
epithelial cells [10], and ERK5 is a member of the mitogen-activated protein
kinase family (U09564), all of them are high related to colorectal cancer.

Table 2. Results on Colon Data Set

Probe ID Description

J02854 myosin regulatory light chain 2, smooth muscle isoform

H28704 retinoic acid receptor RXR-beta isoform 1 (Homo sapiens)

U25265 Human MEK5 mRNA

U09564 Human serine kinase mRNA
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5 Conclusions and Discussion

We propose a new causality model to present and discover the disease pathway
from the high dimensional and small sample size gene expression data. The
proposed method is tested on real life gene expression data sets. The success
of the proposed method reflects that causality is a proper model to present the
regulatory relations among the genes, and the interactions among the genes and
the phenotype. The proposed approach provides a good causal inference method
for the high dimensional and small sample size data.
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Abstract. Conventionally, a deep neural network (DNN) is trained to
predict probabilities of class labels. Recently, DNN has shown great suc-
cess in many pattern recognition tasks such as speech recognition and
handwritten digit recognition. To take advantage of its great learning
power, we propose and build an on-line handwriting recognition system
for French strings, which applies a DNN for non-linear feature transfor-
mation before training the character models. When a DNN is predicting
class labels, its hidden layer outputs can be regarded as a better repre-
sentation of the original features extracted from handwriting trajectory
data. In this paper, we demonstrate that the proposed system can achieve
a relative character error rate (CER) reduction of about 28.5% when be-
ing compared to a conventional system without feature transformation.
We also notice that the CER could be further reduced by 3.3% relatively
when the transformed features are used along with the original features.

Keywords: Deep neural network (DNN), On-line handwriting recogni-
tion, Feature transformation, Hidden Markov model (HMM), Gaussian
mixture model (GMM).

1 Introduction

In the age of information, the pen-based handwriting recognition is becoming a
new form of interaction between humans and computers. Being compared with
the traditional input devices of the keyboard and the mouse, a pen could not only
manage the basic operations of clicking and dragging, but also act as a more natu-
ral writing tool. To achievemore reliable recognition rate, research on handwriting
recognition has been conducted for about thirty years [1][2]. The problem of hand-
writing recognition can be divided into two categories which are on-line and off-
line. In the on-line recognition system, a sequence of feature vectors representing
movement of the pen tip is transformed into meaningful text, while in an off-line
recognition task, only the image of the text is available. In this paper, we focus on
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the problem of on-line recognition and propose a more advanced system to recog-
nize handwritten strings by applying deep neural network (DNN).

Neural network has shown its great advances in many pattern recognition
tasks. Many complex approaches based on neural network have been proposed
for handwriting recognition and have acquired great improvement. The on-line
handwriting recognition system NPen++ is based on a multi-state time delay
neural network (MS-TDNN) [3]. Convolutional neural network (CNN) [4] and
recurrent neural network (RNN) [5] have also been applied on different hand-
writing recognition tasks. Apart from those complex approaches, the simpler
architecture of feedforward deep neural network has also achieved great success.
In the field of automatic speech recognition (ASR), DNN has been successfully
applied to predict posteriors of class labels and obtained remarkable accuracy
gain [6][7]. DNN has also been proved to perform well on handwritten digit recog-
nition even without unsupervised pre-training [8]. Recently, graphics processing
units (GPU) technology has been widely adopted in scientific computation and
it can dramatically speed up intensive computational task which can be paral-
lelized. The training speed of a DNN can be effectively accelerated with the aid
of GPU. However, higher time consumption during the decoding stage remains
to be a problem, especially when using a very deep neural network for class mod-
eling. To make use of the strong modeling power of DNN without increasing too
much computational load for decoding, we propose to use DNN for exploiting
more useful feature representation in an on-line handwriting recognition system.
Our goal is to investigate if we could find a better representation of the input
observations while applying a deep learning scheme.

The rest of the paper is organized as follows. Section 2 describes how a conven-
tional on-line handwriting recognition system work and how to integrate DNN
in such a system for more effective feature extraction. Experimental results are
presented and analyzed in section 3. Finally, section 4 ends up with conclusions
and discusses possible future work.

2 Methods

2.1 Overview of Baseline Handwriting Recognition System

There are four main steps being involved in building a conventional system, and
we use it as the baseline of our work for comparison. The first stage is data
pre-processing which usually contains noise reduction and normalization, which
normalizes the size of the handwriting according to the slant corrected base-
line. The next stage is feature extraction. The function of feature extraction
is to extract the dynamic and static information of handwriting data. The fea-
tures are computed form the normalized sequence of captured coordinates (x, y).
The dynamic features consist of the information extracted from each point con-
sidering the neighbors with respect to the time. The static features take the
off-line structure representation of the handwriting into account. This step con-
verts each frame of the input data into a multi-dimensional feature vector. We
then implement genetic algorithm (GA) [9] as search heuristic that mimics the
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process of natural selection helping us to find an optimal subset of features as
well as achieving dimension reduction. After obtaining feature vectors, we then
use these features and their corresponding transcriptions for model training.
Normally, each character is modeled as an Hidden Markov model (HMM). The
emission probability for each state is modeled with Gaussian mixture model
(GMM). For such a GMM-HMM based system, the training scheme is the same
as that applied in a traditional automatic speech recognition (ASR) system using
minimum phone error (MPE) criterion [10] .

This set of trained HMMs are then integrated with a language model (a
character loop for this task) to build a decoding network. Given an unknown
sequence of feature vectors, we can find the most probable word sequence in the
network through standard Viterbi search [11].

2.2 Deep Neural Network for Non-linear Feature Enhancement

Typically, a DNN models posterior probabilities of different classes given a fea-
ture vector ot. The input to the network is the frame at t with several of its
neighboring frames. The outputs are posterior probabilities of different classes
p(s|ot).

Estimation of the posterior probabilities in a DNN could be considered as a
two step process . Suppose there is a DNN with L+1 layer, in the first step, the
observation vector ot is transformed into a feature vector vL through L layers of
non-linear transform. This step is illustrated in Eq. 1, where σ(zl(vl)) is output
vectors at layer l given input vector vl (with sigmoid activation σ) and it could
be used as input vector for layer l + 1. W l is weight matrix at layer l and al

stands for biases for neurons at layer l.

vl+1 = σ(zl(vl)) = σ((W l)T vl + al), 0 ≤ l < L (1)

In the second step, the top layer models the desired posterior probabilities, which
is summarized in Eq. 2.

P (s|ot) =
ez

L
s (vL)∑

s′ e
zL
s′(v

L)
= softmaxs(z

L(vL)) (2)

As intermediate products, output vectors at hidden layer l could be regarded
as a non-linear transform of the original features. In this paper, we propose
to use the non-linear transformed features calculated at the hidden layer for
traditional GMM-HMM system training. Furthermore, we can concatenate the
original features and the transformed ones when building a GMM-HMM system.
Figure 1 displays the proposed system using non-linear transformed features. At
first, a DNN with hidden layers is trained. We set a middle hidden layer with
fewer units than the others (We set the number of neurons at this layer close to
the dimensionality of original feature vector so that it will not cost more time
for decoding). The trained network can take the features of the training data
as the inputs and we select linear outputs of the middle hidden layer as new
transformed features. These transformed features are then applied to train a
new GMM-HMM based system as mentioned in section 2.1.
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Fig. 1. Proposed system using non-linear transformed features

2.3 Training of DNN

DNNs are often trained with error back-propagation (BP) which is based on
stochastic gradient descent to minimize an objective function E with a learning
rate ε.

(W l, al)← (W l, al)− ε
∂E

∂(W l, al)
(3)

For the task described in this paper, the training criterion of minimum cross-
entropy error (MCE) is used as in Eq. 4. The objective function represents the
entropy of the target values, where yi(ot) denotes actual output at node i in
output layer (softmax output), tarti = 1 indicates a frame ot belongs to class
i, and vice versa. K is the number of classes and N is the number of sample
frames for training.

E = −
N∑
t=1

K∑
i=1

tartilog(yi(ot)) (4)

The partial derivative of the cross-entropy error is measured with respect to
each weight or bias in the network (back-propagate error if weight is not at the
output layer). One specifically obtained partial derivative is then used to shift
the corresponding weight and bias along their optimal direction as indicated in
Eq. 3. Weights and biases of DNN are learned in this way epoch by epoch until
the modeling accuracy converges. In practice, the gradient descents are done in
mini-batches for each epoch. The learning rate normally starts with a fast rate
and slows down as epoch goes.

3 Experiment

3.1 Corpus

In this paper, an on-line handwriting recognition system for single character and
strings are established. Experimental results reported in this paper are based on
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handwriting database owned by Samsung Research Center, Beijing. The French
corpus is used for training and testing the proposed system. The handwriting
data was collected from French local residents. They were employed to write the
prepared transcripts with stylus pen on a big screen mobile phone (e.g. Galaxy
NoteII and Galaxy Note10.1). The training data could be divided into several
main categories which are single letter, words of different cursive levels, single
symbol, single digit and strings set containing letters, symbols and digits. Data
used for testing also covers these writing styles but it does not overlap with the
training set.

3.2 Baseline

The baseline established in this task is a traditional GMM-HMM based system.
Each of the 116 characters in French was trained as a left-to-right HMM. The
emission probability for each state was modeled with 48 GMMs. Models were
trained using MPE criteria. A simple character loop was used as the language
model. We applied a standard Viterbi decoder to find recognized results. The
grammar scale factor and the insertion penalty were both set to 0.0.

When evaluating the baseline, the trained HMMs were at first applied on 4
validation sets containing single letter (780 characters), single symbol (8741 char-
acters), single digit (10233 characters) and strings combined by letters, symbols
and digits (8505 strings consisting of 27462 characters). After that, models were
then tested on a new unlearned set containing all these writing styles (13582
characters) mentioned above. We evaluate the performance of the system using
character error rate (CER).

3.3 Experiments on Transformed Features

The non-linear transformed features were obtained by applying a DNN on the
original features used in the baseline. When establishing the new system on the
French corpus, the DNN with 800, 40 and 800 neuron at each hidden layer was
trained at first. Specifically, we used the current frame and its 10 neighboring
frames of features as the input to the DNN. The whole DNN predicted posteriors
of 834 state classes in the system. We used a learning rate of 0.1 for the first
10 epochs and 0.03 for the next 5 epochs. After that, the learning rate would
decrease by a constant factor for each epoch (Experimentally, the factor ranges
from 0.90 to 0.95). Training were stopped when the decrement of validation error
got smaller than a threshold. We adopted stochastic gradient descent with mini-
batch for BP. The first two hidden layer of the trained DNN were then used
for extracting the new non-linear transformed features by passing the original
features through. The extracted new features was then used alone (40-dimension)
or concatenated with the original features (80-dimension) to train a new GMM-
HMM based recognition system. We reduced the number of each HMM state
mixtures to 32 GMMs in the new system for computational efficiency. Evaluation
criteria of the new system were the same as that for the baseline.
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The performance of systems using different feature schemes is summarized
in figure 2, where CER% is defined as the sum of deletions, substitutions and
insertions over the number of characters in the reference. Detailed information is
recorded in Table 1. For the task of French handwriting recognition, after apply-
ing the new non-linear transformed features, no matter used alone or with con-
catenation, CER on different types of validation sets will all decrease even with
fewer Gaussian mixtures than the baseline, which means the modeling power of
the new HMMs based on the new non-linear transformed features has been effec-
tively improved. When applying the new models trained from the transformed
features alone on the unseen test data, the CER decreases relatively by about
28.5% and reach 10.69%. If the new models were trained using the concatenated
features. the CER could be further reduced by about 3.3% relatively and reach
10.34%.

Table 1. Performance of systems using different features schemes
(N: Words in the reference; H: Correctly recognized words; D: Deletions; S: Substitu-
tions; I: Insertions)

Baseline Transformed features Concatenated features
Set N H D S I CER% H D S I CER% H D S I CER%
1 780 558 0 222 29 32.18 564 0 216 19 30.13 570 0 210 15 28.85
2 8741 7044 0 1697 193 21.62 7297 0 1462 137 18.29 7567 0 1174 94 14.51
3 10233 8897 0 1336 844 21.30 9034 0 1199 663 18.20 9144 0 1089 665 17.74
4 27462 22525 193 4744 4240 33.42 23296 159 4007 3037 26.23 23621 177 3664 2782 24.12

Test 13582 11916 276 1390 313 14.57 12328 176 1078 198 10.69 12361 194 1027 183 10.34

validation set1 validation set2 validatin set3 validation set4 test set
10

15

20

25

30

35

CE
R%

data set

 

 
Baseline
Transformed features
Concatenated features

Fig. 2. CER% of systems using different feature schemes. The 4 validation sets contain
single letter, single symbol, single digit and strings respectively. The unlearned test set
contains all these writing styles.

The improvements on the CER of the new systems mainly result from the
DNN. To model posteriors of different states from the original features, a DNN
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would automatically try to find a better representation of the observation vectors
during the processing at the hidden layers. These intermediate outputs at the
hidden layer can thus be regarded as a set of more representative features with
higher robustness for GMM-HMM modeling.

To investigate more about the three systems with different feature schemes,
Table 2 summarizes approximate number of parameters involved for each system.
The GMM-HMM system using the transformed feature alone is more advanced
than the traditional baseline since not only its CER is reduced sharply by 28.5%
but also the quantity of parameters involved for system modeling decreases by
about 21.2%. The main drawback for such a system is that its additional fea-
ture transform step will cost more computational time and make the recognition
process slower. For transforming each frame of features, we need extra large
matrix multiplication and non-linear activation function compared to the base-
line. When using the higher dimensional concatenated features, though system
performance would be further improved by about 3.3%, such a system is not
economical since the size of the resultant model is almost doubled and the rec-
ognizing process becomes slower.

Table 2. Comparison for number of parameters involved in different systems

Feature scheme #params
CER% on
test set

Original features 3.21M 14.57
Transformed features 2.53M 10.69
Concatenated features 4.66M 10.34

4 Conclusion

In this paper, we proposed an on-line handwriting recognition system which in-
tegrates deep neural network for more representative feature transformation. On
a task of French handwriting recognition, we have successfully demonstrated its
advantage. Being compared to the conventional GMM-HMM baseline, applying
a deep neural network for non-linear feature transform yields a 28.5% relative im-
provement even with fewer Gaussian mixtures. When concatenating the original
features and the transformed ones, we can even achieve a further 3.3% relative
improvement. These exciting results indicate that when a deep neural network
is trained to predict class labels, outputs at the hidden layer are characterized
with a more proper representation of the original handwriting features.

The main challenge for such a system is its higher time consumption resulted
from feed-forward process of deep neural network. Thus, it is necessary to apply
more efficient algorithms of matrix computation in the future. Meanwhile, it
is worthwhile to spend time extending this method on handwriting recognition
tasks based on other languages. Another valuable extension would be building a
general feature extractor for multiple languages, since those different languages
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sharing the same origination may be similar in curve and shape characteristics
such as English, French and some other European languages. Such a general fea-
ture extractor would be much more efficient while being applied on an embedded
system.
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Abstract. This paper proposes a novel approach based on spiking neu-
ral networks to recognize human actions in videos. In our method, a star
skeleton detector is designed to extract spatial features of input videos,
and a classifier using evolving ReSuMe algorithm is proposed, with scale
and shift invariance, to recognize input patterns. In learning algorithm,
the remote supervised learning method(ReSuMe) is improved by the par-
ticle swarm optimization(PSO) algorithm. Experimental results on KTH
and Weizmann dataset prove that our method achieves a significant im-
provement in performance compared with traditional ReSuMe and other
method based on neural networks.

Keywords: Human actions recognition, Spiking neural networks, Par-
ticle swarm optimization, Remote supervised learning method.

1 Introduction

Recognizing human actions in videos is an important task in computer vision
which has been applied to various fields, such as surveillance system, man-
machine interface and medical monitoring. In recent years, plenty of approaches
have been developed, including engineering method and bionics method. Unlike
engineering method that has achieved lots of success, the bionics method is still
in its infancy, and developed rapidly in recent years. Since bionics method imi-
tates mechanisms of human’s visual system and human brain’s learning rule, it
has more potential to develop especially in neural networks. Recently, there are
some researches using neural networks to recognize human actions [1]-[3], but
their performance is not good enough.

In this paper, a novel human action recognition method is proposed to solve
this problem with two contributions: (1) A new star skeleton detector based on
spiking neural networks is presented, and it is easier to adjust precision than
traditional approaches. (2) A classifier using the evolving ReSuMe algorithm is

� This work was supported by National Science Foundation of China under Grant
61273308 and the Fundamental Research Funds for the Central Universities under
Grant ZYGX2012J068.

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 366–373, 2014.
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devised, that improves the performance of ReSuMe algorithm. Besides, the scale
of our network neurons is independent with the size of pictures, which reduces
computational complexity compared with [2].

2 The Proposed Method

2.1 Star Skeleton Detector

In this section, a contour’s star skeleton detector is presented. In our method, a
point in a contour is represented by its corresponding angle and distance to its
centroid. To achieve scale invariance, the distance of every contour is normalized
to 1-10.

Neurons

Input contour

Input Layer

Middle layer

Output layer

Excitatory 

Inhibitory

Fig. 1. Framework of star skeleton detector

As shown in Fig.1, the star skeleton detector consists of three layers, each layer
is a circle with 360 degrees, and each degree has 10 neurons. Its detailed neuron
connections are shown in Fig.2. The connection depicted in Fig.2(a) enable our
detector to locate the effective star points and in Fig.2(b) to filter out adjacent
points. Firing neurons in output layer corresponding to star points of input
contour. Obviously, this detector can be implemented with high efficiency since
it does not requires weight adjustments.

Different with traditional methods used in [1] and [4], star skeletons with dif-
ferent precisions can be obtained easily by modifying constant a in our method.
Fig.3 shows simulation results with different a.
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A neuron in 

input layer

Middle layer

Excitatory

Inhibitory

Angular distance a

Angular 

distance a

(a)

A neuron in 

middle layer

Output layer

Excitatory

Inhibitory

Angular distance a

(b)

Fig. 2. Star detector connection. The centroid neuron in our method is a reference
without any connection to others. (a) Neuron connections from input layer to middle
layer. Each neuron in input layer connects to its corresponding neuron in middle layer
with excitatory synapses, to its corresponding’s left and right a angles’(from 1 to a
angle’s) neurons which have shorter distances than it with inhibitory synapses.(b)
Neuron connections from middle layer to output layer. Each neuron in middle layer
connects to its corresponding neuron in output layer with excitatory synapses, to its
corresponding’s right a angles’ neurons with inhibitory synapses.
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Fig. 3. Star skeletons obtained with different constant a. (a) a = 15; (b) a = 5;

2.2 Our Evolving-ReSuMe Classifier

In this section, an evolving ReSuMe classifier is proposed. As shown in Fig.4(a),
the classifier with multi-synapses from middle layer to output neuron, and a
target signal neuron is connected to supervise its learning. The detailed connec-
tions of our classifier are shown in Fig.4(b). In our classifier, the most often used
spiking model, SRM0 [5] is employed, with parameters set as follows.
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External voltage of each neuron in input and middle layer are set to 0, while
in the output neuron, it is set by the following equation,

Uext =

⎧⎨⎩
U/5, if t ∈ [ti + (Cti − 1) ∗ 0.1, ti + (Cti − 1)]

0, otherwise,

(1)

where U is the voltage of the output neuron, and ti is the firing time of a video,
which is obtained by a linear one-to-one mapping from object’s velocity to its
firing time. Cti denotes class labels that the firing time ti is related to. Every
class with samples firing at time ti is related to ti.

The threshold is set to 0 except in output layer, in which the threshold is
changed dynamically: suppose there are Cn intervals after ti, each interval has
one delayed sub-synapse potential and one threshold Θi (i = 1, 2, . . . , Cn). The
threshold Θi is changed by the following equation with Θ1 = 0,

Θi =

{
Umaxi + 0.1, if output neuron fires at interval i
Θi, otherwise,

(2)

where Umaxi is the maximum neuron voltage that a video produced in interval
i. Then the last interval in which the output neuron emit spike has the biggest
voltage, which indicates its corresponding class label.

In learning algorithm, the ReSuMe [6] learning rule is employed and improved.
The weight change of ReSuMe can be expressed by the following equation,

d

dt
woi(t) = [S

(t)
d − S(t)

o ][ad +

∫ ∞

0

adi(s)Si(t− s)ds], (3)

where woi(t) is the weight from input neuron to the output one, ad is a constant

and adi is a learning window. S
(t)
o denotes the spike trains of the output neuron.

The value of the parameter ad in Eq.3 influences weight distribution signifi-
cantly, but there is no existing method to assign an appropriate value to it. In
our study, the Particle Swarm Optimization(PSO) algorithm [7] is applied to
optimize this parameter, which can be described as follows,

νi(k + 1) = νi(k) + γ1i(bi − ai(k)) + γ2i(gi − ai(k)), (4)

ai(k + 1) = ai(k) + νi(k + 1), (5)

where i is the particle index, γ1i and γ2i are random number from 0 to 1, k is
the discrete time index, vi is the velocity of ith particle and ai is the position of
ith particle. bi denotes the best position found by ith particle and gi means the
best position found by all particles. In our method, the recognition accuracy is
regarded as the fitness of particles.
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Feature	
extraction

multiple	synapse

Output	layer

Middle	layer
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Neurons

Target	signal
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Input layer
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Angle  (k-1)°
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Fig. 4. The classifier framework with multiple synapses. (a) The framework of our
classifier. (b) Neuron connections from input layer to middle layer. Each input neuron
connects with excitatory synapses to its corresponding neuron(with distance d and
angle k in middle layer), its corresponding neuron’s left neuron(with distance d and
angle k − 1 in middle layer) and right neuron (with distance d and angle k + 1 in
middle layer). A neuron in middle layer connects to its neighbouring neuron which has
the same angle but shorter distance than it with excitatory synapses.

3 Experimental Results

3.1 On Weizmann Dataset

The Weizmann database is one of benchmark datasets in human action recogni-
tion which contains ten actions, each action has nine videos which are provided
by different people, these video sequences can be found at http://www.wisdom.
weizmann.ac.il/~vision/SpaceTimeActions.html. In our simulations, human
are detected by the motion detection method proposed by Viola, P. [10]. The PSO
evolving results are shown in Fig.5. It indicates that our method is quickly con-
verged within 20 epoches and obtains effective results.

Table 1 shows the recognition accuracy of each action, where N is the overall
number of input videos,NR is the number of videos which are correctly classified,
and the accuracy R is the percentage of NR from R. As shown in Table 1,
most actions can be recognized correctly with the average recognition accuracy
95.56%.

Experimental results compared with different methods are listed in Table 2. It
indicates that our method outperform the method proposed by Meng Y. [2] even
using traditional ReSuMe algorithm. Besides, with the improvement of PSO, the

http://www.wisdom.weizmann.ac.il/~{}vision/SpaceTimeActions.html
http://www.wisdom.weizmann.ac.il/~{}vision/SpaceTimeActions.html
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Fig. 5. Evolving results on Weizmann dataset, global best solution is 0.047 and a =
0.0193. In our simulations, the population size is 25, with the maximum number of
epochs 30, and the initial inertia weight 0.9, the final inertia weight 0.4. The range of
particle is [-50,50], maximum velocity is 20% of the maximum speed range, and the
minimum global error gradient is 10−25.

Table 1. Results of action recognition on Weizmann dataset
Actions N NR R(%)
walking 9 9 100
running 9 8 88.89
waving2 9 9 100
pjumping 9 9 100
siding 9 8 88.89
jacking 9 9 100
skipping 9 7 77.78
waving1 9 9 100
bending 9 9 100
jumping 9 9 100
overall 90 86 95.56

accuracy of our ReSuMe classifier is elevated by 6.28%. Since in this dataset,
samples for each action are insufficient, the adaptive boosting (AdaBoost)[8] is
applied to improve the performance of our method on PSO+ReSuMe. It com-
bines several weak classifiers to obtain a better performance, and in this simula-
tion, 5 same classifiers are employed. As shown in Table 2, AdaBoost improves
our performance of PSO+ReSuMe by 3.33%.

3.2 On KTH Dataset

The KTH dataset is another benchmark dataset that is tested to investigate
performance of our method. It includes 6 kinds of actions, each one is provided
by 25 people under four different scenarios [9]. As shows in Fig.6, our method is
quickly converged with result of error rate 0.125.
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Table 2. Compared with different methods on Weizmann dataset
Mehtod feature accuracy (%)

AdaBoost+PSO+ReSuMe Velocity+Star Skeletons 98.89

PSO+ReSuMe Velocity+Star Skeletons 95.56

ReSuMe Velocity+Star Skeletons 89.28

Meng Y. [2] Spatial feature 75.55
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Fig. 6. Evolving result in KTH dataset, global best solution is 12.53 and a = 0.0012

The accuracy of each action is listed in Table 3, which indicates that most of
actions can be recognized successfully with the overall performance of 87.47%.

Table 4 shows the comparable results using different approaches. Similar to
previous results, our PSO+ReSuMe method outperform the BCM-GRN method
presented by Meng Y. [2] and the traditional ReSuMe algorithm. In this dataset,
AdaBoost has no help for our performance, since there are sufficient samples in
each action(about 100 samples for each action), and there are much input noises.
In this situation, Adaboost can not take its advantage.

Table 3. Results of action recognition on KTH dataset
Actions N NR R(%)
walking 100 92 92.00
jogging 99 88 88.89
running 100 93 93.00
boxing 100 86 86.00

hand-waving 100 80 80.00
hand-clapping 100 85 90.00

overall 599 524 87.47
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Table 4. Comparison of different methods on KTH dataset
Mehtod feature accuracy (%)

PSO+ReSuMe Velocity+Skeletons 87.47
AdaBoost+PSO+ReSuMe Velocity+Skeletons 85.26

ReSuMe Velocity+Skeletons 84.33
Meng Y. [2] Spatial feature 82.80

4 Conclusions

A common framework for star skeleton detection and human action classifica-
tion was proposed in this paper, and experiments on a number of benchmark
datasets demonstrated its performance. It is applicable even when contours are
not extracted accurately, or have regular noises. Future researches will address
the problem of recognize actions in dynamic backgrounds and with in-regularity
noises. Besides, a more efficient learning algorithm is required.
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Abstract. This paper presents a new contextual bandit algorithm, NeuralBandit,
which does not need hypothesis on stationarity of contexts and rewards. Several
neural networks are trained to modelize the value of rewards knowing the context.
Two variants, based on multi-experts approach, are proposed to choose online the
parameters of multi-layer perceptrons. The proposed algorithms are successfully
tested on a large dataset with and without stationarity of rewards.

1 Introduction

In online decision problems such as online advertising or marketing optimization, a
decision algorithm must select amoung several actions. Each of these options is asso-
ciated with side information (profile or context) and the reward feedback is limited to
the chosen option. For example, in online advertising, a visitor queries a web page; a
request with the context (web page address, cookies, customer profile, etc.) is send to
the server; the server sends an ad which is displayed on the page. If the visitor clicks on
the ad the server receives a reward. The server must trade-off between the explorations
of new ads and the exploitation of known ads. Moreover, in an actual applications, both
rewards and data distributions can change with time. For instance, the display of a new
ad can change the probability of clicks of all ads, the content of a web page can change
over time. Robustness to non-stationarity is thus strongly recommended.

2 Previous Work

The multi-armed bandit problem is a model of exploration and exploitation where one
player gets to pick within a finite set of decisions the one which maximizes the cumu-
lated reward. This problem has been extensively studied. Optimal solutions have been
provided using a stochastic formulation [1,2], a Bayesian formulation [3,4], or using
an adversarial formulation [5,6]. Variants of the initial problem were introduced due
to practical constraints (appearance of a new advertisment after the beginning of learn-
ing [7,8], fixed number of contractual page views [9,10]). However these approaches
do not take into account the context while the arm’s performance may be correlated
therewith.

A naive solution to the contextual bandit problem is to allocate one bandit problem
for each context. A tree structured bandit such as X-armed bandits [11] or a UCT vari-
ant [12] can be used to explore and exploit a tree structure of contextual variables to
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find the leaves which provide the highest rewards [13]. The combinatorial aspect of
these approaches limits their use to small context size. Seldin et al [14] modelize the
contexts by state sets, which are associated with bandit problems. Without prior knowl-
edge of the contexts, it is necessary to use a state per context, which is equivalent to
the naive approach. Dudı́k et al [15] propose an algorithm of policies elimination. The
performance of this algorithm depends on the presence of a good policy in the set. The
epoch-greedy algorithm [16] alternates exploration then exploitation. During explo-
ration, the arms to play are randomly drawn to collect an unbiased training set. Then,
this set is used to train a classifier which will be used for exploitation during the next
cycle. The nature of the classifier remains to be defined for concrete use. In LINUCB
[17,18] and in Contextual Thompson Sampling (CTS) [19], the authors assume a linear
dependency between the expected reward of an action and its context and model the rep-
resentation space using a set of linear predictors. Banditron [20] uses a perceptron per
action to recognize rewarded contexts. Furthermore, these algorithms assume that the
data and the rewards are drawn from stationary distribution, which limits their practical
use. The EXP4 algorithm [6] selects the best arm from N experts advices (probability
vectors). Exploring the link between the rewards of each arm and the context is dele-
gated to experts. Unlike the previous algorithms, the rewards are assumed to be chosen
in advance by an adversary. Thus, this algorithm can be applied to non-stationnary data.

At first we will formalize the contextual bandit problem and will propose a first al-
gorithm: NeuralBandit1. Inspired by Banditron [20] it estimates the probabilities of
rewards by using neural networks in order to be free of the hypothesis of linear separa-
bility of the data. Neural networks are universal approximators [21]. They are used in
reinforcement learning [22,23] and can estimate accurately the probabilities of rewards
within actual and complex problems. In addition, the stochastic gradient achieves good
performances in terms of convergence to the point of best generalization [24] and has
the advantage of learning online. In seeking to reach a local minimum, the stochastic
gradient can deal with non-stationarity. This will result in a change of the cost func-
tion landscape over the time. If this landscape changes at a reasonable speed, the al-
gorithm will continue the descent to a new local minimum. The main issue raised by
the use of multilayer perceptrons remains the online setting of various parameters such
as the number of hidden neurons, the value of the learning step or the initalization of
the weight seed. We propose two advanced versions of the algorithm NeuralBandit1 to
adjust these settings using adversarial bandits that seek, among several models initial-
ized with different parameters, the best one. We conclude by comparing these different
approaches to the state-of-the-art on stationnary and on non-stationnary data.

3 Our Algorithm: NeuralBandit1

Definition 1 (Contextual bandit). Let xt ∈ X be a contextual vector and (yt,1, ...,
yt,K) a vector of rewards associated with the arm k ∈ [K] = {1, ...,K} and ((x1, y1),
..., (xT , yT )) the sequence of contexts and rewards. The sequence can be drawn from
a stochastic process or chosen in advance by an adversary. At each round t < T , the
context xt is announced. The player, who aims to maximize his cumulated rewards,
chooses an arm kt. The reward yt,k of the played arm, and only this one, is revealed.
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Definition 2 (Cumulated regret). Let H : X → [K] be a set of hypothesis , ht ∈ H
a hypothesis computed by the algorithm A at the round t and h∗t = argmax

ht∈H
yt,ht(xt)

the optimal hypothesis at the same round. The cumulated regret is:

R(A) =

T∑
t=1

yt,h∗
t (xt) − yt,ht(xt)

The purpose of a contextual bandit algorithm is to minimize the cumulative regret.

Each action k is associated with a neural network with one hidden layer which learns
the probability of reward for an action knowing its context. We choose this modelization
rather than one neural network with as many outputs as actions to be able to add or
remove actions easier.

Let K be the number of actions, C the number of neurons of each hidden layers and
Nk

t : X → Y the function associating a context xt to the output of the neural network
corresponding to the action k at the round t. N denotes the number of connections of
each network with N = dim(X)C + C. To simplify the notations, we place the set of
connections in the matrix Wt of size K ×N . Thus, each row of the matrix Wt contains
the weight of a network. Δt is the matrix of size K ×N containing the update of each
weight between rounds t and t+ 1. The update equation is:

Wt+1 =Wt +Δt

The backpropagation algorithm [25] allows calculating the gradient of the error for
each neuron from the last to the first layer by minimizing a cost function. Here, we use
the quadratic error function and a sigmoid activation function.

Let λ be the learning step, x̂n,kt the input associated with the connection n in the
network k, δn,kt the gradient of the cost function at round t for the neuron having as
input the connection n in the network k and Δn,k

t the value corresponding to the index
(n, k) of the matrix Δt. When the reward of an arm is known, we can compute:

Δn,k
t = λx̂n,kt δn,kt

In the case of partial information, only the reward of the arm kt is available. To
learn the best action to play, an approach consists of a first exploration phase, where
each action is played the same number of times in order to train a model, and then
an exploitation phase where the obtained model is used. Thus, the estimator would
not be biased on the most played action. However, this approach would have abysmal
performances in case of non-stationary data. We choose to use an exploration factor
γ, constant over time, allowing continuing the update of the model in the case of non-
stationary data. The probability of playing the action k at round t knowing that k̂t is the
arm with the highest reward prediction is:

Pt(k) = (1− γ)1[k = k̂t] +
γ

K
We propose a new update rule taking into account the exploration factor:

Wt+1 = Wt + Δ̃t , (1)
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with Δ̃n,k
t =

λx̂n,kt δn,kt 1[k̂t = k]

Pt(k)

Theorem 1. The expected value of Δ̃n,k
t is Δn,k

t .

The proof is straightforward:

E[Δ̃n,k
t ] =

∑K
k=1 Pt(k)(

λx̂n,k
t δn,k

t 1[k̂t=k]
Pt(k)

)

= λx̂n,kt δn,kt

= Δn,k
t

��
The proposed algorithm, NeuralBandit1, can adapt to non-stationarity by continuing

to learn over time, while achieving the same expected result (in the case of stationary
data) as a model trained in a first phase of exploration.

Algorithm 1. NeuralBandit1
Data: γ ∈ [0, 0.5] et λ ∈]0, 1]
begin

Initialize W1 ∈]− 0.5, 0.5[N×K

for t = 1, 2, ..., T do
Context xt is revealed

k̂t = arg max
k∈[K]

Nk
t (xt)

∀k ∈ [K] on a Pt(k) = (1− γ)1[k = k̂t] +
γ
K

k̃t is drawn from Pt

k̃t is predicted and yt,k̃t
is revealed

Compute Δ̃t such as Δ̃n,k
t =

λx̂
n,k
t δ

n,k
t 1[kt=k]

Pt(k)

Wt+1 = Wt + Δ̃t

4 Models Selection with Adversarial Bandit

Performances of neural networks are influenced by several parameters such as the learn-
ing step, the number of hidden layers, their size, and the initalization of weights. The
multi-layer perceptron corresponding to a set of parameters is called model. Using batch
learning, the models selection is done with a validation set. Using online learning, we
propose to train the models in parallel and to use the adversarial bandit algorithm EXP3
[5,6] to choose the best model. The choice of an adversarial bandit algorithm is justi-
fied by the fact that the performance of each model changes overtime due to the learning
itself or due to the non-stationarity of the data.
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Exp3. Let γmodel ∈ [0, 1] be an exploration parameter, wt = (w1
t , ..., w

M
t ) a weight

vector, where each of its coordinate is initialized to 1, and M the number of models.
Let m be the model chosen at time t, and yt,m be the obtained reward. The probability
to choose m at round t is:

Pmodelt(m) = (1− γmodel)
wm

t∑M
i=1 w

i
t

+
γmodel

M
(2)

The weight update equation is:

wi
t+1 = wi

texp

(
γmodel1[i = m]yt,m

Pmodelt(i)M

)
(3)

NeuralBandit2 (see Algorithm 2). If we consider that a model is an arm, a run of
this model can be considered as a sequence of rewards. The algorithm takes as inputs
a list of M models and a model exploration parameter γmodel. For each element of the
list, one NeuralBandit1 instance is initialized. Each instance corresponds to an arm.
EXP3 algorithm is used to choose the arms over time. After receiving a reward, each
neural network corresponding to the played arm is updated, and the weights of EXP3
are updated.

NeuralBandit3 (see Algorithm 3). The use of the algorithm NeuralBandit2 corre-
sponds to the assumption that there is a model NeuralBandit1 which is the best for all
actions. The algorithm NeuralBandit3 lifts this limitation by associating one EXP3 per
action.

NeuralBandit3 has greater capacity of expression than NeuralBandit2 as each action
can be associated with different models. However if the best model in NeuralBandit3
exists in NeuralBandit2, then NeuralBandit2 should find this model faster than Neural-
Bandit3 because it has only one instance of EXP3 with less possibility to update.

5 Experiments

The Forest Cover Type dataset from the UCI Machine Learning Repository is used. It
contains 581.000 instances and it is shuffled. We have recoded each continuous variable
using equal frequencies into five binary variables and we have recoded each categorical
variable into binary variables. We have obtained 94 binary variables for the context, and
we have used the 7 target classes as the set of actions. In order to simulate a datastream,
the dataset is played in loop. At each round, if the algorithm chooses the right class the
reward is 1 or else 0. The cumulated regret is computed from the rewards of an offline
algorithm fitting the data with 93% of classification. The plot of the curves (Figure 1)
are produced by averaging 10 runs of each algorithms with γ = 0.005, γmodel = 0.1.
Each run began at a random position in the dataset. The parameters of each model
(NeuralBandit1) are the combination of different sizes of hidden layer (1, 5, 25, 50, 100)
and different values of λ (0.01, 0.1, 1).
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Algorithm 2. NeuralBandit2
Data: γmodel ∈ [0, 0.5] and a list of M models parameters
begin

Initialize M NeuralBandit1 ;
Initialize the EXP3 weight vector w0 with ∀m ∈ [M ] wm

0 = 1;
for t = 1, 2, ..., T do

Context xt is revealed;
mt is drawn from Pmodelt (2);

The model mt choose action k̃t;

k̃t is predicted and yt,k̃t
is revealed;

Update of each network corresponding to the action k̃t for each model with (1);
Update of the EXP3 weight vector wt with (3);

Algorithm 3. NeuralBandit3
Data: γ ∈ [0, 0.5], γmodel ∈ [0, 0.5]and a list of M model parameters
begin

Initialize K neural networks per model m ;
Initialize K instance of EXP3;
for t = 1, 2, ..., T do

Context xt is revealed;
for k = 1, 2, ..., K do

mk
t is drawn from Pmodelkt

(2);

Action k is scored skt = N
mk

t ,k
t (xt);

k̂t = arg max
k∈[K]

skt ;

∀k ∈ [K] on a Pt(k) = (1− γ)1[k = k̂t] +
γ
K

;

k̃t is drawn from Pt;

k̃t is predicted and yt,k̃t
is revealed;

Update of each network corresponding to the action k̃t for each model with (1);
Update of each EXP3 weight vectors with (3);

On Stationary Data (left part of Figure 1). Banditron achieves a high cumulated
regret (57% of classification computed on the 100.000 last predictions) and is outper-
formed by all other contextual bandit algorithms on this dataset. The cumulated regret
and classification rate of LinUCB (72%), CTS (73%) and NeuralBandit3 (73%) are
similar and their curves tend to be the same. NeuralBandit2 has the fastest convergence
rate and achieves a smaller cumulated regret with 76% of classification.

On Non-Stationary Data (right part of Figure 1). Non-stationarity is simulated by
swapping classes with a circular cycle (1 → 2, 2 → 3 ,...,7 → 1) every 500.000 itera-
tions. At each concept drift, curves increase then stabilize. On stationary data LinUCB
and CTS achieve a lowest regret than Banditron but can’t deal with non-stationarity thus
are outperformed by it after the first drift. Banditron converges again near instantanly.
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Models selection algorithms need between 75.000 and 350.000 in the worst case to sta-
bilize at each drift. NeuralBandit2 and NeuralBandit3 are more complex models than
Banditron but achieve better performances on this non-stationary datastream. Neural-
Bandit3 seem to be more robust to nonstationarity than NeuralBandit2 on this dataset.
This can be explained by the fact that sometime, one neural network can stay on a bad
local minimum. If this append in NeuralBandit2, the entire model is penalized while in
NeuralBandit3 the algorithm can still use all the other networks.

Fig. 1. The cumulated regret of different contextual bandit algorithms over time on Forest Cover
Type. The left part is on a stationary datastream and the right part on a non-stationary datastream.

6 Conclusion

We introduced a new contextual bandit algorithm NeuralBandit1. Two variants with
models selection NeuralBandit2 and NeuralBandit3 used an adversarial bandit algo-
rithm to find the best parameters of neural networks. We confronted them to stationary
and non-stationary datastream. They achieve a smaller cumulated regret than Banditron,
LinUCB and CTS. This approach is successful and has the advantage of being trivially
parallelizable. Models differentiation show a significant gain on the Forest Covert Type
dataset with nonstationarity. We also showed empirically that our two models selection
algorithms are robust to concept drift. These experimental results suggest that neural
networks are serious candidates for addressing the issue of contextual bandit. However,
they are freed from the constraint of linearity at the expense of the bound on the regret,
the cost function being not convex.
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Abstract. Time series prediction theory and methods can be applied to many 
practical problems, such as the early warning of landslide hazard. Most already 
existing time series prediction methods cannot be effectively applied on landslide 
displacement prediction tasks, mainly for two problems. Firstly, the underlying 
dynamics of landslides cannot be properly modeled; secondly, it is difficult to 
perform effective long term predictions. Considering these problems, a dynamic 
predictor is proposed in our paper. The predictor is established on a recurrent 
network structure and trained by a newly proposed learning algorithm, namely 
echo state network. Furthermore, multi-step predictors are built based on echo 
state network, following different predicting strategies. Experimental results 
show that, the dynamic predictors perform better than static predictors, and can 
produce reliable multi-step ahead predictions of landslide displacements.  

Keywords: Time series prediction, landslide, recurrent neural network, echo 
state network, multi-step prediction. 

1 Introduction 

For a long period, Landslides have always been big threats to the life and property 
safety of residents in mountainous areas and river basins. The Three Gorges area is a 
well-known landslide-prone area in China. In recent years, the Three Gorges dam and 
Reservoir project dramatically changed the hydro-geological condition of the entire 
region [1]. The stability of the 5900 km river shore in this area is deteriorated by the 
rapid and significant increase of water level in the reservoir. More than 2500 instable 
slopes have already been located [2], while the significant environmental changes 
may further increase the landslide hazard in this area. Therefore, it's more and more 
an urgent issue to establish an effective early warning system for landslide disasters in 
this area. 
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Mechanisms of landslides have been studied. However, sufficiently precise me-
chanism models can hardly be obtained. Since the slope failure can be forecasted 
from the trend of displacement, lots of effort has been dedicated to the prediction of 
landslide displacement [1], [3, 4], and data-driven time series prediction approaches 
are usually resorted to. State of the art time series prediction techniques mainly fall into 
two categories, namely phase space reconstruction approaches and dynamic modeling 
approaches. Since the evolutions of landslides are in essence dynamic processes [5], 
dynamic predictors could be more suitable than feed forward neural networks and 
SVMs. It has been argued that in principle, an artificial recurrent neural network 
(RNN) can learn to mimic a target system with arbitrary accuracy [6]. In our research, 
we build dynamic models of landslides, using echo state network (ESN) [7], which is a 
novel learning paradigm for RNNs. Furthermore, following quite different predicting 
strategies, multi-step predictors based on ESN have also been proposed in this paper. 

2 Multi-step ESN Predictors 

The landslide displacement predictor, using a RNN for dynamic modeling, can be 

built as 

( 1) [ ( ) ( )]

( 1) [ ( 1)]
x i r

p o

X t f W X t W d t

d t g W X t

+ = ⋅ + ⋅
+ = ⋅ +

                   (1) 

where dr and dp denote the recorded and the predicted displacements, respectively. Wx 
is the recurrent internal connection matrix; Wi and Wo are the input and output con-
nection matrix. f[] and g[] are the active functions of the internal and output neurons 
in the network, which represent the nonlinearity of the system. In ESN, the network is 
randomly created and remains unchanged during training, while only the synaptic 
connections from the internal neurons to the output readout neurons are modified, as 
illustrated in Fig. 1. The training process of the predictor is aimed at minimizing the 
difference between the realistic displacement dr(t+1) and the predicted value dp(t+1), 
by tuning Wo. The training can therefore be simplified into a linear regression problem, 
which is much easier to solve than gradient-descent problems. And the shortcomings of 
gradient based trainings of RNNs can also be avoided. 

The predictor of (1) is a one-step ESN predictor. Following different strategies [8], 
four kinds of multi-step ESN predictors can be built as follows: 

• Iterative multi-step ESN predictor 

The multi-step prediction is produced by a one-step predictor iteratively. The longer 
term predictions will be made based on previous predictions. Therefore, after training, 
the function of the predictor expands into 

( 1) [ ( ) ( )]

( 1) [ ( 1)]
x i p

p o

X t f W X t W d t

d t g W X t

+ = ⋅ + ⋅

+ = ⋅ +
                     (2) 
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Fig. 1. Training and testing processes of the ESN predictor 

This iterative multi-step predictor is in fact still a one-step predictor, and it needs to 
run multiple times to produce multi-step predictions. 

• Direct multi-step ESN predictor 

This one is trained as a multi-step ahead predictor directly. And the function of the 
network during both the training and the after-training phases can be expressed as   
 

( 1) [ ( ) ( )]

( ) [ ( 1)]
x i r

p o

X t f W X t W d t

d t T g W X t

+ = ⋅ + ⋅
+ = ⋅ +

                    (3) 

where T denote the prediction horizon. As compared to the iterative ESN predictor, 
this direct predictor won’t suffer from the accumulative error problem. However, the 
larger prediction horizon makes it more difficult to obtain accurate predictions. 

• Multi-output ESN predictor 

The direct ESN predictor can produce only one prediction each time, while the mul-
ti-output predictor can give multiple predictions simultaneously. Its function is   

( 1) [ ( ) ( )]

[ ( 1), ( 2),..., ( )] [ ( 1)]
x i r

p p p o

X t f W X t W d t

d t d t d t T g W X t

+ = ⋅ + ⋅
+ + + = ⋅ +

          (4) 

In fact, the main advantage of this multi-output ESN predictor is that it can pre-
serve the dependencies between future values of landslide displacements. From such a 
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respect, it is not just equivalence to the simple combination of T direct predictors with 
different prediction horizons.  

• Direct Multi-output ESN predictor 

The multi-output ESN predictor constrains all the horizons to be forecasted with the 
same model structure. This drawback could reduce the flexibility of the predictor. 
Therefore, a new multi-output prediction strategy is proposed [8], which divide one 
large multi-output predictor into some smaller multi-output predictors. The following 
function is an example.   

1

2

( 1) [ ( ) ( )]

[ ( / 2 1),..., ( )] [ ( 1)]

[ ( 1),..., ( / 2)] [ ( 1)]

x i r

p p o

p p o

X t f W X t W d t

d t T d t T g W X t

d t d t T g W X t

+ = ⋅ + ⋅
+ + + = ⋅ +

+ + = ⋅ +

              (5) 

As above, two multi-step predictors are in charge of different prediction horizon 
ranges respectively. This predictor is a tradeoff between the direct predictor and the 
multi-output predictor.    

3 Experiments 

Predictors for accumulative displacements of landslides located in the Three Gorges 
area are established. The experiments are two-fold. First of all, one-step-ahead predic-
tions produced by the ESN predictor are tested and compared to the predictions of static 
predictors. Then multi-step predictions of ESN predictors are also produced. 

3.1 Data Description  

In our study, displacement datasets are recorded monthly for Yuhuangge landslide, 
Huangtupo landslide and Baishuihe landslide. These datasets are denoted as YHG, 
HTP and BSH hereafter. Systematical monitoring of all the three landslides started at 
around 2003 to 2004. The lengths of the three recordings are 101 months, 61 months 
and 101 months respectively. The developing trends of these displacement curves are 
quite different, corresponding to three typical landslide types.   

3.2 One Step Ahead Predictions 

For comparison, extreme learning machine (ELM) [9] and support vector machine 
(SVM) [10, 11], are employed to construct static predictors. ELM and SVM are two 
high quality learning algorithms which can produce highly accurate results in both 
classification and regression tasks [12, 13]. Since there is randomness involved in the 
training of the ESN predictor and the ELM predictor, experiments concerning these 
two predictors are repeated for ten times and the averaged accuracies are reported. 
During the training of the SVM predictor, cross validation is implemented to determine 
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the kernel parameters [14] as well as the embedding dimension for prediction. Predic-
tion errors as regard to root mean square error (RMSE) and mean absolute percentage 
error (MAPE) are reported in Table 1.     

Table 1. Comparisons between predictors based on ESN, ELM and SVM 

Measures Data Set ESN ELM SVM 

RMSE 

YHG 1.44mm 2.59mm 2.32mm 

HTP 1.21mm 4.59mm 17.23mm 

BSH 30.38mm 39.96mm 13.70mm 

MAPE 

YHG 6.31% 7.78% 7.05% 

HTP 0.68% 2.53% 10.33% 

BSH 1.36% 1.66% 0.50% 

 
The best predictions on both the YHG dataset and the HTP dataset are produced by 

the ESN predictor. And the ESN predictor performs better than the ELM predictor on 
all the three datasets. Although the SVM predictor outperforms the other two on the 
BSH dataset, it tends to be quite instable as much bigger error has been made on the 
HTP dataset. The experimental results are consistent with our arguments that, a dy-
namic predictor based on ESN will be more proper for the prediction of landslide 
displacements, as compared to static models. Prediction curves are presented in Fig. 
2. The overall consistencies between predictions of the ESN predictor and the actual 
displacement recordings are better than the other two predictors.   

 

Fig. 2. Prediction made by the ESN, ELM and SVM predictors on different datasets 



 Multi-step Predictions of Landslide Displacements Based on Echo State Network 387 

3.3 Multi-step Predictions of ESN 

Multi-step ahead predictions are produced by the aforementioned four different ESN 
predictors, which will be denoted as Iterative, Direct, MO and DMO hereafter. MAPE 
of the predictions produced by these four predictors are reported in Table 2. The re-
sults are concerning nine multi-step prediction tasks, namely the 2-step, the 3-step and 
the 4-step predictions for the datasets of YHG, HTP and BSH. As for the MO predic-
tor, although predictions for different horizons are produced at the same time, only the 
longest term predictions are considered when evaluating the predictor’s performance. 
For the DMO predictor, only the 4-step prediction is implemented, in which two 
double-output predictors are established. Because when dealing with the 2-step and 
3-step prediction tasks, the DMO predictor and the Direct predictor are the same. As 
shown by the values in Table 2, none of the four predictors is overwhelming to the 
others. The MO predictor and the Direct predictor respectively achieved the best re-
sults in three out of the nine tasks. The Iterative predictor seems to be more suitable 
for the BSH dataset. The DMO predictor cannot bring sufficient improvements in our 
landslide displacement tasks.        

Table 2. Performances of different multi-step ESN predictors on practical landslide datasets 

 2-Step                   3-Step                  4-Step                     

 YHG HTP BSH YHG HTP BSH YHG HTP BSH 

Iterative 11.11% 2.11% 4.07% 15.10% 3.56% 6.10% 18.25% 4.25% 8.73% 

Direct 10.59% 2.11% 3.64% 15.30% 3.19% 7.46% 17.56% 3.86% 11.53% 

MO 11.10% 2.08% 3.57% 14.30% 3.47% 8.84% 17.99% 4.22% 9.32% 

DMO -   -   -   -   -   - 17.55% 4.36% 11.47% 

4 Conclusions 

For time series prediction tasks such as landslide displacement prediction discussed in 
this paper, it’s important to properly handle the dynamic nature of the underlying 
system. When static predictors are used, dynamic processes are simplified as static 
mappings. A more proper approach is to build predictors which are in essence dy-
namic, and that is what has been done in our study. Dynamic predictors are estab-
lished based on ESN and extended into multi-step predictors. The effective of the 
proposed dynamic predictors are verified in experiments implemented on realistic 
landslide displacement datasets. Furthermore, four multi-step ESN predictors are also 
built. And it will be beneficial to select the proper predictor out of these four for a 
specific prediction tasks.   
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Abstract. In this paper, a new generalized policy iteration (GPI) based adaptive
dynamic programming (ADP) algorithm is developed to solve optimal control
problems for infinite horizon discrete-time nonlinear systems. The GPI algorithm
is a general idea of interacting policy and value iteration algorithms of ADP.
There are two iteration indices, which iterate for policy improvement and policy
evaluation, respectively, in the GPI algorithm. The convergence properties of the
GPI algorithm are developed. Finally, simulation results are presented to illustrate
the performance of the developed algorithm.

Keywords: Adaptive critic designs, adaptive dynamic programming, approxi-
mate dynamic programming, neuro-dynamic programming, nonlinear systems,
optimal control, generalized policy iteration, reinforcement learning.

1 Introduction

Optimal control of nonlinear systems has been the focus of control fields for many
decades [7, 11]. Dynamic programming has been a useful technique in handling opti-
mal control problems for many years, while it is often computationally untenable to
perform it to obtain the optimal solutions. Characterized by strong abilities of self-
learning and adaptivity, adaptive dynamic programming (ADP), proposed by Werbos
[17,18], has demonstrated the capability to find the optimal control policy and solve the
Hamilton-Jacobi-Bellman (HJB) equation in a piratical way [5, 10, 12, 13]. There were
several synonyms used for ADP, including “adaptive critic designs”, “adaptive dynamic
programming”, “approximate dynamic programming” [1], “neuro-dynamic program-
ming”, “neural dynamic programming”, and “reinforcement learning”. In [8], ADP ap-
proaches were classified into several main schemes which include heuristic dynamic
programming (HDP), action-dependent HDP (ADHDP), also known as Q-learning,
dual heuristic dynamic programming (DHP), action-dependent DHP (ADDHP), glob-
alized DHP (GDHP), and action-dependent GDHP (ADGDHP). Iterative methods are
primary tools in ADP to obtain the solution of HJB equation indirectly and have re-
ceived more and more attentions [6, 14–16]. In [3, 6], iterative ADP algorithms were
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classified into two main schemes which were based on policy iteration [4,20] and value
iteration [19], respectively.

In [9], a generalized policy iteration (GPI) algorithm, which is a general idea of in-
teracting policy and value iteration algorithms, was constructed as a new iterative ADP
algorithm to solve optimal control problems. There are two revolving iteration proce-
dures for GPI algorithms, which are policy evaluation, making the performance index
function in critic consistent with the current policy, and policy improvement, making
the policy in actor greedy with respect to the current performance index function [9].
In this paper, for the first time the GPI algorithm is developed to solve optimal control
problems for DT nonlinear systems, where the properties of convergence are analyzed.
First, the detailed iteration procedure of the GPI algorithm for DT nonlinear systems is
presented. Initialized by an arbitrary positive semi-definite function, two iteration pro-
cedures, which are policy evaluation and policy improvement, are developed. Second,
the properties of the GPI algorithm are analyzed. The convergence criteria will be ob-
tained. It will be shown that the iterative performance index function converges to the
optimum if the convergence criteria are satisfied. Simulation results will illustrate the
effectiveness of the developed algorithm.

2 Problem Statement

In this paper, we will study the following DT nonlinear system

xk+1 = F (xk, uk), k = 0, 1, 2, . . . , (1)

where xk ∈ Rn is the state vector and uk ∈ Rm is the control vector. Let x0 be the
initial state and F (xk, uk) be the system function.

Let uk = (uk, uk+1, . . . ) be a sequence of controls from k to ∞. The performance
index function for state x0 under the control sequence u0 = (u0, u1, . . . ) is defined as

J(x0, u0) =
∞∑
k=0

U(xk, uk), (2)

where U(xk, uk) > 0, for ∀xk �= 0, and ∀uk �= 0, is the utility function. The goal of
this paper is to find an optimal control scheme which stabilizes system (1) and simulta-
neously minimizes the performance index function (2). Define the control sequence set
as Uk =

{
uk : uk = (uk, uk+1, . . .), ∀uk+i ∈ Rm, i = 0, 1, . . .

}
. Then, for a control

sequence uk ∈ Uk, the optimal performance index function can be defined as J∗(xk) =
infuk

{
J(xk, uk) : uk ∈ Uk

}
. According to Bellman’s principle of optimality, J∗(xk)

satisfies the following HJB equation J∗(xk) = infuk

{
U(xk, uk) + J∗(F (xk, uk))

}
.

Generally speaking, J∗(xk) is difficult to obtain directly by HJB equation. To overcome
this difficulty, a new iterative algorithm based on ADP is developed.

3 Generalized Policy Iteration Algorithm

In this section, the GPI algorithm is developed to obtain the optimal control law for DT
nonlinear systems.
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3.1 Derivation of the GPI Algorithm

The developed GPI algorithm contains two iteration procedures, which are i-iteration
and j-iteration, respectively. Both of the iteration indices increase from 0. Let Ψ(xk) be
a positive semi-definite function. Let

V0(xk) = Ψ(xk) (3)

be the initial iterative performance index function. Let {N1, N2, . . .} be a sequence,
whereNi ≥ 0, i = 1, 2, . . ., is a nonnegative integer. For i = 1, 2, . . ., the GPI algorithm
can be expressed by the following two iteration procedures.
i-iteration:

vi(xk) = argmin
uk

{U(xk, uk) + Vi−1(xk+1)} (4)

j-iteration:

Vi,ji+1(xk) = U(xk, vi(xk)) + Vi,ji (F (xk, vi(xk))), (5)

where the iteration index ji increases from 0 to Ni and

Vi,0(xk) = min
uk

{U(xk, uk) + Vi−1(xk+1)} . (6)

Define the iterative performance index function as Vi(xk) = Vi,Ni(xk).

3.2 Properties of the GPI Algorithm

In this subsection, the properties of the GPI algorithm are analyzed. The convergence
analysis will also be presented in this subsection.

Theorem 1. For i = 1, 2, . . ., let Vi,ji (xk) and vi(xk) be obtained by (3)–(6). Let
0 < γi <∞ and 1 ≤ δi <∞ be constants that satisfy

γiU(xk, uk) ≥ Vi−1(xk), and Vi,0(xk) ≤ δiVi−1(xk), (7)

respectively. Then, for ∀ i = 1, 2, . . . and ji = 0, 1, . . . , Ni, we have

Vi,ji (xk) ≤
(
1 +

ji∑
ρ=1

γρi δ
ρ−1
i (δi − 1)

(1 + γi)
ρ

)
Vi,0(xk), (8)

where we define
β∑
α
(·) = 0 for α > β.

Proof. The theorem can be proven by mathematical induction. Obviously, inequality
(8) holds for ji = 0. For ji = 1, we have

Vi,1(xk) =U(xk, vi(xk)) + Vi,0(xk+1) ≤ U(xk, uk) + δiVi−1(xk+1)

≤
(
1 + γi

δi − 1

1 + γi

)
U(xk, uk) +

(
δi − δi − 1

1 + γi

)
Vi−1(xk+1)

≤
(
1 + γi

δi − 1

1 + γi

)
Vi,0(xk). (9)
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Thus, (8) holds for ji = 1. Assume the conclusion holds for ji = l−1, l = 1, 2, . . . , Ni.
Then for ji = l, we have

Vi,l(xk) =U(xk, vi(xk)) + Vi,l−1(xk+1)

≤
(
1+

γi
1 + γi

(
δi−1+

l−1∑
ρ=1

γρi δ
ρ
i (δi − 1)

(1 + γi)
ρ

))
U(xk, vi(xk))

+

(
δi +

l−1∑
ρ=1

γρi δ
ρ
i (δi − 1)

(1 + γi)
ρ −

(
δi − 1

1 + γi
+

l−1∑
ρ=1

γρi δ
ρ
i (δi − 1)

(1 + γi)
ρ+1

))
Vi−1(xk+1)

=

(
1 +

l∑
ρ=1

γρi δ
ρ−1
i (δi − 1)

(1 + γi)
ρ

)
Vi,0(xk). (10)

Hence, (8) holds for j = l. The mathematical induction is completed.

Theorem 2. (Local convergence criterion) Let 0 < γi < ∞ and 1 ≤ δi < ∞ be
constants that satisfy (7). If for i = 1, 2, . . . and ji = 0, 1, . . ., the constant δi satisfies
δi <

1+γi

γi
, then the iterative performance index function Vi,ji(xk) is convergent as

ji →∞, i.e., lim
ji→∞

Vi,ji (xk) ≤
1

1 + γi − γiδi
Vi,0(xk).

Theorem 3. For i = 0, 1, . . ., let Vi,ji (xk) and vi(xk) be obtained by (3)–(6). Let
0 < γ <∞ and 1 ≤ δ <∞ be constants that satisfy the following inequalities

J∗(F (xk, uk)) ≤ γU(xk, uk) and V0(xk) ≤ δJ∗(xk). (11)

For ∀ i = 0, 1, . . ., if δi <
1+γi

γi
, then Vi,ji (xk) satisfies

Vi,ji (xk) ≤
(
1 +

ji∑
ρ=1

γρi δ
ρ−1
i (δi − 1)

(1 + γi)
ρ

)
×
(
1 +

i−1∑
l=1

γi−lγl(δl − 1)

(1 + γ)
i−l i−1

Π
η=l

(1 − γη(δη − 1))

+
γi(δ − 1)

(1 + γ)
i i−1

Π
η=1

(1− γη(δη − 1))

)
J∗(xk). (12)

Proof. The statement can be proven by mathematical induction. First, the conclusion is
obviously true for i = 0. Let i = 1. For ∀ ji = 0, 1, . . ., we have

V1,j1 (xk) ≤
(
1+

j1∑
ρ=1

γρi δ
ρ−1
i (δi − 1)

(1 + γi)
ρ

)
V1,0(xk)

≤
(
1 +

j1∑
ρ=1

γρi δ
ρ−1
i (δi − 1)

(1 + γi)
ρ

)
min
uk

{(
1 + γ

δ − 1

1 + γ

)
× U(xk, uk)

+

(
δ − δ − 1

1 + γ

)
J∗(xk+1)

}
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≤
(
1 +

j1∑
ρ=1

γρi δ
ρ−1
i (δi − 1)

(1 + γi)
ρ

)(
1 +

γ(δ − 1)

(1 + γ)

)
J∗(xk), (13)

which proves inequality (12) for i = 1. Assume that the conclusion holds for i = ϑ−1,
ϑ = 1, 2, . . .. we can get

Vϑ−1,jϑ−1
(xk) ≤ 1

1− γϑ−1(δϑ−1 − 1)

(
1 +

ϑ−2∑
l=1

γi−ϑ−1γl(δl − 1)

(1 + γ)i−ϑ−1 ϑ−2

Π
η=l

(1− γη(δη − 1))

+
γϑ−1(δ − 1)

(1 + γ)ϑ−1 ϑ−2

Π
η=l

(1− γη(δη − 1))

)
J∗(xk). (14)

For i = ϑ, we can get inequality

Vϑ,jϑ(xk) ≤
(
1 +

jϑ∑
ρ=1

γρϑδ
ρ−1
ϑ (δϑ − 1)

(1 + γϑ)
ρ

)
Vϑ,0(xk+1)

≤
(
1+

jϑ∑
ρ=1

γρϑδ
ρ−1
ϑ (δϑ − 1)

(1 + γϑ)
ρ

)
min
uk

{
U(xk, uk)+

1

1−γϑ−1(δϑ−1 − 1)

×
(
1 +

ϑ−2∑
l=1

γϑ−l−1γl(δl − 1)

(1 + γ)
ϑ−l−1 ϑ−2

Π
η=l

(1− γη(δη−1))

+
γϑ−1(δ − 1)

(1 + γ)
ϑ−1 ϑ−2

Π
η=l

(1 − γη(δη − 1))

)
J∗(xk+1)

}
, (15)

which obtains (12).

Theorem 4. (Global convergence criterion) If for ∀ i = 0, 1, . . ., δi satisfies

δi < qi
1

γi(1 + γ)
+ 1, (16)

where 0 < qi < 1 is a constant, then for ∀ ji = 0, 1, . . . , Ni, the iterative performance
index function Vi,ji(xk) is convergent as i→∞.

Proof. Define an iteration index set ΩIN as ΩIN = {i | i = 1, 2, . . .}. For ∀ i ∈ ΩIN ,
if we let q = max

i∈ΩIN

{qi}, then we have 0 < q < 1. According to (12), we can get that

i−1∑
l=1

γi−lγl(δl − 1)

(1 + γ)
i−l i−1

Π
η=l

(1− γη(δη − 1))

< lim
i→∞

i−1∑
l=1

γi−l q

1 + γ

(1 + γ)i−l

(
1− q

1 + γ

)i−l

=
q

1− q

γ

1 + γ
. (17)
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If δi satisfies (16), we can get lim
i→∞

γi(δ−1)

(1+γ)i
i−1

Π
η=l

(1−γη(δη−1))
= 0, and qi

1

γi(1 + γ)
+ 1 <

1 + γi
γi

. Hence, we have

ji∑
ρ=1

γρi δ
ρ−1
i (δi − 1)

(1 + γi)
ρ < lim

ji→∞

ji∑
ρ=1

γρi δ
ρ−1
i (δi − 1)

(1 + γi)
ρ =

q

γ + 1− q
. (18)

According to (17)–(18), we can obtain that lim
i→∞

Vi,ji(xk) ≤
(
1 +

q

γ + 1− q

)(
1 +

q

1− q

γ

1 + γ

)
. The the iterative performance index function is convergent to optimum,

as i→∞. The proof is completed.

4 Simulation Example

We now examine the performance of the developed algorithm in an inverted pendulum
system [2]. The dynamics of the pendulum is expressed as[

x1(k+1)

x2(k+1)

]
=

[
x1k +Δtx2k

g

�
Δt sin(x1k) + (1− κ�Δt)x2k

]
+

[
0
Δt

m�2

]
uk. (19)

where m = 1/2 kg and � = 1/3m are the mass and length of the pendulum bar, re-
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Fig. 1. Iterative performance index function Vi,ji(xk) for xk = x0 and different Ψ̄(xk)’s. (a)
Ψ̄1(xk). (b) Ψ̄2(xk). (c) Ψ̄3(xk). (d) Ψ̄4(xk).
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Fig. 2. Optimal trajectories. (a) Optimal states. (b) Optimal control.

spectively. Let κ = 0.2 and g = 9.8m/s2 be the frictional factor and the gravitational
acceleration, respectively. Let the initial state be x0 = [1,−1]T . Let the structures of the
critic and action networks be 2–12–1 and 2–12–1. We choose p = 10000 states to train
the NNs. To illustrate the effectiveness of the algorithm, we also choose four differ-
ent initial performance index functions which are expressed by Ψ̄ ς(xk) = xTk P̄ςxk,
ς = 1, . . . , 4. Let P̄1 = 0. Let P̄2–P̄4 be initialized by positive definite matrices
given by P̄2 = [2.98, 1.05; 1.05, 5.78], P̄3 = [6.47, − 0.33;−0.33, 6.55], and
P̄4 = [22.33, 4.26; 4.26, 7.18], respectively. For ∀ i = 0, 1, . . ., let qi = 0.9999.
Let the iteration sequence be {N ς

i }, where N ς
i ∈ [0, 10] be a random nonnegative in-

teger. Then, initialized by Ψ̄ ς(xk), ς = 1, . . . , 4, the GPI algorithm is implemented for
i = 15 iterations. Train the the critic and the action networks under the learning rate
0.01 and set the NN training errors as 10−6. The curves of the iterative performance in-
dex functions Vi(xk) are shown in Fig. 1. Let the execution time Tf = 100 time steps.
The optimal trajectories of optimal control laws and system states are shown in Fig. 2.

5 Conclusions

In this paper, an effective GPI algorithm is developed to solve infinite horizon opti-
mal control problems for DT nonlinear systems. The iterative ADP algorithm can be
implemented by an arbitrary positive semi-definite function. It has been proven that
the performance index function for the GPI algorithm converges to the optimum. Con-
vergence criteria of the algorithm are obtained. Finally, simulation results are given to
illustrate the effectiveness of the developed algorithm.
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Abstract. Paraphrase rating is an important problem with very in-
teresting applications in plagiarism detection, language translation, text
summarization, question answering, web search and information retrieval.
In this paper, we present an adaptive neuro-fuzzy inference system (AN-
FIS) based model for automatic rating of semantic equivalence of pairs
of sentences. Using a corpus of human-judged sentence pairs, lexical sim-
ilarity metrics are first computed. Then, a model is constructed for pre-
dicting the mean of the rates assigned by a number of human beings.
The correlation with the actual ratings and the prediction errors are
studied for individual metrics as well as the model output using a non-
linear logistic regression function. The experimental results showed that
much higher correlations and low error rates can be achieved with the
proposed method compared to those obtained with individual metrics.

Keywords: Neural networks, Fuzzy inference, Adaptive neuro-fuzzy in-
ference system, Lexical similarity scores, Prediction, Paraphrase rating.

1 Introduction

There are many potential forms for expressing the essential meaning of a text or
passage using different words and/or sentence structures. This process is known
as paraphrasing, bidirectional text entailment or sematic equivalence [3]; which
can occur in a variety of ways. Paraphrase rating depends on the level of inference
that can be made about one sentence from another. For instance, on a scale of
5, a pair of identical sentences will be rated 5 (since one is completely inferred
from the other or completely equivalent to the other) whereas a pair of totally
different sentences will be rated 0 (since no inference can be made).

The difficulty of this problem can be attributed to the non-existence of a very
precise definition of paraphrasing and the subjectivity of human judgements.
Nonetheless, rating automation has several interesting applications in processing
large volumes of available texts and documents, e.g. document summarization,
plagiarism detection, language translation, question answering, web search and
information retrieval. In the past decade, there has been increasing interest on
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problems related to paraphrasing and text entailment [2]. For text similarity
detection, a number of approaches have been suggested in the literature using
lexical similarity metrics. Among these approaches is the work described in [6]
using a support vector machine and a set of machine translation related metrics.
In [11], string similarity measures were combined to recognize paraphrases among
sentences. Another approach is presented in [7] to detect similarity between pairs
of short textual units by combining primitive and composite linguistic features
with a rule-based machine learning algorithm.

Although various similarity metrics have been proposed in the literature, each
has its own drawbacks and, as we will show, does not correlate well with the
human judgements. The main goal of this paper is to propose and evaluate a
novel composite metric for paraphrase rating of pairs of sentences. The idea of
the proposed approach is based on combining five lexical similarity metrics using
an adaptive neuro-fuzzy inference system. The output of the inference system is
found to have much better correlations with the rates assigned by human judges.

The rest of the paper is organized as follows. Section 2 briefly describes the
similarity metrics considered in this study. Section 3 describes the nonlinear
logistic function used for studying the dependance relationship between each
metric and the human rates. Section 4 presents the proposed prediction model.
Empirical evaluation and results are discussed in Section 5. Finally, Section 6
concludes the paper.

2 Textual Similarity Metrics

2.1 Word Edit Distance

This is a word-level modified version of the well-know Levenshtein edit distance
between two character strings [13,5]. It is computed from the number of deletion,
insertion, and substitution operations of words that are needed to convert one
sentence into the other. The computation of edit distance is performed using a
dynamic programming algorithm which has a complexity of O(|s1| × |s2|) where
|si| is the length of sentence i [12]. Mathematically, ed(i, 0) = i, ed(0, j) = j, and
recursively ∀i = 1 : |s1|, ∀j = 1 : |s2|, ed(i, j) = min{ed(i− 1, j − 1) + (s1[i] =
s2[j]?0 : 1), ed(i−1, j)+1, ed(i, j−1)+1}, where the expression (s1[i] = s2[j]?0 :
1) is equal to 0 if s1[i] = s2[j]; otherwise it is 1. When there are a few changes,
i.e. very similar pair of sentences, the value of this metric will be small. As more
changes are introduced, the edit distance will likely increase. The effectiveness of
this metric depends on the level of paraphrasing but it fails to detect paraphrases
with too many lexical changes.

2.2 Simple Word N-Gram Overlap

This metric uses the word n-gram overlap for n = 1, 2, . . . , N and computes the
average ratio as follows,

simo(S1, S2;N) =
1

N
×

N∑
n=1

Sn
1 ∩ Sn

2

min(Sn
1 , S

n
2 )

(1)
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where Sn
1 ∩ Sn

2 is the number of common n-grams in sentences S1 and S2, and
min(Sn

1 , S
n
2 ) is the number of n-grams in the shorter sentence.

2.3 Exclusive LCP N-Gram Overlap

This metric is similar to simo but it counts the prefix overlapping of uni-gram,
bi-gram, . . . N−gram considering the Longest Common Prefix (LCP) [4],

simexc(S1, S2;N) = max
n∈{1,2,...,N}

Sn,exc
1 ∩ Sn,exc

2

min(Sn,exc
1 , Sn,exc

2 )
(2)

2.4 BLEU Metric

BLEU is an abbreviation of BiLingual Evaluation Understudy and has been
one of the first devised methods for automatic quality evaluation of machine
translation of a natural language in terms of the semantic equivalence to reference
translations made by professional humans [14]. It is widely used for evaluating
machine translation and benchmarking other related metrics. Later, it has been
used in some studies for paraphrase generation and identification as well, e.g.
[6], [11], [10]. The computation of BLEU is based on counting matches of word
n-grams for the input sentences (for n ≤ N where N is frequently preset to 4).

2.5 Sumo Metric

This metric is proposed in [4] to alleviate some of the limitations faced by other
metrics. It is based on exclusive lexical links between the two sentences. It penal-
izes equal and almost equal sentences and considers pairs with different syntactic
structure and high degree of lexical reordering.

3 Logistic Regression

After extracting the various similarity metrics, we study their abilities in pre-
dicting the paraphrase rate. In order to achieve this, we fit a nonlinear logistic
regression prediction model between the human assigned paraphrase score and
each similarity metric. This nonlinear logistic regression model is described by
five parameters which must be estimated from the historical data. Mathemati-
cally, the predicted score, q, is expressed as a function of a given metric, u, by
the following equation: q(u) = β1(1/2− (1 + eβ2(u−β3))−1) + β4u+ β5, where βi
are the parameters to be estimated to minimize the RMSE.

4 ANFIS-Based Rating Model

Fuzzy logic based systems allow mapping of prior human knowledge or experience
into the inference process using linguistic variables which is an advantage but a
cumbersome task. The adaptive neuro-fuzzy inference system augments a fuzzy
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inference system with the capability of neural networks to learn from the data
[8]. Thus, ANFIS combines the advantages of both fuzzy inference and neural
network and has been successively applied to a wide spectrum of domains [9].

The construction of the model starts with a training dataset and a defined
structure such as the one shown in Fig. 1. In our case, there are five inputs rep-
resenting the lexical similarity metrics and one output representing the expected
rate. The fuzzy inference maps inputs to outputs using a set of if – then rules
with sets of linguistic variables to handle inherent uncertainty in the problem.
The input variables are denoted a1, a2, a3, a4, and a5 representing word edit dis-
tance (ed), simple word N -gram overlap (simo), exclusive LCP N -gram overlap
(simexc), BLEU, and Sumo metrics, respectively. The output, z, is a score in
the range of 0 (complete inequivalence) to 5 (complete equivalence).

Each input variable is normalized to fall in the range from 0 to 1, Then,
using three fuzzy sets (terms) initially defined for each input variable (denoted
as small, medium, and large) and generalized bell-shaped membership functions,
the first layer (fuzification) converts crisp values into membership values. In the
second layer, the firing strength for each rule is computed as the multiplication
of its inputs which are the membership values from the previous layer; these are
denoted as wm and computed from,

wm =

5∏
k=1

μAkmk
(ak) (3)

where Akmk
are the terms associated with rule m. In the third layer, weights are

normalized using,

w̄m =
wm∑R
k=1 wk

(4)

where R is the number of rules. For the first-order Sugeno-type ANFIS system,
the consequent part of each rule is expressed as a linear combination of the
inputs. The fourth layer has square-shaped nodes with node functions given as,

fm =
5∑

k=1

c
(m)
k .ak + c

(m)
0 (5)

where c
(m)
k for k = 0 to 5 are the coefficients of the first-order equation of rule

m. Finally, the last layer node conducts summation of all incoming signals to
generate the output as weighted sum,

z̃ =

R∑
k=1

w̄kfk (6)

The objective of the training algorithm is to update the consequent and premise
parameters in order to achieve the least error between the predicted and the
desired target outputs. A hybrid training algorithm composed of a least square
method and a gradient descend back-propagation algorithm is applied to tune
the parameters of the ANFIS model.
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Fig. 1. ANFIS-based rating model architecture

5 Experimental Results

5.1 Dataset

The dataset used in this paper is the one published as part of SemEval-2012
workshop under Task 6 for Semantic Textual Similarity (STS) [1]. This dataset
is drawn from the Microsoft Research Paraphrase Corpus. It consists of 750
sentence pairs rated on a continuous scale from 0 to 5 (known as golden stan-
dard rating). This rating represents the degree of graded bidirectional semantic
equivalence for each sentence pair (with 0 means different sentences and 5 means
fully semantically equivalent sentences). To reduce subjectivity among human
judgments, the golden standard rating is an average of the scores assigned by
five human judges.

5.2 Performance Measures

For the purpose of evaluating the performance of the proposed model, we used
the following performance measures: Pearson’s linear correlation coefficient (ρ),
Spearman’s rank correlation coefficient (ρs), Kendall’s τ -rank correlation coeffi-
cient (τ), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
These performance criteria are common in prior studies, e.g. [15]. The Pearson’s
linear correlation coefficient, ρ, is given by:

ρ =

∑
i (zi − z̄)(qi − q̄)√∑

i (zi − z̄)2
∑

i (qi − q̄)2
(7)
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Table 1. Performance comparison (approx. to 4 decimal places)

ρ ρs τ RMSE MAE

ed 0.1537 0.0947 0.0659 0.1932 0.1508
simo 0.3695 0.3156 0.2194 0.1817 0.1427
simex 0.5021 0.4311 0.3043 0.1691 0.1351
bleu 0.2843 0.2448 0.1771 0.1875 0.1467
sumo 0.4505 0.4134 0.2895 0.1746 0.1368
Proposed 0.9966 0.9933 0.9588 0.0159 0.0068

where zi and qi are the actual and predicted scores, and z̄ and q̄ are the mean
values of actual and predicted scores. To assess the monotonicity relationship
between predicted value and actual value for a particular model, we used Spear-
man’s rank order coefficient ρs. When ρs = 0, there is no tendency that q
increases or decreases with the increase of z. In contrast, ρs = ±1, when q and
z are perfectly monotonically related. This measure is computed using the same
equation for Pearson’s coefficient but replacing the raw scores by their ranks zri
and qri. The computation ρs and Kendall’s correlation, τ are as follow:

ρs = 1− 6
∑

i (zri − qri)

N(N2 − 1)
, and τ =

2(nc − nd)

N(N − 1)
(8)

where nc and nd are the number of concordant and the number of discordant
ranking pairs. With a value of τ = 0 when the two variables are independent.

We also used two error measures: mean absolute error (MAE) and root mean
square error (RMSE) which are calculated as follows:

MAE =
1

N

∑
i=1

|zi − ẑi|, RMSE =

√√√√ 1

N

N∑
i=1

(zi − ẑi)2 (9)

where N is the number of sentence pairs.

5.3 Results

Using MATLAB Release 2014a, we developed the described model. The dataset
is first processed to compute the lexical similarity metrics. The metrics and
the rate values are normalized to be in the range from 0 to 1. We studied the
dependance between the paraphrase rating and each of the lexical metrics. As
depicted in Table 1 and Figure 2, there is a little correlation between each lexical
metric and the paraphrase rate (GS, i.e. Gold Standard). Hence, the prediction
errors, when using nonlinear logistic regression, are relatively high.

Applying the proposed model to combine all lexical metrics to predict the
paraphrase rate has demonstrated a significant improvement as shown in the
last row of Table 1. The correlation coefficients are close to 1 and the errors are
much lower than those for individual lexical metrics. This result is also supported
by the very clear linear relationship between the predicted and the actual rates
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which is shown in the last plot in Figure 2. The membership function for the
input variables after training the model are as shown in Figure 3 with three
linguistic terms for each input variable, a.k.a. lexical metric, and generalized bell-
shaped membership functions. The parameters of the membership functions as
well as the other Sugeno-type ANFIS model parameters are adjusted by a hybrid
learning algorithm, as explained previously, to better fit the dataset.

Fig. 2. Scatter diagrams and regression curves comparisons

Fig. 3. Membership functions of input variables after training

6 Conclusion

In this paper, we proposed an automatic paraphrase rating model based on the
Sugeno-type ANFIS system with hybrid learning to adjust the model parame-
ters. We showed that the traditional lexical metrics have poor correlation with
the human judgments when used individually with nonlinear logistic regression.
However, with the proposed model for combining them much better correlation
and low errors have been achieved. The experimental results confirms the validity
of this conclusion using a benchmark dataset and five performance measures.
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Abstract. The labelling of training examples is a costly task in a su-
pervised classification. Active learning strategies answer this problem by
selecting the most useful unlabelled examples to train a predictive model.
The choice of examples to label can be seen as a dilemma between the
exploration and the exploitation over the data space representation. In
this paper, a novel active learning strategy manages this compromise by
modelling the active learning problem as a contextual bandit problem.
We propose a sequential algorithm named Active Thompson Sampling
(ATS), which, in each round, assigns a sampling distribution on the pool,
samples one point from this distribution, and queries the oracle for this
sample point label. Experimental comparison to previously proposed ac-
tive learning algorithms show superior performance on a real application
dataset.

Keywords: Contextual Bandits, Active learning, Thompson sampling.

1 Introduction

Active Learning (AL) has emerged as a popular approach for solving machine
learning problems with limited labelled data [8]. In this approach the learning
algorithm is “active”, and is allowed to query, an oracle O, for the label of points
that are maximally informative for the learning process. The result is that, by
using few but well chosen labels, the active learning algorithm is able to learn
as well as a passive learning algorithm that has access to more labelled data.

In selective sampling, the choice of examples to be labelled can be seen as
the dilemma between exploration and exploitation (exr/exp) on the training
data. On one hand, an active learning strategy that just exploits the data will
be specialized in certain areas of the input space X but will be very poor in
generalization. On the other hand, a strategy which uses that exploring data does
not focus on regions where X is known to improve the predictive model. These
two situations illustrate the need for an active learning to find a compromise
between exr/exp of labelling data strategy.

In [5], a similar analysis of the problem led the authors to model the active
learning problem as a multi-armed bandit problem. They suppose that the dif-
ferent hypotheses of distribution h ∈ H of the data are the arms and use an
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adapted UCB (upper confident bound) to select the most promising hypothesis
of distribution to select the points to be labelled. The drawback of this approach
is in the non consideration of the context or the different features that character-
ize the points. For example the number of points in a area space, the proportion
of labelled points, the ratio of the classes in the area or the density of points in
the area can be useful to determine the most interesting to label.

To tackle this problem, we propose to model the active learning as a contextual
bandit problem, where we have at first clustered the input space: each cluster is
considered as an arm and the different features of the cluster are the context of
the arm. Then, we implement a novel algorithm named Active Thompson Sam-
pling (ATS) adapting the Thompson Sampling to the active learning problem.
Finally, we evaluate ATS on actual data and find out that ATS outperforms all
other algorithms in our panel.

The remaining of the paper is organized as follows. Section 2 reviews related
works. Section 3 describes our multi armed contextual bandit model and the
ATS algorithm. The experimental evaluation is illustrated in Section 4. The last
section concludes the paper and points out possible directions for future works.

2 Related Work

We refer, in the following, recent works that address Active Learning problem
and the exr/exp trade-off (bandit algorithm).

Active Learning. A variety of AL algorithms have been proposed in the lit-
erature employing various query strategies. One of the most popular strategy
is called uncertainty sampling (US), where the active learner queries the point
whose label is the most uncertain [6]. Usually the uncertainty in the label is cal-
culated using variance of the label distribution [8]. The authors in [9] introduced
the query-by-committee (QBC) strategy where a committee of potential hetero-
geneous models, is learnt from the labelled data, and used to select for querying,
the point where most committee members disagree. Other strategies include the
maximum expected reduction in error [11] or variance reducing query strategies
[10] to querying the optimal point. All above proposed approaches only exploit
the data.

Contextual Multi-Armed Bandit. Multi-armed bandit (MAB) problems
model the exr/exp trade-off inherent in many sequential decision problems. A
particularly useful version is the contextual multi-armed bandit problem. In this
problem, in each iteration, an agent has to choose between arms. Before mak-
ing the choice, the agent sees a d-dimensional feature vector (context vector),
associated with each arm. The learner uses these context vectors along with the
rewards of the arms played in the past to make the choice of the arm to play in
the current iteration. Overtime, the learner’s aim is to collect enough informa-
tion about how the context vectors and rewards relate to each other, so that it
can predict the next best arm to play by looking at the feature vectors.

Recently, the contextual bandit has been used in different domains such as rec-
ommender system (RS) and information retrieval. For example, in [3, 2], authors
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model RS as a contextual bandit problem. The authors propose an algorithm
called Contextual-ε-greedy which sequentially recommends documents based on
contextual information about the users. In [4], authors analyse the Thompson
Sampling (TS) in contextual bandit problem. The study demonstrates that it
has a better empirical performance compared to the state-of-art methods. The
TS is one of the oldest heuristics for multi-armed bandit problems and it is
a randomized algorithm based on Bayesian ideas. Authors in [4, 3] describe a
smart way to balance exr/exp, but do not study the contextual bandit in the
active learning problem.

Multi-Armed Bandit for Active Learning. To our knowledge there has
been only two papers bridging the world of active learning and MAB. [7] adapted
the EXP4 algorithm which is a MAB algorithm with expert advice, where the
different active learning algorithms are the various experts and the different
points in the pool are the arms of the MAB. An each iteration, every expert
provides a sampling distribution on the pool. EXP4 maintains an estimation of
the error rate for each expert, and uses exponential weight to select the optimal
sampling distribution on the pool. Authors in [5] propose an adaptation of UCB
called LCB algorithm, the authors suggested minimizing an unbiased estimator
of risk of h, and a sampling distribution that was in proportion to the entropy
of the prediction on the pool. The authors consider the arms of the bandit as
the different hypothesis, and querying a data point, as the process of improving
their estimation of the risk of the different hypothesis.

Our Contributions. As it is observed above, none of the described works has
dressed the active learning problem from a contextual bandits view, although
the consideration of the pool context might be a very informative feature for an
active learning algorithm. This is precisely what we intend to do by exploiting
the following new features: (1) We model the active learning as a contextual
bandit problem, where each cluster of points in the space is an arm and the
different features of the cluster are the context of the arms. (2) We propose a
new algorithm named Active Thompson Sampling (ATS), that adapts the TS
to the active learning problem. (3) We evaluate it against other methods form
the state-of-the-art.

3 Key Notions and Proposed Model

This section focuses on the proposed model, beginning by introducing the key
notions used in this paper.

In pool based AL we are provided with a pool U0 = {x1, ...xn} of unlabelled
points, an empty set of labelled points L0 = {} and a labelling oracle O, which
when queried for the label of x, returns y. Algorithms in the pool based setting
have to decide which points to query by looking at the entire pool.

Definition (Contextual Bandit Problem with Linear Payoffs). In a
contextual bandits problem with linear payoffs, there are N arms. At time
t = 1, 2, ..., a context vector bi(t) ∈ Rd, is revealed for every arm i. History
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Qt−1 = {aτ , rτ , bi(τ), i = 1, ..., N, τ = 1, ..., t − 1} where aτ denotes the arm
played at time τ and that triggered reward rτ . Given bi(t), the reward for arm i
at time t is generated from an (unknown) distribution with mean bi(t)

�μ, where
μ ∈ Rd is a fixed but unknown parameter. An algorithm for the contextual
bandit problem needs to choose, at every time step t, an arm at to play, using
history Qt−1 and current contexts bi(t), i = 1, ..., N.

Let a∗t denote the optimal arm at time t, i.e. a∗t = argmax
i

bi(t)
�μ. And let

Δi(t) be the difference between the mean rewards of the optimal arm and the
arm i played at time t, i.e., Δi(t) = ba∗

t
(t)�μ− bi(t)�μ. Then, the regret at time

t is defined as regret(t) = Δat(t). The objective is to minimize the total regret

R(T ) =
∑T

t=1 regret(t). The time horizon T is finite and known in our case.
To model the active learning problem as a contextual bandit with linear pay-

offs we need to define the arms of the bandit, the rewards of the environment
and the context of each arms.

Construction of the Arms. We cluster corpus points {x1, x2, ..., xn}. The
resulted clusters c ⊂ U are considered as the arms of the bandit.

Context of the Arms. We consider a context vector bi(t) that describes the
the arms (the clusters), and contains the features that characterise the clusters.

Reward. A metric is used to measure the variation of the hypothesis learned
by the model between two iterations. More the hypothesis learned by the model
varies more is the received reward. We now define the function d(ht−1, ht) that
we use to get the variation of the model. Let U0 = {x1, ..., xn} = Lt ∪ Ut

be the set of labelled and unlabelled training examples that we have. Then
for each of the two real-valued hypotheses ht−1(.), ht(.), we define the vectors
Ht−1 = (ht−1(x1), ht−1(x2), ..., ht−1(xn)) and Ht = (ht(x1), ht(x2), ..., ht(xn)),
i.e. vectors of the real-valued predictions of ht−1 and ht.

d(ht−1, ht) =
Ht−1.Ht

||Ht−1||.||Ht|| (1)

In Eq. 1, we compute the cosine similarity between the two vectors Ht−1 and
Ht. Thus d(ht−1, ht) ∈ [−1,+1] is the cosine of the angle between Ht−1 and Ht,

and we normalise the result in the interval [0, 1] using y(t) = 2.cos−1(d(ht−1|ht))
π .

Stationarity of the Reward. We have observed that, more an area is sampled
by the model less is the received reward (nonstationarity of the rewards). We
have confirmed this common sense idea from an off-line evaluation (see Fig. 2).
In order to circumvent this nonstationarity we assume that the reward function
y(t) = rt ·D(t), where D(t) is a decreasing function that follows the decreasing
reward given by the environment and rt is the stationary reward. The process
for obtaining the function D(t) is described in Section 4.

Contextual Bandit Algorithm. A Contextual bandits algorithm determines
a cluster c ⊂ Ut to be sampled at each time step t, based on the previous
observation sequence Qt−1 = {cτ , rτ , bc(τ), c = 1, ..., N, τ = 1, ..., t− 1}, and its
current context bc(t).



Contextual Bandit for Active Learning: Active Thompson Sampling 409

3.1 Active Thompson Sampling

Thompson sampling is understood in a Bayesian setting as follows. The set of
past observations Q is made of triplets (ct, rt, bc(t)) and are modelled using a
parametric likelihood function Pr(rt|μ̃) depending on some parameters μ̃. Given
some prior distribution Pr(ũ) on these parameters, the posterior distribution of
these parameters is given by the Bayes rule, Pr(μ̃|rt) ∝ Pr(rt|μ̃)Pr(μ̃).

From [1], we can say that the posterior distribution at time t+1, Pr(μ̃|rt) ∝
Pr(rt|μ̃)Pr(μ̃) were given by a multivariate Gaussian distribution N (μ̂(t + 1),

v2B(t + 1)−1), where B(t) = Id +
∑t−1

τ=1 bcτ (τ)bcτ (τ)
� with d the size of the

context vectors, v2 ∈]0, 1] is a constant fixed to 0.25 according to [4] and μ̂ =

B(t)−1(
∑t−1

τ=1 bcτ (τ)bcτ (τ)). Every step t consists of generating a d-dimensional
sample μ̃ from N (μ̂(t), v2B(t)−1), and solving the problem argmax

c⊂Ut∧|c|>0

bc(t)
�μ̃

(select the cluster c that maximizes bc(t)
�μ̃. After that the algorithm selects

randomly an individual x ∈ c, requests a labelling from the oracleO and observes
reward y(t).

Algorithm 1. The Active Thompson Sampling algorithm

1: Require. B = Id set μ̂ = 0d, f = 0d.
2: Foreach t = 1, 2, ..., T do
3: Sample μ̃ from the N(μ̂, v2B−1) distribution.
4: Select cluster ct = argmax

c⊂Ut∧|c|>0

bc(t)
�μ̃

5: xt = Random(ct).
6: Query O for label yt of xt

7: Observe y(t) and compute rt
8: B = B + bct(t)bct(t)

T , f = f + bct(t).rt else μ̂ = B−1f
9: End

4 Experimental Evaluation

To conduct our evaluation, we have got from our company a corpus containing
French utterances collected from a commercial spoken dialogue system. There
are 7 765 utterances annotated by human experts. The unannotated part consists
of 3 911 695 utterances.

We use a corporate supervised algorithm (rule-based algorithm), being a part
of a spoken language dialogue system. We simulate in the experiments an expert
(oracle) on the unannotated corpus by using the rule-based algorithm which was
designed using the 7 765 annotated utterances. In our experiments, the clustering
algorithm (k-means in our case) uses the cosine similarity as a similarity metric
between utterances. We have considered different features in the context vector
of the clusters bc(t) = (Mdisc, V disc, |c|, plbc,t,MixRatec,t), where Mdisc and
V disc are respectively the average distance between individuals in the cluster,
and its variance. |c| gives the number of points in the cluster. plbc,t gives the
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proportion of labelled individuals in the cluster at time t and MixRatec,t gives
the ratio of the classes in the cluster at time t (the proportion of examples
labelled in each class in the cluster). To obtain the decreasing function D(t),
we assume D(t) = αe−βt, and we compute the parameters α and β of D(t) by
sampling uniformly the different clusters and drawing the rewards in Fig.1, then
we lit D(t) on the reward curve. We obtain α = 0.61 and β = 0.12.

Fig. 1. Reward function

To evaluate the active learning algorithms, we have considered a version of
the rule based algorithm without training. At each iteration the active learning
selects from the unannotated corpus the relevant utterances to annotate and
integrates it in the training set of the rule based algorithm. By relating the results
to the newer versions, one can verify the usefulness of the proposed approach.
We average the regret over 1000 times with a time horizon of 2000 sentences to
label which correspond to our budget in term of labelling. To compute the regret,
we have supposed that the optimal policy is given by the oracle. In addition to
the random (baseline), we have compared our algorithm to the ones described in
the related work (Sec. 2). QBC, US, and the different approaches that consider
the bandit algorithms in the active learning as EXP4 used in [7] and LCB used
in [5]. In Fig. 2, the horizontal axis represents the number of iterations and the
vertical axis gives the cumulative regret (performance metric) which is the sum
of the regrets from the first iteration to the current iteration.
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Fig. 2. Cumulative Regret for Active learning algorithms

From the Fig. 2 we observe that over all strategies gives better result than a
random selection. Neither QBC nor US gives a good results. This confirms that
a pure exploitation is not efficient, and it confirms the need of the exr/exp trade-
off. While EXP4 algorithm gets a low cumulative regret, its overall performance
is not as good as LCB and ATS. ATS and LCB indeed have the best cumulative
regrets, ATS decreases the cumulative regret with 29% over the baseline and
LCB, with 23%. The improvement comes from a dynamic exr/exp. These algo-
rithms take full advantage of exploration from the beginning of the exploration
rather than other strategies like uncertainty sampling or request by committee
that need enough iteration to construct their models. Finally, as expected, ATS
outperforms LCB, which is explained by the consideration of the context, and
also that TS performs better exr/exp trade-off than UCB.

5 Conclusion

In this paper, we study the active learning problem from the side of contextual
bandit and propose a new approach that adaptively balances exr/exp regarding
the context of the cluster (arms). We have validated our work with data from
real-world application and shown that the proposed algorithm offered promising
results. This study yields to the conclusion that considering the contextual bandit
model for the active learning significantly increases the results. Considering these
results, we plan to study the theoretical regret of the proposed algorithm.
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Abstract. Feature learning plays an important role in many machine
learning tasks. As a common implementation for feature learning, the
auto-encoder has shown excellent performance. However it also faces
several challenges among which a notable one is how to reduce its gen-
eralization error. Different approaches have been proposed to solve this
problem and Bagging is lauded as a possible one since it is easily im-
plemented while can also expect outstanding performance. This paper
studies the problem of integrating different prediction models by bag-
ging auto-encoder-based classifiers in order to reduce generalization error
and improve prediction performance. Furthermore, experimental study
on different datasets from different domains is conducted. Several inte-
gration schemas are empirically evaluated to analyse their pros and cons.
It is believed that this work will offer researchers in this field insight in
bagging auto-encoder-based classifiers.

Keywords: bagging, auto-encoders, feature learning, neural networks.

1 Introduction

When it comes to feature learning, there are two commonly used approaches,
i.e., handcrafting features learning and unsupervised features learning [15]. Com-
pared with manually selecting features, which is arduous and requires several
validation tests to determine which features are the most representative [10],
unsupervised features learning employs learning models to obtain appropriate
features. In recent years neural network based feature learning model has been
attached much importance as it allows users to perform unsupervised feature
learning with unlabelled data [12] and one of the popular learning models is
stacked auto-encoder [7].

To build a stacked auto-encoder-based feature learning model, a common
approach is to add one classification layer on the top of stacked auto-encoder
and then take the learned features as input for the classification layer [9]. Though
the auto-encoder-based classification model has many advantages, it still faces
several challenges among which a notable one is how to reduce generalization
error [4]. To meet this challenge, a lot of approaches have been proposed among
which widely adopted ones are ensemble methods [13].

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 413–420, 2014.
c© Springer International Publishing Switzerland 2014



414 Y. Nie et al.

Bagging (Bootstrap Aggregation) is a popular ensemble method which con-
sists in bootstrapping several copies of the training set and then employing
them to train several separate models. Afterwards it combines the individual
predictions together by a voting scheme for classification applications [5]. As
each bootstrapped training set is slightly different from each other, each model
trained on theses training sets has different weights and different focus, thereby
having different generalization error. By combining them together, the overall
generalization error is expected to decrease to some extent.

Previous works have shown that bagging works well for unstable predictors
[14]. Considering neural-network-based models are also unstable predictors [19],
it is intuitive to assume that applying bagging methods to feature learning based
models could also probably improve classification performance. Therefore a fun-
damental question is arisen accordingly: is it possible to integrate feature learning
with ensemble method such as bagging? If so, how can we effectively integrate
them? In this research, we thoroughly investigate the possibility of integrating
feature learning with bagging ensemble method and further provide different
integration schemas and empirically evaluate their pros and cons.

The remainder of this paper is organised as follow. In section 2 we introduce
the background about auto-encoder and bagging techniques. Section 3 presents
the proposed evaluation architecture. In section 4 we will present the experimen-
tal settings and also discuss the experimental results. Finally section 5 concludes
the paper and points possible future work.

2 Background

2.1 Auto-Encoder

Auto-encoder has been widely used as an unsupervised feature learning tool [1].
Typically, a basic auto-encoder consists of three layers, i.e, input layer, hidden
layer (or code layer), and output layer [17] which has the same number of units
as the input layer. This structure can achieve unsupervised feature learning by
feeding the unlabelled data into the input layer and forcing the output layer to
reconstruct the input. The encode phase is implemented by mapping the input
x ∈ Rm to a hidden representation (code) h ∈ Rn, which has the form:

h = f(x) = s(Wx+ bh) (1)

where s is the sigmoid activation function s(z) = 1
1+e−z , m is the number of

input units, n is the number of hidden units, x is the input feature vector, h
is the extracted code and the encoder is parametrised by the n × m weight
matrix W , and bh is the bias vector. Afterwards the decoder maps the hidden
representation back to a reconstruction x̂ ∈ Rm:

x̂ = g(h) = s(WTh+ bx̂) (2)

where s is the sigmoid activation function s(z) = 1
1+e−z , m is the number of

output units, n is the number of hidden units, h is the extracted code, x̂ is



Choosing the Best Auto-Encoder-Based Bagging Classifier 415

the reconstructed input feature vector, and the parameters are a bias vector bx̂
and WT is the tied weight matrix. The training process consists in finding the
parameters θ = {W, bh, bx̂}, which aim to minimise the cost function:

J(θ) =
∑

x∈trainset

L(x, g(f(x))) (3)

where x is a feature vector and f , g are encode and decode function in Eq. 1
and Eq. 2. The squared error is often used as the reconstruction error L, i.e.,
L(x, x̂) = ‖x− x̂‖. Once the training process is completed, it is able to take the
code in the hidden layer as unsupervised learned features.

2.2 Bagging

Bagging is a widely used integration technique to combine several prediction
models in order to improve accuracy [6]. Firstly, bootstrapped training sets are
generated from the original training set X = {x1, x2, ..., xm}, and this proce-
dure is conducted by sampling with replacement m elements with equal prob-
ability from the original training set X . Because the sampling is conducted
with replacement, there will be repeated examples in the bootstrapped training
set. As a result if m is large, asymptotically the fraction of unique examples is
limm→∞1 − (1 − 1

m )m = 63.2%. As there are repeated data, the unique data
in each bootstrapped training set are randomly different. As such the models
trained on these bootstrapped training sets have different focuses. Suppose x is
a test example, y is one possible label, Y is the set containing all possible labels,
hi is a basic prediction model and h* is the combined prediction function, the
combining process will combine each trained classifier in the following way [2]:

h∗(x) = argmax
y∈Y

∑
i:hi(x)=y

1 (4)

3 Evaluation Architecture

In order to validate the possibility and evaluate the performance of bagging
different feature learning models, in this paper an evaluation architecture is
proposed and its architecture is presented in Fig. 1(b).

In this architecture, each model is an auto-encoder-based classification model
which is chosen to integrate unsupervised feature learning into prediction mod-
els. The model is composed by two parts: 1) stacked auto-encoder-based feature
learning layers and 2) a classification layer. The stacked auto-encoder-based fea-
ture learning part has multiple layers in order to obtain higher-level representa-
tion of the data and performs feature learning [3]. The classification layer is on
top of the feature learning layers, and it takes the learned features as input and
performs classification, as shown in Fig. 1(a).

The stacked auto-encoder is configured with 0 sparsity penalty and no de-
noising treatment. All activation functions are sigmoid function and for every
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Fig. 1. Auto-encoder-based Bagging Prediction Architecture

dataset, we try 1, 2, 3 code layers in the proposed model, respectively, as indi-
cated in [18]. As for training process, a two-stage training approach is adopted.
Firstly the proposed model performs a layer-wise unsupervised pre-training with
unlabelled data [7] . This procedure aims to obtain unsupervised learned features
in code layers. Once each code layer is pre-trained, the whole network can be
further fine-tuned to include the classification layer with labelled data by tradi-
tional back-propagation algorithm [16].

Afterwards n bootstrapped training sets are generated and fed into n auto-
encoder-based classification models. Finally through bagging the n basic models
together, the overall performance will be evaluated. In this research the number
n is set to vary from 1 to 20. The decision of limiting the number of trained
basic models is both important in order to complete the experimental study in
a reasonable time and for practical applications as indicated in [2].

4 Experimental Study

4.1 Dataset and Evaluation Metrics

In this research, five commonly used datasets1,2 are employed and listed in
Table 1(a). And the raw performance improvement and the relative performance
improvement [2,5] over the average single model are utilised to evaluate the
bagging auto-encoder performance:

raw improvement = (ACCbag −ACCavg) ∗ 100% (5)

relative improvement =
ACCbag −ACCavg

100%−ACCavg
∗ 100% (6)

1 http://yann.lecun.com/exdb/mnist/
2 http://archive.ics.uci.edu/ml/
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where ACCbag stands for the accuracy after bagging, and ACCavg stands for
the average accuracy of single model.

Table 1. Datasets and Configuration

(a) Datasets
Dataset #training instances #test instances #features #classes
MNIST 60000 10000 784 10
Optdigit 3822 1000 64 10
Yeast 1000 484 8 10

CNAE9 990 90 856 9
Semeion 1400 193 256 10

(b) Layer Size Configuration
Dataset 1 Code Layer 2 Code Layers 3 Code Layers
MNIST 784-100-10 784-100-100-10 784-100-100-50-10
Optdigit 64-32-10 64-50-25-10 64-50-40-30-10
Yeast 8-50-10 8-50-25-10 8-100-80-40-10

CNAE9 856-100-9 856-428-214-9 856-428-214-107
Semeion 256-128-10 256-128-64-10 256-128-64-32-10

4.2 Experimental Result and Discussion

In this research, the number of units in each code layer is chosen by empiri-
cal evaluation to achieve best single model accuracy for each dataset [8]. The
layer size configuration and experimental results on the five different datasets
are summarised in Table 1(b) and Fig. 2. The performance in the best case is
presented in Table 2.

Table 2. Performance in the Best Configuration

datasets single avg bagging raw improvement relative improvement number of models
MNIST-1L 97.107% 97.840% 0.733% 25.346% 9
MNIST-2L 97.173% 97.990% 0.817% 28.909% 19
MNIST-3L 97.108% 98.080% 0.972% 33.599% 13
Optdigit-1L 95.650% 96.272% 0.621% 14.286% 6
Optdigit-2L 96.034% 96.828% 0.795% 20.031% 18
Optdigit-3L 95.727% 96.494% 0.767% 17.958% 19
Yeast-1L 48.347% 51.033% 2.686% 5.200% 2
Yeast-2L 49.403% 54.959% 5.556% 10.980% 9
Yeast-3L 51.033% 55.372% 4.339% 8.861% 8

CNAE9-1L 92.222% 94.444% 2.222% 28.571% 7
CNAE9-2L 97.259% 97.778% 0.519% 18.919% 15
CNAE9-3L 97.556% 97.778% 0.222% 9.091% 10
Semeion-1L 90.271% 92.746% 2.476% 25.444% 9
Semeion-2L 90.587% 94.301% 3.713% 39.450% 12
Semeion-3L 90.748% 94.301% 3.553% 38.400% 14

The experimental result has illustrated that it is possible to integrate feature
learning with ensemble method such as bagging and the relative improvement
in accuracy is satisfactory for big training set with many input features. Even
for small training set with fewer input features, bagging still works and yields
reasonable boost in the best configuration. Particularly the study on five datasets
with different configurations reveal several lessons, which may give some insight
for researchers in the domain for future bagging auto-encoder-based classifiers.

1. Bagging too few models (e.g., n < 3) is fruitless and sometimes the overall
performance is even worse than the single model performance. It is observed
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Fig. 2. Bagging Improvement for Five Datasets

from the experimental study that for some datasets (MNIST, Optdigit and
Yeast) this will cause a negative boost and for other datasets (CNAE9 and
Semeion), the boost is not quite significant compared with the performance
of a single model. One possible explanation for this phenomenon is that each
basic model trained on different bootstrapped training set has different focus.
And given the too small number of models, when a controversial case comes,
the high disagreement during bagging between the models will probably
result in finally worse performance.

2. As the number of models increases, bagging begins to show its promising
capability. The boost increases and seems to oscillate around a limit value.
The possible reason for this phenomenon is that when the number of models
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becomes bigger, there must be some overlaps between each bootstrapped
training set. Since each trained model has different focus, the difference of
theses focuses could not always be novel and might be repeated. As a result
there could be a limit for the bagging performance. Bagging too many models
does not help neither.

3. For text-based dataset (CNAE9), multiple code layers does not work well,
as shown in Fig 2(g), single code layer configuration outperforms multiple
code layers configuration. Whereas for image-based datasets (MNIST, Opt-
digit, and Semeion), multiple code layers configuration outperforms single
code layer configuration. This may be due to the fact that texts themselves
are already in a highly abstract form, more code layers could not extract
further abstract features. However, for image-based training examples, the
neighbouring features represent neighbouring pixels which are continuous
and correlated. Multiple code layers can help extract more abstract features
and thus increase performance.

4. For datasets which have too few features (Yeast with only 8 features), the
boost with multiple code layers compared to single code layer configuration
is much significant than datasets with more features (MNIST, Optdigit and
Seimeion). This phenomenon might be due to the fact that for datasets with
few features, more code layers can extract higher-level features and salient
patterns which will improve the discriminative power of the classifier.

5 Conclusion and Future Work

The auto-encoder-based classification model has many advantages, but still faces
several challenges. One of the challenges is how to reduce the model’s generaliza-
tion error. There are many ways to achieve this goal among which bagging is one
of possible solutions. This study empirically studied the mechanism of integrat-
ing feature learning based classification models through bagging. By analysing
the experimental result on different datasets with different configuration, some
lessons are also summarised to show the pros and cons of the bagging oriented
auto-encoder classifications. Besides auto-encoder, there exists other common
feature learning structures among which DBN [11] is gaining more and more
popularity. In the future, it is worthwhile to investigate bagging on these DBN
based prediction models.
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Abstract. This paper presents a new method and a case study on fMRI spatio- 
and spectro-temporal data (SSTD) classification with the use of the recently 
proposed NeuCube architecture [1].  NeuCube is a three dimensional brain-like 
model of evolving spiking neurons that can be trained with SSTD such as 
fMRI, EEG and other brain data. This SSTD is mapped, analyzed, modeled and 
trained, and the result from these processes can be used to better understand the 
brain processes and to better recognize brain patterns, and thus to extract new 
knowledge that may reside within the SSTD. From the experimental results we 
can conclude that the NeuCube architecture is capable of producing significant-
ly more accurate classification results when compared with standard machine 
learning methods such as SVM and MLP. Moreover, the NeuCube method faci-
litates deep learning of the SSTD and deeper analysis of the spatio-temporal 
characteristics and patterns in the fMRI SSTD.  

Keywords:  spatio- spectro- temporal data; functional Magnetic Resonance Im-
aging (fMRI); evolving spiking neural networks; NeuCube; deep learning. 

1 Introduction 

In recent years MRI has become one of the most powerful imaging technique for 
understanding brain structure and functions, compared to other techniques, because of 
its non-invasive nature and the ability to produce very high visualization quality of 
internal organs and tissues.  fMRI is a special form of MRI that can be used to meas-
ure neural activity changes in the brain resulting from stimuli.  It measures the ratio of 
oxygenated hemoglobin to deoxygenated hemoglobin in the blood, at many individual 
locations within the brain which is taken as an indicator of neural activity [2].   

Sequence of brain images or brain slices are constructed from spatial/spectral and 
temporal components. Spatial components are the coordinates of the brain cuboids 
(voxels) where data has been measured as intensity values.  The temporal component 
is the time of scanning the whole brain volume, which can take 0.5-4.0 seconds to 
complete [2].  In a typical experiment, 100 or more brain volumes are usually scanned 
and recorded for a single person doing a particular task.   
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Having in mind the importance of accurate analysis and study of spatio- and tem-
poral information in any SSTD, as previously tested with SSTD stroke data [3] and 
proven to produce better result, we are motivated to experiment the NeuCube model 
with other type of SSTD, in particular fMRI data.  The rest of the paper is structured 
as follows:  Section 2 describes the methodology, continued with experiment settings 
(Section 3) and followed with the result and discussion (Section 4).  Finally, the paper 
is wrapped up in Section 5 with conclusion and future works of our study.  

2 NeuCube for Modelling and Classification of SSTD  

Standard classifiers such as Support Vector Machine (SVM), Multilayer Perceptron 
(MLP) and others have been used in many successful static brain data experiments [4, 
5, 6].  These methods are efficient to process only the spatial component of the data, 
while neglecting the temporal component that these brain data, and other complex 
SSTD have.  Despite of the efforts to model fMRI as SSTD [7, 8] there is a need for a 
new architecture that could better model, analyze and facilitate understanding of this 
complex data. To address this issue, the recently proposed NeuCube [1] is experi-
mented here on fMRI data with the main objective to have a better analysis of brain 
patterns from fMRI SSTD.  

The principles and the theory of the NeuCube were proposed and illustrated in [1]. 
NeuCube is a learning model of evolving spiking neural networks (eSNN) that per-
form learning in 2 phases: unsupervised and supervised.  Figure 1 shows the NeuCube 
architecture.  SSTD are transformed into spike sequences using Address Event Repre-
sentation (AER) method [9] as demonstrated in Silicon Retina [10, 11], or other en-
coding methods such as rank order coding (ROC) [12] and Ben’s Spikes Algorithm 
(BSA)[13].  Encoded spikes are then processed with the use of a learning method 
called Spike Time Dependent Plasticity (STDP) in a 3D SNN cube (SNNc) with 
leaky-integrate and fire model (LIFM) of the spiking neurons.  After the completion 
of the unsupervised learning in the SNNc, which can be just for one training iteration, 
the input SSTD is fed into the trained SNNc which is connected to an eSNN to classi-
fy the spatio-temporal patterns produced in the SNNr into predefined classes.  Differ-
ent eSNN classifiers can be applied [14] such as dynamic eSNN (deSNN) [9] and 
spike pattern association neurons (SPAN) [15].  The whole model that includes both a 
SNNc and an eSNN classifier can be optimized through several iterations by changing 
the parameter values in every experimental run, until maximum accuracy is achieved. 

In [1] a NeuCube-based methodology for EEG SSTD modelling and classification 
has been also proposed and the idea of using NeuCube for fMRI data has been raised. 
In [3] a NeuCube-based methodology for predictive data modelling on climate SSTD 
and early prediction of a personal event – stroke, has been proposed. In this paper we 
continue the development of NeuCube–based models for another type of SSTD – 
fMRI.    
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3 A NeuCube Based Methodology for fMRI SSTD 
Classification Illustrated on a Case Study  
of StarPlus fMRI Data    

3.1 The Methodological Framework 

The proposed NeuCube-based framework for classification of SSTD fMRI data is 
presented in Figure 1.  It consists of 4 major stages, each of them explained below and 
illustrated on the classical StarPlus fMRI dataset [16]:  Spatio-temporal mapping and 
encoding of the fMRI data; Unsupervised learning in a SNNc; Classification in an 
eSNN classifier; and Parameter and model optimization. 

 

Fig. 1. A schematic representation of the NeuCube [1] based framework for fMRI data model-
ling and classification that consists of: 1.Spatio-temporal mapping and encoding of the fMRI 
data; 2. Unsupervised learning in a SNNc; 3. Classification in an eSNN classifier; 4.Parameter 
and system optimization 

3.2 Data Mapping 

Dataset.  Publicly available StarPlus datasets [16] have been used to evaluate the 
performance of the proposed framework.  The data was previously used by other re-
searchers [4], [6, 7, 8].  The experiment was conducted into 2 set of trials in which in 
half of the trials, a subject was first presented with a picture stimulus for 4 sec, then a 
rest period for 4 sec and finally presented with a sentence stimulus for another 4 sec, 
and this experiment was identified as a PS trial.  For half of the other trials, a subject 
was first presented with a sentence stimulus, followed by a rest period and then pic-
ture stimulus (SP trial).  Data was measured every 500ms.    We used 24 time points 
of PS dataset as Class 1 and another 24 time points of SP dataset as Class 2, resulting 
in 10 samples for each class. 

Structural Mapping of fMRI SSTD into a NeuCube Structure. One of the Neu-
Cube implementation [1] is based on Talairach brain template [17] with 1471 spiking 
neurons in the SNNc, so that the spatial (ݖ,ݕ,ݔ) coordinates of each neuron are the 
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same as a spatially located area of the brain according to the template. In order to map 
the StarPlus data into this SNNc, we have transformed the StarPlus data into 1471 
integrated voxels that correspond to the 1471 Talairach template in the following 
way:  

1. Determine mean of  ݔand ݕ of StarPlus coordinates, ݔ௠௘௔௡ௌ௉ and ݕ௠௘௔௡ௌ௉  
2. Determine stretch factor for ݕ ,ݔ and ݖ: 

 ݀௫ ൌ ௠ேݔ  ௠ௌ௉ݔ െ ⁄௠௘௔௡ௌ௉ݔ   (1) 

 ݀௬ ൌ ௠ேݕ  ௠ௌ௉ݕ െ ݕ௠௘௔௡ௌ௉⁄  (2) 

 ݀௭ ൌ  10 (3) 

3. Determine new StarPlus coordinates: 

௡௦ݔ  ൌ  ݀௫ כ ሺݔSP െ  ௠௘௔௡ௌ௉ሻ (4)ݔ

௡௦ݕ  ൌ  ݀௬ כ ሺݕSP െ  ௠௘௔௡ௌ௉ሻ (5)ݕ

௡௦ݖ  ൌ  ݀௭ כ ሺݖௌ௉ െ 4ሻ (6) 

Where ݀௫, ݀௬ and ݀௭ are stretch factors, ݔ௠ே and ݕ௠ே  are x and y minimum of Neu-
Cube; ݔ௠ௌ௉ and ݕ௠ௌ௉ are x and y minimum of StarPlus;  ሺݔௌ௉, ݕௌ௉  ௌ௉ሻ are originalݖ ,
StarPlus coordinates; and ሺݔ௡ௌ௉, ݕ௡ௌ௉   .௡ௌ௉ሻ are new calculated StarPlus coordinatesݖ ,

We define the StarPlus data points that are close to the NeuCube coordinates with-
in a certain radius (in this case we set the radius to be 7).  This is to ensure that, no 
single data point from the StarPlus data is located outside the NeuCube Talairach-
based (ݖ,ݕ,ݔ) coordinates (Figures 2a, b).  fMRI input data that have already been 
transformed into Talairach coordinates, are encoded into spike trains using AER me-
thod.   

3.3 Unsupervised Learning in the 3D SNN Cube 

STDP learning method is applied in the NeuCube to initialize, modify and retain con-
nection weights (memory) throughout the unsupervised learning stage.  Experimental 
settings for subject s04799 as shown in Figure 3:  the size of the SNNc is 1471 LIF 
neurons; AER threshold is 2.375:when a voxel value (integrated input voxel va-
riables) increases above 2.375, a positive spike will be generated and entered into the 
SNNc at the same (ݖ,ݕ,ݔ) location of the SNNc as the location of the voxel; if a voxel 
value decreases below 2.375, a negative spike will be generated and entered into the 
SNNc at the same location as the voxel co-ordinates from the data; if the voxel value 
is unchanged, no spike will be generated.  Small world connections (SWC) regene-
rated probabilistically as initial connections in the SNNc reservoir (SNNcr). The ra-
dius of the SWC is chosen for this example to be 0.15. The LIFM neuron spiking 
threshold in the SNNc is 0.5 and a leaking parameter is chosen as 0.002. The used 
STDP learning rate is 0.001. In this case the number of training iterations for training 
the SNNc is 5. For the eSNN classifier the following parameters are used: mod 
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 parameter is 0. 4 (accounting for the importance of the first spikes on the neuronal 
inputs); and the drift parameter is 0.25 (accounting for the importance of the follow-
ing incoming spikes to the neuronal inputs).  

3.4 Classification Using deSNN Classifier 

In [10] deSNN achieved fast and accurate learning of AER data for STPR as com-
pared to eSNN and SNN that use only STDP. In the proposed framework each input 
neuron of the deSNN is connected to all neurons in the SNNc. The synaptic weights 
of the neurons in the deSNN are initialized using the rank order (RO) learning rule 
and the mod parameter, which is based on the first incoming spike that arrives on a 
synapse.  For the following spikes, the synaptic weights are adjusted using STDP 
learning rule and the drift parameter, and the maximum of post synaptic potential and 
threshold value are calculated. The parameters used in the experiment are presented in 
Section 3.3.  For the NeuCube implementation (taking subject s04799 as an example), 
voxel intensity values within the same trial are learned as one spatio-temporal pattern, 
thus producing 24 time frames, each of  1471 voxels. 20 samples are extracted from 
the data. Training and testing is conducted using 50:50 random split of the StarPlus 
data. 

In the comparative analysis, the SVM experiment uses Polynomial Kernel of first 
degree, while the MLP model uses 20 hidden nodes and one output, with learning rate 
of 0.001and 500 iterations.  As for standard classifiers, voxel intensity values within 
the same trial are concatenated and regarded as a single sample, thus producing 24 x 
1471=35,304 input vector for each of the 20 samples. 

4 Results and Discussion 

The best accuracies obtained from the designed and trained NeuCube against standard 
classifiers (SVM and MLP) for 20 samples for each subject are depicted in Table 1.  
For illustration, the network is trained with parameters as shown in Figure 3.The clas-
sification accuracy obtained in the NeuCube model for subject s04799 was 90% 
(100% for class 1 and 80% for class 2, shown on Figure 3). Overall, the NeuCube 
models produced higher accuracy result than SVM or MLP in all experiments. Neu-
rons connectivity before and after training are displayed in Figure 4 that can help 
understanding the fMRI data.  The results clearly show that NeuCube model is much 
more accurate to handle complex fMRI data without filtering the noise from the data. 
This suggests that noise may carry valuable information in defining association  
between SSTD samples, but failed to be recognized and processed in conventional 
methods.  The NeuCube approach does require preliminary feature extraction as it 
performs deep learning of the data. Additionally, classical machine learning methods 
are clearly not suitable for analyzing complex SSTD that have spatial and temporal 
information because their capability is severely limited to process only vector-based 
and static-based data. 
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Table 1. Comparative analysis of accuracy percentage for classical machine learning methods 
and the NeuCube model across six different subjects.  The data set consists of 20 samples. 

Methods / 

Subject 
SVM MLP NEUCUBE 

s04799 50(20,80) 35(30,40) 90(100,80) 
s04820 40(30,50) 75(80,70) 90(80,100) 
s04847 45(60,30) 65(70,60) 90(100,80) 
s05675 60(40,80) 30(20,40) 80(100,60) 
s05680 40(70,10) 50(40,60) 90(80,100) 
s05710 55(60,50) 50(50,50) 90(100,80) 

 

 

Fig. 2. (a)  Blue dots are StarPlus coordinates while red dots NeuCube coordinates.  As illustra-
tion three neurons are projected: the SNNc neuron 500 and its 8 neighboring StarPlus voxels 
represented as neurons; SNNc neuron 1105 and its 16-neighboring StarPlus voxels represented 
as neurons; and the SNNc neuron 1009 without StarPlus voxels around; (b) NeuCube neurons 
(black squares) and StarPlus voxels (blue squares) coordinates mapping in each of the z-slices; 
each sub-figure represents a single slice.  Sub-figures which have only black squares mean that 
there are no StarPlus voxel coordinates mapped into that particular z-slice.     

 

 

Fig. 3. A snapshot of a software implementation of the NeuCube architecture for classification 
of 2 class fMRI data for subject s04799.The parameter values are as in the Setting parameter 
box.  Classifier used is deSNN with accuracy is 100% for class 1 and 80% for class 2. 
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Fig. 4. Visualization of fMRI data model and connectivity between neurons of eSNN: (a) no 
spiking activity yet of inactive (blue) and fMRI (yellow) neurons; (b) spiking activity: active 
neurons (red), inactive neurons (blue), positive input neurons (magenta), negative input neurons 
(cyan) and zero input (yellow); (c) neurons connectivity before training (SWC): positive con-
nections (blue) and negative connections(red); (d) neurons connectivity after training 

5 Conclusion and Future Works 

The experimental results produced with the proposed methodology for fMRI data 
modelling and classification validates its feasibility for analyzing complex fMRI data.         
A drawback of this approach is its high computation time particularly in determining 
optimal model and parameters.  Multiple runs are needed to find the perfect combina-
tion of parameters in order to achieve higher accuracy.  An optimizer such as Particle 
Swarm Optimization (PSO) for SNN [18], quantum inspired genetic algorithm [19]; 
and quantum inspired PSO [20] are thus planned to be developed in the future, along 
with NeuCube implementation on highly paralleled neuromorphic hardware [21].  We 
also plan to develop new techniques for the analysis of the NeuCube patterns of activ-
ity that would help to better understand the modeled fMRI data and the brain states.   
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Abstract. A hybrid approach to pixel data mining for analysing map based 
thematic data for segregating, identifying and characterising New Zealand’s 
grape wine regions is elaborated.  The approach consisting of self-organising 
map (SOM) based clustering and Top-Down Induction of Decision Tree 
(TDIDT) decision techniques provides a means to profiling New Zealand wine 
regions despite scale, resolution and extent related data analysis issues that pose 
constraints with traditional and even with contemporary methods, such as satel-
lite imagery and landscape classification techniques. With the SOM-TDIDT 
approach viticulturist can gain further insights into existing wine regions al-
ready zoned based on traditional methods. It could also be used to evaluate the 
suitability of new terroirs for potential vineyards as the continued production of 
premium wines by the world famous wineries has already become a challenges 
due to recent climate change observed across a few wine regions in Australia 
and the Mediterranean. 

Keywords: Self-organising maps (SOM), TDIDT, Viticulture. 

1 Introduction 

A hybrid approach consisting of self-organising map (SOM) based pixel clustering and 
Top-Down Induction of Decision Tree (TDIDT) decision techniques to segregating, 
identifying and characterising New Zealand (NZ) grape wine regions is presented. The 
conventional approaches to viticulture zoning require expertise on the environment 
which makes the zoning of new regions/ terroirs a challenging task [1]. The underlying 
causes relating to viticulture zoning using either single or multi-attribute spatial i.e., 
environmental and climatic, also combined with non-spatial attribute i.e., wine label 
ratings, sensory perception descriptors, as a composite index are outlined.  

The independent factors used for viticulture zoning can be categorised into three 
main classes; 1) location, 2) wine varietal stock/ bud graft (terroir x cultiva as in the 
Mediterranean concept) and 3) wine quality/market price related.  The viticulture zon-
ing provides major benefits to viticulturists, resource management and the wine industry 
and they are; 1) gain further understanding on dominant independent factors that impact 
on crops to inform vineyard management for implementing mitigating operations / 
maximising yield i.e., cultivation practices, at the vineyard scale, 2) when selecting new 
sites for potential vineyards, 3) for marketing quality vintages, and 4) for the state insti-
tutions who needs to decide on the optimal use of natural resources such as land, water 
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[2].  However, in the good old days, viticulture zoning systems were originally set-up 
and implemented to protect winemaker identity and source of income [3].  

Conventional approaches to viticulture zoning use one or more dominant terroir fac-
tors identified as the most relevant, integrated into a geographic information system 
(GIS) usually at the meso scale (covering a few/several vineyards). However, it requires 
extensive knowledge on the related factors for any factor discretion. For example, to 
classify the regions based on grapevine phenology, comprehensive knowledge on local 
viticulture, wine quality and taste attributes (growing degree days or GDD, frost days, 
berry ripening period and temperature range, and wine style/ rating/ taste attributes) is 
essential. Hence, characterising vineyards in the so called new world i.e., New Zealand, 
Australia, Chile or new terroirs is seen as a challenging task.  Even for the currently 
world famous wine chateaus and vineyards gaining further understanding on local gra-
pevine phenology has become pertinent as they are increasingly compelled to look for 
new sites for relocating their established vineyards due to rising temperatures that chal-
lenge the ripening of ideal grapes for continued production of premium quality wine 
[1][4]. For such instances, the SOM-TDIDT approach provides a means to profiling the 
local, environmental, viticulture and winemaker information of existing wine regions 
for identifying and classifying any new regions or new sites/ terroirs for potential vi-
neyards using available digital map based data [5]. 

2 Background 

2.1 Integrated Analysis of Spatial Attributes 

Both simple and complex spatial data analysis methods are efficient when there is suffi-
cient knowledge relating to the problem domain and its solutions. The simple GIS op-
erations applied to integrated analysis of spatial attribute data can be grouped into four 
basic categories based on [6] [7] and they are: 1) retrieval/ classification/ measurement, 
2) overlay, 3) neighbourhood and 4) connectivity of network functions [8]. 

2.2 Clustering in Spatial Data Mining     

New algorithms are being continuously investigated for clustering spatial data to op-
timise the clustering efficiency [9]. The focus of recent research efforts in spatial data 
analysis has been; improving the cluster quality in large volumes of high dimensional 
data sets [10], noise removal [11], uncertainty [12], data pre-processing and reduction 
of clustering run time [13].   

TDIDT algorithm is considered to be a powerful tool for generating classification 
rules for decision trees since the mid-1960s. The TDIDT algorithm [14] gives the basis 
for many classification systems, such as Iterative Dichotomiser 3 (ID3) and C4.5 (statis-
tical classifier) an extension to the ID3. Using the TDIDT methods decision rules can be 
produced as a decision tree by repeatedly splitting the data based on the values of attrib-
utes and this is referred to as recursive partitioning. The TDIDT algorithm is based on a 
set of instances used for training.  Each instance can be described by the values of a set 
of categorical attributes relating to a member of a universe of objects. 
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Fig. 1. SOM training that eventually covers the input data space as shown in the discrete mix-
ture option (prob. distribution.). In graph (right), error decreases (y-axis) with training (x-axis) 
source: http://blog.peltarion.com/2007/06/13/the-self-organized-gene-part-2/. 

2.3 Remote Sensing in Viticulture  

Contemporary precision viticulture studies use increasingly high resolution aerial 
imagery and micro climate/ environmental data acquired using networks of wireless/ 
wired sensors/ probes to identify the different zones within a vineyard block [15]. 
Remote sensing and access to satellite imagery have led to the use of airborne multis-
pectral and hyper spectral imagery in precision viticulture with greater flexibility 
especially, for yield mapping integrated with soil or disease properties [16].  

3 The Methodology 

3.1 SOM Clustering and WEKA’s JRip Classifier 

A SOM is a two-layered feed-forward artificial neural network.  It uses an unsuper-
vised learning algorithm to perform non-linear regression.  During training, the net-
work configures itself in such a way that the output gradually evolves into a display of 
topology preserving representation with similar input data clustered near each other 
(fig. 1). The topology preserving mapping of the SOM algorithm projects multi-
dimensional data sets onto low, usually one- or two-D planes that enable the visuali-
sation of complex data sets otherwise difficult to analyse i.e., using conventional 
methods [17]. 

 

Fig. 2. A schematic diagram showing the steps adopted in the SOM-TDIDT approach 
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are: minimum monthly water balance ratio, annual solar radiation, elevation, annual 
average temperature, induration, acid soluble P, aspect and then finally annual mini-
mum temperature. Interestingly, these are the factors used in the current system but 
with different terms.  For instance, the monthly water balance used in this study is a 
surrogate for rainfall.  Meanwhile, annual solar radiation and annual average tem-
perature reflect growing degree days (GDD) used in the traditional NZ viticulture 
zoning system. Most of the clusters with pixels in multiple regions (fig. 5) have more 
than one JRip rule relating to the attribute ranges for the respective clusters (fig. 5). In 
the first rule, all 16 instances relating to cluster 15 (of 18-Cluster SOM) from the 
Otago region possess a unique attribute which is minimum water balance ration <=1. 

 
=== Classifier model (full training set) === JRIP rules: Class: C18  

  
(Min of W_BAL_RA <= 1)    => 15 (16.0/0.0) Otago  
(Min of A_SOL >= 15.2) and (Min of ASPECT >= 237.31) => 14 (26.0/1.0)Marlborough** 

(Min of A_SOL >= 15.2) and (Min of ELE_25 >= 167) => 8 (30.0/0.0) Marlborough** 

(Average of ELE_25 >= 284.12) and (Min of A_TEMP <= 11.2) => 16 (35.0/0.0) 
(Average of A_TEMP <= 10.9) and (Min of INDURATION >= 3.6)=> 16 (2.0/0.0) 
(region = Canterbury) and (Max of INDURATION >= 3.6) => 6 (35.0/0.0) 
(Min of A_TEMP <= 9.8)   => 6 (4.0/0.0) 
(Min of ELE_25 <= 7)     => 7 (52.0/0.0) 
(Average of INDURATION <= 0)    => 18 (53.0/0.0) 
(Min of ACID_S_P >= 4) and (Average of ASPECT >= 279.33) => 9 (61.0/0.0) Marlborough* 
(Min of ASPECT >= 240.76) and (Min of MIN_TEMP <= 2)  
and (Max of A_TEMP >= 12.2)    => 13 (64.0/0.0) 
(Average of MIN_TEMP <= 0.8) and (Min of ASPECT >= 285.04) => 13 (3.0/0.0) 
(Average of A_TEMP <= 11.7) and (Min of ELE_25 <= 85) => 5 (68.0/0.0) 
(Max of ELE_25_2 >= 197)    => 12 (50.0/6.0) 
(region = Nelson)     => 12 (42.0/18.0) 
(region = Wellington) and (Average of A_TEMP <= 12.675) => 12 (14.0/6.0) 
(Min of W_BAL_RA >= 3.2)    => 12 (3.0/1.0) 
(Min of ACID_S_P >= 4)    => 1 (81.0/1.0) Marlborough* 
(Min of W_BAL_RA <= 1.5)    => 3 (75.0/0.0) 
(Min of INDURATION >= 3.9) and (Max of ASPECT <= 127.99) => 3 (17.0/2.0) 
(Min of EXCH_CAL <= 1.1) and (Average of ELE_25 >= 90.46) => 17 (104.0/0.0) 
(Min of EXCH_CAL <= 1.5) and (Max of ASPECT >= 357.68) => 17 (6.0/0.0) 
(Average of A_TEMP >= 15.784198)   => 17 (2.0/0.0) 
(Average of DRA_25 <= 1.9) and (Min of ELE_25 <= 48)  => 10 (124.0/0.0)  
(Min of A_TEMP <= 13.2)    => 2 (115.0/6.0) 
(Average of ELE_25 >= 31)    => 11 (148.0/0.0) 
       => 4 (164.0/0.0) 

Number of Rules: 27  Time taken to build model: 0.92seonds 

Fig. 5. WEKA JRip rules generated for 1394 vineyard group minimum, average and maximum 
values for all 15 attributes using the 18 SOM cluster value as the class 
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with aspect and hill shade, (the latter two are related to elevation) were found to be 
meaningful attributes for the characterisation of among and even within vineyards. 
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Abstract. Li-ion batteries provide lightweight, high energy density
power sources for a variety of devices. Therefore, monitoring battery
health in an effective way could increase the reliability and stability of
the prediction system. So in this paper, we present a novel prediction
framework based on Echo State Network to realize the prediction for
battery state of health by training and testing battery impedance val-
ues and capacity values. To evaluate the proposed prediction approach,
we have executed experiments with lithium-ion battery. Experimental
results prove its effectiveness and confirm the estimation system can be
effectively applied to the battery health state prediction. Moreover, the
prediction system can run multiple data sets at a time to make the esti-
mation process more efficient. Therefore, we can choose a battery which
meets the requirement through the comparison between different batter-
ies’ prediction results.

Keywords: Echo State Networks, Framework, Prediction, reservoir
computing, Lithium-ion Battery.

1 Introduction

The lithium-ion battery has the advantage of a low self-discharge rate, which
allows the battery to remain in stock for about 12 months without additional
maintenance, and requires a special circuit to control the charging and discharge
process. On the other hand, the lithium-ion battery is a very important compo-
nent for lots of electrical equipments and is critical to the performance of these
systems. Therefore, an accurate estimation of the battery state of health (SOH)
[1] in an effective approach can enhance the system reliability and stability [2].
Failure to do so can result in the performance degradation, underutilization
of the equipment, and even cause catastrophic damages. Therefore, researchers
have paid attention to the health monitoring and prognostics for lithium-ion
battery with a variety of methods. In previous work [3] [4] [5], Bhaskar Saha
using a Bayesian Framework for battery health monitoring, IL-Song Kim made
the estimation through a Dual-Sliding-Mode, Datong Liu present the Gaussian
process model to realize the prognostics for battery health, etc.
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The SOH which takes into account such factors as charge acceptance, internal
resistance, voltage and self-discharge reflects the general condition of a battery
and ability to deliver the specified performance compared with a fresh battery.
SOH estimation used as a qualitative measure for the battery energy state in
the system plays a major role in the battery prediction. The prediction of the
SOH can be used to show the degradation of battery’s performance and pre-
vent possible accidents. There are two typical methods to calculate the SOH of
the battery [6]. One method uses the battery impedance values to indicate the
battery SOH. That can be determined using

SOH =
Ri

R0
× 100% (1)

where Ri is the ith impedance measurement varied with the cycles of charging
and discharging and Ro is the battery initial impedance. On the other hand, the
battery capacity C can also be used to determine the battery SOH as given in

SOH =
Ci

C0
× 100% (2)

where Ci is the ith capacitance value degenerated with cycles and C0 is the
initial capacity. We estimate the battery SOH using impedance and capacity
values respectively

In this paper, a novel prediction framework for battery health monitoring
based on ESN is proposed to innovate in the prediction system of the battery [7].
The framework contains the establishment of structures including data acquisi-
tion, data processing, parameter selection, parameter training and testing, and
subsequent estimation structure with new data. We use Lithium-ion Bettery
impedance or capacity values to estimate the SOH of the battery respectively.
Meanwhile, We deal with the issue processing for the raw data [8]. Moreover,
the prognostics system can run multiple battery data sets at a time to make the
prediction process more efficient.

The paper is organized as follows. In section II. the ESN background is de-
scribed. Mathematical backgrounds are given in order to define how the ESN
can be used for prediction. In section III. the ESN predicrion framework is pro-
posed formally. Also, the program of setting some parameters (reservoir design)
is addressed. Before concluding, experiments are performed in order to discuss
the usefulness of the ESN for prognostics purpose. Dataset used comes from
experimental test of NASA Data Repository. The conclusions and future works
are discussed in section V.

2 Backgrounds of ESN

As a new type of Recurrent neural networks [9]. A ESN uses the parameter α
called Echo State Property (ESP) that make the reservior dynamic. This kind
of neural networks was introduced by Jaeger works about ESN in 2001 [10].
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An ESN consists in a large number of neurons located in a so-called reservoir
with a randomly (and fixed )connectivity between each other. Three essential
elements of ESN: a. The reservoir weight matrix, calledW . b. The input-reservoir
weight matrix,called W in. It make the the link between input and the reservoir.
c. The reservoir-output weight matrix ,called W out. It makes the link between
the reservoir and the output. In addition, the system can add another optional
matrix W back, which represents the retroaction of outputs.

For the basic structure, W and W in are created randomly and fixed, they do
not need to be trained. Only W out has to be trained. Consequently the training
consists in a very simple linear regression. Compared with the traditional Recur-
rent neural networks, we deal with the issue the ambiguity and the complexity
of training algorithm in the traditional Recurrent neural network architecture,
and the training process has been simplified. Meanwhile, we also conquer the
memory degradation of Recurrent neural network. A basic structure of an Echo
State Network is shown in Figure 1.

2.1 Mathematical Formulation and Learning Scheme

Echo state network can be represented by state update and output equations.
The update of the reservoir internal units is calculated as following:

x(n+ 1) = f
(
W inu(n+ 1) +Wx(n) +W backy(n)

)
(3)

where (·)T denotes transpose, x(n) = (x1(n), · · · , xN (n))
T
is a state vector of the

reservoir, u(n) = (u1(n), · · · , uK)T is an input vector, y(n) = (y1(n), · · · , yL(n))T
is the output vector,W in ∈ RN×K ,W ∈ RN×N ,W back ∈ RN×L are the internal,
input and feedback connection weight matrix, respectively. f (·) = (f1, · · · , fN)

T

stands for an activation function vector. For example, fi(·) = tanh(·), i =
1, 2, · · · , N . Calculate the output for a basic structure ESN is:

y(n+ 1) = fout
(
W out(x(n+ 1), u(n+ 1), y(n)) +W out

bias

)
(4)

where W out
bias is output bias or noise. The W out is calculated as following:

(W out)T = X−1T (5)

where X is a matrix created by M row vectors (x1(i), x2(i), · · · , xN (i))(i =
1, 2, · · · ,M), T = (y(1); y(2); · · · ; y(M)) is a column vector. The learing algo-
rithm consists in reducing the Mean Square Error (MSE) between the computed
values for the training data set ypredicted and the targets data set ytarget

MSE =
1

N

N∑
1

((ytarget(n)− ypredicted(n))
2 (6)

where N is the number of dimissed samples, due to the initial condition of the
different matrix.The goal is using a linear regression approach to find the best
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W out weight matrix corresponding to the lowest MSE possible result. Nowadays,
the nonlinear node with delayed feedback has innovated the conventional ESN.
A reservoir is obtained by dividing the delay loop into N intervals and using time
multiplexing. The input states are sampled and held for a delay in the feedback
loop.

Fig. 1. Basic structure of an Echo State Network

3 ESN Prediction System

In order to obtain the SOH information of lithium-ion batteries. A framework
of health prediction is proposed. We can predict different batteries SOH by a
regular algorithms. The results of the prediction can be optimized by the update
of the prediction system (the modulation of the data parameters).Therefore,
we can get different batteries’ SOH prediction information at a time with this
prediction system.

Fig. 2. The prediction framework based on ESN



442 J. Wang et al.

The framework of the battery SOH prediction is shown in figure 2, including
two process. In the process of structure establishment, The predictions we make
can also with online data. The online data we may used for battery prediction
including current, voltage and impedance values. Moreover, the row data need to
be processed before the experiment by a variety of methods. Common methods
of data processing including smoothing processing, eliminating outliers, inter-
polation method, etc. In the estimation process, new data can be acquired to
make the prediction for the lithium-ion battery SOH with the trained parameters
directly.

3.1 Reservoir Parameters Design

Here are three major parameters of the reservoir. a. Size of the reservoir Nres:
the number of units in the reservoir. The general wisdom is that the bigger the
reservoir, the better the obtainable performance. b. c: the reservoir connectivity:
the reservoir neurons are not all connected, so we have to design a connectivity
parameter to get best results. It represents the percentage of non-zero weights
in the reservoir and can take values between 0 and 1. c. The spectral radius:
One of the most central global parameters of the reservoir connection matrix.It
corresponds to maximum value of this matrix eigenvalues. In ESN the spectral
radius is used to scale the non-zero elemens ofWres. The principle is to create the
Wres matrix randomly with a connectivity parameter, and calculate the spectral
radius of the matrix created.

4 Experiments and Analysis

In this paper, we use the impedance values and capacity values to estimate the
SOH of the battery respectively in the prediction framework. a. In our experi-
ment, we acquire the datasets from the NASA Ames Prognostics Data Reposi-
tory. The datasets contains multiple batteries’ charge, discharge and impedance
information. What we want to analysis for SOH prediction here is the battery
impedance and capacity. Then, the row data need to be processed by several
methods (we discussed above). b. We divid the data into two groups. One is
used for training, the other is use for testing. c. Selection of parameters. d. Run
the program and the results will be obtained in a table file, where we can get the
prediction information by the comparision of errors between different batteries
in the table file. We can go back to change the paremeters when the prediction
output is not meet the requirment.

4.1 Data set

The data set we used for estimation comes from NASA Data Repository. The
Li-ion batteries(No.5, No.6 and No.7) were run through charge, discharge and
impedance operational profiles) at room temperature. Charging was carried out
at a constant current mode at 1.5A until the battery voltage reached 4.2V and



A Novel SOH Prediction Framework for the Lithium-ion Battery 443

then continued in a constant voltage 4.2V until the charge current dropped to
20mA. Discharge was carried out at a constant current level of 2A until the bat-
tery voltage fell to 2.7V, 2.5V, 2.2V respectively. Impedance measurement was
carried out through an electrochemical impedance spectroscopy frequency sweep
from 0.1Hz to 5kHz. Repeated charge and discharge cycles result in accelerated
aging of the batteries. The experiments were stopped when the battery was a
30% fade in rated capacity.

Data processing: In this experiment we process the row data by deleting some
abnormal points manually and using mathematical methods to reduce the signal
noise. The processed battery capacity and impedance values are in figure 3.

a. Processed capacity data of battery
No.5

b. Processed impedance data of
battery No.5

Fig. 3. Battery processed data of No.5 including processed capacity data (a) and pro-
cessed impedance data (b)

4.2 Simulation Settings

The most improtant part in this experiment is parameter setting which affect
the prediction results to a great extent. In this experiment. The data of each
battery contains 168 cycles where we obtained the battery impedance and ca-
pacity values. The impedance values are used as inputs of an ESN. The first 84
values are used to train the network and the remaining values to test it. In the
other experiment, the capacity values are also divided into two groups to train
and test the network. In the prediction with capacity values of the battery, size
of the reservoir Nres is 30, the reservoir connectivity c is 1

3 , the spectral radius
is 0.75. In the experiment with impedance values of the battery, Nres is 30, c is
1
3 , the spectral radius is 0.5. The system could also estimate a typical battery
in different operational conditions. The matrics used to check the network per-
formance is Root Mean Square Error (RMSE). It is commonly used to quantify
the difference between a predicted value and its real target.

RMSE =

√∑N
t=1((yt − ŷt)2

n
(7)
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a. The testing result of battery No.5
with impedance values

b. The testing result of battery No.5
with capacity values

Fig. 4. Prediction result of three batteries. Prediction result of No.5 with impedance
data(a). Prediction result of No.5 with capacity data(b). Other batteries prediction
results are similer to battery No.5.

Mean Average Percentage Error (MAPE) is also a quantification measurement
between two signals.

MAPE =
1

n

N∑
t=1

∣∣∣∣ ŷt − yt
ŷt

∣∣∣∣ (8)

4.3 Results and Discussion

Figure 4 shows the impedance prediction output and the capacity prediction
output of the battery No.5. The batteries No.6 and No.7 are estimated at a
time. The prediction output of the batteries No.6 and No.7 are similar to the
battery No.5. The results show the degradation of different battery lifetime with
the increasing of charge-discharge cycles. It also reflects the degradation of SOH
well.

Table 1 shows the specific values of error. Different batteries’ performance
informations are displayed intuitively. The result shows the testing results is

Table 1. Three batteries’ trainerror and testerror with capacity and impedance data
respectively

Battery

Impedance data Capacity data

RMSE MAPE RMSE MAPE

train test train test train test train test

No.5 0.028158 0.020183 0.033014 0.109070 0.001219 0.008208 0.000128 0.008391

No.6 0.036841 0.019066 0.034022 0.021449 0.000503 0.018645 0.000243 0.016310

No.7 0.018808 0.070609 0.018681 0.076688 0.000077 0.004064 0.000110 0.004603
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more accurate when we use capacity values. Morever, the battery No.5 and the
battery No.7 results could be more appropriate with the same set of parameters
respectively.

5 Conclusion

This paper presented a framework based on ESN to evaluate the state of health.
The case studies certified that the framework can be applied to different lithium-
ion batteries. We can obtain different batteries’ performance informations at
a time. The experimental results demonstrate that the SOH estimation and
prediction could obtain satisfied precision. Future work involves the optimization
of the prediction of the framework for battery prediction and the development
of a wider variety of methods for SOH prediction.
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Abstract. It is well known that incorporating prior knowledge improves
gene regulatory network reconstruction from data. Two types of prior
knowledge can be given for the gene regulatory network inference - known
interactions (edge priors) and known absence of interactions (non-edge
priors). However, previous studies have focused mainly on edge priors.
This paper shows that the edge priors give only limited improvement.
Moreover, non-edge priors are crucial for better overall performance and
their effect dominates edge priors at larger data samples. The studies are
carried out on two real networks and a computationally tractable syn-
thetic network, using Bayesian network framework. Further, a method to
obtain large numbers of non-edge priors for real gene regulatory networks
is presented.

1 Introduction

Inferring the gene regulatory network (GRN) structure from data is also known
as GRN reconstruction or reverse-engineering of GRN. The availability of high
through-put DNA microarray data has facilitated not only to efficiently per-
form classification tasks [11], but many methods have also been developed to
infer the GRN. Probabilistic graphical models such as Bayesian networks (BN)
and dynamic Bayesian networks (DBN) are based on the solid foundations of
probability and statistics and are very popular as they can infer causality from
data and integrate information from different sources, as prior knowledge during
inference [5]. DBN, using time series data, can model feedback loops.

Even with BN or DBN, accurate GRN inference continues to pose a challenge,
mainly due to limited experimental data [4]. Different methods have been pro-
posed to deal with this statistical issue [5]. Using the prior knowledge of gene or
protein interactions is a popular method as these interactions may be obtained
from expert knowledge, experimental studies, or from literature. This prior inter-
action knowledge, input as initial network structure [7], [8], [13] or incorporated
during sampling and evaluation [6], has shown improvement over inference from
data alone. However, these studies [6], [7], [13] are limited as they consider only
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known interactions. Available literature [8] considering both the presence and
absence of interactions has limited scope, as the study is restricted to a single
network with synthetic data and reports only the sensitivity of inference.

In this paper, two types of prior knowledge have been considered: a) presence
of interaction between two genes, represented as an edge in the network and
called as the edge prior and b) absence of interaction, i.e. the non-edge prior.
The study reports the effect of both edge and non-edge priors - individually,
in combination, at different quantities, and at different sample sizes of data.
The rest of the paper is organized as follows. Section 2 explains the underlying
theory and methods used. Experimental details are in section 3 and the results
and discussions are given in section 4. Section 5 concludes the paper.

2 Methods

We choose globalMIT [14] for this study as it is one of the few optimal and
polynomial worst-case time complex DBN structure learning algorithms avail-
able in public domain, with the source code. Its mutual information (MI) based
scoring metric has been shown to have similar characteristics to other scoring
metrics. Further, its MI scoring function is more efficient in searching the equiva-
lent graph space [2], [14] than others like [16]. Since globalMIT does not support
incorporation of priors, the code is modified to allow prior input and to use
this prior information to restrict the search space of possible networks. The MI
scoring metric is given by [2], [14].

SMIT (G : D) =

n∑
i=1;Pai �=φ

2N.MI(Xi, Pai)−
n∑

i=1;Pai �=φ

si∑
j=1

χα,liσi(j)
(1)

Here, the first term to the right of equality is the MI score, equivalent to log-
likelihood and measures the ability of the inferred graph to match the data. The
second term is the penalizing term based on the statistical significance of the
inferred network at user defined confidence level α. N is the number of samples
in D, X = {X1, .., Xn} is the set of n nodes or variables with corresponding
{r1, .., rn} discrete states, Pai = {Xi1, .., Xisi} is the parent set of Xi in G with
the corresponding discrete states {ri1, .., risi}, and si = |Pai|, is the cardinality
of the parent set. MI(Xi, Pai) is the MI between the node Xi and its parents
Pai calculated from the data and χα,liσi(j)

is the value satisfying p(χ2(lij) ≤
χα,liσi(j)

) = α. The term liσi(j) is defined as

liσi(j) =

{
(ri − 1)(riσi(1) − 1) j = 1

(ri − 1)(riσi(j) − 1)Πj−1
k=1riσi(k) j = 2, .., si

where σi = {σi(1), .., σi(si)} is any permutation of index set {1, .., si} such that
σi(1) has the highest number of states, σi(2) has second highest number of states,
and so on. For further details and comparison with other scoring metrics we refer
the readers to [2], [14].
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Under the assumption that all variables have the same number of states (for
polynomial worst-case time complexity of globalMIT), we get, ri = rij = r,
liσi(j) = lij = (r − 1)2rj−1 for j = 1, .., si, and the penalty term becomes∑n

i=1;Pai �=φ

∑si
j=1 χα,(r−1)2rj−1 . It can be seen that the penalty term depends

only on α and si (r is the characteristic of input data) and as α or si increases
the penalty also increases. The α is a user input while si is selected at run-time
by the algorithm based on N .

From equation 1, a complex network can only be learned if the likelihood score
of the network is greater than its complexity. The likelihood score increases if
N or MI(Xi, Pai) increases. MI increases if si increases (MI(X,Y ∪ W ) ≥
MI(X,Y )) but penalty also increases at higher si thus overall score does not
improve. Therefore, complex networks can be learned only by increasing N .
However, previous studies have shown that increasing N leads to deterioration
of certain performance measures such as decrease in specificity and precision
(for e.g. see [8], figure 4), which is non-intuitive. We did a study on the effect
of increasing sample size on the inference performance, to analyze and address
this drop in performance.

Studies incorporating prior knowledge while learning from data have shown
improvement in GRN inference [5]. The general scoring function for a BN/DBN
learning algorithm incorporating prior knowledge is

S(G : D) = logP (G) + LLD(G)− C(G)f(N) (2)

where S(G : D) is the score of the inferred graph G from the data D, LLD(G) is
the log-likelihood of the data given G, N is the number of samples, C(G) is the
measure of network complexity, f(N) is a non-negative penalty function, and
logP (G) is the prior probability of G based on the prior knowledge. By biasing
the search towards certain graphs using prior knowledge, the total search space
for G is reduced and performance can be improved. Thus, priors can be used to
address the drop in inference performance. In this work, prior knowledge is given
as initial structure by clamping, as this is computationally simple and efficient
for good quality priors. In clamping, the prior probability of the relevant edges
and non-edges are set to 1 and 0, respectively.

3 Experiments

The confidence value parameter α of algorithm is obtained using a ROC-curve
analysis. For the two real networks α = 0.999 and for the synthetic network
α = 0.95 are obtained which matches the suggested values ([2] and Glob-
alMIT user manual [14]). Other parameters are kept at their default values.
Inference is done with no-prior knowledge (only data) and with three types
of prior knowledge: a) edge priors, b) non-edge priors, and c) combined pri-
ors - containing both edge and non-edge priors. Priors are incorporated in
five thresholds: 0% (corresponding to no-prior knowledge) or approximately
25%, 50%, 75%, or 100%. For each quantity of prior, the experiment is re-
peated for different combinations of available edge/non-edge (e.g., for 50% edge
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prior, different combinations of all edge priors are chosen to form the 50% in-
put) and averaged to account for the variations. All of these are repeated at
varying sample sizes of data. For each sample size, the inference is repeated
at least 10 times with different data samples (if available) or by bootstrap.
In each repetition, one network structure is learned and the performance pa-
rameters, i.e. true positives (TP), true negatives (TN), false positives (FP),
false negatives (FN), sensitivity=TP/(TP+FN), specificity=TN/(TN+FP), pre-
cision=TP/(TP+FP), and F1-score=2*precision*recall/(precision+recall), are
computed. Parameters from all the structures learned from repetition are thus
calculated, averaged, and standard errors are obtained for each sample size.

Two well-studied biological networks - IRMA network [3] and Escherichia
coli SOS network [12] are used. Further, a computationally tractable 4-node
synthetic network (water-sprinkler network in Bayes Net Toolbox (BNT) [10]) is
used for validating the results. Considering a synthetic network is important as
the exact underlying network that produced the data is known and the quality
and quantity of data samples can be ensured for the inference study. These three
networks are shown in figure 1. It should be noted that the study uses smaller
networks (8 nodes) due to computational constrains of structure learning using
optimal algorithms rather than heuristic algorithms. For this study, atleast 7500
inference runs were performed for a single network (around 15 sample sizes, 10
bootstraps, around 10 combinations of prior knowledge, and 5 prior levels).

4 Results and Discussion

Although all performance measures mentioned in section 3 are computed and
available on request, only relevant results are reported here.

4.1 Limitations of Edge Prior

A previous study [8] had reported drop in performance measures at increasing
sample sizes. Our study also shows that except for sensitivity, key performance
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measures such as specificity, precision, and F1-score drop with increasing sample
sizes. The ‘0%Edge’ plot in figure 2 clearly shows this for the specificity of
inferred SOS network. This appears counter-intuitive as we expect improved
performance with increasing sample size. Our study further shows that adding
different quantities of edge priors (figure 2, plots 29%, 57%, 71%, and 100%)
could not prevent this performance deterioration. Moreover, it is observed that,
after a certain sample size, different quantities of edge priors are not effective at
all and give the same performance as no-priors (figure 2, beyond 180 samples).

Further analysis shows that this decrease in performance is due to the larger
number of false edges being learned with the increasing sample sizes. Figure 3
shows this phenomena for the SOS network. Moreover, beyond a certain sam-
ple size, the networks learned without any prior and with edge-priors tend to
have the same number of FPs (figure 3, beyond 180 samples). This shows the
ineffectiveness of edge priors in improving the overall inference performance.

4.2 Effect of Non-edge Priors Compared to Edge Priors

As seen earlier, certain performance measures drop with increasing sample size
due to the inability to discard FPs during inference. A method to avoid FPs
is the incorporation of prior non-edges (equation 2). To confirm this, results
with non-edge priors are compared with no-priors, edge, and combined priors.
Figure 4 shows the variation of FPs with sample size for the three types of
priors. To keep the comparison meaningful, only relevant plots are shown, for
e.g., the combined prior plot of 3-edge-4-non-edge (3E4NE) will be shown along
with plots 3-edge (3E) and 4-non-edge (4NE). Since combined prior plots in this
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case will have more information than either edge or non-edge plots, improvement
given by combined priors will not be considered.

Figure 4 shows that the non-edge prior plots consistently show lower FPs
(thus better) than no-priors. They become better than the edge prior plots be-
yond 180 samples for the SOS network. Similarly, at 60 and 20 samples for IRMA
and 4-node networks respectively, non-edge priors become better than edge pri-
ors (figures not shown). Thus the non-edge priors give the best performance
compared to no-priors or edge priors for the complete range of input samples
sizes in general and particularly at higher samples sizes. In all cases, the com-
bined prior (for e.g., see 3E4NE of SOS network in figure 4), below 180 samples
is slightly better than or overlap the plots of the equivalent edge prior (3E).
Above 180 samples, the combined prior (3E4NE) nearly overlaps the equivalent
non-edge prior (4NE).

An interesting observation from all these results is that, at a certain sample
size (180, 60, and 20 samples for SOS, IRMA, and 4-node networks respectively),
the performance of edge priors drop below or become equal to no-priors and do
not have any further improvement. At the same time, the performance of non-
edge priors becomes superior to edge priors. We call this the ‘cross-over’ region
since, beyond this region, the non-edge priors become consistently better than
the edge priors. This phenomena can be seen in other performance parameters
also (figures not shown). Thus, beyond the cross-over region only non-edge priors
are effective in reducing the problem of FPs.

It should be noted that since GRNs are sparse, the number of non-edges are
much larger than the edges and so considering an equal number of non-edges
to edges will give only a very small percentage of total non-edge information.
However, non-edge priors are always better than no-priors and their performance
do not deteriorate like the edge priors.

4.3 Effect of Non-edge Priors

When a higher percentage of non-edge priors are used for inference, it is seen
that specificity, precision, and F1-score improve with an increasing quantity of
non-edge priors, for all the three networks. Figure 5 shows the improvement for
specificity metric in SOS network, which previously showed deterioration with
edge priors in figure 2. Comparing figures 2 and 5 at 180 samples shows that
the non-edge priors give an improvement in specificity of 2− 10% over the edge
priors at the different prior levels.

4.4 Obtaining Non-edge Priors

We have seen that non-edge priors are very important in inferring GRN. Now
we show that getting many non-edge priors is not difficult even for a not well
studied GRN, as the information of transcription factors (TFs) and target genes
(TGs) itself can be used. Since, TGs do not have any edges going out, this will
identify many of the non-edges of the network. This method is practical because
GRNs are known to be sparse (i.e., there are more non-edges than edges), and
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Table 1. SOS network gene annotation

Gene Relevant GO-annotation Out edges

uvrA ATP catabolic process No
ruvA DNA duplex unwinding No
polB DNA catabolic process No
uvrD DNA repair No
recA Interacts with LexA To LexA
uvrY Transcription Possible
umuD Regulation of transcription Possible
lexA Transcription Possible

have a scale-free topology (i.e., only a few genes control the majority). For small
networks such as the E. coli SOS network (presented here as an example), the
identification of TFs, TGs, and any known interactions can be done from the
gene annotations. For larger networks, GO biological process annotation [1] can
be used to identify the TFs and TGs.

The E. coli network studied here consists of 8 genes and 7 edges. Total of
8 ∗ 8 = 64 edges are possible, of which 8 will be edges of each gene to itself
which we do not consider in the study. Thus total non-edges in the network are
64 − 7 − 8 = 49. Since the network is small, the details about the genes are
obtained from Uniprot [9] and are shown in table 1. It can be seen that only
three genes (lexA, umuD, and uvrY ) are involved in transcription and thus, can
have outgoing edges. Gene recA interacts only with lexA. Thus, the 7 outgoing
edges from 4 genes (uvrA, ruvA, polB, and uvrD) and outgoing edges from recA
to all other 6 genes, can be given as non-edges. These total to 4 ∗ 7 + 1 ∗ 6 = 34
non-edges, which form, 34/49 = 70% of the total non-edges.

5 Conclusion

It is well known that prior knowledge improves the GRN inference from data
but previous studies have not adequately addressed the significance of non-edge
priors. This paper studied the effect of edge and non-edge priors separately and
also their combination, to understand and establish the effect of non-edge priors.
It is found that non-edge priors are complimentary to and are as important as
the edge priors and both are essential in improving the overall performance of
the GRN inference.

Further, it was reported previously that certain performance measures of the
GRN inference deteriorate with an increasing sample size. Our study shows
that this deterioration is due to the higher FPs inferred with the increasing
sample size. We show that, giving prior knowledge of non-edges during inference
is a good solution as the performance metrics such as specificity, precision, and
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F1-score are predominantly influenced by non-edge priors than edge priors at
high sample sizes. We have also shown that most non-edges of a typical GRN
can be obtained easily and a simple method to find these non-edge priors is
presented. Currently, our focus is on identifying different methods to improve
the computational performance and extend this study to larger networks.
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Abstract. In this paper, we introduce a robust lane detection method based on 
the combined convolutional neural network (CNN) with random sample con-
sensus (RANSAC) algorithm. At first, we calculate edges in an image using a 
hat shape kernel and then detect lanes using the CNN combined with the 
RANSAC. If the road scene is simple, we can easily detect the lane by using the 
RANSAC algorithm only. But if the road scene is complex and includes road-
side trees, fence, or intersection etc., then it is hard to detect lanes robustly  
because of noisy edges. To alleviate that problem, we use CNN in the lane de-
tection before and after applying the RANSAC algorithm. In training process of 
CNN, input data consist of edge images in a region of interest (ROI) and target 
data become the images that have only drawn real white color lane in black 
background. The CNN structure consists of 8 layers with 3 convolutional  
layers, 2 subsampling layers and multi-layer perceptron (MLP) including 3 ful-
ly-connected layers. Convolutional and subsampling layers are hierarchically 
arranged and their arrangement represents a deep structure in deep learning. As 
a result, proposed lane detection algorithm successfully eliminates noise lines 
and the performance is found to be better than other formal line detection algo-
rithms such as RANSAC and hough transform.  

Keywords: lane detection, neural network, deep learning, advanced driver  
assistance system. 

1 Introduction  

Road traffic accidents have become one of the most serious problems worldwide to-
day. These accidents are caused by people, vehicle and road infrastructure. Measures 
to prevent these accidents can be categorized into following 3 types [1]: (1) Changing 
human behavior; (2) vehicle-related measures; and (3) physical road infrastructure 
related measures. Changing human behavior can be achieved by law enforcement, 
information, education and driving instructions while infrastructure measures include 
construction of new roads. Vehicle related measures include vehicle safety systems 
such as electronic stability control (ESC), anti-lock braking system (ABS) and ad-
vanced driver assistance systems (ADAS). It has been found that ESC and ABS play a 
crucial role in preventing accidents in crucial situations while ADAS helps to avoid 
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accidents by assisting the driver in his/her driving task continuously. Moreover, 
ADAS can provide more comfortable driving service.  

ADAS is a common accessory in passenger and commercial vehicles these days 
and serves as a good solution for reducing traffic accidents [2, 3]. In general, ADAS 
technologies consist of  adaptive cruise control (ACC), lane departure warning sys-
tem, collision avoidance system, adaptive light control, automatic parking, etc. For 
instance, lane departure warning system [4, 5] and lateral control have been devel-
oped by detecting the lane markings of a road using forward-facing camera and  
computer vision techniques. Similarly lane departure system is a safety feature that 
informs the driver about changing lane situation. In this system and for other such 
systems, accurate lane detection is necessary and most important factor. 

For lane detection, most common method is based on edge detection in the road 
scene and then application of RANSAC algorithm[6]. However, the results of 
RANSAC become unreliable with the growing complexity in road scenes, which may 
include roadside trees, fence, wall or intersection and so on. For such complex scenes, 
addition of CNN before and after applying the RANSAC can be a good solution. 
CNN is a kind of deep network and composed of multiple layers of small neuron col-
lections, which looks at small portions of the input image. This algorithm mimics the 
dorsal stream of human visual system and is used for various object recognition sce-
narios such as face detection [7, 8], hand written characters [9], traffic signs [10], etc. 

Therefore, in this paper, we propose a new robust lane detection method which 
combines CNN with RANSAC algorithm. When the RANSAC fails to find a load 
lane, the trained CNN works and provides the candidate of a road lane. The RANSAC 
is repeatedly applied to the candidates of road lanes that are obtained from the CNN. 
The proposed method is efficient to find road lanes robustly in complex real roads 
with noisy environment. 

In Section 2, we present details of our proposed method. We present simulation re-
sults in Section 3, and followed by conclusion in Section 4.  

2 Proposed Method 

2.1 Overview of Proposed Method 

We use two-step processing for the lane detection from real world driving videos. 
First step includes blurring and edge detection for removing the environment noises 
as a preprocessing step. Second step includes the road lane detection based on 
RANSAC combined with CNN processes for accurate lane detection. The whole 
process of proposed model is shown in Fig. 1. If road environment changes dynami-
cally due to weather, time and objects on road, the videos contain lots of noises, 
which decreases lane detection accuracy in real situation. In order to alleviate that 
problem, we propose a new method which is combination of RANSAC and CNN. If 
road condition is simple and easy, we can use the RANSAC algorithm only to get 
lane information. But if road conditions include lots of noise factors, we can use the 
CNN before and after the RANSAC algorithm to get the lanes robustly. 
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Fig. 1. Structure of proposed model 

2.2 Blurred and Edge Detection 

The lane is generally a white color in a gray color background road. So, an easy way 
to detect the lane is to use edge information. However, edge detection itself may not 
be sufficient way to detect the lanes because of various noises in an image such as 
shadow, illumination change, etc. Therefore, we use a blurring image, which are ob-
tained by 5x5 Gaussian smoothing function before the edge detection. This blurring 
step reduces the environment noise, and produces more reliable information in a 
scene.  

Moreover, for robust lane detection, the surround area of the lane needs to be sup-
pressed. So, we use hat-shape kernel[11] to strengthen lane information, while sup-
pressing the surroundings around the lanes in edge detection. Fig. 2.A shows the 
shape of hat-shape kernel. Thus, edge image calculated using convolution of lane 
image and this kernel. It’s performance is better than other several preprocessing me-
thod. Also, result of edge detection in several situation showed in Fig. 2.B   

 

 

Fig. 2. The kernel of edge detection and examples. A : the kernel shape of edge detection.  
B: (a) fence and shadow image (b) fence and shadow image using edge detection (c) night 
image (d) night image using edge detection (e) changing intensity image in tunnel (f) changing 
intensity image in tunnel using edge detection. 

2.3 Lane Detection Using RANSAC 

RANSAC is an estimation technique based on the principle of hypotheses generation 
and verification [12, 13]. Given a model requiring a minimum of N data points to 
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instantiate its free parameters and a set of data points P containing more than N ele-
ments, the RANSAC algorithm finds the line that has the highest possibility. We set 
the ROI to reduce the computation load. Since lanes look like vertical shapes from the 
car interior, we set the candidates of arrival and departure point on the upper and low-
er ROI lines. When the road scene is complex, the selected point is not likely to create 
a lane and accuracy of lane detection may decrease. 

2.4 Reinforcement of Lane Detection Using CNN Combined with RANSAC 
Algorithm 

The accuracy of lane detection based on RANSAC is highly dependent on the road 
conditions. There are three cases to fail the lanes based on the RANSAC algo-
rithm;.(1) detecting more than two lines, (2) the shift of a lane between frames is too 
big and (3) the shift of the vanishing point determined by the left and right lines is too 
big. Fig. 3 shows the examples for three cases. In all three cases, we use the CNN 
before RANSAC algorithm to reinforce the lane information and suppress the sur-
rounding noise information for stable lane detection, and then apply again the 
LANSAC to the candidate images obtained from CNN. 
 

 

Fig. 3. Example of three cases (a) the number of lanes is three (b) position of the lane, 
where ௧,   ௨௣௣௘௥ݔ  ௧,   ௟௢௪௘௥ݔ  ௧ିଵ,   ௨௣௣௘௥ andݔ ,  ௧ିଵ,   ௟௢௪௘௥ݔ ,  in the x-axis direction are 

represented upper and lower points of lane in t and t-1 frame and ௨ܶ௣௣௘௥ ܽ݊݀ ௟ܶ௢௪௘௥   are 
threshold values at upper and lower positions of lane, respectively.  (c) vanishing point of 
lane, where ܲ௧,   ௩௣ is the vanishing point at ሺݔ௧,௩௣ , -௧,௩௣ሻ in t frame and ܲ௧ିଵ,   ௩௣ is the vaݕ

nishing point at ሺݔ௧ିଵ,௩௣ ,  .௧ିଵ,௩௣ሻ in t-1 frame. ௩ܶ௣ is threshold value of vanishing pointݕ

On the other hand, the CNN is a kind of deep network which imitates the dorsal 
stream in human brain[14]. The dorsal stream is known as a brain area for object de-
tection and recognition. Therefore, CNN is generally used for object detection and 
recognition and includes convolutional layer (simple cell) and subsampling layer 
(complex cell). The simple cell treats local receptive field information. In the CNN, 
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convolutional layer works same as the simple cell. In the convolutional layer, kernels 
are shifted over the valid region of the input image. The subsampling layer mimics the 
complex cell’s functions and store max-pooling or average information from convolu-
tional layer using down sampling. After multiple convolutional and subsampling lay-
ers, a fully connected multilayer perceptron (MLP) is used to complete the CNN. In 
the MLP, the error back propagation is used for weight control. The output of MLP is 
the final image of the CNN. In this paper, we considered 2 subsampling layers, 3 
convolutional layers and an MLP including 3 fully connected layers in the CNN.  
Fig. 4 shows its structure.  

 

Fig. 4. Structure of CNN 

Due to the difference of input image’s width and height (as shown in Fig. 4), we 
use 8x2 kernel and 4x2 kernel for subsampling. At the final step, we use an MLP 
network with one hidden layer. The size of output image is 100x15. For training the 
CNN, we need target information of the lane. So, we manually prepare the target lane 
data which include lane information only. 

In a test mode, when the above three cases in subsection 2.4 happen, the CNN 
works to find the candidate of lanes, and the output of CNN produces the 100x15 
output image. Then, we apply again the RANSAC to the output images from the 
CNN. Finally, we can get robust lane information even when the RANSAC itself fails 
to lanes.  

3 Experimental Results 

The result of lane detection using RANSAC algorithm is shown in Fig. 5. The results 
highly depend on the degree of complexity of input road scenes. If there are lots of 
noises such as fence, wall, reflecting light in front window, lane detection based on 
RANSAC is very poor as shown in Fig. 5 (b).  



 Robust Lane Detection Based On Convolutional Neural Network 459 

 

 

Fig. 5. Results of lane detection using RANSAC algorithm (a) well detected lane in simple 
image (b) wrong detected lane in complex image 

To improve the accuracy of lane detection in complex road scenes, we use the 
RANSAC combined with CNN. The results are shown in Fig. 6. Since the CNN gives 
the candidate region for the lanes, and resultantly noise reduced results can be ob-
tained as shown in Fig. 6 (b). We apply again the RANSAC to the candidate of CNN. 
Finally, we can get final detected actual lanes. Notice that the proposed method is 
robust to the road environment in lane detection as shown in Fig. 6 (c).  

 

 

Fig. 6. Simulation results, (a) original image (b) Edge image (c) output image of CNN and (d) 
result of RANSAC combined with CNN  

We tested our proposed RANSAC combined with CNN algorithm on complex vid-
eo clips containing three different conditions. The conditions include detecting more 
than three lines (case 1), changing of lane position is too big (case 2) and the distance 
of vanishing points of left and right lanes is too big (case 3). We consider corrected 
detection, missed detection and false detection to evaluate the performance of these 
clips in Table 1. Corrected detection means that more than half region of the detected 
lane overlaps with a target lane. Missed detection means that less than half region of 
detected lane overlaps with a target lane, and false detection means that detected lane 
never overlaps with a target lane. 

Table 1. Performance evaluation in three different conditions 

 

Clips Corrected detection  Missed detection  False detection  

Case 1 94.7.0% 5.1% 0% 

Case 2 93.9% 4.9% 1.2% 

Case 3 93.2% 4.5 % 2.3% 
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Fig. 7 shows some experimental results of road lane detection in several complex 
road scenes. The experimental results show that the proposed method is appropriately 
performed in complex situations.  

 

Fig. 7. Results of lane detection in different road environment conditions (a) fence and shadow 
image using RANSAC only (b) fence and shadow image using RANSAC and CNN (c) fence 
and reflecting light in front window image using RANSAC only (d) fence and reflecting light 
in front window image using RANSAC and CNN. 

4 Conclusions 

In this paper, we proposed a new method combined RANSAC with CNN for lane 
detection in complex scenes. As a preprocessing, we use blurring and edge detection 
using Gaussian smoothing and hat-type kernel. To detect the lane, we apply the 
RANSAC algorithm only for simple road scenes, and combined CNN with RANSAC 
algorithm is used for complex road scenes. The complexity of road condition is de-
termined by the results of RANSAC algorithm. We simulated several real road  
environment conditions and tested the accuracy of our proposed method. Our results 
confirm that the proposed method has robust lane detection performance in spite of 
complex road conditions.  In our future work, we would like to test the proposed 
method with larger dataset, and try to optimize it on an embedded platform. 
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Learning Local Receptive Fields in Deep Belief

Networks for Visual Feature Detection

Diana Turcsany and Andrzej Bargiela
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Nottingham, United Kingdom

Abstract. Through the introduction of local receptive fields, we improve
the fidelity of restricted Boltzmannmachine (RBM) based representations
to encodings extracted by visual processing neurons. Our biologically in-
spired Gaussian receptive field constraints encourage learning of localized
features and can seamlessly integrate into RBMs. Moreover, we propose
a method for concurrently finding advantageous receptive field centers,
while training the RBM. The strength of our method to reconstruct char-
acteristic details of facial features is demonstrated on a challenging face
dataset.

Keywords: Visual information processing, neural encoding, deep belief
network, receptive fields, unsupervised learning, facial feature detection.

1 Introduction

Despite strong multi-disciplinary interest the highly accurate vision system of
humans and other biological systems is still not fully understood and cannot be
replicated with computational methods. Important discoveries have been made
regarding the morphology and functionality of neural cells and networks, however
our knowledge is still far from complete. Computational models of neural circuits
in the visual pathway have great importance for improving our understanding
of biological visual processing. A more informed background could facilitate the
design of computational visual processing units, e.g., retinal implants. Currently,
with the amount of unknown details, robust computational models of biological
visual processing have to account for uncertainty and unknown details. We be-
lieve flexible probabilistic models, e.g., deep belief networks (DBNs) [2] possess
great potential for modeling in this uncertain environment.

Deep Networks. To learn a multi-layer generative model of the data where
each higher layer corresponds to a more abstract representation of information,
Hinton et al. [2] train a DBN layer by layer using unsupervised RBMs. The
network parameters are subsequently fine-tuned using backpropagation. Since
this efficient training method for deep networks was introduced, there has been
increasing research within deep learning. The potential of deep architectures
for learning meaningful features has been demonstrated on a number of visual

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 462–470, 2014.
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Fig. 1. (a) LRF-RBM model schematic, showing an input image in the visible layer V
and local feature detector RFs (blue cones) in the hidden layer H with feature hubs
around the eyes and mouth. (b) RF maps of LRF-RBMs run with different learning
parameters. Automatically learned feature detector RFs are combined to show areas
attracting more detectors. Darker red areas indicate higher feature density. Feature
hubs emerged around average eye and mouth locations at pixels (9,15), (20,15), and
(15,30). (c) Average squared reconstruction error per pixel is shown on the test set.
Method names and hidden node counts are given in the graph. With the same node
count LRF-RBMs give significantly lower errors than RBMs. Moreover, a 500 node
LRF-RBM performs similarly to a 4000 node RBM.

tasks [3,4,5,6,7], [10], [12]. DBNs have also been shown suitable for modeling
feature detection in the retina [11] and visual areas V1 and V2 [8]. Despite this
success in neural modeling, primal emphasis has been given to improving per-
formance of deep learning on visual recognition tasks, rather than increasing the
fidelity of deep architectures to real neural circuits of the visual pathway. Our
aim is to fill this gap by proposing deep network structures that more closely
resemble biological neural networks, but still provide flexibility and great per-
formance on visual recognition tasks. Such architectures possess high potential
for modeling visual information processing in the retina and visual cortex.

Local Receptive Fields. In focus of this paper is the extension of RBMs with
local receptive fields (RFs) in a way that the training process, the final architec-
ture and the inference at test time closely resemble biological neural networks of
the visual pathway. We concentrate mainly on early processing stages, the retina
and V1. Our contributions are (1) a modification to the contrastive divergence [1]
(CD) algorithm that introduces local receptive field constraints for hidden nodes,
(2) a method for automatically identifying locations of high importance within
the visual input space during RBM training, and (3) by utilizing these locations
as RF centers, a compact, yet powerful encoding of visual features. We show us-
ing biologically inspired Gaussian shaped local RFs and learning advantageous
RF placement improve RBM and DBN based reconstruction of face images.
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RFs have been modeled in deep learning through convolutional networks [4,5,
6], [9], however the training methods used do not try to approximate learning in
biological neural networks. The main emphasis is on improving the efficiency of
learning to scale up deep learning algorithms to high dimensional problems. In
these networks weights between the visible and hidden layers are the same across
all image locations and the inference procedure can therefore utilize convolution
operations. The same feature detectors operate on each part of the image pro-
viding translation invariance of feature detection, which can make the learning
task easier. On the other hand, spurious detections can often be introduced and
in some visual recognition tasks translation invariance may not be advantageous
(e.g., for face recognition in aligned images the mouth always appears in the
same area, therefore a positive detection of mouth elsewhere will be false).

In contrast, our local receptive field constrained RBM (LRF-RBM) only learns
relevant feature detectors at any one image location. As opposed to a fixed grid
layout of rectangular RFs [7], [12], our hidden nodes move around the visual
space during training to find the best location for their Gaussian RF center. By
letting the detectors move to locations of interest “feature hubs” can emerge in
image regions where the training data has high variation, while more uniform
areas will attract less detectors. The resulting network architecture extracts com-
pact representation of visual information, provides very quick inference and by
combining local features as building blocks, the network is strong at reconstruct-
ing previously unseen images. An illustration of the receptive field learning and
RF distributions of our trained models are in shown in Fig. 1(a)-(b).

2 Local Receptive Field Constrained RBMs

The unsupervised phase of Hinton et al. [2]’s DBN training utilizes RBMs for
learning each layer of the representation. The energy-based RBM models in-
clude a visible and a hidden layer, with connections between hidden and visible
nodes but not within layers. This restriction ensures conditional independence
of hidden nodes given visible nodes and vice versa, which is key for the efficiency
of RBMs. In most vision tasks visible nodes correspond to pixels, while hidden
nodes model visual processing neurons and detect image features.

2.1 RBM Training

The energy function of RBMs with binary visible and hidden nodes is given by:

E(v, h) = −a′v − b′h− h′Wv , (1)

where v and h are the states of visible and hidden node, W is the weight matrix
describing the symmetric connections between the visible and hidden layer, while
a and b are visible and hidden biases respectively. Learning aims at reducing the
energy (increasing the log probability) of the training data.

RBMs can be trained with the approximate but very efficient contrastive
divergence [1] (CD) algorithm. In each step of CD, (i) visible states are initialized
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to a training example, then (ii) hidden states can be sampled parallel, due to
the conditional independence properties, according to:

p(hj = 1|v) = 1

1 + exp(−bj −
∑

i viwij)
, (2)

followed by (iii) the reconstruction phase where visible states are sampled using:

p(vi = 1|h) = 1

1 + exp(−ai −
∑

j hjwij)
, (3)

finally (iv) the weights are updated according to:

Δwij = ε(< vihj >data − < vihj >reconst) , (4)

where ε is the learning rate, correlation between the activations of vi and hi mea-
sured after (ii) gives < vihj >data , and the correlation after the reconstruction
phase (iii) determines < vihj >reconst . A similar rule is applied to the biases.

For continuous data (e.g., the face images we studied) using Gaussian visible
nodes can improve the model. In this case the energy function changes to:

E(v, h) =
∑
i

(vi − ai)
2

2σ2
i

−
∑
j

bjhj −
∑
i,j

vi
σi
hjwij , (5)

where σi is the standard deviation at vi. The probability of hidden node acti-
vation and the expected value of a visible node (i.e., the reconstructed value) is
then given by:

p(hj = 1|v) = 1

1 + exp(−bj −
∑

i (vi/σi)wij)
, (6)

< vi >reconst= ai + σi
∑
j

hjwij . (7)

2.2 Training with Local Receptive Fields

Neurons in early stages of the visual pathway typically only receive input from a
small localized area of the previous processing layer. Moving up the layers, recep-
tive field of neurons (the area of the photoreceptor layer in which stimulus can
result in neural response) is gradually getting bigger with increasing complexity
in structure. As an example, retinal ganglion cell RFs can be closely modeled by
difference-of-Gaussians (DoGs), while RFs of V1 simple cells by Gabor filters.

LRF-RBMs include receptive field constraints for hidden nodes to outline the
area from which the hidden node is most likely to receive input. These con-
straints are given in the form of RF masks, denoted by R, that operate on the
RBM weights W . Each mask has a center location which corresponds to a hid-
den node’s location in visual space. R describes the likelihood of a connection
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being present between a visible and a hidden node given their distance in the
visual space, where the likelihood converges to 0 as the distance goes to infinity.
During training to avoid the prohibitive process of sampling connections from
the likelihood, we will instead use the values of R as additional weights on top
of W . R thereby narrows down the scope of hidden nodes to local neighbor-
hoods. Note that from the biological modeling point of view, R provides only a
constraint or regularizer on the RF structure, the actual RFs are specified by R
and W together. After training, these can show significantly different structures
compared to R alone. Still, to keep the description simple we refer to R as RFs.

We found LRF-RBMs with disk or square shaped RFs efficiently learn local
features, however Gaussian RFs provide smoother reconstructions with better
detail and can be truncated to preserve efficiency. Gaussian RF constraints are
also more adequate when modeling biological neurons in early stages of visual
processing. From here on we will discuss only the Gaussian case, using fixed
standard deviation (SD) for each RF, denoted by σRF .

The training algorithm described in Section 2.1 can be used for LRF-RBMs
with modifications. The energy functions in Eqs. 1 and 5 and also Eqs. 2, 3, 6, 7
can be adapted by substituting wij with rijwij , where rij is the RF constraint
on the connection between vi and hj . The weight update equation changes to:

Δwij = rijε(< vihj >data − < vihj >reconst) . (8)

Learning RF Centers. Hidden nodes can be placed at uniform distances from
each other or allocated randomly, but this would not allow the network archi-
tecture to adapt to specific properties of the input data. Non-uniform feature
detector distributions can be beneficial to obtain compact representations by ex-
ploiting patterns in the dataset (e.g., aligned faces have facial features at given
locations, most natural images have the center of interest in the middle). When
solving a task some areas of the visual space may need representation at bet-
ter resolution, using many different feature detectors, while other areas do not
convey much information. In the human vision system, the retina also has non-
uniform ganglion cell distribution between the center (fovea) and the periphery,
former being denser, thus better resolution is obtained in the center of the visual
space. Our model utilizes non-uniform feature detector distribution by allowing
the system to identify areas of the visual input space which need higher number
of feature detectors to obtain a good data representation.

Our method learns RF centers during RBM training. In each RBM iteration, a
hidden node’s RF is allocated to the local area that has the strongest connections
to the hidden node and thus give the most well defined feature. This is done by
first (i) writing the weights of the hidden node in the shape of the input image
data and (ii) applying a transformation, then (iii) filtering the weight image with
a Gaussian filter (SD: σRF ) on each channel, (iv) the responses over channels
are combined by taking the max, finally, (v) the location with the maximum
response is selected as the new RF center and (vi) a Gaussian (SD: σRF ) around
this center provides the updated RF. We examined element-wise transformations
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Fig. 2. Samples of the test data are shown in the first row. The second and third rows
show their reconstructions produced by an RBM and an LRF-RBM respectively. Note
how small details, e.g., eye and mouth shapes or direction of gaze are better retained
with the LRF-RBM due to the number of specialized eye and mouth detectors. Note
also how images of side facing people can confuse the RBM but not so the LRF-RBM.

including identity, absolute and squared value, and found the latter two worked
similarly well and superior to identity (results are shown with squared value).

LRF-DBNs. According to the DBN training procedure, we can train multi-
ple layers of feature detectors on top of an LRF-RBM hidden layer using either
RBMs or LRF-RBMs (e.g, with increasing RF sizes) with binary visible nodes.
We call these models LRF-DBNs. If LRF-RBMs are used for training higher lay-
ers, hidden node locations are fixed after training a layer and RF constraints of
higher layer nodes are applied when training the next layer. Although here we fo-
cus on unsupervised training, we note however for classification tasks supervised
fine-tuning could subsequently be applied, analogously to DBNs.

3 Experiments

In the followings, we demonstrate how our LRF-RBM can discover important
feature hubs in the deep funneled Labeled Faces in the Wild (LFW)1 [4] face
recognition dataset containing aligned faces. We have also experimented on the
MNIST handwritten digit dataset using LRF-RBMs/DBNs, which successfully
learned feature detectors for digit parts. When trained on the simulated pho-
toreceptor input of [11] our LRF-RBMs were detecting local features including
Gabor-like filters. Here we focus on a detailed analysis using the LFW dataset.

Dataset. LFW contains 13233 RGB images of public figures (see examples in
Fig. 2 first row). The intended task on the dataset is recognizing whether two
face images are taken of the same person, without having seen the person(s)
during training. RBMs with rectified linear or binary hidden nodes, first trained
unsupervised on single faces and subsequently fine-tuned in a supervised manner

1 Available at http://vis-www.cs.umass.edu/lfw/
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on pairs of images, have been shown to achieve good results on this task [10].
Applying supervised methods on pairs of faces is out of the scope of this paper,
which focuses on modeling of biological vision systems. Our primal interest is to
investigate the capability of LRF-RBMs to identify regions of high importance
in LFW images and utilize these hubs to provide compact representation.

We applied similar pre-processing to Nair and Hinton [10] and trained RBMs
with binary hidden nodes on single faces using their published settings. With this
we compare our LRF-RBM model run on the same data. A separate training and
test set was used, with 4038 training and 1711 test images. The central 105x153
part of the images was cropped, thereby eliminating much of the background.2

Images were then subsampled to 27x39(x3). Finally, to simplify training, the data
was normalized along each component to have zero mean and unit variance.

Training. RBMs with Gaussian visible nodes and binary hidden nodes were
trained on mini-batches of size 100 for 2000 iterations, with hidden node numbers
of 500, 1000 or 4000, applying a learning rate (ε) of 0.001 (higher learning rates
failed) and momentum. LRF-RBMs were trained using the same settings, except
for ε, where 0.1 was optimal. Results are shown when σRF of 3 and a filter size of
5 was used during RF center learning. Both RBMs and LRF-RBMs were able to
learn good models within a few hundred iterations, after which performance only
slightly improved. In the followings, if not stated otherwise, results are displayed
for models with 4000 hidden nodes trained for 2000 iterations. We also trained
LRF-DBNs to learn a second layer of feature detectors on top of our LRF-RBM
features using a 1000 hidden node RBM without RF constraints.

Testing. Reconstructions are obtained by calculating the top-down activations
after feeding in an image. Performance was evaluated on the test set quantita-
tively by comparing the squared reconstruction errors (SRE), i.e., the squared
distance between the original data and its reconstruction, and qualitatively by
displaying example reconstructions. In the case of LRF-RBMs, the spatial dis-
tribution of feature detectors were examined and feature hubs identified. Visual-
ization of features learned by RBMs and LRF-RBMs are obtained by displaying
their weight vector in the shape of the input images. Visualization of higher
layer hidden nodes is obtained by a linear combination of the strongest con-
nected lower level features with their weights. RBM and LRF-RBM features
where compared based on the distinctiveness of their appearance and locations.

4 Results

Reconstruction. SREs are compared on normalized test data in Fig. 1(c), indi-
cating a superior reconstruction capability for LRF-RBMs. SREs shown translate
to an average 16 pixel difference on original test images for the LRF-RBM vs. 18
for the RBM. Table 1 demonstrates LRF-RBMs/DBNs give lower pixel errors
than the corresponding RBMs/DBNs. The comparison of reconstructed images

2 These pixels are known to unintentionally provide helpful context for recognition.
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(a)

(b)

(c)

Fig. 3. (a) Distinctive looking detectors located in feature hubs within an LRF-RBM.
From top to bottom row: detectors of the persons’ right eye, left eye, nose and mouth
can be seen. (b) RBM features having global structure. (c) Sample of second layer
features learned by an LRF-DBN, corresponding to characteristic looking faces.

Table 1. Average pixel error of (LRF-)RBM reconstructions from 500 and 4000 length
encodings, and (LRF-)DBN reconstructions from 1000 length encodings on top layer

hidden nodes RBM LRF-RBM

500 22.31 19.97
4000 18.12 16.06

hidden nodes DBN LRF-DBN

1000-1000 22.76 18.96
4000-1000 19.32 18.19

in Fig. 2 is even more convincing. Both models can reconstruct main features of
test examples with a limited amount of nodes. However, characteristic details,
especially around eye and mouth areas, are better retained using LRF-RBMs.
Such details can help distinguish persons. This analysis confirms LRF-RBMs
outperform RBMs for reconstructing previously unseen data.

Features. Figure 3(a) shows local facial feature detectors learned by an LRF-
RBM, while Fig. 3(b) shows a sample of RBM features. All the RBMs we trained
have learned features similar in nature to the ones shown, having global structure
with an occasional local peak. We could not identify any clear local detector
modeling a single facial feature. Our LRF-RBMs on the other hand attracted
feature hubs around eye and mouth regions and by focusing on these areas have
learned a number of distinctive looking eye, mouth and nose detectors. The
spatial arrangement of detectors is shown in the maps of Fig. 1(b). The second
map from the left belongs to the LRF-RBM that generated the local features in
Fig. 3(a). Alongside these specific eye and mouth detectors, Gabor filters and
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DoG detectors were also common among the learned features, especially in areas
along the contour of the face. The layout of features with the emergence of feature
hubs around key areas within the input space demonstrates how LRF-RBMs can
identify important regions within the image data which need a higher density of
feature detectors for representing their details. Features learned on the second
layer in our LRF-DBN have more global receptive field structures corresponding
to well defined, varied looking faces as can be seen in Fig. 3(c).

5 Conclusions

We proposed a modified unsupervised RBM training algorithm, the LRF-RBM,
which poses constraint on feature detector RFs and can automatically discover
advantageous placement of RF centers. We have shown how feature detectors
converge to important areas within face images, e.g., eyes and mouth, forming
feature hubs. We have demonstrated the superiority of LRF-RBMs to reconstruct
details of test images. In future work we will incorporate RFs of varying sizes
and further investigate LRF-DBNs for learning multi-layer representations.
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Abstract. This paper proposes a new structure of wavelet extreme learning ma-
chine i.e. an adaptive wavelet extreme learning machine (AW-ELM) for finger 
motion recognition using only two EMG channels. The adaptation mechanism 
is performed by adjusting the wavelet shape based on the input information. 
The performance of the proposed method is compared to ELM using wavelet 
(W-ELM0 and sigmoid (Sig-ELM) activation function. The experimental re-
sults demonstrate that the proposed AW-ELM performs better than W-ELM 
and Sig-ELM. 

Keywords: Wavelet extreme learning machine, adaptive. 

1 Introduction 

A wavelet neural network (WNN) is a special case of a feed-forward neural network 
which its activation function is wavelets [1]. A standard gradient descend can be used 
to train the weight of WNN. However, drawbacks of the gradient descent method 
such as long training time and easy trapped to local minima have hampered the im-
plementation of WNN in the real-time application [2]. On the other hand, an extreme 
learning machine (ELM) was introduced to train a single-hidden layer feed-forward 
networks (SLFNs) resulting in a system which is fast and able to avoid a local minima 
[3]. Inevitably, WNN can be constructed using SLFNs.   

The combination of ELM and WNN can be conducted by simply replacing the ac-
tivation function of ELM with wavelets [4] [5]. This is the simplest unification of 
both networks as has been done in [5]. Cao et al. [6] introduced a new combination of 
these two algorithms by proposing a composite function of WNN with ELM. In this 
method, they implemented two activation functions, a wavelet function and any piece-
wise function which are done in order.  

Another new unification of ELM and WNN was proposed by Javed et al. [7] who 
proposed a summation wavelet extreme learning machine (SW-ELM). Same as Cao, 
Javed et al. utilized two activation functions but employed them in different ways. 
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These two activation functions were done in parallel and their outputs were averaged 
to be the output of the hidden nodes.    

This paper proposes an adaptive wavelet extreme learning machine (AW-ELM), a 
new unification of ELM and WNN. According to WNN structure, the proposed  
system utilizes a wavelet function as the activation function in the hidden node.  
However, the activation functions are not fixed but they are adjusted regarding to the 
changing in the input. The sigmoid function is used to process the input information 
and produce translation parameters of the wavelets in the related hidden-node. In this 
paper, the performance of AW-ELM will be tested to classify the finger motions from 
the surface Electromyography signal (EMG) extracted from two-channel sources on 
the forearm.  In addition, its classification performance will be compared with two 
types of ELM, ELM with wavelet activation function (W-ELM) and sigmoid activa-
tion function (Sig-ELM). 

The organization of the paper is as follows: section 2 describes the theory of W-
ELM and AW-ELM, and the implementation of AW-ELM for finger motion classifi-
cation. Then section 3 and 4 presents the results and the discussion. Finally section 4 
will conclude this paper. 

2 Methods 

2.1 Wavelet Extreme Learning Machine (W-ELM) 

W-ELM can be considered as a special case of extreme learning machine which its 
activation function is wavelets. The output function of W-ELM for arbitrary samples 
(xk,tk) ∈ Rn x Ro with M hidden nodes is 
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in which aj and bj are dilatation and translation parameters of the wavelets, respective-
ly. An initialization of dilatation and translation parameters, aj and bj, in WNN is an 
important issue. The initialization should consider the input information in order to let 
the time domain of the wavelet covering the input domain. According to [1], suppose 
the input vector xk has the domain [xkmin , xkmax], t

* and σ* are the centre and the radius 
of the mother wavelet i ia bψ , then domain of i ia bψ is given by: 

 [bj + aj(t
* − σ*)  ,  bj + aj(t

* + σ*)] 

Meanwhile, the input information range for ith hidden layer can be calculated as: 
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where wji is the weight connecting the jth hidden layer the ith input. The wavelet can 
cover the input space if 
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From equation (9) and (10), we can calculate ai and bi as: 

 max min*
1 1

1

2

N N

j ji i ji i
i i

a w x w x
σ = =

 = − 
 
   (5) 

 * * * *
max min*

1 1

1
( ) ( )

2

N N

j ji i ji i
i i

b w x t w x tσ σ
σ = =

 = − + + 
 
   (6) 

2.2 Adaptive Wavelet Extreme Learning Machine (AW-ELM) 

The Proposed Structure 
The proposed AW-ELM is depicted by Fig. 1. If M is the number of hidden node and 
N is the number of input, then the input of the hidden layer Pj is given by 

 
1

( ) .         1, 2,...,  
N

i

j i ji jx x w cP j M
=

= + =  (7) 

 

Fig. 1. The proposed adaptive wavelet extreme learning machine 



474 K. Anam and A. Al-Jumaily 

where xi are the input variables, wji are the weights of the connection between ith in-
put and jth hidden nodes, and cj denotes the bias of  jth hidden layer. Using equation 
(8), the output of the hidden node is given by: 
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j j
a b j

j

P x b
P x j M

a
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In this proposed work, the Mexican Hat function [6] is used as the mother wavelet 

i ia bψ as described in fig. 2a, and defined as  

 
2 / 2 2( ) (1 )xx e xψ −= −  (9) 

Therefore, the wavelet activation function of AW-ELM is: 
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( a)                                                            (b) 

Fig. 2. Two difference functions used in this work: (a) The mother wavelet of the Mexican hat 
(b) A nonlinear function to produce bj 

In this proposed AW-ELM, the dilatation parameters aj are fixed and initialized us-
ing Equation (5). As for the translation parameters bj, they are varied according to the 
input information and driven by a nonlinear function f(.) as follows: 

  ( )j jb f P=  (11) 

where  
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as depicted in Fig. 2b. Eventually, a new structure of an adaptive W-ELM is presented 
in Fig. 1. A small circle on the top of each hidden node is used to adjust the b parame-
ters in order to change the shape of the wavelet. Thus, the output of AW-ELM is: 
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M M
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The Learning Algorithm 
For the desired output: 

 1 2D ( )T T T
L LxO= d d d  (14) 

The AW-ELM described in (13) can be written as a linear system as follows: 

 HV = D (15) 

where 

 

1 1

1 1

1 1 1

1

( ( )) ( ( ))

H

( ( )) ( ( ))

M M

M M

a b a b M

a b L a b M L LxM

P P

P P

ψ ψ

ψ ψ

 
 =  
  

x x

x x


  


 (16) 

 1 2V ( )T T T T
O MxO= v v v  (17) 

V can be obtained by solving the least-square solution of (15) and given by: 

 †V̂ = H D  (18) 

where †H  is the Moore-Penrose generalized inverse of the matrix H. 
The training algorithm of AW-ELM can be implemented as follows: 

Algorithm of AW-ELM. Given a training set ℵ = {(xk,tk) | xk ∈ Rn, tk ∈ Ro, k = 
1,2…, L}, the hidden node output function ψai,bi(w, c ; x) and the hidden node number 
M: 
(1) Randomly assign vector matrix W and initialize the hidden node parameters aj, j 

= 1,2,.., M according to (5) 
(2) Calculate the input hidden layer Pj in (7) 
(3) Calculate bj in (11) and (12) 
(4) Calculate the hidden layer output H in (16) 

(5) Calculate the output weight V̂  in (18) 

2.3 AW-ELM for Finger Motion Recognition  

The proposed recognition system consists of the same stages as depicted in Figure 3. 
Firstly, signals from two-channel EMG located on the forearm were acquired by a 



476 K. Anam and A. Al-Jumaily 

data acquisition device from eight subjects. The experimental procedures for the data 
acquisition could be referred to [8]. Then the filtering and windowing was applied to 
the collected data before being extracted using a time domain (TD) and autoregressive 
(AR) features. 

 

Fig. 2. The motion finger classification using AW-ELM 

The features were extracted from the time domain feature set which consists of 
Waveform Length (WL), Slope Sign Changes (SSC), Number of Zero Crossings 
(ZCC), and Sample Skewness (SS). In addition, some parameters from Hjorth Time 
Domain Parameters (HTD) and Auto Regressive (AR) Model Parameters were in-
cluded. To reduce the dimension of the features, SDRA was employed. All features 
were concatenated and reduced using SRDA. SRDA is an extension of LDA that can 
deal with singularity and a large data set. The 200 ms window length was applied to 
the signal to comply with the real time application along with a 25 increment.  

The reduced feature set resulted in the previous stage is utilized in the classifica-
tion. The objective of the classification that was performed using AW-ELM and other 
ELM classifiers is to recognize ten classes of the individual and combined finger 
movements consisting of the flexion of individuated fingers. They consisted of 
Thumb (T), Index (I), Middle (M), Ring (R), Little (L) and the pinching of combined 
Thumb–Index (T–I), Thumb–Middle (T–M), Thumb–Ring (T–R), Thumb–Little (T–
L), and the hand close (HC). Finally, statistical analyses were performed to validate 
the result. 

3 Results and Discussion 

In this section, the performance of the proposed AW-ELM was compared to wavelet 
extreme learning machine (W-ELM) and sigmoid extreme learning machine (sig-ELM). 
All classifiers classified ten finger motions using EMG signal from two channel elec-
trodes. The four-fold cross validation was used to validate the classification results. 
Simulation was done in the MATLAB 8.3 environment running on 2.8 GHz PC. 

Table 1 shows the classification results of three classifiers in recognizing ten finger 
motions classes defined in 2.4. In all ELMs, the number of hidden nodes varied from 
50 up to 500. The results indicate that the average accuracy the proposed of AW-ELM 
was higher than standard W-ELM in all cases. Likewise, the AW-ELM performance 
is better than Sig-ELM in all hidden node numbers except 50 and 75. In these two 
hidden numbers, the Sig-Elm achieved better accuracy that AW-ELM. Overall, the 
adaptation of wavelet shape using a sigmoid function in AW-ELM could enhance the 
performance of the original wavelet extreme learning machine and in several condi-
tion, could attain better performance than Sig-ELM. 
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Table 1. The average classification accuracy of AW-ELM across eight subjects using four-fold 
cross validation compared with W-ELM and Sig-ELM 

# Hidden Node 
Accuracy (%) 

W-ELM AW-ELM Sig-ELM 
50 91.07 ± 0.17 91.57 ± 0.08 91.65 ± 0.08
75 91.56 ± 0.14 91.93 ± 0.14 91.97 ± 0.10

100 91.79 ± 0.10 92.05 ± 0.09 92.01 ± 0.08
125 91.90 ± 0.08 92.08 ± 0.09 92.03 ± 0.10
150 91.94 ± 0.11 92.06 ± 0.10 92.04 ± 0.10
175 91.98 ± 0.09 92.06 ± 0.09 92.04 ± 0.08
200 91.99 ± 0.08 92.04 ± 0.08 92.01 ± 0.06
500 91.79 ± 0.08 91.56 ± 0.06 91.37 ± 0.06

Table 2. Processing time of different ELM classifiers 

#Hidden 
Node 

Training Time (s) Testing Time (s) 
W-ELM AW-ELM Sig-ELM W-ELM AW-ELM Sig-ELM 

50 0.16 ± 0.01 0.19 ± 0.02 0.12 ± 0.00 0.03 ± 0.00 0.06 ± 0.00 0.01 ± 0.00 
75 0.28 ± 0.01 0.33 ± 0.01 0.19 ± 0.00 0.06 ± 0.01 0.07 ± 0.00 0.02 ± 0.00 

100 0.38 ± 0.02 0.45 ± 0.02 0.27 ± 0.01 0.07 ± 0.00 0.10 ± 0.00 0.02 ± 0.00 
125 0.59 ± 0.05 0.70 ± 0.06 0.48 ± 0.07 0.09 ± 0.00 0.14 ± 0.00 0.03 ± 0.00 
150 0.71 ± 0.01 0.81 ± 0.01 0.51 ± 0.01 0.12 ± 0.00 0.19 ± 0.01 0.04 ± 0.00 
175 0.93 ± 0.06 1.06 ± 0.05 0.69 ± 0.05 0.14 ± 0.00 0.22 ± 0.00 0.04 ± 0.00 
200 1.07 ± 0.08 1.22 ± 0.05 0.85 ± 0.06 0.17 ± 0.00 0.26 ± 0.00 0.05 ± 0.00 
500 4.20 ± 0.08 5.42 ± 0.08 2.82 ± 0.10 0.75 ± 0.01 1.28 ± 0.01 0.12 ± 0.00 
 
In terms of processing time, the ELM using a sigmoid function (Sig-ELM) spent 

less training time than W-ELM and AW-ELM in as shown in Table 2. Table 2 shows 
that the larger the number of the hidden node, the longer the time difference between 
AW-ELM and Sig-ELM. Likewise, in the testing time, AW-ELM is the slowest sys-
tem. The adaptive mechanism adds the processing time in both the training and test-
ing trials.  

Table 3. The p-value of anova test on the classification accuracy between AW-ELM and other 
tested classifiers 

#Hidden 
Node 

p-value 

AW-ELM & W-ELM AW-ELM & Sig-ELM 
50 0.0000 0.0000 
75 0.0000 0.1283 

100 0.0000 0.0006 
125 0.0000 0.0610 
150 0.0000 0.3477 
175 0.0021 0.5746 
200 0.0098 0.0552 
500 0.0000 0.0000 
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The one-way ANOVA test was done to evaluate the improvement significance of 
AW-ELM compared to W-ELM and Sig-ELM as presented in Table 4. Table 4 shows 
that p-values on the comparison of AW-ELM and W-ELM are less than 0.05. In other 
words, the performance improvement in recognizing ten finger motions by AW-ELM 
is significantly achieved. Furthermore, the performance of AW-ELM and Sig-ELM in 
some cases is significantly different in the hidden number node 50, 100 and 500 whe-
reas it is significantly similar in other hidden node numbers. Nevertheless, the AW-
ELM produced better accuracy in most trials than Sig-ELM. 

4 Conclusion 

This paper proposed a novel ELM i.e. an adaptive wavelet extreme learning (AW-
ELM) for recognizing finger motions using two-channel EMG signals. The adaptation 
mechanism of the proposed method is conducted by adjusting the shape of the wave-
let based on the information provided in the input. The experimental results showed 
that the proposed AW-ELM improved the performance of the original wavelet ELM 
in all cases tested and performed better than Sig-ELM in most cases observed. In the 
future, the performance of AW-ELM should be compared with other well-known 
classifiers such as support vector machine (SVM) and Linear Discriminant Analysis 
(LDA). 
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Abstract. Naïve Bayes(NB), kNN and Adaboost are three commonly used text 
classifiers. Evaluation of these classifiers involves a variety of factors to be 
considered including benchmark used, feature selections, parameter settings of 
algorithms, and the measurement criteria employed. Researchers have demon-
strated that some algorithms outperform others on some corpus, however, labe-
ling and corpus bias are two concerns in text categorization. This paper focuses 
on evaluating the three commonly used text classifiers by using an automatical-
ly generated text document set which is labelled by a group of experts to alle-
viate subjectiveness of labelling, and at the same time to examine how the  
performance of the algorithms is influenced by feature selection algorithms and 
the number of features selected.  

Keywords: Text categorization, feature selection, text classifiers. 

1 Introduction 

Text categorization is defined as “automated assignment of natural language texts to 
predefined categories based on their content” [1]. It has been widely applied in the 
areas such as language identification, information retrieval, opinion mining, spam 
filtering, and email routing [2, 3]. With the recent explosion of information on the 
Web, text categorization is becoming increasingly important as an approach to man-
aging and organizing the huge volume of information on the Web. Many algorithms 
such as Boostexter [4] and SVMs [5] have been developed and introduced to address 
this problem. The evaluation of the effectiveness of the algorithms is playing an im-
portant role for both researchers and practitioners.  

To evaluate a text categorization algorithm, the first consideration is the document 
collection to be used. Many such document collections have been developed for eval-
uation purposes. The widely used benchmark collections for text categorization in-
clude Reuters-21578[6], RCV1[1], UCI repository (http://archive.ics.uci.edu/ml), and 
OHSUMED [7].   
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There are issues related to the current test sets such as overfitting, restricted vo-
cabulary [8], lack of full document text, the subjectiveness of labelling, or inconsis-
tent or incomplete category assignments [1]. It is well known that machine learning 
algorithms can overfit by tuning parameters for a given dataset to make the algorithm 
perform extremely well on one dataset, but perform poorly on others [9]. Document 
labelling procedure is not only costly and labour-intensive, but also relatively subjec-
tive rather than objective and consequently results in inconsistent labelling. Another 
reason for the inconsistency is that some documents may have multi-labels rather than 
a unique one. This may cause an algorithm to perform relatively poor on one test 
collection but may perform better in real world and vice versa. So, there is an ongoing 
need of new labelled test datasets that are less subjective, have a larger vocabulary 
and can be generated without much expensive human-labour involved. 

Dimensionality of feature space also affects the performance of a text categoriza-
tion algorithm. There is a list of feature selection algorithms available to reduce the 
dimension of the feature space of a document set [10]. Different feature selection 
algorithms usually select different subspaces which consequently lead to different 
performance evaluation outcomes. For a given document collection, some text  
categorization algorithms such as kNN and LLSF are very sensitive to some feature 
selection algorithms (such as MI and Term Strength) and the number of features to be  
chosen [10]. 

Open Directory Project (ODP) [11], a socially constructed Web directory, provides 
a potential solution to alleviate the subjectiveness in document labelling. The seman-
tic characteristics of the categories in the ODP can be used to generate a labelled 
document collection for the purpose of evaluating text categorization algorithms [11]. 
This automatically generated document collection not only can enrich the existing test 
document collection, but also intend to alleviate the subjectiveness of document label-
ling procedure because ODP document is labelled by more than one million volunteer 
domain experts that is kind of collective intelligence rather than by one or a small 
group of experts. Characteristics of the ODP dataset are introduced in section 3.    

In this paper, three text categorization algorithms kNN, NB [3] and AdaBoost are 
evaluated on the CategoryDocument set, an automatically generated labelled docu-
ment collection [11]. The dataset is selected because first it is labelled by over a mil-
lion volunteer editors and thus alleviates subjectiveness; and two, it has more than 
five million categories that is the most comprehensive human edited Web directory so 
the corpus bias is minimized. For each of the text categorization algorithms, four fea-
ture selection algorithms, Information Gain, Mutual Information, chi-square and Odds 
Ratio, are employed to reduce the original high dimensional feature space into a series 
of subspaces. The three categorization algorithms are selected because first, as argued 
by [4] earlier in 2000,  voluminous research has been conducted on text categoriza-
tion, it would be impractical to compare all the methods; second, the three algorithms 
are most widely used in both research society and real world applications; and third, 
they are representatives of statistical-based (NB), instance-based (kNN) and ensem-
ble-based (AdaBoost). The experimental results will enrich the list of the evaluation 
results of text categorization algorithms; and the influence of the number of features 
on Adaboost will also be explored as in [4], all terms are searched by weak learners.   
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2 Implementation of Categorization Algorithms 

Most text categorization algorithms have their variants. For example, NB has at least 
two models, multinomial NB model and multinomial unigram language model [3]; 
AdaBoost has AdaBoost.MH and AdaBoost.MR [4]. Variations of an algorithm may 
produce different experimental results. Therefore, in this section, implementation 
details of the categorization and feature selection algorithms are introduced.  

 
A. Naïve Bayes Classifier 

Let a document dj is represented as a feature vector dj = (t1, t2, …, Vt ), V is feature 

number in data set D = {dj | dj ∈ D, j = 1, …, N}, N is the number of documents in 
the document space D. Let C = {ci | ci ∈ C, i =  1, …, M} be a set of categories 
where M is the total number of categories in C. If a document is assigned to one and 
only one category in C, the probability of dj is assigned to ci, according to Bayes rule. 

To find out the most appropriate category for a document, NB classifier assigns the 
document to the most likely or maximum a posteriori class. This can be expressed as 
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 This model is referred to as multinomial Bayes model, or multinomial model [3], 
which is implemented in the research.  

 
B. K-Nearest Neighbours (KNN) Classifier 
The kNN [9] text categorization algorithm is a “lazy” learning approach. Without a 
training procedure, the similarity between a testing document and a training document 
is compared directly by means of approximating the distance between them. The fol-
lowing three factors that affect the performance of kNN are considered when the algo-
rithm is implemented for text categorization purpose. 

Similarity Estimating:  There are a number of approaches to estimate the similari-
ties between two documents such as cosine similarity, Manhattan Distance, Tanimoto 
Similarity, Jaccard Similarity coefficient, and Euclidean Distance. In this research, 
cosine similarity is used to decide the k nearest neighbours based on the estimated k 
top ranked similarity scores. To calculate the cosine similarity, documents are repre-
sented as a terms vector, and tf-idf term-weighting strategy is employed [3]. 

The number k:  kNN is not an efficient algorithm and experimentally selecting an 
appropriate k is time consuming. In this research, k = 5, 10, and 14 are evaluated. Any 
k bigger than 14 is unrealistic because there are 14 categories. 

Majority Voting Strategy:  Supposed that each of the k member is a <category, 
document> tuple. Dominant Majority is defined as the majority number m > k/2 
which assigns a test document to only one category. Weak majority refers to the case 
when m <= k/2, if the category of the top ranked member is the same as the category 
of the majority group, the test document is assigned to only one category which is the 
same as the top ranked member; otherwise, the document is assigned to two catego-
ries. One is decided by the weak group, another is decided by the top ranked member.  

 
C. AdaBoost Classifier 
In this research, AdaBoost.MHR, the AdaBoost.MH with real-valued predictions is 
implemented due to the fact that it is the most effective one among the four different 
versions of AdaBoost [4].  

The estimated value given by the final ht(x) implies a measure of “confidence” [12] 
to assign a category to a test document, if the two top ranked categories are both pre-
dicted with very high and very close confidence values, it is reasonable to assign the 
two categories to the test document. 

Training round T is selected as an arbitrary number, say, 1000 in some of experi-
ments [1, 4]. An alternative approach is to set up a terminate condition and stop the 
training round when the condition is satisfied [13]. One candidate terminate condition 
is to run a boosting algorithm until the training error reaches a predefined minimal 
value ε, or simply zero. Let the training round be T0 when the terminate condition is 
reached, continuing the training process for another β×T0 rounds is suggested [13] 
with the intention of further reducing the testing error, because even if training error 
reaches zero, testing error keeps going down if the training continues. 

In this research, T = 1000 is evaluated against a list of feature selection algorithms 
as described in the following section. 
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D. Feature Selection Algorithms 
The high dimensionality of the term space may be problematic in the field of text 
categorization because many sophisticated learning algorithms used for classifier 
induction cannot effectively handle high dimensionality [9]. Dimensionality reduction 
is the process to reduce the high vector space for the purpose of efficiency. In fact, 
dimensionality reduction not only can boost categorization efficiency, but also mod-
erately improve the effectiveness of categorization because noise features are at the 
same time removed [10]. 

Chi-square, Information Gain (IG), Mutual Information (MI), and Odds Ratio (OR) 
are among the list of widely used feature selection algorithms in text categorization 
[10]. These will be used in this paper.  

3 Experimental Results 

An automatically generated labelled dataset, the Open Directory Project dataset - 
CategoryDocuments [11], is employed as the experimental dataset to evaluate the 
above four widely used text categorization algorithms. 

The second level ODP CategoryDocument set is selected as the experimental data-
set. The dataset contains 14 top-level ODP categories and 512 labelled documents 
with an average length of 47929 words.  

Precision and recall are two most employed criteria of effectiveness stemmed from 
the area of information retrieval for text categorization [13]. To estimate the overall 
effectiveness of a classifier, precision and recall are usually averaged for all the cate-
gories. Micro- and Macro-averaged are the two measures that are used [1] in the paper, 
five-fold cross-validation is employed and precision and recall are calculated by: 
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where pi and ri are precision and recall for category ci, |C| is the total number of 

categories, TPi, FPi, and FNi are true positive, false positive, and false negative for 
category ci in a contingent table. Micro-averaged measure is dominated by categories 
that have high frequency count; whereas Macro-averaging assigns equal weight to 
every category and is dominated by effectiveness on low frequency categories. Since 
increasing precision is to certain extent at the cost of sacrificing the recall, and vice 
versa, the performance of a text categorization algorithms is usually evaluated by F1 
function [6] which balances the weights of precision and recall by assigning same 
weight to both criteria.  
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A. Experimental results of NB 

Table 1 shows the micro-/macro-averaged F1 for the four different feature selection 
algorithms. 

Table 1. Results for the four feature selection algorithms for NB 

#Features 50 80 100 200 300 500 1000 2000 3000 5000 10000 
Mac(chi-
square) 

90.06 91.03 91.58 94.09 93.78 94.85 95.94 95.54 90.25 85.53 76.56 

Mic(chi-
suqare) 

88.87 90.24 91.21 93.36 94.14 95.11 95.9 96.29 92.77 89.64 85.35 

Mac (IG) 97.87 99.34 99.34 98.66 98.46 98.7 98 97.6 96.27 84.42 72.1 
Mic (IG) 98.04 99.61 99.61 98.83 98.44 98.63 97.46 96.88 95.7 88.47 83.01 
Mac(MI) 4.85 6.36 7.54 11.22 11.63 10.78 12.65 21.35 36.06 43.38 61.87 
Mic (MI) 20.5 19.91 20.11 20.5 20.5 20.1 18.35 26.57 35.16 48.63 69.32 
Mac(OR) 99.12 99.12 99.12 99.21 99.44 99.44 99 98.85 99.14 99.82 100 
Mic(OR) 99.22 99.22 99.22 99.22 99.41 99.41 98.82 99.22 99.41 99.8 100 

 
Experimental results indicated that 1) number of features affected the performance 

of NB significantly, 2) OR is one of the best feature selection algorithms for NB, 3) 
OR and IG can enable NB classifier to perform extremely well when 50 to 500 fea-
tures are selected. 

B. Experimental results of kNN 

Table 2 illustrates the F1 measures of kNN classifier with different feature selection 
algorithms. The data in Table 2 show that 1) the number of features is an essential 
factor which dominants the performance of kNN in terms of F1, 2) OR is one of the 
best feature selection algorithms for kNN as well. It outperforms chi-square and MI, 
slightly better than IG, and the preferred feature range for kNN is from 300 to 500, 3) 
although conceptually simple, kNN, if combined with OR and IG, can perform very 
well for the CategoryDocuments set. 

Table 2. Results for the four feature selection algorithms for kNN 

#Features 50 80 100 200 300 500 1000 2000 3000 5000 10000 
Mac(chi-
square) 

88.97 91.34 92.04 93.68 94.19 95.36 96.15 96.58 98.08 98.8 98.79 

Mic(chi-
suqare) 

83.01 90.62 91.79 93.75 94.53 95.5 96.88 98.05 98.44 98.83 98.83 

Mac (IG) 98.42 99.14 99.14 98.34 98.56 99.35 99.64 99.41 98.07 98.74 97.74 
Mic (IG) 99.02 99.61 99.61 99.02 99.02 99.22 99.42 99.42 98.44 99.02 98.05 
Mac(MI) 0.84 0.84 0.84 7.43 7.43 7.43 12.46 18.16 38.4 43.91 62.95 
Mic (MI) 6.25 6.25 6.25 7.42 7.42 7.42 9.17 24.92 27.14 48.42 70.1 
Mac(OR) 99.62 99.62 99.62 99.5 99.62 99.62 99.64 99.82 99.76 99.7 99.68 
Mic(OR) 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99.8 

C. Experimental results of AdaBoost.MHR 
Experimental results of AdaBoost are illustrated in Table 3. Results in Table 3 dem-
onstrated that 1) similar to the previously evaluated two algorithms, the performance 
of F1 is dominated by the number of features selected by the different feature selec-
tion algorithms, 2) as in the previous cases, OR is again the best algorithm for 
AdaBoost.MHR in that it yields the highest F1 values of 99.81% and 99.78% for mi-
cro-averaging and micro-averaging measures respectively, 3) the performance of 
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AdaBoost.MHR is not as effective as NB and kNN in this experiment compared with 
the experiments of Schapire and Singer. One possible explanation for the difference is 
that different text categorization algorithms with different feature selection ap-
proaches on different test dataset perform differently. 

Table 3. Results for the four feature selection algorithms for AdaBoost.MHR 

#Features 50 80 100 200 300 500 1000 2000 3000 5000 10000 
Mac(chi-
square) 

83.54 83.86 84.38 83.76 84.11 82.02 87.9 88.77 89.88 91.83 91.57 

Mic(chi-
suqare) 

78.9 84.76 85.15 83.98 86.13 85.16 88.29 89.45 92.6 92.77 92.18 

Mac (IG) 94.3 95.35 95.67 95.09 95.18 96.22 93.35 91.19 94.86 95.37 92.09 
Mic (IG) 94.72 95.7 95.7 95.11 95.31 96.29 93.94 93.76 95.51 95.9 92.96 
Mac(MI) 2.29 2.05 4.6 6.57 6.57 6.59 10.69 13 15.59 30.9 41.16 
Mic (MI) 4.69 4.88 7.42 7.42 6.65 11.33 16.96 9.97 12.88 36.51 44.14 
Mac(OR) 99.78 99.15 98.83 89.68 93.25 87.27 85.29 89.88 91.07 89.86 91.74 
Mic(OR) 99.81 99.22 99.22 88.06 93.56 87.49 85.72 89.67 91.6 92.39 92.78 

 

D. Comparison of experimental results 
First, OR performs the best for all the three different categorization algorithms. This 
is confirmed by the report of [10]. The main reason may be that OR take into account 
both positive and negative example. 

The second observation found is that Chi-square and IG are also effective feature 
selection algorithms and this result is similar to that of Yang and Pedersen [10]. IG 
and Chi-square consider not only positive examples, but also negative examples, that 
is why these two algorithms can also pick up informative features. It can also observe 
that OR gives more weight to positive examples (by ratio) than IG and Chi-square (by 
subtract) and this may imply why OR performs the best. 

Third, MI is the worst for the three classifiers. One of the possible reasons is MI 
only selects features that are informative in positive examples, without considering 
that the same feature may also informative for negative examples. 

  By comparing with the experimental results from [1, 6], the three classifiers per-
form better on the automatically generated labeled CategoryDocument dataset than 
those on the Reuters collection. One possible reason may be that the average docu-
ment length in Reuters is only about 124 words whereas the document length in Cate-
goryDocument set is 47929 words. The lengthy documents have the potential to de-
liver more information than the shorter one, and thus more suitable to be used to test 
the text categorization classifiers. 

Finally, the experimental results demonstrated that with few (less than 100) fea-
tures select by OR, Adaboost performs extremely well. When the features increase 
from 100 to 1000, F1 decreases and then begin to increase gradually with the number 
of features increasing. When features are selected by Chi-square, the performance of 
Adaboost is increasing as the number of features increasing. 

4 Conclusions  

In this paper, three text categorization classifiers, NB, kNN and AdaBoost were eva-
luated using an automatically generated labeled dataset, which is constructed by using 
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semantic characteristics of the categories in the ODP. Features of the dataset were 
selected by four feature selection algorithms, Chi-square, IG, MI and OR. The expe-
rimental results demonstrated that when combined with OR or Chi-square to select a 
reasonable number of features, all the three classifiers can produce satisfactory re-
sults. This outcome reveals that labelling subjectiveness and bias of benchmark data-
set play an essential role in evaluation of categorization algorithms, and if the two 
issues of a dataset can be well controlled most text categorization algorithms can  
perform quite well on that dataset. The experimental data also revealed that the effec-
tiveness of the classifiers is sensitive to the feature selection algorithms and the  
number of features selected. The data also verified that different algorithms perform 
differently on different experimental document datasets. 
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Abstract. Although model-based Collaborative Filtering approaches
have been widely used in recsys in the past few years. But In practical ap-
plication, where users’ rating data arrives sequentially and frequently, the
model-based approaches have to re-trained completely for new records.
For users’ social information has been succeed used in recommendation
system in previous work. In this paper, we proposed several online collab-
orative filtering algorithms using users’ social information to improve the
performance of online recommender systems. The algorithms can better
use the prior rating and the social network information, which compute
fast and scalable in large data. The contribution of this paper are mainly
two-fold: (1) We propose an online collaborative filtering algorithm which
can better use the social information and prior knowledge; (2) We solve
the problem of cold start and users with few ratings.

Keywords: Recommender Systems, Online Collaborative filtering, So-
cial network, Matrix Factorization.

1 Introduction

Collaborative filtering (CF) is a method of predict users’ preference by learning
from other users and items ratings. It mainly divide into two schools: The mem-
ory based collaborative filtering [1], [2], [3] and model based collaborative filtering
[4], [5], [6], [7] The model based CF methods have been a standard method for
recommendation for a number of years. In model based CF approaches, we are
assumed to have a collection of rating data, users rate the items as the indicator
of their preference. Then matrix factorization methods or other model just like
possibility model used on this data, find out the embed feature of users and
items and make prediction.

With the emergence of large-scale data in modern recommender systems.
New rating records come frequently and sometimes we have new registrants
or new items. The traditional Collaborative filtering methods suffer from some
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drawbacks for its batch-trained algorithm.We have to go through all the prior
ratings to re-train the whole model whenever comes a new rating record.It’s
non-scalable for the high expensive computing cost.Although there are several
tasks [8], [9], [10], [11] investigating online learning for CF, avoid the highly ex-
pensive re-training cost of traditional batch matrix factorization algorithm. In
the traditional online CF method, they simply update the user and item feature
vector by the pre-defined loss function and gradient decent algorithm.

Social network information has been used in other previous works [12], [13],
[14], [15] to improve the batch-train methods. For the hypothesis of one user
have similar tastes with his friends, different models were proposed to improve
the prediction accuracy or solve the code start problem. [15] proposed a low rank
matrix factorization with social regularization, Inspired by the social regulariza-
tion, we propose the methods of online collaborative filtering based on social
information, to better update the user feature vector, and initialize the vector
of new users and items.

In this paper, we’ll proposed two different model utilizing social information
on online collaborative filtering. These online social based collaborative filter-
ing methods (OSBCF) were proven to promote the advantages of model-based
collaborative filtering and improve the prediction accuracy. At the same time,
avoid the highly time cost of batch-training methods.

2 Background and Related Work

In recommender Systems, collaborative filtering (CF) has been one of the most
successful approaches. The CF algorithm can be classified into two categories,
the memory-based algorithm and the model-based algorithm. The state-of-the-
art methods for regular CF tasks is model-based algorithm, the latent factor or
matrix factorization method [16], which used by the winner of the Netflix prize
[18], [19].

Although the high accuracy of the batch algorithm of matrix factorization,
we can’t stand the high time complexity and memory cost in the real practical
recommender system. Several task investigate the online algorithms from various
aspects to solve the issues facing batch-trained CF algorithms. All the above-
mentioned works achieved good results without using any information more.

The online learning algorithm avoid the high time complexity and memory
cost but lose some accuracy at the same time. In reality, we always turn to
friends we trust for movie, music or book recommendations, and our tastes can
be easily affected by the company we keep. Even in some social network products,
the friendship between users is build for their similar taste. Hence, [12] present a
social network-based recommendation system, [15] using a social regularization
to represent the social constraints on recommender systems, and design a matrix
factorization objective function with social regularization.
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3 Problem Definition and Notations

In this section, we describe the problem we’re going to solve and the meaning of
the symbols used in the paper.

In the regular collaborative filtering task, some users from a total of n users
rated some items from a total of m items, and these ratings form an incomplete
matrix R ∈ Ri∗j , where rij is the rating on the j-th item given by the i-th user.
The goal of collaborative filtering is to predict the unknown ratings based on the
known ratings. In the basic matrix factorization algorithm, we learns the latent
structure by factorizing the rating matrix to a user matrix U ∈ Rn∗k and item
matrix V ∈ Rk∗m. In this paper, we user Ua and Vb to denote the a-th row of
U , and b-th row of V respectively.

Then, the popular model-based CF, matrix factorization algorithm can be
re-formulated as the regularized optimization task as below:

argmin
U,V

∑
∀(a,b)∈S

l((Ua, Vb, ra,b)) + λ(||Ua||2F + ||Vb||2F ) (1)

where λ > 0 is a regularization parameter, and l(Ua, Vb, ra,b) is a loss function
that defines the loss between the true ra,b and prediction. S is the rating set
we’ve already known.

4 Social Based Online Collaborative Filtering

4.1 Online Collaborative Filtering(OCF)

We first present the traditional online collaborative filtering algorithm based on
stochastic gradient descent, which can be adopted to reach a local minimum of
the objective given in Eq.(1). Suppose the new coming rating ra,b, (a, b) ∈ S,
by adopt the gradient descent method, Ua, Vb move toward the average gradient
descent of the loss function, by a small step controlled by η.

Ua = (1− 2ηλ)Ua − η
∂l(Ua, Vb, ra,b)

∂Ua
(2)

Vb = (1− 2ηλ)Vb − η
∂l(Ua, Vb, ra,b)

∂Vb
(3)

where η is the learning rate parameter, and l(Ua, Vb, ra,b) is the loss function.
To optimize the RMSE, Root Mean Square Error, in this paper, we can define
the loss by the following equation:

l(Ua, Vb, ra,b) = (ra,b − UaV
T
b )2 (4)

So, given an observed rating pair (a, b), the updating rule respect to the RMSE
defined above can be expressed as follow:

Ua = (1− 2ηλ)Ua + 2η(Vb(ra,b − UaV
T
b )) (5)
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Vb = (1− 2ηλ)Vb + 2η(Ua(ra,b − UaV
T
b )) (6)

4.2 Social Network Based Online Collaborative Filtering (OSBCF)

As we always turn to our friends for movie, music or book recommendations,
or even in some internet products, users make friend for their similar taste, the
social information seems to be significant important for the matrix factorization.
In this subsection, we will interpret how the social network information used in
our online models. Then, we’ll give the algorithm for online learning of OSBCF.

OSBCF-I: Average-Based online CF. In this model, we assume that one
user are similar to all of his friends with the same similarity, and when coming
a rating record, we are not suggested to update the user feature far away from
their friends. For this assumption, the first social-based matrix factorization
given below:

argmin
U,V

∑
∀(a,b)∈S

l((Ua, Vb, ra,b))+λ(||Ua||2F + ||Vb||2F )+α
∑
f∈�

||Ua− 1

|�|
∑
f∈�

Uf ||2F
(7)

While � is the friends set of user a, and |�| is the number of set �.
Then, the updating formula will turn into the following equations:

Ua = (1− 2ηλ)Ua + 2η(Vb(ra,b − UaV
T
b ))− 2α(Ua − 1

|�|
∑
f∈�

Uf ) (8)

The update of Vb is same with the Equation 6.

OSBCF-II: Sim-Based online CF. The OSBCF-I proposed a social-based
online CF, which assume users have same similarity with their friends. But
it’s not real in reality, while a user’s friends have diverse tastes. Hence, in this
model, we’ll use the past ratings as the prior to define the similarity of user and
his friends. Then our Sim-based online CF can be formulated as:

argmin
U,V

∑
∀(a,b)∈S

l((Ua, Vb, ra,b))+λ(||Ua||2F +||Vb||2F )+α
∑
f∈�

sim(a, f)||Ua−Uf ||2F
(9)

The updating of item is same with the equation 6. The new updating formula
of user is given below:

Ua = (1− 2ηλ)Ua + 2η(Vb(ra,b − UaV
T
b ))− 2α

∑
f∈�

sim(a, f)(Ua − Uf ) (10)
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The similarity between two users can be described by the modified version
of Pearson correlation coefficient employed by user-based approaches, which is
given by:

sim(ui, uj) =

∑
k∈I(c)(ri,k − r̄i)(rj,k − r̄j)√∑

k∈I(c)(ri,k − r̄i)2
√∑

k∈I(c)(rj,k − r̄j)2
(11)

Where Ic is the set of items that have been rated by users Ui and Uj both.
And r̄i is the average rating of i-th user.

We use an additional trust matrix T to describe the similarity of user and his
friends.

Ti,j = δi,jsim(ui, uj) (12)

where δi,j is an indicator function that outputs 1 when uj is ui’s friend,
otherwise 0.

As the OSBCF-II is the development of the OSBCF-I, we just give the algo-
rithm of OSBCF-II, the sim-based online CF in algorithm 1.

Algorithm 1 OSBCF - Framework of Social Based Online Collaborative Filtering

Input: a sequence of ratings set S

Initialization: Initialize a random matrix U for users, and a

random matrix V for items. Import the social network In the

trust matrix T

for (u, v) in S :

update u by equation 10

update v by equation 6

end for

return U,V

Extension. In the traditional batch-training algorithm, they make an implicit
assumption, both the number of users and the number of items are fixed and
known before training, which is unrealistic in the online recommender system.
The above algorithm 1, initialize the user and item matrix beforehand, can not
handle the novel user or item well, when comes a novel user or item.

In this part, we aim to extend the framework of OSBCF adapt to the realistic.
When a new user or item comes, a randomized vector will bring bad influence
for our algorithm performance. Also, if a user or item has few ratings, the per-
formance of the algorithm depends largely on the random processes. In order to
deal with the impact of random process, and the cold start problem, we propose
the following method to live initialize the user vector using the social information
to replace the random initialization.

Unovel =
1

1 + |�| (ranvec+
∑
f∈�

Uf) (13)
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where � is the exist friends set of the novel user, and ranvec is a randomized
vector avoid that the � is empty.

We give the detail of the extend algorithm in algorithm 2 below.

Algorithm 2 OSBCF - OSBCF for handling novel sample extension

Input: a sequence of ratings set S

Initialization: Initialize the trust matrix T, for all of its

elements set to 0; initialize two empty matrix U,V for users

and items.

for (u, v) in S :

if u is a new user :

randomize a vector for u

initial u by equation 13

extend user matrix U with u

end if

if v is a new item :

randomize a vector for v

extend item matrix V with v

end if

update u by equation 10

update v by equation 6

update the u part of trust matrix T by equation 11,12

end for

return U,V

5 Experiments

In this section, we conduct several experiments to compare our two social-based
online collaborative filtering algorithms with the traditional online CF algorithm.

5.1 Datasets

We conduct the experiments on two publicly available datasets widely used in
social recommendation.

The first data source we choose is Epinions. Epinions is a well-known general
consumer review site that was established in 1999. At Epinions, members rate
the product or service on a rating scale from 1 to 5 starts.The dataset consists
of 49,290 users who rated a total of 139,738 different items at least once. The
total number of reviews is 664,824. As to the user social trust network, the total
number of issued trust statement is 487,181.

The second dataset we employ for evaluation is Flixster dataset. Flixster is a
social networking service in which users can rate movies. Users can also add some
users to their friend list and create a social network. Note that social relations
in Flixster are undirected. The Flixster dataset consist of 1,049,511 users who
have rated a total of 66,726 different items. On average, each users watched 19.5
movies, and have 8.9 friends.
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Table 1. RMSE of Epinions/ K = 5

Epinons 0.2 0.4 0.6 0.8

OCF 0.9744 0.9565 0.9501 0.9478

OSBCF-I 0.9637 0.9453 0.9387 0.9366

OSBCF-II 0.9621 0.9415 0.9379 0.9361

Table 2. RMSE of Epinion / K = 10

Epinons 0.2 0.4 0.6 0.8

OCF 0.9657 0.9621 0.9491 0.9442

OSBCF-I 0.9548 0.9414 0.9361 0.9346

OSBCF-II 0.9526 0.9392 0.9337 0.9287

Table 3. RMSE of Flixster/ K = 5

Flixster 0.2 0.4 0.6 0.8

OCF 0.9745 0.9546 0.9510 0.9487

OSBCF-I 0.9555 0.9375 0.9349 0.9331

OSBCF-II 0.9543 0.9376 0.9345 0.9323

Table 4. RMSE of Flixster / K = 10

Flixster 0.2 0.4 0.6 0.8

OCF 0.9662 0.9516 0.9494 0.9472

OSBCF-I 0.9502 0.9370 0.9335 0.9308

OSBCF-II 0.9508 0.9317 0.9301 0.9289

5.2 Evaluation Metric

We user the most popular metric the Root Mean Square Error (RMSE) to mea-
sure the prediction quality of our proposed approach in comparison with tradi-
tional the-state-of-art online CF method. The metric RMSE is defined as:

RMSE =

√
1

T

∑
i,j

(Ri,j − R̂i,j)2 (14)

Where Ri,j denotes the rating user i gave to item j, R̂i,j denotes the rating
user i gave to item j as predicted by a method, and T denotes the number of
tested ratings.

5.3 Experiment Results

We conduct experiments on the two dataset Epinons and Flixster. Table1 and
Table2 are the results on the Epinions dataset and Table3 and Table4 are the
results on the Flixster dataset. The columns of the table, 0.2, ..., 0.8, means we
choose how many training samples of the dataset, for example, the column 0.2
suggest that we choose the 20 percent of the dataset for training and the rest
for testing. K is the dimensionality of the feature vector of users and items, we
also choose two different number of dimensionality.

We can find out that on the two dataset our OSBCF methods outstanding the
traditional OCF algorithm on both the two dataset.We can see in the results,
there is little difference between the three algorithms when K is equal to 5.
When K = 10, we can find an obvious difference between the three algorithms.

6 Conclusion

In this paper, we focus on how the social network information can be used in the
online recommender systems to improve the performance and solve the cold start
problem. As the results show, we achieve good results on the two experiment
datasets.
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As the rapid growth of online social network sites, a variety of behavior be-
tween members are allowed in the sites, just like, communication and the for-
warding of the other’s review. This additional information allow us to better
measure the taste similarity of members. The next step, we plan to develop
similar techniques to better describe the similarity of users, and improve the
recommender system.
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Abstract. This paper targets at utilizing cross-site ratings to alleviate the data
sparse problem for recommender systems. The key issue is how to bridge user
features between the targeted site and the auxiliary site. In traditional transfer
learning models, a linear mapping function is assumed to map the user feature in
the auxiliary site into the targeted site. The limitation lies in that when the real
data does not follow the linear property, such models will fail to work. There-
fore, the motivation of this paper is to identify whether the rating prediction
performance in recommender systems can be improved by considering the non-
linear transformation. As a primary study, we propose a nonlinear transfer
learning model, and utilize the radial basis function (RBF) kernel to map user
features of multiple sites. Through empirical analysis in a real-world cross-site
dataset, we demonstrate that by utilizing the nonlinear mapping function RBF
kernel, the rating prediction performance is consistently better than previous trans-
fer learning models at a significant scale. It indicates that the nonlinear property
does exist in real recommender systems, which has been ignored previously.

Keywords: Cross-site Recommender Systems, Collaborative Filtering, Transfer
Learning, RBF Kernel.

1 Introduction

Data sparsity is a typical challenge for recommender systems. It means that the den-
sity of the user-item rating matrix is extremely low in many cases (e.g., 1.18% in the
well known Netflix1 dataset). Thus when a user/item has very few ratings, it is difficult
to have accurate preference predictions. For new users/items, of which no ratings are
observed, most recommendation models will fail to work. This is also known as the
cold-start problem. Traditionally, researchers incorporate content features, social net-
works, and etc., to alleviate this problem. But most information being utilized is limited
within a single social media site.

Different from previous work, in this paper, we explore information from multiple
social media sites rather than a single one, to tackle the data sparsity challenge. The
typical scenario is as follows. The active task is to predict an user’s ratings in the tar-
geted site, e.g., the check-in ratings in Foursquare2. For users who rarely have ratings in
� Corresponding author.
1 https://www.netflix.com/global
2 https://foursquare.com

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 495–502, 2014.
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Foursquare, they might have many ratings in other auxiliary sites, such as movie ratings
in Netflix. Therefore, the problem is how to utilize these movie ratings in Netflix to
leverage the active rating predications in Foursquare. The task belongs to the transfer
learning research field in collaborative filtering (CF), but is different from many of the
previous work [3,5]. In [3], user/item spaces of multiple sites are different, but in our
case, we study the users who simultaneously have ratings in both sites. In [5], it has
utilized items from different domains to improve the recommendation performance, but
the items are still within the same site. In our case, we utilize the real cross-site data.

In considering the transfer learning technique for collaborative filtering, one limita-
tion of previous work is that only linear transformation has been utilized in mapping
user features in different sites/domains, thus when the data does not follow the lin-
ear property, most previous models will fail to work. The nonlinear property, however,
might exist in real systems. For example, in the movie recommendation system, some
users who like action movies are grouped into a cluster, and some other users who like
romantic movies are grouped into another cluster. But in the restaurant recommender
system, users who always have aggressive opinions (e.g., they always give extremely
high/low ratings in all recommender systems) might be more likely to have spicy food,
and form a cluster in the restaurant recommender system; and users who always have
moderate opinions might be likely to have sweet food, and form another cluster. In the
spicy cluster, both users who give extremely high ratings in the movie recommender
system and users who give extremely low ratings are contained. This is a kind of non-
linear mapping. By previous linear mapping methods, algorithms can only choose either
high-rating users or low-rating users. Thus they might fail to model the real mapping
relation across different sites accurately.

In this paper, we are going to solve this problem by utilizing nonlinear mapping
functions to bridge user latent features in multiple sites. As a primary empirical study,
we propose an intuitive but practical nonlinear transfer learning model for collaborative
filtering. Specifically, we compare linear transfer learning models and the proposed
nonlinear model with the radial basis function (RBF) kernel. Through experimental
verification in a real world dataset, we demonstrate that by utilizing the RBF kernel, the
performance of rating prediction is consistently better than the linear transfer learning
models. This indicates that nonlinear property does exist in mapping user latent features
in multiple sites, and modeling the nonlinear mapping relationship across social media
sites is an effective approach in alleviating the data sparsity problem for the targeted
recommender system.

2 Problem Definition

The cross-site rating matrix is shown in Fig. 1 (left). The left part of the matrix denotes
items in the targeted site s, and the right part of the matrix denotes items in the auxil-
iary site v. In the system, there are three kinds of users. Some users only have ratings
in site v, such as {u1, u2, u3}; some users have both rating in site s and site v, such
as {u4, u5, u6}; and some users only have ratings in site s, such as {u7, u8, u9}. The
problems to be studied in this paper are defined as follows.

1. For users who only have ratings in the auxiliary site v, e.g., {u1, u2, u3}, how to
predict their ratings in the targeted site?
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Fig. 1. Problem definition and nonlinear mapping for cross-site collaborative filtering

2. For users who have both ratings in site s and site v, e.g., {u4, u5, u6}, how to utilize
the ratings in the auxiliary site to leverage the rating prediction in the targeted site?

3 The Proposed Approach

3.1 Probabilistic Matrix Factorization

The probabilistic matrix factorization (PMF) model [6], as a kind of collaborative filter-
ing methods, has been demonstrated successful in performing the recommendation task
in large-scale datasets. It assumes aK-dimensional latent feature vectorU for each user,
and a K-dimensional latent feature vector V for each item. The inner product UT

i Vj is
utilized to predict the rating for item j by user i. The objective function is a combina-
tion of the squared mean error and the quadratic regularization terms as follows, where
N is the number of users, and M is the number of items, Rij is the observed rating
for item j by user i. Iij is the indicator function to present whether the rating exists in
the training set. The objective can be optimized effectively and efficiently by gradient
descent algorithms.

min
Ui,Vj

1

2

N∑
i=1

M∑
j=1

Iij(Rij − UT
i Vj)

2 +
λU
2

N∑
i=1

||Ui||2 + λV
2

M∑
i=1

||Vi||2

3.2 Mapping User Features Through The RBF Kernel

The mapping of user features across different sites are learned from a set of users who
have a number of ratings in both sites. We utilize the PMF model to learn initial feature
vectors for users/items in site s and site v separately. For the ith user, his/her latent
feature in site v is denoted by U (v)

i ; and his/her latent feature in site s is denoted by

U
(s)
i . We propose to utilize a group of K regression functions fk, (k ∈ 1, ...,K) to map
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the latent feature in the auxiliary site U (v)
i to the latent feature in the targeted site U (s)

i .

As shown in Fig. 1 (right), each function fk corresponds to the kth dimension in U (s)
i ,

denoted by U (s)
i [k], and the input of these regression functions is the latent vector in

the auxiliary site U (v)
i . As a primary study for the nonlinear property, all the regression

functions are learned separately for simplicity.
We utilize the support vector regression algorithm [8] implemented by the LibSVM

tool [1] as the regression function. The original problem to be solved is as follows,
where xi is the observed input features for the ith data sample in the training set, yi is
its regression value, and w is the global weight vector for different features.

min
1

2
‖w‖2 + C

l∑
i=1

(ξi + ξ∗i ), sub to

⎧⎨⎩
yi − 〈w, xi〉 − b ≤ ε+ ξi
〈w, xi〉+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≤ 0

By solving its dual problem as

max− 1
2

∑l
i,j=1(αi − α∗

i )(αj − α∗
j )〈xi, xj〉 − ε

∑l
i=1(αi − α∗

i ) +
∑l

i=1 yi(αi − α∗
i )

sub to
∑l

i=1(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C],

the kernel trick can be utilized by re-defining 〈xi, xj〉. In this paper, we utilize the RBF
kernel as the nonlinear regression model, and its definition is

〈xi, xj〉 = exp
(−a‖xi, xj‖2)

By defining the above nonlinear mapping functions, for users who only have ratings
in the auxiliary site, their latent feature vector can be transferred to the targeted site.
This solves the first task in the problem definition section. To avoid the latent feature
permutation issue in the training process, users who only have ratings in one site are
trained together with users who have ratings in both sites.

3.3 Regularization

For the second task in the problem definition, we utilize the regularization technique.
The assumption is that for users who have both ratings in the auxiliary site and the
targeted site, the transferred user latent feature vector from the auxiliary site should
be similar with the learned user feature vector from his/her ratings in the targeted site.
Therefore, we design the following strategy to leverage a user’s ratings in the auxiliary
site to improve his/her rating predictions in the targeted site.

The strategy is a two-step process. In the first step, feature vectors, {U (v), V }, are
learned from the user-item(v) matrix, and feature vectors {U (s), S} are learned from the
user-item(s) matrix. By choosing a set of users who have a number of ratings in both
sites, the mapping function f = {f1, f2, ..., fK} is learned. In the second step, for users
who have ratings in both sites (the users utilized to learn f are excluded), their latent
feature vectors in the targeted site are re-learned by the following objective function.

min
U

(s)
i

1

2

M∑
j=1

Iij(Rij − U
(s)T
i Sj)

2 +
λU
2
||U (s)

i ||2 + λA
2
||U (s)

i − f(U
(v)
i )||2
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In this objective function, only U (s)
i is variable, while others are fixed. Thus it can be

simply solved by calculating the gradient as

∂L

∂U
(s)
i

=
M∑
j=1

Iij(Rij − U
(s)T
i Sj)Sj + λUU

(s)
i + λA(U

(s)
i − f(U

(v)
i )).

The second regularization term is designed to leverage auxiliary ratings to improve
rating predictions in the targeted site.

4 Experiments

The experiments are targeted at justifying the following issues.

1. For users who only have ratings in the auxiliary site, to what extent can the nonlin-
ear mapping approach outperform previous linear mapping methods for the rating
prediction task in the targeted site?

2. For users who have ratings in both the targeted site and the auxiliary site, to what
extent can the nonlinear mapping approach outperform previous linear mapping
methods?

We compared the proposed nonlinear transfer learning approach with two state-of-the-
art linear mapping methods, as well as a baseline method, in the above two configura-
tions, respectively.

The experiments are conducted on a real-world cross-site dataset collected from two
popular social media sites in China, Douban3 and DianPing4. Douban is a review system
for movies, and Dianping is mainly for Chinese restaurants. We first crawled ratings of
from the two sites separately, and then utilized Liu et al.’s algorithm [4] to link the same
users from the two sites, with the confidence value greater than 0.85. For evaluation
purpose, we retain users and items that have top number of ratings. Finally, 3,924 cross-
site users are selected, together with 6,842 users who only have ratings in Douban and
5,552 user who only have ratings in Dianping. Totally, these users have rated 6,885
movies, and 4,522 restaurants. There are 1,170,066 ratings in Douban (314,039 ratings
are from the cross-site users), and 207,517 ratings in Dianping (20,609 ratings are from
the cross-site users). We utilize Dianping as the targeted site and Douban as the auxiliary
site, because Dianping’s data is much more sparse than Douban’s data.

We utilize two metrics, the Mean Absolute Error (MAE), and the Root Mean Square
Error (RMSE) to evaluate the rating prediction performance task. Detailed definitions
of these two metrics can be found in [5]. Both the two metrics measure errors. Thus
a smaller MAE or RMSE value indicates a better performance. We utilize half of the
cross-site users for learning the mapping function, and the other half for evaluation. For
the evaluation users, we retain 0%, 25%, 50% and 75% of their ratings as training data,
respectively. 0% corresponds to users who only have ratings in the auxiliary site, and
the other three correspond to users who have ratings in both sites. We employ an item’s

3 http://www.douban.com
4 http://www.dianping.com
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Table 1. Overall performance

Dimension Training Data Metrics AVG CMF CSVD RBF

5

0%
MAE 0.6961 0.6892 0.6819 0.6815

RMSE 0.8705 0.8664 0.8653 0.8566

25%
MAE 0.7102 0.6997 0.6891 0.6619

RMSE 0.8916 0.8768 0.8761 0.8435

50%
MAE 0.6944 0.6880 0.6714 0.6383

RMSE 0.8776 0.8770 0.8511 0.8143

75%
MAE 0.6850 0.6538 0.6435 0.6145

RMSE 0.8529 0.8229 0.8017 0.7851

10

0%
MAE 0.6961 0.6882 0.6791 0.6694

RMSE 0.8705 0.8663 0.8628 0.8481

25%
MAE 0.7102 0.6979 0.6857 0.6646

RMSE 0.8916 0.8744 0.8699 0.8468

50%
MAE 0.6944 0.6856 0.6793 0.6551

RMSE 0.8776 0.8683 0.8589 0.8317

75%
MAE 0.6850 0.6519 0.6392 0.6124

RMSE 0.8529 0.8206 0.8017 0.7780

average rating as the baseline method (AVG), and two state-of-the-art transfer learning
models, CMF [7] and CSVD [5] as competitive linear mapping methods.

Table. 1 shows the overall performances of different methods. In all configurations,
the proposed approach (RBF) outperforms other methods consistently at a significant
scale. For users who only have ratings in the auxiliary site, the proposed approach out-
performs the linear mapping methods by 1.4% in MAE and 1.7% in RMSE. For users
who have ratings in both sites, the proposed approach outperforms the linear map-
ping methods by 5.1% in MAE and 4.5% in RMSE. These results demonstrate that
the nonlinear property does exist in the mapping of real recommendation systems, and
modelling the transformation in the nonlinear manner is indeed effective in improving
the recommendation performances. Figure. 2 shows the performances with different
amount of auxiliary ratings. It demonstrates if more ratings in the auxiliary site can be
obtained, the rating prediction in the targeted site will be more accurate.

5 Related Work

Probabilistic matrix factorization (PMF) [6] is one of the most competitive recommen-
dation model, proposed by Salakhutdinov et al. Koren et al. illustrated several promis-
ing improvements on the PMF model by integrating the implicit feedback, the temporal
patterns, and the confidence estimation [2]. To alleviate the data sparsity problem, one
research direction is to utilize transfer learning techniques [5,7], which can be divided
into two streams. In the first stream, users in the auxiliary domain and the targeted do-
main share the same user latent feature space, derived from matrix factorization tech-
niques [3,7]. In the second stream, it assumes that there is a linear mapping between
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Fig. 2. Performances with different amount of auxiliary ratings. Dimension = 10. Group 1: 1058-
330; Group 2: 330-245; Group 3: 245-187; Group 4: 187-148; Group 5: 148-100. The numbers
of test ratings in these groups are shown in the left figure, and the results are shown in the right
two figures.
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user latent features across the auxiliary domain and the targeted domain [5]. The first
stream is a special case of the second stream, by setting the linear mapping function
among multiple sites to the identity mapping function.

6 Conclusion

In this paper, we explore how to utilize a user’s real cross-site ratings to alleviate the
data sparse problem in recommendation services. By an empirical comparison of lin-
ear transfer learning methods and the proposed nonlinear method, we demonstrate the
nonlinear method significantly outperforms the linear methods, which indicates the ex-
istence of nonlinear property in cross-site recommendation scenarios. The experimental
results also demonstrate that mapping user features by the RBF kernel is an effective
manner in improving the performance of the targeted recommendation site.
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Abstract. Electroencephalogram (EEG) is an effective metric to monitor or 
measure human brain activities. Another advantage for EEG utilization is non-
invasive, and is not harmful to subjects. However, this leads to two drawbacks: 
low signal-to-noise ratio and non-stationarity. In order to extract useful features 
contained in the EEG, multifractal attributes were explored in this paper. A few 
attributes were utilized to analyze the EEG recorded during motor imagery 
tasks. Then, we built a deep learning model based on denoising autoencoder to 
recognize different motor imagery tasks. From the results, we can find that 1) 
Motor imagery induced EEG is of multifractal attributes, 2) multifractal spec-
trum D(h) and the statistics cp based on cumulants can reflect difference be-
tween different motor imagery tasks, so they can be adopted as features for 
classification. 3) A deep network with initialization by denoising autoencoder is 
suitable to learn multifractal attributes extracted from EEG. The classification 
accuracies demonstrated that the proposed method is feasible.   

Keywords: Multifractal Attribute, Deep Learning, Brain Computer Interface, 
Denoising Autoencoder, Wavelet Leader. 

1 Introduction 

The multifractal phenomenon widely occurs in the nature. Many objects have multi-
fractal attributes, such as tree branch, coastline [1]. These objects repeatedly appear 
the same or equivalent attributes when they are inspected under different scales. In a 
task with repetitive actions, like motor imagery, the measured EEG may contain some 
components caused by the repetition of specific action. Besides, singularity is another 
component involved in EEG signal. These components can be represented by multi-
fractal attributes. Up to now, multifractal analysis has been used to analyze diverse 
biophysiological signals and images [2-4]. For instance, Dutta et al. employed multi-
fractal method to detect epileptic zones by EEG [2]. Here, we explored the feasibility 
of multifractal attributes for classifying motor imagery EEG. This will enrich alterna-
tive possibilities of kinds of features that represent intrinsic information related to 
motor imagery. The multifractal features could be integrated with power features, 
which are commonly used to distinguish different motor imageries [5-7], to improve 
the performance of decoding EEG signal [8, 9]. The performance improvement for 
decoding will benefit a great variety of applications of brain computer interface 
(BCI), such as BCI-based prosthesis [6] and entertainment [10]. In this paper, wavelet 
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leader multifractal formalism [11] was utilized to extract the multifractal attributes 
from the motor imagery EEG. Multifractal attributes (statistics cp based on cumulants 
at each scale) were used as features. Unlike directly using original cumulants at each 
scale as in [9], we adopted higher statistical cumulants summarized from all scales. 
This dramatically reduces the dimension of features. After that, a deep neural network 
was built to learn these multifractal attributes. For the sake of effective learning, de-
noising autoencoder [12] was used to initialize weights of each hidden layer.  

2 Methodological Framework 

Figure 1 depicts the flow diagram of the proposed method. Firstly, raw EEG signal 
was filtered by a notch filter with band-stop at 50 Hz in order to remove the effect of 
electricity frequency. Then, filtered EEG was used to extract multifractal attributes. 
Consequently, these attribute features were fed into a deep network. To release the 
problem of overfitting, denoising autoencoder [12] was adopted to initialize weights 
of hidden layers.     

 

Fig. 1. Flow diagram of the proposed method 

2.1 Multifractal Attributes 

Let time series x(t) be a segment partitioned from a channel. After discrete wavelet trans-
form (DWT), a time-scale representation (wavelet coefficients) of x(t) can be obtained. 
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Because wavelet-based multifractal analysis has two drawbacks: (1) entire multifractal 
spectrum of the process is not accessed under analysis, (2) not valid for all types of multi-
fractal processes [13], we analyze multifractal attributes based on wavelet leaders [11]. 
Wavelet leader, denoted as LX ( j,k), is the greatest value of adjacent wavelet coeffi-

cients. Adjacent region refers to time interval [k-1, k+1] at scale 2 j
 and all smaller 

scales. At a scale a = 2 j
, the structure function is defined as the average of the q th 

power of LX ( j,k) across time, 

 SL ( j,q) = 1

n j

LX ( j,k)q

k=1

n j

 = Fq 2 jζ (q)
,  (1) 

where n j  is the number of wavelet leaders LX ( j,k)  available at the scale 2 j
, 

Fq  is coefficient. The second equality holds in the limit of fine scales 2 j → 0 . 

This indicates that structure function behaves power law behavior over scales for a set 
of statistical orders q (see figure 2(a) for an example). 

    Based on wavelet leaders, cumulants (see figure 2(b) for the first three cumulants 

at scales 21
 to 25

) at p th ( p ≥ 1) order can be defined as: 

 . (2) 

If the following constraint is imposed, 

 C L ( j, p) = c0,p + cp ln2 j , ∀ p ≥ 1, (3) 

where c0,p , cp  are coefficients, and equation (1) is transformed by the logarithm 

and is expressed using generating function expansion to obtain 

 lnΕeq ln LX ( j ,⋅) = C L ( j, p)
q p

p!p=1

∞

 = ln Fq +ζ (q)ln2 j . (4) 

Then, substituting equation (3) into equation (4) to yield 

 ζ (q) = cp

q p

p!p=1

∞

 . (5) 

From above equation, we can see that zeta ζ (q)  is linear to q when 

cp ≡ 0, ∀ p ≥ 2 . In this case, it means the signal is monofractal, otherwise it is 
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multifractal (see figure 2(c) for an example when signal is multifractal). According to 

equation (3), cp  can be obtained by means of linear regression in ln2 j
 versus 

C L ( j, p) coordinates, 

 cp = (log2 e) ⋅ w jC
L ( j, p)

j= j1

j2

 . (6) 

 

Fig. 2. An example of multifractal attributes calculated from a segment of EEG. (a) Structure 

function with different q  at scales from 21
 to 25

(note: the lines for q =-1 and q =-0.5 

are overlapped). (b) Cumulants at each scale. C L ( j,1) , C L ( j,2)  and C L ( j, 3)  are 

shown in blue, green, and red colors, respectively. (c) ζ (q) versus q . (d) Multifractal spec-

trum D(h).  (e) cp  obtained from C L (⋅, p) regression.  
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Figure 2(e) shows the first three cp . The first three cp  have clearly physical 

meanings. c1  is a self-similarity, which indicates the long-term temporal dependen-

cy. c2  characterizes whether the signal has multifractality. The signal is more multi-

fractal when c3 is not zero. These cp  are also related to multifractal spectrum D(h) 

(see figure 2(d)). c1 , c2 and c3, respectively, correspond to the location of the max-

imum, width, and asymmetry of D(h) [11]. More detailed information about multi-
fractal formalism can be referred to [11, 13-14] and the useful software can be found 
at http://www.irit.fr/~Herwig.Wendt/software.html. 

2.2 Stacked Denoising Autoencoder 

A block of denoising autoencoder (DAE) [12] is illustrated on the region enclosed by 
orange rectangle in figure 1. The features of multifractal attributes (i.e., cp ) were 

first corrupted (corrupted fraction is 0.3), denoted as , by means of a stochastic 

mapping . Herein, features that were stochastically selected were 

enforced to be 0. Then, the corrupted features were mapped to a hidden representation 
by sigmoid function 

 . (7) 

Consequently, we reconstructed the uncorrupted z  as 

 z = g
2, θ ' (y). (8) 

The objective is to train parameters θ = {W ,b} and θ ' = {W ' ,b'} for minimi-

zation of the average reconstruction error over training set. In other words, finding the 
parameters to let z  as close as possible to original f , performing the following 

optimization: 

   , (9) 

where n  is the number of training samples, θ *, θ ' * are the optimal values of θ , θ ' . 

DAE learning rate was 0.5 with stop criterion of 30 epochs. Batch size was 75. When 
the training of a DAE was finished, the uncorrupted features were fed to the trained 
DAE. The output of previous layer of DAE was used as the input of the next DAE for 
training. After all DAE (stacked three DAEs) have been trained in sequence, the 
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weights connecting between DAEs were used to initialize hidden layers of deep neural 
network. Finally, a top layer was added on the top of the neural network. Accordingly, 
the parameters were fine-tuned in a supervised way at the learning rate of 0.2 with stop 
criterion of 50 epochs. 

3 Results 

The EEG data used for evaluation is the same as used in [15]. EEG data were record-
ed from three subjects with fourteen electrodes mounted on sensorimotor cortex. Dur-
ing recording, subject was performing motor imagery tasks. There are four sessions 
for each subject. Each session consists of 15 trials, each of which is four seconds. A 
trial was divided into 25 one-second segments with an overlap of 87.5%. 

3.1 Multifractal Attributes Difference between Tasks 

We compared the multifractal attributes (left vs. right motor imageries) extracted 
from EEG based on wavelet leader multifractal formalism. Figure 3 shows the aver-
age multifractal spectrum D(h). Each subplot in the figure 3 illustrates the comparison 
between two tasks of motor imagery. We can clearly see that there is difference be-
tween them (i.e., the curves for different motor imageries in the figure 3 are not total-
ly overlapped.). The larger difference of multifractal spectrum is found in subject 1. 

In addition, the average c1  and c2  respectively obtained from the regression of 

C L (⋅,1)  and C L (⋅,2)  are shown in figure 4. The difference between different 

motor imageries is observed at each session more or less. Similarly, the larger differ-
ence is appeared in the case of subject 1. 

 

Fig. 3. Average multifractal spectrum D(h) at channel C3 for each session of all subjects. The 
magenta lines represent the average multifractal spectrum for left hand motor imagery over all 
segments within each session, and the cyan lines represent for right hand motor imagery. 
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Fig. 4. Average c1  and c2  at channel C3 for each session of all subjects. c1 and c2 are obtained 

from the regression of corresponding cumulants. Magenta bars are for left hand motor imagery, 
while cyan bars are for right hand motor imagery. 

3.2 Classification Accuracy 

Most relevant four channels (C3, C4, Cp3, Cp4) were employed for extracting multi-
fractal attributes ( c1 c2 c3). Preceding session data were used for training and the 

following session data were used for testing. Accuracies were calculated as ratios of 
the number of correct classification segments to the number of all segments. Table I 
lists all classification accuracies. Most of sessions achieved the accuracy better than 
chance level. Subject 1 possessed better performance, which is consistent with the 
analysis results in section 3.1. The more distinguished difference between tasks re-
sults in better performance in accuracy (i.e., higher accuracy).  

Table 1. Classification Accuracies 

Subject 1 2 3 
Session 2 3 4 2 3 4 2 3 4 

Accuracy 90.93 85.87 93.07 57.60 51.47 70.93 63.20 68.27 83.47 
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4 Conclusion 

We explored multifractal attributes for motor imagery EEG, and found that characte-
ristics of multifractal spectrum D(h) and the statistics cp based on cumulants are dif-
ferent between left and right motor imageries. Then, a deep network was built to learn 
the extracted multifractal attributes. From the classification results, the proposed me-
thod was worked and demonstrated the feasibility of classification based on multifrac-
tal attributes and deep learning. 
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Abstract. We present a biologically-inspired method for object detec-
tion which is capable of online and one-shot learning of object appear-
ance. We use a computationally efficient model of V1 keypoints to select
object parts with the highest information content and model their sur-
roundings by a simple binary descriptor based on responses of cortical
cells. We feed these features into a dynamical neural network which binds
compatible features together by employing a Bayesian criterion and a
set of previously observed object views. We demonstrate the feasibility
of our algorithm for cognitive robotic scenarios by evaluating detection
performance on a dataset of common household items.

1 Introduction

Reliable detection of objects in complex scenes remains one of the most challeng-
ing problems in Computer Vision, despite decades of concentrated effort. Object
detection in Cognitive Robotics scenarios imposes further constraints such as
real-time performance yet often with limited processing power, so efficient algo-
rithms are needed.

In this paper, we present a fast neural approach to object detection based on
cortical keypoints and neural dynamics, which can detect objects from more than
30 classes in real time. The biological foundation of our algorithm is particularly
interesting for cognitive robotics based on human vision. We evaluate detection
performance on a robotic vision dataset.

1.1 Related Work

Many modern object recognition algorithms begin by a keypoint extraction step
to reduce the computational complexity and to discard regions which do not
contain useful information. A number of keypoint detectors for extracting points
of interest in images are available in the literature [1,2,3]. In biological vision,
retinal input enters area V1 via the Lateral Geniculate Nucleus, and is then pro-
cessed by layers of so-called simple, complex and end-stopped cells. Simple cells
are usually modelled by complex Gabor filters with phases in quadrature, and
complex cells by the modulus of the complex response. Simple and complex cells
roughly correspond to edge-detectors in Computer Vision. End-stopped cells re-
spond to line terminations, corners, line crossings and blobs, and can thus be

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 511–518, 2014.
c© Springer International Publishing Switzerland 2014
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seen as general-purpose keypoint detectors. We base our method on fast V1 key-
points from [4], because they exhibit excellent repeatability and are biologically
plausible, which makes them useful for object localisation and recognition.

There are many biologically inspired methods for object detection and recog-
nition. Most of these are based on the Neocognitron and HMAX models, or
convolutional neural networks. The Neocognitron architecture [5], originally de-
veloped for character recognition, has been successfully applied to object and face
recognition [6]. Cortical simple and complex cells form the basis of the HMAX
model and its derivatives [7], which alternate pooling and maximum layers to
extract features of increasing complexity. However, HMAX requires an external
classifier (usually an SVM) for final classification, so it is primarily a feature
extraction method. Recently, deep convolutional networks have demonstrated
excellent performance on a number of classification tasks, but at a considerable
cost in terms of complexity and learning time [8]. The only object recognition
algorithm based on neural dynamics known to us was proposed by Faubel and
Schöner [9], which jointly estimates object pose and class using dynamic fields.

Concerning object detection and localisation in complex images, like in robotic
scenarios, there are several main approaches: (i) sliding windows which apply a
classifier at every image position and every scale [10], (ii) salience extraction
followed by sequential classification [11], and (iii) voting schemes such as Gen-
eralised Hough Transform [12]. Sliding windows are computationally inefficient,
while salience operators are typically based on general measures of complexity
without object-specific knowledge and therefore do not reliably indicate com-
plete objects. In contrast, our approach is based on voting and grouping, and it
can be shown to maximise a Bayesian similarity criterion.

2 Method

2.1 Cortical Keypoints and Binary Descriptors

We begin by applying the fast V1 model from [4]. Given an input image, we
compute the cell responses and represent them as sets of neural fields. Responses
of simple cells are Rλ,θ, those of complex cells are Cλ,θ, and those of double-
stopped cells are Dλ,θ, where λ is the spatial wavelength of the Gabor filters
representing simple cells, and θ their orientation. Peaks in the keypoint field
Kλ =

∑
θ Dλ,θ represent points in the image with high information content.

At each local maximum, we extract a binary keypoint descriptor. The de-
scriptor is represented as a stack of neural maps Bn

λ , where n ∈ 1, . . . , N is the
dimensionality of the descriptor. Each Bn

λ represents a comparison between the
responses of two complex cells within the receptive field of the keypoint, whose
size is equal λ:

Bn
λ = sgn ∗(Cn

λ − Ccentre
λ ), (1)

where Ccentre
λ is the complex cell in the middle of the receptive field, and sgn ∗(x)

is 0 if x ≤ 0 and 1 otherwise. Complex cells Cn
λ are sampled in concentric circles

around the keypoint centre.
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Fig. 1. Overview of the detection process. An input image I is processed by a set of
retinotopic neural maps shown in the illustration as stacks of images. We begin by
computing V1 responses: simple cells R, complex cells C, and double-stopped cells D,
which represent keypoint activations. A local descriptor d is computed for each image
location. A set of object-specific cells N responds to keypoints which are similar to those
observed during training, and a set of grouping cells combines them into object heat
maps O. These are fed into a stack of dynamic fields, which perform non-maximum
suppression and pick the best hypothesis at each location.

2.2 Neural Object Detection Model

During training, localised objects are presented to the system and their descrip-
tors di are extracted at keypoint locations xi. For each class c ∈ C, we learn
a set of neurons N c,s

i at the object centre, where each N c,s
i is associated with a

keypoint descriptor at keypoint location xi and s is the scale of the correspond-
ing keypoint. Essentially, each neuron N c,s

i at the object centre has a long-range
connection to its actual receptive field at xi. During testing, keypoints and de-
scriptors are extracted in the same way, but the the weights have been learnt
such that the output of N c,s

i is the Hamming distance between a descriptor dtesti

from a novel object and a descriptor dtraini observed during training. Therefore,∑
iN

c,s
i evaluates to zero if the system is shown one of the training objects from

class c, and it grows large for very different objects.
A codebook of typical features could be learned from N c,s

i using a Self Organ-
ising Map, but at the moment we learn a prototype for each keypoint descriptor
observed in a training image. We then threshold:

N̂ c,s
i = [N c′,s

j −N c,s
i ]+, (2)

with j �= i and [·]+ represents suppression of negative values. The introduction
of the first term ensures that only neurons corresponding to small distances
are activated, because large distances are not reliable for probability density
estimation [13].
N̂ c,s

i are duplicated at all positions of the (subsampled) visual field. They are
also duplicated at several scales by scaling the descriptor offset xi and keypoint
scale s by the same factor, resulting in a multi-scale detection framework.

If there is a keypoint in the neuron’s receptive field, it is activated and its out-
put is proportional to the thresholded Hamming distance between the observed
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descriptor and the training descriptor to which it was tuned. At any given posi-
tion, a number of neurons N̂ c

i may fire for each class c ∈ C, and the largest of
the active neurons are selected and the others are inhibited.

We now define a spatial map of neurons which counts the total accumulated
Hamming distance between the observed descriptors and the ones expected by
the object model of each class c ∈ C and convolve it with a circular summing
kernel K:

Mc(x, y) =
∑
i,s

N̂ c,s
i (x, y) , (3)

Oc = Mc ∗K . (4)

We assume that two objects of the same class cannot coexist at the same location
in an image, so we sum over scales. This results in only one object map Oc per
class.

The convolution with a circular kernel ensures that only features close to the
expected position are counted towards a detection of an object, because localised
features improve detection [14]. The radius of the kernel represents the maximum
acceptable location error of each object part. Object detection now amounts to
finding peaks in every OC and picking the strongest peak at each position.

It can be shown that OC actually represents at every pixel the logarithm of
class likelihood conditioned on observed evidence, when using a nearest neigh-
bour approximation of a naive Bayes classifier [15]. Selecting the class with the
highest likelihood thus approximates a Maximum Likelihood classifier, which
becomes a Maximum a Posteriori classifier if the prior probabilities of objects
are known.

2.3 Winner Selection Using Neural Dynamics

The MAP detection model presented in this work forces a winner takes all de-
cision whenever there are two competing detections at the same location. Con-
versely, as long as the estimate of the object likelihood is valid, picking the
strongest hypothesis is equivalent to a local MAP decision between available
hypotheses. We achieve this by modelling each object detection map from Eqn 4
as a dynamic field and using two inhibition schemes to force local decisions at
peak locations [9].

The first inhibition scheme is global and it is applied to each field separately.
It filters out the noise inherent to neural fields. In addition to global inhibition,
the resting level of a field is a negative value. It acts as an activation threshold
for each object class, thus removing weak and unreliable detections with little
support caused by feature noise, i.e. illumination changes, occlusion, etc.

The second inhibition scheme is modelled as field interactions. Each object
class is represented by a separate field and they inhibit each other: strong peaks in
one field will inhibit smaller peaks at the same location in other fields. It pushes
them below the detection threshold, thus forcing a winner-takes-all decision.
This ensures that only one object can be detected at any one image location.
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2.4 Implementation

A neuron N̂ c,s
i is only active if there is a keypoint at scale s located at offset xi

whose descriptor is similar to the one expected by N̂ c,s
i . This means that the vast

majority of all neurons are not active. We exploit this fact in order to improve
speed. After extracting keypoints and their descriptors as described, we make
each keypoint “vote” for an object centre. We do this by an efficient nearest-
neighbour lookup among all descriptors learned during training and finding the
k nearest neighbours. Among these, we pick the nearest descriptor for each class,
and scale the offset xi associated with this descriptor by the keypoint scale s.
We then activate the neuron N̂ c,s

i corresponding to the correct class c, scale s
and the scaled offset xi/s. The distance to neighbour k + 1 is used to estimate

the value of N c′,s
j in Eqn 2, as suggested in [13].

The results of this alternative formulation are mathematically equivalent to
using a full neural network implemention of our algorithm, but it is orders of
magnitude faster and therefore usable for real-time scenarios.

Field-based dynamics were implemented using the CEDAR framework [16].
The early stages of our algorithm are implemented in C++ and OpenCV as a
plug-in for CEDAR. Feature extraction and Eqns 3 and 4 were implemented on
top of the public keypoint implementation from [4].

3 Evaluation

We evaluate our algorithm on the challenging IIIA30 dataset developed for robot
localisation [17]. It consists of cluttered indoor images containing objects from
29 classes, with large scale and pose variance. The objects are annotated using
labelled bounding boxes. As per Computer Vision convention, a detection is con-
sidered correct if it overlaps with a ground truth annotation of the same class
by more than 50% (intersection over union). We compare against two standard
methods used in [18]: SIFT keypoints followed by RANSAC grouping (the “clas-
sic” SIFT approach), and a Bag-of-Features method based on Vocabulary Trees
built on top of SIFT descriptors. We applied our method using two descriptor
types: the computational SIFT descriptor, and the biological binary descriptor
based on responses of complex cells, introduced in Sec. 2.1. For brevity, we refer
to our method as “NDOD”: Neural-Dynamic Object Detection. The results for
the standard methods were taken from [17].

Table 1 shows a summary of the results, averaged over all classes. The first row
shows the best reported F1-score, averaged over all classes. The second and third
rows show average recall and precision. Both values were measured separately
for each class at the best F1 score for that particular class, then averaged. The
fourth row shows mean Average Precision (the area under the precision-recall
curve), where available. The last row shows how many classes each detector
failed to detect (both recall and precision are zero). It can be seen that our full
biological model compares well with the state of the art in computational vision,
but does not yet match the classic SIFT approach. However, a combination of
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Fig. 2. Best reported F1-score for the 30 object classes from the IIIA30 dataset, com-
pared with two state of the art methods built on SIFT descriptors. Our fully biological
model achieves good performance on most classes, and the combination of our model
and the SIFT descriptor outperforms all other methods.

Table 1. Common performance measures on IIIA30, averaged over all classes (see
text). Our fully biological model using a cortical descriptor outperforms the Bag of
Features method. It outperforms the SIFT method on many difficult classes, but is
weaker on average. Our method combined with the SIFT descriptor outperforms all
other methods.

classic SIFT SIFT+BoF NDOD+Bio NDOD+SIFT

Average Best F1 Score 0.281 0.054 0.159 0.385
Recall @ Best F1 0.260 0.408 0.126 0.346
Precision @ Best F1 0.372 0.032 0.301 0.497
Average Precision n/a n/a 0.076 0.217
% of classes failed 10 3 4 2

our neural object detection method and the SIFT descriptor outperforms all
other methods, suggesting that a more powerful biologically plausible descriptor
would significantly boost performance.

Figure 2 shows a more detailed evaluation of all four detectors. We plot the
best reported F1 score for each of the 29 classes, as well as the average. The graph
clearly shows that the classic SIFT method works well for some types of objects,
and consistently fails with others. Both the Bag-of-Features approach and our
method are more reliable with difficult classes. It can be seen that, averaged over
all classes, the performance of our full biological model falls half-way between
the two computational method. Our method combined with the SIFT descriptor
significantly outperforms all other methods. Figure 3 shows some detections on
images from the IIIA30 dataset.
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Fig. 3. Some detections from the IIIA30 dataset obtained by our method using the
SIFT descriptor. We obtain high precision despite blurred images and a cluttered en-
vironment.

4 Conclusions

We have presented a real-time object detection mechanism based on cortical
keypoints and neural dynamics. Our algorithm performs well on a standard
dataset of household objects. To the best of our knowledge, this is the first
neural object detection based on dynamic fields, and it significantly advances
the state of the art in this field.

While the neural detection model is efficient and works well together with
the SIFT descriptor, results show that our current biological image descriptor is
holding back the performance of the complete biological model. Luckily, current
research in binary image descriptors is often biologically motivated [19,20], so we
expect significant progress in this area. We are currently looking into learning
a powerful binary descriptor based on cortical cells, which should replace the
hand-crafted one presented in this work.

Our current work focuses on using visual landmarks detected by our algorithm
as localisation cues for cognitive robots, leading towards a semantic SLAM im-
plementation.
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Abstract. Vector quantization principles have efficiently been employed
in number of clustering and classification algorithms due to its ability to
estimate the probability density function of a multivariate stationary
data distribution. However, application of the same principles to the
algorithms which cater for non-stationary data spaces pose a massive
challenge to maintain the quantization quality of learning outcomes. In
order to maintain and improve the quantization quality in non-stationary
data spaces, this paper presents an enhancement to an existing learning
model. From experiments it has been proved that the enhanced learning
model significantly improves the quantization error compared to its orig-
inal version. Furthermore, the modification has resulted a less memory
consuming and computationally more efficient algorithm.

Keywords: Brain-inspired, Self-organizing, Incremental Learning, Un-
supervised Learning, Non-stationary Data Space.

1 Introduction

Due to the advancement of digital technology, businesses today have access to
large volumes of data. These data always enfolds certain knowledge within it-
self. Hence, organizations demands better methods to extract hidden knowledge
from their information systems. As a result interdisciplinary research in machine
learning and data mining has become prominent. Especially, the discovering un-
seen patterns in a given data collection has been a major topic in its research.

Vector quantization principles have inspired number of learning models in this
context and Self-organizing Map (SOM)[1] is a perfect example for such inspi-
ration. SOM is a well-known neural network model which is used to uncover
non-linear relationships among multivariate data points. Typically, SOM com-
prised with a grid like artificial neuron structure. Its learning process makes a
cell or a group of cells responds to a data point at a time and as a result neu-
ronal activation is localized and generates a spatially ordered sheet of neurons.

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 519–526, 2014.
c© Springer International Publishing Switzerland 2014
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The fact that cerebral cortex of mammalian brain also consists of functionally
localized sheets of neurons adds the essence of biology to SOM[1]. In fact, rec-
ognizing relationships among multivariate data in a stationary data space was a
major problem at the time of SOM introduction. However with the current rate
of data growth, extracting non-linear relationships in multivariate data requires
new learning models which can cater for the dynamics of contemporary data
spaces. Also the non-stationary nature of the problem domain demands learning
models which develop its learning outcomes in an incremental manner. In order
to tackle this problem in a novel approach, a learning model has been introduced
in [8] and this paper proposes an enhancement to the model in [8] to improve
the quality of its learning outcome.

The rest of this paper is organized as follows. Section 2 reviews handful of
vector quantization inspired algorithms in the same problem domain. Section 3
describes the conceptual model in detail while section 4 presents the enhanced
algorithm. Then experiments and results are discussed in section 5. Finally, the
section 6 concludes the paper.

2 Related Work

In literature, it is possible to find numerous attempts that have been made to
tackle the learning problem in non-stationary data spaces. However, due to the
space constraints only a selected set of learning models and their key features
are summarized here.

Based on local error counters and an insertion threshold of a neuron, LLCS[2]
algorithm employs an adaptive insertion scheme with an adaptive learning rate
to regulate the stability and the plasticity of the learning outcome. However, the
number of parameters and variables which is involved with the algorithm makes
its internal structure relatively a complex one. Like LLCS, SOINN[3] is also a
two layered network model which employs an adaptive insertion technique and
an adaptive learning rate. However in contrast to LLCS, SOINN calculates its
insertion threshold by calculating min, max and average distance among neigh-
bors. Later ESOINN[4] has been introduced to resolve and improve SOINN’s
inherent limitations. Unlike SOINN and LLCS, ESOINN runs on a single layer
neuron structure.

IKASL[5] is another algorithm which is developed based on growing version
of SOM. It runs in an incremental manner and in each increment it generalizes
its learning outcome in a way that it can be used in the next increment. How-
ever the generalization process and some additionally used data structures bring
extra computational cost to the algorithm. ESOM[6] is another learning model
which exhibits the concept of growing network. Based on a predefined thresh-
old, winner nodes insert new nodes to the network during the learning and at
the same time inactive nodes are pruned. Conversely TASOM[7] employs time
independent learning rate with neighborhood relation to accommodate dynamic
data spaces. However, some of the parameters engaged with the algorithm need
to be set to satisfy application’s need which becomes a challenge at the exe-
cution time.The research work presented in [8] has proposed a brain inspired
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model to achieve biological neurons like signal propagation on a SOM like neu-
ral network. Learning model becomes more self-organizing since its neurons have
autonomous training rejection-training acceptance mechanisms to maintain their
stability and plasticity. Consequently, the algorithm has become much simpler
due to these autonomous neurons. Research work presented in this paper at-
tempts to improve the quality of quantization by enhancing its key components.

3 Learning Model

In the biological context, excitability of a neuron is decided based on the electro
chemical changes which take place on the synapse with the arrival of a signal.
Only the excited neurons transmit the signal further[9]. In the model [8], for
each input a best matching unit (BMU) is elected and the BMU transmits the
signal to its connected neurons. Once a signal is received, a neuron decides on
its excitability. Only the excitable neurons get adapted and further transmit
(see Fig. 1). Hence, it improves the similarity among excited neurons and as a
result connectivity among similar neurons are strengthened. It simply reminds
the Hebbian rule (fire together - wire together) in fundamental neuroscience.
Accordingly, using the model in [8] as a basis, modified learning model can be
described under three main components as follows,

3.1 Continuity - Sequential Presentation of Inputs

The learning model can also be seen as a continuous learning system, because the
model can cater for a stream of data with temporal identities. It consumes a data
point only once and reflects learning outcome just in time on its neuron structure.
Unlike SOM, there is no iterative presentation of data. Hence, it enables the
algorithm to accommodate any number of data points sequentially which makes
it perfectly fit to a non-stationary context. Then, the learning outcome matures
with the number of inputs it consumes. Interestingly the mechanism is similar to
learn by experience in human learning; because initially formed learning outcome
is revised throughout the entire lifespan of the learning system.

3.2 Relativity - Distance Based Learning Rate

When the probability density function is approximated on a two dimensional
network structure, relative distance between two neurons represents the relative
relationship of its weight vectors in input space. In fact, based on the probabil-
ity of input occurrence, dense regions should be represented by more neurons
compared to sparse regions. Since an input is presented only once, the learning
process has to improve the density estimation in each adaptation step. Thus, the
demand can be enforced by a learning rate that varies with network distance.
As a result, the learning rate is a function of the network distance dc,i, between
the BMU and a given neuron such that c and i are the indexes of two neurons
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respectively. Hence, for an input xt, at a given time instance t, the adjustment
rule for a weight vector w, is defined as equation 1.

wt+1 = wt + α(dc,i).(xt − wt) (1)

In equation 1, α(dc,i) is defined as equation 2 such that α0 is a constant which
is the maximum learning rate returned to the BMU. According to the equation
3, function f(dc,i) controls the decay of α0 over the network distance, dc,i. As
it can be seen in equation 3 and Fig. 2 when the dc,i becomes 0, f(dc,i) becoms
1. Hence, BMU always gets the highest learning rate value α0. Parameter l is
the maximum of grid width or height which controls the overall shape of the
function.

α(dc,i) = α0.f(dc,i) (2)

f(dc,i) = e

(
−(dc,i)

2

l

)
(3)

Fig. 1. Starting from a BMU, an input is
transmitted by excited neurons (depicted
in 1). Non-excitable neurons (depicted in
0) remain in the same state.

Fig. 2. Two functions which are employed
to control learning rate decay - f(dc,i) and
receptive distance -(2− f(dc,i)) on a 10 x
10 network structure (l = 10)

3.3 Excitability - Adaptation Autonomy for Neurons

During the learning, SOM and SOM based learning models employ a neighbor-
hood function to spread the impact of a single adaptation phase. In contrast,
model in [8] attempts to mimic the natural way of signal transmission in biologi-
cal neural networks to propagate the impact of a single adaptation phase. Hence,
it introduces the notion of excitability to the artificial neuron. Technically, a neu-
ron is excited when it receives a similar signal to the one it has already been
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encoded within itself. It is an autonomous decision that should be made by each
neuron. If a neuron is excited then its weights will be adjusted towards the re-
ceived signal and will transmit the signal to its immediate neighbors. Otherwise,
the neuron stays its previous state without assisting to the signal transmission
(see Fig. 1). Therefore, the signal propagation is controlled in a natural way
rather than a function defined neighborhood set. In order to activate similar
neurons, each neuron employs a similarity based excitability condition.

The model introduced in [8] has used an adaptation based similarity metric.
In fact, a neuron in model [8] accumulates all the adaptations which take place
on itself throughout the learning process. In order to decide on its excitability at
any moment, a neuron checks its accumulated adaptation against the adaptation
which is going to happen by the incoming signal. Since both measures are repre-
sented in vectorial form, the similarity is measured by the angle and if the cosine
of the angle exceeds a certain threshold limit (Similarity Threshold) then the
neuron decides to excite. However, this paper proposes a distinct modification
to the similarity metric in order to achieve better quantization of input space.
Therefore, in the modified model similarity measure is not based on the adapta-
tion. Instead a neuron measures similarity based on the Euclidean distance from
its weight vector to the input signal. Hence, in order to be excited, an input
signal should be within certain range from the weight vector of a neuron. As a
result the neuron replaces adaptation vector of [8] by a scalar value parameter
r, which is called receptive distance, to keep track of its excitable distance.

At the beginning r is uninitialized and therefore, the first input is allowed to
propagate over the entire network. Then at any weight adaptation, r value is also
adjusted according to the equation 4. This modification makes learning model
more efficient in terms of memory consumption and also for the computation.

rt+1 =
rt + (2− f(dc,i)).||xt − wt||

2
(4)

To make BMU and its nearby neurons less susceptible to frequent modification,
again network distance has to be featured in receptive distance calculation. Thus
the actual Euclidean distance to the input is multiplied by an additional factor
(2−f(dc,i)). Because the behavior of (2−f(dc,i)) is the complete opposite of the
f(dc,i) in equation 3 (see Fig. 2) and makes the current BMU and closer neurons
less susceptible for future modifications by dissimilar signals. Consequently, as
it is given in condition 5, the excitability of a neuron is assessed in accordance
with the way receptive distance has been devised.

r > (2− f(dc,i)).||xt − wt|| (5)

In addition, to make neurons flexible to unforeseen signals, a neuron slightly
increases its receptive distance if it is failed to be excited. Otherwise unforeseen
inputs always get rejected by the already trained neurons. In this case equation
6 has been employed to control the flexibility of r in a neuron while n denotes
the number of inputs that has reached to a particular neuron.

rt+1 =
(rt × n) + (2− f(dc,i)).||xt − wt||

n+ 1
(6)
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4 Algorithm

Structurally the algorithm’s functionality can be simplified into two phases;
BMU election and propagation. BMU election follows the same mechanism as
typical SOM (minimum Euclidean distance). In propagation phase a neuron per-
forms two steps; first it updates weight vector and receptive distance. Then the
neuron transmits the signal to its immediate neighbors. Starting from the BMU,
each excited neuron executes these two steps in order to propagate the signal.
The extent of input signal propagation is completely depend on the excitabilities
of the neurons within the network. When all the excitable neurons are adapted,
network is ready to accept the next input. Accordingly, learning continues as
long as data points are available in the input spaces.

Algorithm

1. Present an input xt, to the network (t is the time indicator)
2. Determine the BMU
3. Adjust its weight vector, wt (equation 1)
4. Adjust its distance metric, rt (equation 4)
5. Transmit the input signal to immediate neighbors (except the source)
6. For a neuron which receives a signal: Evaluate excitability (condition 5)

(a) If TRUE: Go to step 3
(b) If FALSE: Increase the value of rt (equation 6)

7. Repeat from step 2 for a new input.

5 Experiments

In order to obtain the optimal quantization result, a learning model has to ar-
range its weight vectors in a way that it produces the minimum quantization
error. Hence, to investigate modified algorithm’s quantization error over the ear-
lier one, four experiments were carried out. For the experiments four data sets
were chosen with different complexities. Starting from Iris data set1 which con-
sists with data from known three classes and one class is linearly separable while
other two have overlapping samples. Each sample in Iris data set is described
by 4 attributes. For the second experiment Zoo data set2 was chosen and 16
attributes have been used to describe a data point in that data set. In Flag data
set3, each sample is defined using 24 attributes and finally Urban Land Cover
(ULC) data set4 has 147 attributes to explain its single data point. Since the
earlier model[8] employs a similarity threshold in its execution, that algorithm

1 http://archive.ics.uci.edu/ml/datasets/Iris
2 http://archive.ics.uci.edu/ml/datasets/Zoo
3 https://archive.ics.uci.edu/ml/datasets/Flags
4 http://archive.ics.uci.edu/ml/datasets/Urban+Land+Cover
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was tested with four commonly used similarity thresholds 0.7, 0.75, 0.8, 0.85.
Therefore, including the proposed algorithm, each experiment consisted of five
tests. To conduct a fair experiment, each test was repeated 25 times for each
data set. Moreover, five tests shared the same initial weight vectors at each rep-
etition, but different randomly generated initial weights were employed in 25
repetitions. All tests were executed with α0=0.2 and same learning rate decay
function. For Iris and Zoo data sets 4×4 network structures were used and the
other two data sets were run on 6×6 network structures. After each execution
quantization error was measured and results of four experiments can be summa-
rized as in Table 1 and Table 2. As it is presented in the Table 1, modified model

Table 1. Average quantization errors and standard deviations for experiments

Modified Initial Algorithm

Algorithm T = 0.7 T = 0.75 T = 0.8 T = 0.85

Iris
Average 0.0316 0.0330 0.0330 0.0330 0.0333

Std. Dev. 0.0023 0.0029 0.0030 0.0028 0.0025

Zoo
Average 0.3059 0.3355 0.3291 0.3371 0.3392

Std. Dev. 0.0190 0.0218 0.0198 0.0218 0.0263

Flag
Average 0.3694 0.4086 0.4170 0.4314 0.4803

Std. Dev. 0.0116 0.0136 0.0159 0.0179 0.0366

ULC
Average 0.2080 0.2235 0.2321 0.2421 0.2619

Std. Dev. 0.0093 0.0060 0.0076 0.0054 0.0113

has produced the minimum quantization error in every experiment. Further it
has reported the minimum standard deviation in three cases which indicates
the degree of variation of quantization error with respect to the modification.
Additionally, the Table 2 portrays the error improvement as a percent of earlier
model’s quantization error.

Table 2. Average quantization error improvement gained by the proposed modification
in each experimental setup as a percentage of the quantization error reported by earlier
model in different similarity threshold values

Improvement (%)

T = 0.7 T = 0.75 T = 0.8 T = 0.85

Iris 4.26 4.16 4.19 5.00

Zoo 8.81 7.04 9.25 9.80

Flag 9.59 11.42 14.36 23.08

ULC 6.94 10.39 14.07 20.58
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6 Conclusion

Considering the demands of contemporary non-stationary data spaces, this pa-
per proposes an enhancement for an existing incremental learning model[8]. The
model in [8] has used a vectorial representation of total adaptation to control
the stability the plasticity of a neuron over incoming signals. Instead, this paper
proposes a scalar value parameter to achieve the same behaviour. From the ex-
periments, it has been shown that the proposed algorithm achieves better quan-
tization quality while reducing the error. Furthermore, replacement of a vector
by a scalar in each neuron in the neural network causes a significant reduction in
both memory consumption and computational cost. Moreover, difficulties with
setting up an appropriate similarity threshold in the previous algorithm gets re-
solved with this enhancement since proposed model doesn’t employ a threshold
parameter. With all these attributes the algorithm follows a simple structure,
has fewer steps and employs minimal parameters.

As a whole, the learning model consumes an input once, generates the learning
outcome incrementally while improving it gradually. In the network structure,
neurons autonomously organize themselves without an external involvement.
Therefore, the model exhibits more self-organizing behavior. More importantly it
is inspired from the characteristics of brain and mimics the natural way of signal
propagation on an artificial neuron layer. Hence, the model follows intrinsic way
of human learning and possesses a strong biological basis. Therefore, it is always
worth to develop and make improvements on such a model.
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Abstract. Hebbian learning rule is well known as a memory storing
scheme for associative memory models on neural networks. However, this
rule doesn’t work well in storing correlated memory patterns. Recently,
a new method has been proposed based on pseudo-orthogonalization
by XOR masking of original memory patterns with random patterns
in order to overcome this problem. In this paper, we propose an ex-
tended method for pseudo-orthogonalization of memory patterns utiliz-
ing complex-valued and quaternionic neural networks. We demonstrate
that Hebbian learning rule successfully stabilizes the correlated memory
patterns, and these networks can retrieve the stored patterns correspond-
ing to the external stimuli.

Keywords: Associative memory, Complex, Quaternion, Hopfield neural
network, Pseudo-Orthogonalization, Hebbian learning.

1 Introduction

Hebbian learning rule is a well-known scheme for embedding patterns onto asso-
ciative memories, such as Hopfield neural networks[1]. This scheme is simple and
straightforward, however, it has a crucial issue for the embedding patterns; the
patterns should be orthogonal to each other. On embedding correlated patterns
by this scheme, the storage performance of the network is significantly decreased.
Thus, many researches for storing correlated patterns direct to orthogonalization
of these patterns, such as pseudo-inverse matrix method[2] and iterative learning
scheme[3]. Though these methods enable all the correlated patterns to be stable
local minima in the network, their computational costs grow with respect to the
network size.

A novel scheme for embedding patterns has been proposed recently[4], which is
based on orthogonalization of the stored patterns by random patterns. Called the
pseudo-orthogonalization, this scheme first prepares a random pattern (masking
pattern) of which size is the same as a stored pattern, and element-wise XOR
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operation is applied between the random pattern and stored pattern. The pattern
to be embedded to the network is a concatenation of XORed pattern and the
corresponding random pattern, which can be embedded by Hebbian rule. The
size of the pattern becomes double, but the embedded process is simple and
requires lower computational cost.

Recently, the applications of complex or hypercomplex number systems to
neural networks have been studied extensively[5,6]. The complex-valued or
quaternionic extensions would be suitable for the pseudo-orthogonalization
scheme; the pair of a pattern can be naturally embedded by utilizing imaginary
part(s). However, few attempts have been accomplished for these extensions.
In this paper, we extend the pseudo-orthogonalization scheme to the associa-
tive memories based on the complex-valued and quaternionic valued Hopfield
networks[7]. We also investigate the performances of these extended schemes
through storing binary patterns to the networks.

2 Hopfield Neural Networks

In this section, Hebbian learning rule and its network dynamics are introduced
for real-valued, complex-valued, and quaternionic Hopfield neural networks.

2.1 Real-Valued Hopfield Neural Network

Let {ξμ,1, . . . , ξμ,N}, ξμ,m ∈ {+1,−1} be the μth learning pattern. Hebbian
learning rule for real-valued Hopfield neural network(RHNN) is represented as

wmn =
1

N

P∑
μ=1

ξμ,mξμ,n (1)

where wmn is a synaptic weight between mth and nth neurons, which satisfies
the conditions wmm = 0 and wmn = wnm for all m and n, and P is the number
of the learning patterns. The dynamics of the network is given as,

xm(t+ 1) = sgn
( N∑

n=1

wmnxn(t)
)

(2)

where xm(t) ∈ {+1,−1} represents the output of the mth neuron at the time
step t. The activation function sgn(·) is a sign function where sgn(u) = 1 when
u ≥ 0, and sgn(u) = −1 when u < 0.

2.2 Complex-Valued Hopfield Neural Network

In complex-valued Hopfield neural network(CHNN), the inputs, output, and
synaptic weights are encoded by complex values. The μth learning pattern is
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given as ξμ,m = ξ
(e)
μ,m + ξ

(i)
μ,mi, ξ

(e),(i)
μ,m ∈ {+1,−1}. Hebbian learning rule for

CHNN is defined as

wmn =
1

2N

P∑
μ=1

ξμ,mξ
∗
μ,n (3)

where synaptic weights satisfy the conditions wmm ≥ 0 and wmn = w∗
nm. Here,

w∗
mn denotes the complex conjugate of wmn. The dynamics of the network is

given as follows:

xm(t+ 1) = csgn
( N∑

n=1

wmnxn(t)
)
. (4)

The csgn(·) is an activate function, defined by csgn(s) = sgn(s(e)) + sgn(s(i))i.

2.3 Quaternionic Hopfield Neural Network

Quaternions form a class of hypercomplex numbers that consist of a real number
and three kinds of imaginary number, i, j ,k. Formally, a quaternion is defined
as a vector in a four-dimensional vector space, i.e.,x = x(e)+x(i)i+x(j)j+x(k)k
where x(e), x(i), x(j) and x(k) are real numbers. Quaternion bases satisfy the fol-
lowing identities: i2 = j 2 = k2 = ijk = −1. H, the division ring of quaternion,
thus constitutes the four-dimensional vector space over the real numbers with
the following bases: 1, i, j ,k . It is also written using 4-tuple or 2-tuple nota-
tions as x = (x(e), x(i), x(j), x(k)) = (x(e),x), where x = {x(i), x(j), x(k)}. In this
representation x(e) is the scalar part of x, and x forms the vector part. The
quaternion conjugate is defined as x∗ = (x(e),−x) = x(e)−x(i)i−x(j)j −x(k)k .

The operation between quaternions, p = (p(e),p) = (p(e), p(i), p(j), p(k)) and
q = (q(e), q) = (q(e), q(i), q(j), q(k)). The addition and subtraction of quaternions
are defined in the same manner as that of complex numbers or vectors by p±q =
(p(e) ± q(e),p ± q) = (p(e) ± q(e), p(i) ± q(i), p(j) ± q(j), p(k) ± q(k)) With regard
to the multiplication, the product of p and q, denoted as p⊗ q, is represented as
follows p⊗ q = (p(e)q(e) − p · q, p(e)q + q(e)p+ p× q).

In quaternionic Hopfield neural network(QHNN), all neuronal parameters in
the network are encoded by quaternions. Let the μth learning pattern be ξμ,m =

ξ
(e)
μ,m + ξ

(i)
μ,mi + ξ

(j)
μ,mj + ξ

(k)
μ,mk, ξ

(e),(i),(j),(k)
μ,m ∈ {+1,−1}. Hebbian learning rule

for QHNN is represented as

wmn =
1

4N

P∑
μ=1

ξμ,m ⊗ ξ∗μ,n (5)

where synaptic weights satisfy the conditions wmm ≥ 0 and wmn = w∗
nm. The

dynamics of the network is given as follows:

xm(t+ 1) = qsgn
( N∑

n=1

wmn ⊗ xn(t)
)
. (6)
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The qsgn(·) is an activate function that is defined by qsgn(s) = sgn(s(e)) +
sgn(s(i))i + sgn(s(j))j + sgn(s(k))k .

3 Pseudo-orthogonalization Based on Complex Numbers
and Quaternions

The purpose of the pseudo-orthogonalizationmethod is to randomize the original
patterns so that they can be stored by Hebbian learning[4]. We propose a pseudo-
orthogonalization method based on complex numbers and quaternions in this
section.

First, let us recapitulate the basic pseudo-orthogonalization method. Let
{ξμ,1, . . . , ξμ,N} (ξμ,m ∈ {+1,−1}) be the μth original pattern and {rμ,1, . . . ,
rμ,N} (rμ,m ∈ {+1,−1}) be a random pattern associated with the original pat-
tern. The μth stored pattern {ημ,1, . . . , ημ,N ′} (μ = 1, . . . , P ) is generated from
these patterns by

ημ,m =

{
rμ,n, m = 2n− 1

rμ,nξμ,n, m = 2n
(7)

where ημ,m takes either +1 or −1. This results in a concatenation of the random
pattern and the original pattern randomized by the random pattern. The size
of the stored pattern, denoted by N ′, becomes twice as the original one, i.e.
N ′ = 2N .

Next, we introduce a scheme of complex-valued pseudo-orthogonalization. The
complex-valued pseudo-orthogonalization is defined by

ημ,m = rμ,m + rμ,mξμ,mi. (8)

Original patterns can be reconstructed by

ξμ,m = η(e)μ,mη
(i)
μ,m. (9)

In this case, the sizes of the original and randomized patterns are same, i.e.
N ′ = N .

Finally, the quaternionic pseudo-orthogonalization is described. A quater-
nionic pseudo-orthogonalization is defined by

ημ,m = rμ,2m−1 + rμ,2m−1ξμ,2m−1i + rμ,2mj + rμ,2mξμ,2mk. (10)

Original patterns can be reconstructed by

ξμ,m =

{
η
(e)
μ,n η

(i)
μ,n, m = 2n− 1

η
(j)
μ,n η

(k)
μ,n, m = 2n.

(11)

N ′ = N/2 is obtained in the quaternionic pseudo-orthogonalization method.
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4 Simulations

In this section, we investigate the effectiveness of the proposed method in RHNN,
CHNN and QHNN through embedding three types of stored pattern sets de-
scribed as follows.

(1) Random patterns that are generated according to a uniform distribution,
i.e., Prob(ξμ,m = ±1) = 1/2.

(2) Correlated patterns that are generated by the patterns obtained by (1) and
their correlations, defined by, Prob(ξμ,m = ±1) = (1±√b ξ0m)/2, where b is
a correlation parameter, which satisfies E[Corr(ξμ,m, ξν,m)] = b, and ξ0m is a
random pattern.

(3) Pseudo-orthogonalized patterns, that are described in Section 3, generated
from correlated patterns as the original patterns.

First, we evaluate the properties generated patterns by these three genera-
tors. For this purpose, two kinds of quantities are introduced. One is loading
rate α that is defined by α = P/N . The other is called overlap that is defined
by the average of correlations among the patterns stored in the network. For
RHNN, CHNN, and QHNN in this paper, we define the overlaps mr,mc and
mq, respectively, by

mr=
1

N

N∑
i=1

ξμ,ixi(t), mc =
1

2N

N∑
i=1

(
ξ
(e)
μ,ixi(t)

(e) + ξ
(i)
μ,ixi(t)

(i)
)
,

mq=
1

4N

N∑
i=1

(
ξ
(e)
μ,ixi(t)

(e) + ξ
(i)
μ,ixi(t)

(i) + ξ
(j)
μ,ixi(t)

(j) + ξ
(k)
μ,ixi(t)

(k)
)
.

(12)

For the sets of the generated patterns, we calculate the overlaps for these net-
works. Figures 1(a), 1(b), and 1(c) show the overlaps with respect to the loading
rate for RHNN, CHNN, and QHNN, respectively. The auxiliary lines α = 0.95
and m = 0.14 are on these figures, showing the threshold for almost all patterns
being successfully embedded. From these results, we find that the correlated
patterns are hardly embedded, as compared with random patterns, and that
pseudo-orthogonalization actually works for all the models. This can be also
confirmed from Fig.1(d) which shows the performance comparison of pseudo-
orthogonalization for the same correlated patterns, and this would imply that
the stored patterns in CHNN and QHNN are more stable than those in RHNN.

Next, we show recall capabilities of the networks from an external stimulus
pattern. Normally, the recall of the stored patterns in pseudo-orthogonalized
method needs the random patterns used in pseudo-orthogonalization. There-
fore, it is difficult to recall the stored patterns from a non-randomized pattern.
However, the network dynamics can be extended for recalling from a cue pat-
tern without the random patterns by using a simulated annealing process[4].
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Fig. 1. Overlap mr,mc and mq against loading rate α in RHNN, CHNN and QHNN.
The results were obtained by averaging 1000 trials in 1000 asynchronous update(N =
N ′ = 600, b = 0.1). The auxiliary lines indicate α = 0.14, m = 0.95.

The extended dynamics for CHNN is defined as:

hm(t) =
N∑

n=1

wmnxn(t) + szm(x(i)m (t) + x(e)m (t)i), (13)

Prob(x(∗)m = 1) =
1

1 + exp(−β(t)h(∗)m (t))
, (∗) = (e), (i), (14)

where {z1, . . . , zN}(zm ∈ {+1,−1}) denotes an input cue pattern, and β(t+1) =
γβ(t) is the temperature parameter which increases with time step t. Initialized
randomly with t = 0, the state of the neuron xm(t) evolves stochastically.

Similarly, the dynamics for QHNN is defined as follows:

hm(t)=

N∑
n=1

wmn⊗xn(t)+sz2m−1(x(i)m(t)+x(e)m (t)i)+sz2m(x(k)m (t)j+x(j)m (t)k),

(15)

Prob(x(∗)m = 1) =
1

1 + exp(−β(t)h(∗)m (t))
, (∗) = (e), (i), (j), (k). (16)
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In our experiment, we use 42 learning image patterns as shown in Fig. 2.
These images are strongly correlated, because they have a same local pattern on
their left hand. These images are pseudo-orthogonalized and stored in RHNN,
CHNN and QHNN. Figure 3(a) shows typical evolutions in recall processes for
RHNN, CHNN, and QHNN for one of the stored patterns as a cue input pattern.
All the networks can retrieve the pattern corresponding to the cue input, though
the time steps for recalling are different each other in these networks. This can
be confirmed from the result in Fig. 3(b), which shows the averaged evolutions
of overlaps with different input cue patterns. At the final step(t = 1000), the
overlaps for these models become almost same. But when noisy patterns(40%
elements in input pattern are flipped) are used for cue patterns, the overlaps by
CHNN and QHNN are better than that by RHNN, as shown in Fig. 3(c). This
suggests the robustness to the input stimuli in CHNN and QHNN.

Fig. 2. Learning image patterns for simulation (N = 1764, P = 42). These patterns
are Japanese kanji symbols which has same local pattern. The correlation coefficients
of the pattern pairs range from 0.11 to 0.68 and its mean value is 0.41.
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(c) Averaged overlaps with noisy inputs

Fig. 3. Results of image recall demonstrations. The parameters of the simulation are:
β(0) = 1.0, γ = 1.001.
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5 Conclusion

In this paper, we have investigated the embedding and retrieval performances
for complex-valued and quaternionic extensions of the pseudo-orthogonalization
scheme. In these extended schemes, the correlated patterns to be stored become
orthogonalized by using random patterns associated with them, thus can be
stored by Hebbian learning.

The numerical results show that the proposed scheme can embed the patterns
better than the conventional (real-valued) scheme from the viewpoint of loading
rates. This seems due to the improvement of orthogonalization achieved by the
degree of freedom on the dimensions in complex or quaternion number systems.
On retrieving the stored patterns from the input stimuli, the complex-valued and
quaternionic networks can correctly retrieve the patterns regardless of noises in
the input stimuli, whereas the real-valued networks often fail to retrieve ones
from the noisy inputs.

Parameter dependencies for the storing and retrieval performances, such as
the strength of input stimuli on the retrieval stage, should be explored in detail.
Also, it is important to investigate the structure on basins of attractors for
the complex-valued and quaternionic networks, as compared to the real-valued
networks. These remain for our future work.
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Abstract. The paper proposes an Adaptive Stacked Denoising Autoencoder 
(ASDA) to overcome the limitations of Stacked Denoising Autoencoder (SDA) 
[6] in which noise level is kept fixed during the training phase of the autoencoder. 
In ASDA, annealing schedule is applied on noise where the average noise level of 
input neurons is kept high during initial training phase and noise is slowly reduced 
as the training proceeds. The noise level of each input neuron is computed based 
on the weights connecting the input neuron to the hidden layer while keeping the 
average noise level of input layer to be same as that computed by annealing sche-
dule. This enables the denoising autoencoder to learn the input manifold in greater 
details. As evident from results, ASDA gives better classification accuracy com-
pared to SDA on variants of MNIST dataset [3]. 

Keywords: Deep Learning, Denoising, Encoder, Decoder. 

1 Introduction 

Deep learning algorithms generate hierarchical representation of input features. The 
class, to which an input belongs, depends on some intrinsic quality of input hence a 
good representation which captures important details of the input can be used to clas-
sify the input. More formally, a model m1(X, Y) which learns about both input X and 
output Y is more accurate than a model m2(Y | X) which learns only about Y given X. 
The goal is to learn about the input in an unsupervised manner without using any class 
information. Once a layer learns about the representation of input, the representation 
values learned by the layer are used to train the next layer in a similar unsupervised 
fashion. In this way, several layers are stacked to form a deep hierarchical representa-
tion of input. Finally, class information is used to fine tune the model. 

In Deep Belief Network, the distribution of input is learned and restricted 
Boltzmann machines are stacked to form hierarchical representation [2]. Several va-
riants of deep hierarchical representation composed of stacked autoencoders have 
been proposed [1], [4, 5, 6]. Autoencoders are trained in a greedy layer-wise manner 
to obtain deep representation of input in Stacked Autoencoders [1]. In contrastive 
autoencoder [4] Jacobian matrix of the hidden layer activations with respect to the 
input is computed and its Frobenius norm is included as regularization in the error 
term. Higher order contrastive autoencoder [5] computes stochastic approximation of 

                                                           
* Corresponding author. 
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Hessian using Jacobian matrix and extends the error term of contrastive autoencoder 
by including Frobenius norm of computed Hessian. Stacked denoising autoencoder 
[6] tries to learn the input representation by introducing noise to the input and recon-
structing the original input from noisy values. In this technique, noise level during 
unsupervised pre-training is kept fixed. 

In this paper, a novel procedure has been evolved for introducing adaptive noise to 
the input neurons. In the pre-training phase of denoising autoencoder, noise annealing 
schedule is used where average noise level of the input neurons is kept high during 
initial training phase. As training progresses, noise is slowly reduced. Each input neu-
ron has different noise probability which depends on the weight of outgoing connec-
tions from that input neuron to the hidden layer. Noise probability of individual  
neurons is computed in such a manner that average noise level is the same as that 
selected by noise annealing schedule. 

The intuition behind the proposed method is to impose strict restrictions on autoen-
coder during initial training phase which enables the autoencoder to learn general 
characteristics of the input. As training progresses, restriction is relaxed and the  
autoencoder learns about the input in more detail. This enables the autoencoder to 
explore the input manifold better than the case where noise is kept fixed. The idea 
behind varying the noise level for each input neuron is that, weights connecting input 
to the hidden layer indicates the extent to which the input neuron affects the activation 
of hidden layer. 

Comparative performance evaluation of the proposed ASDA has been done with 
existing SDA on variants of MNIST dataset. Autoencoder is trained by using back 
propagation with adaptive learning rate [7]. It has been shown that ASDA performs 
superior compared to SDA in terms of classification accuracy. Section 2 describes 
SDA and Section 3 gives a detailed procedure for the proposed ASDA. Finally the 
results are given in Section 4. 

2 Stacked Denoising Autoencoder 

2.1 Autoencoder 

Autoencoder is a multilayer perceptron where the output of the network is the same as 
original input. Transforming the input into hidden representation is done by the en-
coder and reconstructing the original input values is done by decoder.   

 
Encoder:  A mapping function f, that transforms input vector x into hidden represen-
tation y is called encoder and is given by: 

ݕ  ൌ ݂ሺݔሻ ൌ ௘ሺܹߪ כ ݔ ൅ ܾሻ                                                    ሺ1ሻ 
 
Where, ߪ௘: Activation function for encoder 
W: Weight matrix from input to hidden layer 
b: Bias vector 
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Decoder: The resulting hidden vector y is mapped back to a reconstruction of x, de-
noted by z. The mapping function g is called decoder and is given by: 

ݖ   ൌ ݃ሺݕሻ ൌ ௗሺܹ1ߪ כ ݕ ൅ ܾ1ሻ                                            ሺ2ሻ 
Where, ߪௗ: Activation function for decoder 
W1: Weight matrix from hidden to output layer 
b1: Bias vector from hidden to output layer. 
 
The weights for encoder and decoder can be chosen as W1=WT. Alternatively, dif-

ferent weights W and W1 can also be used for encoder and decoder respectively. Fig. 
1 depicts a denoising autoencoder with input to hidden weights given by W and hid-
den to output weights given by W1.  

 

Fig. 1. Denoising Autoencoder 

2.2  Overview of Stacked Denoising Autoencoder Algorithm 

In order to prevent the network from learning identity and to enable it to learn useful 
representation, denoising is used as inherent regularization condition. After training 
the autoencoder with noisy input, activation values of hidden layer give a good alter-
nate representation of input. In order to reconstruct the original input by using noisy 
input, hidden layer of denoising autoencoder learns a good representation of input in 
different dimension (same as the size of the hidden layer). 

Training denoising autoencoders in a layer-wise manner by stacking one over 
another, is called a stacked denoising autoencoder, and creates a hierarchical repre-
sentation of input [6]. Details of SDA are mentioned as follows: 

While training the denoising autoencoder noise is introduced in the input. The noise 
level is a hyper-parameter which is kept fixed during the training. Noisy input x1 is 
obtained from the original input x by introducing one of the following noise: 
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1. Gaussian noise: x1 ~ N(x, ߪ*I) where I is identity matrix and ߪ denotes the stan-
dard deviation. ߪ is a hyper-parameter which controls the level of noise in x1. 

2. Masking noise: x1 is obtained by randomly making a fraction of input x to be 0. 
The probability of making a value of x1 to be 0 is a hyper-parameter which con-
trols the level of noise in x1. 

3. Salt and pepper noise: a fraction of input x is set as extreme values of x with cer-
tain probability. 

Corrupted input x1 is used to obtain hidden representation y as given in (1). Re-
construction of input, denoted by z, is obtained using (2). Distance between recon-
struction z and original uncorrupted input x is minimized by using back-propagation. 
For each epoch, a new x1 is generated by adding noise to x. The autoencoder learns to 
reconstruct the original input given the noisy input.    

After training the denoising autoencoder, W1 and b1 are discarded and W and b 
are used to obtain hidden representation y from uncorrupted input x. The hidden re-
presentation y is used as input for next autoencoder. The process of training denoising 
autoencoders is repeated till the desired number of hidden layers are trained. The di-
mension of hidden layer is taken to be greater than the dimension of input for the first 
autoencoder. For the next consecutive autoencoders, dimension of hidden layer is 
taken to be same as that of the corresponding input layer. Training autoencoders in 
greedy layer-wise fashion and stacking them one over another helps to get the hierar-
chical representation of the input. Finally, an output layer is introduced to the pre-
trained network.  

3 Proposed Approach 

In case of denoising autoencoders, noise level is a hyper-parameter which is kept 
fixed during training. Denoising autoencoder learns to reconstruct the original data 
based on a specific noise level. In order to improve the representation learned by the 
autoencoder, a novel procedure is proposed where noise level for each input neuron is 
different and depends on its contribution to the activation of hidden neurons. If the 
sum of outgoing weights from ith input neuron is higher than the sum of outgoing 
weights from other input neurons, it implies that the ith input has higher impact on 
activation of hidden neurons. It also implies that the impact of other neurons is af-
fected by the impact of ith neuron. In order to facilitate other input neurons to get bet-
ter participation in activation of hidden neurons, ith neuron should be turned off more 
often i.e. the probability of turning off ith neuron should be higher. The average value 
of noise level (T) of the input neurons is computed at every epoch. The average noise 
level T is slowly reduced as the training progresses. This helps the autoencoder to 
learn rough approximation of the data initially and then to refine that approximation 
as noise is slowly reduced.  

Average noise level T is slowly decreased from noise hyper-parameter A to noise 
hyper-parameter B during N epochs. Noise during an epoch E is given by (3).  
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ܶሺܧሻ ൌ െ ܣ    ሺܣ െ ሻܤ כ ܧ െ 1ܰ െ 1                                                       ሺ3ሻ 

The algorithm for Adaptive Stacked Denoising Autoencoder is given in Fig. 2. 

 

Fig. 2. Algorithm for Adaptive Denoising Autoencoder 

Once the autoencoder is trained, hidden representation is obtained using uncor-
rupted input. This hidden representation is then used as input for next adaptive de-
noising autoencoder. After training multiple autoencoders in a greedy fashion, output 
layer is added to the network and the weights are fine-tuned using backpropagation 
with adaptive learning rate [7]. 

3 .1  Motivation for Using ASDA 

In ASDA, the average noise is kept at a high level during initial training phase. Due to 
high noise, the autoencoder is forced to reconstruct the original data using only few 
input variables; hence it learns only general features about the data like big hills and 
valleys present in the manifold. As training progresses and the noise is reduced, the 
autoencoder encounters more input features that helps to reconstruct the original input 
with ease. Since more and more input features become available during each pass, the 
autoencoder tries to incorporate new knowledge in the existing knowledge about the 
data. This leads to fine tuning the curvature of hills and valleys in the manifold. Thus, 
the proposed method enables autoencoder to learn the manifold in a better way than 
fixing the noise level at pre-defined value [6]. Fig. 3 depicts the effect of reducing 
noise on autoencoder learning. 

 



540 B. Chandra and R.K. Sharma 

 

Fig. 3. Effect of noise on search neighborhood and search accuracy. For high noise in the input, 
reconstruction accuracy is smaller but autoencoder learns about manifold around larger neigh-
borhood of input. This helps in getting general idea of data manifold. For smaller noise, au-
toencoder looks at smaller neighborhood around manifold corresponding to the input. This 
helps in fine tuning the knowledge about input manifold. 

3.2 Implementation Details of ASDA 

The deep network used for the implementation consists of an input layer, three hidden 
layers and an output layer with number of neurons as 784, 1000, 1000, 1000 and 10 
respectively. Searching the hyper-parameter space for optimum learning rate for back-
propagation algorithm is time consuming; hence backpropagation with adaptive learn-
ing rate [7] is used. Number of epochs is fixed as 200 for unsupervised pre-training of 
autoencoders. In ASDA, noise levels A and B are the other hyper parameters. The 
classification error on validation data is used for finding the values of hyper-
parameters for ASDA. Although, search for hyper-parameters A and B was done 
using only few values, but still the performance of ASDA is found to be better than 
that of SDA.  

4 Results 

This Section gives the results of comparative performance evaluation. 

4.1 Results 

Performance of ASDA has been evaluated on MNIST dataset and its variants Basic, 
Background Images, Background Random and Rotation datasets taken from [3]. 
MNIST dataset consists of handwritten digit images in grey scale with 28x28 pixels. 
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The dataset Basic is obtained from MNIST dataset by interchanging training and test-
ing sets. Background Random and Background Images datasets are obtained from 
Basic dataset by adding random noise and random images respectively to the back-
ground of Basic dataset. Rotation dataset consists of images from Basic dataset which 
are rotated by random angle in the range ሾ0,  ሿ. Comparison has been made withߨ2
SDA. Noise levels A and B are chosen based on least validation error. The test error 
for various datasets are mentioned in Table 1. Corresponding noise levels are men-
tioned in the parenthesis. The results are obtained using backpropagation with adap-
tive learning rate on the same network architecture; hence a fair comparison can be 
made between both ASDA and SDA. For completeness, results mentioned in [6] for 
the same datasets are also given in Table 1.  

Table 1. Classification error of various datasets (in percent) 

Dataset ASDA  
(adaptive  
learning rate) 

SDA  
(adaptive 
learning rate) 

SDA          
(optimum hyper  
parameters) [6] 

MNIST 1.57 ( 0.7 -0.1) 1.98  (0.25) 1.28 (0.25) 

Basic 2.66 (0.7-0.1) 2.92 (0.1) 2.84 (0.1) 

Background images 15.42 (0.6-0.4) 16.87 (0.25) 16.68 (0.25) 

Random background 12.63 (0.9-0.4) 13.46 (0.4) 10.3 (0.4) 

Rotated  digits 12.68 (0.7-0.4) 13.52 (0.25) 9.53 (0.25) 

 
As evident from Table 1, for all the datasets, results obtained by the proposed 

ASDA gives better classification accuracy as compared to SDA when backpropaga-
tion with adaptive learning rate is used. Column 4 gives the result of SDA obtained by 
using optimum hyperparameters such as number of neurons in each hidden layer, 
learning rate, number of epochs etc. In order to come up with optimum hyperparame-
ters, it takes enormous amount of time. The cases, where ASDA gives better accuracy 
than SDA obtained by optimizing hyper parameters, are marked in bold. It is seen that 
for the datasets Basic and Background images, the performance of ASDA with adap-
tive learning rate is better when compared to SDA by using optimum hyperparame-
ters. This shows the superiority of ASDA over SDA. 

5 Conclusions 

In the paper, an adaptive noise schedule named as Adaptive Stacked Denoising Au-
toencoder (ASDA) has been proposed to train denoising autoencoders for deep learn-
ing. ASDA uses different noise level for each input neuron and slowly reduces the 
average noise level as training progresses. Hence, ASDA overcomes the limitations of 
SDA [6] in which noise level is kept fixed during the training phase of denoising au-
toencoder. Superiority of ASDA has been empirically shown by classification per-
formance on variants of MNIST dataset. 
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Abstract. We introduce an approach to integrate bi-directional con-
texts in a generative tree model by means of structured transductions.
We show how this can be efficiently realized as the composition of a
top-down and a bottom-up generative model for trees, that are trained
independently within a circular encoding-decoding scheme. The result-
ing input-driven generative model is shown to capture information con-
cerning bi-directional contexts within its state-space. An experimental
evaluation using the Jaccard generative kernel for trees is presented, in-
dicating that the approach can achieve state of the art performance on
tree classification benchmarks.

1 Introduction

Dealing with tree data is a matter of effectively and efficiently capturing the
correlation between the atomic pieces of information composing the structured
sample and their context, i.e. the surrounding information bits linked through
hierarchical relationships. The context of an information piece within a tree is
not uniquely defined: a node label, for instance, may be evaluated in the context
of either its surrounding descendants or ancestors. Generative approaches model
probability distributions over spaces of trees, typically by generalizing the HMM
approach for the sequential domain, through learning of an hidden generative
process for labeled trees that is regulated by hidden state variables modeling the
structural context of a node. By borrowing the nomenclature from HMM, these
models are typically referred to as Hidden Tree Markov Models (HTMMs) [1,2,3].
The choice of the context ultimately determines how the structured sample is
parsed and processed by such generative models, and ultimately influences their
probabilistic assumptions and representational power. Generative models in lit-
erature take a uni-directional context propagation strategy that is determined
by the direction of the state transition function (generative process). Top-down
HTMMs (TD) [1] define a node context that captures information about the
path leading to the node from the root. Bottom-up HTMMs (BU) [2,3], on the
other hand, ensure that the context of a node summarizes information concern-
ing structural properties of its descending subtrees.

In this paper, we propose an approach integrating, for the first time, both
top-down and bottom-up contexts within a single generative model for trees, al-
lowing to combine and exploit their different representational capabilities to yield

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 543–550, 2014.
c© Springer International Publishing Switzerland 2014
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to more discriminative generative models for structured data. The intuition that
knowledge from different structural contexts can be integrated to increase the
computational capabilities of a learning model for tree data has been discussed
in [4] for neural network approaches. A theoretical analysis on contextual models
for structures within recursive incremental neural networks approaches can be
found in [5]. Within the scope of generative approaches, only recently [6] has
proposed a Jaccard kernel integrating information from two independent gener-
ative models by fusing their hidden state information at the kernel level: this,
however, prevents the two generative models to share their contextual informa-
tion. Conversely, the approach proposed here founds on an efficient composition
of an homogenous top-down HTMM [1] with an input-driven bottom-up HTMM
[3], realizing a structured transduction, i.e. a transformation of input tree into
an output structure. We show how the realization of such transduction allows
to transfer top-down context within the bottom-up model, while maintaining
a contained computational complexity. An experimental assessment evaluating
the discriminative power of the hidden state information of such bi-directional
model is proposed within the scope of well-known tree classification benchmarks.

2 Modeling Bi-Directional Tree Contexts by Generative
Model Composition

Before discussing the details of the generative models, we briefly summarize the
notation used throughout the paper. Let us consider a dataset D = {x1, . . . ,xN}
of N labeled rooted trees xn, consisting of a set of nodes Un = {1, . . . , Un} with
maximum finite out-degree L (i.e. the maximum number of children of a node).
The term u ∈ Un is used to denote a generic node of xn, whose direct ancestor,
called parent, is denoted as pa(u). A node u can have a variable number of direct
descendants (children), such that the l-th child of node u is denoted as chl(u).
Each vertex u in the tree is associated with a label xu which is a d-dimensional
vector. The encoding tree qn has the same structure of the corresponding input
tree xn, but the labels associated to its nodes correspond to the hidden states
generated by the homogenous model. Hidden state variables Qu are indexed by
the nodes u, with values over the finite set [1, . . . , C], and are associated to a
state transition dynamics that follows the generative process direction.

The proposed bi-directional generative approach is realized by a circular trans-
duction process summarized in Fig. 1. It exploits, first, a uni-directional gener-
ative model to produce an encoding of the input tree xn into its hidden states,
i.e. a tree qn with the same structure whose nodes are labeled with the corre-
sponding hidden states of the generative model. The encoded tree is then fed
to a generative model operating on the opposite parsing direction and which is
trained to transduce (i.e. decode) the encoded structure back into the original
input tree xn. The two generative models do not differ only for the parsing di-
rection, rather they model two different types of probabilistic distributions over
trees. The former is an homogenous approach that models the unconditional dis-
tribution P (xn) over the input trees xn. The latter is an input-driven approach
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Fig. 1. Bi-directional context acquisition process: first, a TD model is fit to the in-
put trees x and then the Viterbi algorithm is applied to generate the corresponding
encoding trees q. Decoding is realized by fitting IOBU to the transduction between
the encoded trees q (input of the transduction) to the original trees x (output of the
transduction). The hidden states Qtd

u , Qbu
u and original tree labels xu are shown only

for an example node u for the sake of picture clarity. Hidden and observed variables
are represented as shaded and empty nodes, respectively, in the probabilistic models.

modeling the conditional distribution P (xn|qn) from the encoding tree qn back
to the original tree xn. By means of the conditional distribution P (xn|qn), it is
possible to transfer contextual information from the first to the second genera-
tive model. The hidden state space of the input-driven model becomes dependent
not only on the structural information provided by its parsing direction, but also
from the contextual information coming from the opposite direction and sum-
marized by the hidden states qn of the homogeneous model.

The encoding step of the circular transduction is realized by an homogenous
top-down HTMM [1] (TD in Fig. 1) implementing a generative process for all
paths from the root to leaves of the trees. The direction of its generative process is
modeled by the state transition probability P (Qu = j|Qpa(u) = i). To complete
the specification of the model, it is assumed that the label xu (continuous or
discrete) of a node u is completely specified by its hidden state Qu through the
emission distribution P (xu|Qu = j). Following such conditional independence
relations, we can factorize the joint distribution of an observed tree xn with the
hidden states assignment Qtd

1 , . . . , Q
td
Un

as

P (xn, Qtd
1 , . . . , Q

td
Un

) = P (Qtd
1 )P (x1|Qtd

1 )

Un∏
u=2

P (xu|Qtd
u )P (Qtd

u |Qtd
pa(u)), (1)
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where the overscript is used to highlight that the hidden states pertain to a
TD model. The term P (Qtd

1 ) is the prior state distribution for the root node
(u = 1), given that it has no parent. The likelihood for the TD is obtained from
(1) by marginalizing the unknown hidden state assignment and summing across
all dataset (see [1] for details).

The decoding step requires to learn the conditional model P (xn|qn), where
the encoded tree qn conditions the generative process of the original tree xn.
This is realized by the input-output bottom-up HTMM [3] (IOBU in Fig. 1), a
recently proposed non-homogenous generative model for tree-structured data
which defines a generative process propagating from the leaves to the root
of the tree. The IOBU implements a generative process that composes the
child subtrees of each node in a recursive bottom-up fashion. Hence its multi-
nomial hidden state variables Qbu

u are characterized by a children-to-parent
(bottom-up) state transition dynamics. Differently from the homogenous TD,
the hidden state transition and the output label emissions of IOBU are as-
sumed to depend also on the labels on the encoding tree qn, that are the hidden
states Qtd

u of the TD model. The resulting joint state transition probability is
P (Qbu

u = i|Qbu
ch1(u)

= j1, . . . , Q
bu
chL(u) = jL,q

n), assuming that each node u is
conditionally independent of the rest of the tree when the joint hidden state of
its direct descendants Qbu

chl(u)
= jl is observed together with the corresponding

labels of the encoding tree qn. The problem with the this formulation is that
it becomes computationally impractical for trees other than binary, since the
size of the joint conditional transition distribution is order of CL, where L is
the node outdegree. In [3], this has been addressed by introducing a scalable
switching parent approximation factorizing the joint transition as a mixture of
L pairwise child-parent transitions: this yields the IOBU joint distribution

P (xn, Qbu
1 , . . . , Qbu

Un
|qn) =

∏
u′∈LFn

P (Qbu
u′ |qu′)P (xu′ |Qbu

u′ , qu′)

∏
u∈Un\LFn

P (xu|Qbu
u , qu)

L∑
l=1

P (Su = l)P (Qbu
u |Qbu

chl(u)
, qu)

(2)

where LFn is the set of leaf nodes and P (Qbu
u |Qbu

chl(u)
, qu) is the conditional

contribution of the l-th child to the state transition of the parent node u having
encoding label qu. The summation term corresponds to the joint transition fac-
torization using the switching parent Su ∈ {1, . . . , L}. This is a latent variable,
independent from Qbu

chl(u)
, and whose distribution P (Su = l) measures the influ-

ence of the l-th children on a state transition to node u. The term P (xu|Qbu
u , qu)

denotes the encoding-conditional emission of the original label xu, when the node
has encoding label qu. By construction of the circular transduction, the encoding
label qu corresponds to the TD hidden state Qtd

u generated for the u-th node.
Training can be performed independently for the two models through an

Expectation-Maximization approach applied to the log-likelihood of the models,
completed with latent indicator variables that model the unknown hidden state
(and switching parent) assignments. Details of the learning algorithms for the
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specific models can be found in the papers cited above. The resulting algorithm
is a two-stage iterative procedure that, at the E-step, estimates the posterior of
the indicator variables introduced in the completed log-likelihood, while, at the
M-Step, it exploits such posteriors to update the model parameters θ. Posterior
estimation is the most critical part of the algorithm and can be efficiently com-
puted by message passing upwards and downwards on the structure of the nodes’
dependency graph [2,7]. As shown in Fig. 1, parameter learning is first performed
on the TD model to fit the unconditional distribution P (xn). To generate the
encoding tree qn, we need to determine the most likely assignment of the top-
down hidden states for an input tree xn, i.e.qn = argmaxq P (Xn = xn,Qn = q).
This optimization problem can be efficiently solved for both generative models
through the Viterbi Algorithm, a dynamic programming approach whose details
can be found in [7] for the TD model. Once the encoding trees have been ob-
tained for all the input trees, the IOBU model can be trained on the (qn,xn)
samples to learn the structured transduction τ : qn → xn from the encoding
back to the original tree (see the decoding step in Fig. 1). The IOBU hidden
state space should now capture information from both a bottom-up context, i.e.
through its own generative dynamics, and from a top-down context, i.e. through
the conditioning on the TD hidden state labels in qn.

An effective way to mine the structural information captured by the IOBU
state space is by building a Jaccard kernel on its hidden states multiset [8].
Roughly, each tree is represented in terms of its associated hidden states in the
IOBU model; then, structure similarity is computed on the basis of the overlap
in the hidden states’ configurations. More specifically, given a trained IOBU, we
transform a tree xn (and its associated encoding qn) into a bag-of-states, that is
a vector of hidden IOBU state counts, similarly to how textual documents are
represented as vectors of word counts. To do so, we again need to solve a Viterbi
maximization problem specific for the IOBU as described in [3]. By means of such
Viterbi states, it is possible to define several bag-of-states encodings, depending
on the amount of structural information that we want to introduce in the kernel
feature-space representation. For instance, a bigram multiset measures the co-
occurrence of hidden-states in a parent-children relationship: given a sample
(qn,xn) and associated IOBU hidden state assignments Qbu

n,u for each node u,
this is represented by the (C2)-dimensional feature-vector Φn, such that its ij-th
element is

Φn
ij =

∑
u∈Un

∑
l∈ch(u)

δ(Qbu
n,u, i)δ(Q

bu
n,l, j), j = 1, . . . , C, ij = 1, . . . , C (3)

where ch(u) is the set of children of node u and δ(·, ·) is the Kronecker function.
In this paper, following the indications in [8], we consider a unibigram repre-
sentation corresponding to the concatenation of unigram and bigram multisets
(see [8] for details). The final Jaccard kernel can then be computed by applica-
tion of the Jaccard multiset similarity to the resulting concatenated vector as
discussed in [8]. Note that here the use of the Jaccard kernel serves solely to
assess the quality of the structural information captured by the bi-directional
generative approach. By this means, it is possible to compare its performance
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with that achieved by the single uni-directional models or by other bi-directional
approaches using multiple contexts only at kernel level, but not at the level of the
underlying generative models. The different approaches can also be compared on
the basis of the computational complexity of Jaccard kernel computation. The
total complexity required for hidden state inference and kernel matrix computa-
tion is O((NT ·C2 ·V )+ (E+C) ·V ) for uni-directional models, where NT is the
maximum tree size, V is the number of classes and E = min{NT , C

2}. This cor-
responds also to the asymptotic complexity of the bi-directional approach in [6],
which differs only for constant terms. The complexity of the proposed approach
is O((NT · C2 · V ) + (E + C)).

3 Experimental Results

The experimental analysis focuses on assessing whether the tree transduction
process described in Section 2 effectively captures discriminative structural in-
formation by virtue of its bi-directional context. To this end, we exploit the
Jaccard kernel approach to confront the performance of the bi-directional IOBU
model (BDIO, in the following) on challenging benchmarks on tree structured
data classification, with that achieved by the unidirectional TD [1] and bottom-
up HTMM (BU) [2]. Further, we provide an experimental comparison with the
bi-directional approach realized in [6] by integrating TD and BU contexts at the
kernel level (TB, in the following).

Experiments have been performed on two data sets from the 2005 and 2006
INEX XML document classification competition [9]. INEX 2005 comprises 9, 361
trees, 11 classes, with 366 possible node labels. INEX 2006 comprises 12, 107
trees, 18 classes, and 65 possible labels. Standard training and test sets are avail-
able for both datasets [9], with a 50%-50% split. The large number of classes
in both data sets makes them challenging benchmarks, such that the random
classifier baseline for INEX 2005 and INEX 2006 is 9% and 5.5%, respectively.
Different configurations of the IOBU, TD and BU generative models have been
tested by varying the number of hidden states C in {6, 8, 10} (hidden states
number follow the guidelines in [2]). Following the generative approach, we have
trained a different HTMM for each class and computed the Jaccard kernel as in
[8] on a total of C · V hidden states, where V is the number of classes. Training
and test trials have been repeated 5 times for each configuration of the gen-
erative models, each time using different random initializations for the models
distributions (initialization of label emission is kept fixed to the prior distri-
bution of the multinomial labels on the training trees). SVM-based multiclass
classification has been obtained by means of the LIBSVM1 software (by a C-
SVM classifier) exploiting the Jaccard Gram matrices as user defined kernel.
A 3-fold cross-validation (CV) procedure has been applied to select the value
of the misclassification cost parameter Csvm from the following set of values:
0.001, 0.01, 0.1, 1, 10, 100, 1000 using validation data external to the test set.
The SVM classifier with the Csvm value selected on the validation set has then

1 http://www.csie.ntu.edu.tw/~cjlin/libsvm

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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Table 1. Classification accuracy (%) on the external test set for the generative kernel
configurations selected in cross-validation (variance is in brackets). The best result for
each dataset is highlighted in bold.

BDIO BU TD TB
Dataset C Test C Test C Test C Test

INEX 2005 8 95.24 (0.17) 8 94.22 (0.81) 10 93.39 (2.19) 8 95.39 (0.14)
INEX 2006 10 45.19 (0.12) 6 44.53 (0.09) 8 44.38 (0.06) 10 44.78 (0.02)

Table 2. Summary of the classification accuracy of non-adaptive (syntactic) tree ker-
nels: see [10] for a quick introduction to these kernels

Dataset ST SST Poly-SST PT

INEX 2005 88.73 88.79 88.33 97.04
INEX 2006 32.02 40.41 40.12 41.13

been trained and its average performance on the 5 trials has been evaluated on
the hold-out test data.

Table 1 summarizes average classification performance for the model con-
figurations selected in CV. The results show that the bi-directional transduc-
tion approach (BDIO) achieves a classification performance that is significantly
higher than that achieved by the TD and BU unidirectional approaches on both
datasets, suggesting that the input-driven generative model is effectively cap-
turing the context of two parsing directions. Compared to the bi-directional TB
approach, the BDIO achieves an equivalent performance on INEX 2005 whereas
it outperforms TB on INEX 2006. Note that the computational cost for com-
puting the kernel on the top of the IOBU model is significantly lower than that
required by the TB approach: the former, in fact, requires to compute the kernel
on the hidden states of the IOBU model alone, while TB requires to compute
and integrate two kernels built on top of the TD and BU models. Compared
to results in literature, the BDIO approach shows a competitive performance,
in particular as regards INEX 2006 data. Table 2 summarizes the performance
of state-of-the-art syntactic (i.e. non adaptive) kernels on the two benchmarks
[10]. On INEX 2005, only the computationally intensive PT kernel achieves an
higher performance. Notably, BDIO achieves the best classification accuracy in
literature on INEX 2006: see [11] for a recent survey of the results of several tree
classification approaches on this dataset. Such performance is not obtained at
the cost of computational efficiency: the average computational cost for infer-
ence and kernel computation on an INEX 2006 test tree is 1.1644sec for BDIO,
2.8732sec for TB, 1.0211sec for TD and 1.0942sec for BU.

4 Conclusion

We have introduced a novel approach to efficiently integrate bi-directional con-
texts in a generative tree model by means of structured transductions and a
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composition of top-dow and bottom-up HTMMs. This is the first approach
that allows to capture information concerning bi-directional contexts within the
state-space of a generative model for tree-structured data. Previously, only [6]
has realized an integration of contextual information which, however, has been
limited to information fusion at the kernel level. The proposed approach has
shown to be effective on well-known classification benchmarks, yielding to state
of the art results on the challenging INEX06 dataset. The approach allows to
train bi-directional generative models in a computationally efficient way by in-
dependently training the composing top-down and bottom-up models. Further,
it maintains the cost of Jaccard kernel computation comparable to that of a uni-
directional approach, whereas the bi-directional kernel in [6] requires twice the
effort for the same size of the hidden state space. We believe that the proposed
approach is general enough to pave the way to applications on more complex
classes of structured data, which will be the subject of future investigation. Fur-
ther, we plan to extend the approach to allow a recursive application of the
encoding-decoding scheme along the lines of [4], with the intent of capturing
more articulated contextual information.
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Abstract. This paper, proposes a layered approach to capture discrete
sequences by exploiting the best matching unit (BMU) selection pro-
cess of the self-organizing map (SOM) to generate a finite state machine
(FSM). The FSM is used with thresholding to identify prominent sub-
sequences available in input data.

1 Introduction

Identifying sequences and sequential behavior is an essential component of in-
telligence. In humans, this skill forms a fundamental part of human behavior
ranging from the use of natural languages to solving complex problems. In or-
der to make useful inferences based on sequences, learning the nature of se-
quences is of importance. Recently, sequence learning has gained interest in a
number of diverse domains from bioinformatics to natural language processing.
As a result, many approaches have been proposed for sequence learning across
these domains. The proposed methodologies consist of both supervised[1,2] and
unsupervised[3,4] learning algorithms. Unsupervised neural networks such as the
SOM[5] has gained in popularity for sequence learning tasks(Section 2). The pop-
ularity associated with neural networks is largely due to its simplicity, general-
izability and non-linearity. Apart from the three qualities mentioned above the
SOM has the ability to process large amounts of data with the added capability
of learning from data that is not pre-classified or pre-labeled.

Deviating from the standard norms of SOM applications to sequence data,
this paper proposes a layered architecture for sequence learning by generating a
finite state machine based on SOM learning(Section 3). In order to generate the
FSM, SOMs’ best matching unit (BMU) identification process was exploited to
generate the states of the FSM in a separate layer when conditions explained in
section 4 are met. The layering aids in separating the SOM learning process from
the generated FSM. The FSM layer is ultimately used to identify the sequences
captured. Section 5 provides an experimental evaluation of our model using
mitochondrial DNA data of Homo Sapeins. Finally, we provide conclusions and
possible future directions of research in section 6.
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2 Related Work

Due to the inherent inability to involve temporal information in its learning
process, the classical SOM is unable to discern meaningful information from
sequential data. However, the classical SOM is able to process sequential data
if supplementary mechanisms are in place to represent temporal information. In
literature, there are two mechanisms to present such information to the SOM
as internal time presentation[3,4,10,11] and external time presentation[7,8,6,9].
Internal mechanism represents temporal information in the form of functions or
integrators attached to the network itself. This results in modifications of data
representation within the network. On the contrary, the external mechanism
represents time via means external to the algorithm itself such as input vector
concatenation and external delay lines. Sequence learning algorithms that utilize
either time representation technique mentioned above are presented next.

Kangas[6] proposed two variants of a temporal SOM that accepts temporal
information externally. The first variant represents the current input to the SOM
as a function of former inputs. These inputs are controlled using depth param-
eters that determine the intensity of influence incident on the current input by
former inputs. The second variant concatenates short sequences of inputs and
presents them to the network. Concatenated presentation enables the network
to view the current input and a short history of previous inputs and cluster ac-
cordingly. Zehraoui et al.[7,8] introduced another concatenation based technique
by modeling the matrices as a concatenation of input vectors. The technique
preserves temporal information via transforming the generated matrices to their
respective covariance and weighted covariance matrices. A different approach to
external presentation of temporal information was adopted by the Hypermap
architecture[9] proposed by Kohonen. The model generates a context vector and
a pattern vector based on an external time window centered at a certain time.
The generated vectors are utilized in two separate instances. The context vector
nominates a set of nodes as fit for the BMU and the pattern vector identifies
a node from the nominated set as the BMU for that input instance. The input
initialization mechanism of the model proposed in this paper was inspired in
part by three of the technique mentioned above.

In algorithms that represent temporal information internally contains addi-
tional functions attached to their inner working of the algorithm. The Temporal
Kohonen Map (TKM)[3] utilizes leaky integrators to maintain activation his-
tory of neurons. The leaky potentials gradually decay overtime unless excited
by an activation of a node. The recurrent SOM (RSOM)[10] improves on the
TKM by associating weight adaptation as a recursive difference equation. RSOM
maintains temporal information using difference vectors attached to each node
in the SOM. Further algorithms of similar nature such as the recursive SOM
(RecSOM)[4] and MergeSOM[11] were introduced to enhance the temporal pat-
tern classification capability of the SOM.

Furthermore, a common observation that could be made about the techniques
explained in this section is that, irrespective of the method it uses to represent
temporal information, all techniques require interpretation of clustering incident
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on the map. Although, the interpretation of clustering is extremely important
in unsupervised learning, we believe that temporal information especially tran-
sitions between instances of input vectors could be captured at the time of SOM
learning to bolster the clustering results obtained by these techniques.

3 The Conceptual Model

The classical self-organizing map (SOM)[5] projects high dimensional data into a
lower dimensional space through iterative presentation of inputs such that inputs
with similar properties are clustered together. A given input vector xi (1 ≤ i ≤ n)
could map to different neurons (winners) in the SOM throughout the SOM
learning process. However, as the number of iterative presentations increase,
the movements of winner neurons for a given input xi gradually declines and
becomes stable. Different inputs reach their stable winners at different epochs
during the SOM training process. Once a stable winner is reached, the neuron
would start accumulating hits whenever the same input or similar inputs are
presented to the SOM for the remainder of the learning process. The process
of reaching a stable winner for a given input has been exploited in this model
to generate a state machine to represent the input data. For each unique input
vector there is a corresponding winner node; these winners are modeled as states
in the generated state machine. The transitions between states were modeled as
the transitions between the winners for two consecutive input instances xi and
xi+1. However, it is important to note that this type of modeling would only
be meaningful in instances where the inputs are sequentially related. The SOM
and the resulting state machine are placed on separate layers with the SOM (S
Layer) being able to effect changes to the state machine (V Layer) during the
SOM learning process.

In order to extract sub-sequences from the state machine generated a threshold
(T) was defined based on the number of hits accumulated by neurons of a given
state. Thresholding based on the hit count enables the data analyst to extract
smaller state machines from the one incident on the layer V. Hit count (H) was
used since it is a measure indicative of the stability of the winner neuron since the
hit count and the duration of a winner being stable has a direct correlation. The
threshold aids in identifying high frequency sub-sequences of an input sequence.
The model thus far, was explained using vector inputs. This was done in order
to clearly delineate the logic behind the generation of a state machine using the
SOM learning phase.

Now we focus on the inputs presented to the SOM. Since this model is as-
sociated with sequential data it is expected that xi and xi+1 are sequentially
related. Therefore, when presenting sequential data, the temporal nature of the
data needs to be preserved. This model adopts the external representation of
temporal information via a two phase conversion of vector inputs. Initially the
input vectors are compiled into rows of a matrix A. The number (referred to
as the participant factor (pf) throughout the text) of input vectors represented
by the matrix as its rows is dependent on the learning task. In order to further
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preserve the temporal relationship and to make inputs more reselient to noise,
the weighted covariance of A was calculated and is subsequently used as the in-
put to the SOM1. Modeling of sequential inputs to weighted-covariance matrices
technically segments a sequence (S) into set of matrices representing fixed size
sub-sequences of S. Therefore, according to the concept presented in this section,
it is clear that the sub-sequences of S and its associated transitions represent a
state machine of S over its sub-sequences.

4 Implementation of Algorithm

4.1 Input Formulation and Learning

This phase converts an input sequence S into a set of weighted covariance ma-
trices (WCOV ). Lets assume a sequence S as a finite and an ordered set of
n-dimensional row feature vectors (xi) as in equation 1.

S = x1x2x3...xi....xm ; m ≥ 1 and xi ∈ R
n (1)

As the first step, the sequence S is segmented into a set of instance matrices
M using a sliding window (ν) of size pf . The sliding window ν is slided by a
single element each time the window is moved. All features vectors (xi) that is
within the perimeter of ν are set as rows of an instance matrix (Mi where 1 ≤
i ≤ n−pf+1). For example ith instance matrix (MT

i ) is presented in equation 2.

MT
i = [xTi xTi+1 ... x

T
i+pf−1] whereMi ∈M ; Mi ∈ R

pf×n (2)

Once the set M has been synthesized, the weighted covariance matrix for each
instance matrix Mi is computed using equation 3 where qjk represents the kth

element of the jth row of the resulting matrix.

qjk =

∑n
i=1 wi

(
∑n

i=1 wi)2 −
∑n

i=1 w
2
i

n∑
i=1

wi(xij − μj)(xik − μk) (3)

In order to calculate WCOVi (∈ WCOV ), pf weights (0 < wk ≤ 1) are
assigned to each row of matrix Mi such that w1 > w2 > ... > wk > ...wn.
The decending weights ensure that the latest vector caputured by the sliding
window ν has the least weight and the vector which is to be ommited due to the
next slide has the highest weight. The generated set of matrices WCOV is then
presented to the modifed SOM that utilizes weight matrices inplace of weight
vectors. This modification results in a change of policy when determining the
best matching unit (BMU) of an input instance with the use of matrix distance
measures. This writing assumes the Frobenius distance given in equation 4 to
calculate the BMU. The remainder of the SOM algorithm remains the same with
matrices participating in calculations instead of vectors.

F =
√
tr((A −B).(A−B)∗) (4)

1 The SOM needs to be structurally modified to support matrix based inputs.
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4.2 State Machine Generation

The state machine is generated in parallel to the SOM learning process. The
state machine generation process consists of four steps as state generation, state
update, state transition and solidification. The first three steps are represented
from steps 1(a) - 1(d) and solidification is represented from steps 1(e) - 1(g) in
the following psuedo code.

Notation: λcurrent/previous represents tempory holders for a state. Ψ repre-
sents the set of states and ψi represents the state at position i in Ψ . Γ represents
the set of solid sub-sequences identified during the learning process.f(.) returns
the sub-sequence associated with the matrix or state inserted as the parameter.
If WCOV2 represent sub-sequence “ABC” then f(WCOV2) returns “ABC”.

1. Present each weighted covaraiance matrixWCOVi to the modified SOM and
retrive the BMU for that input matrix. Then, Retrieve λcurrent = ψi ∈ Ψ
such that f(ψi) == f(WCOVi)
(a) if λcurrent == null, create a new state with the sub-sequence f(WCOVi)

and position it in the V layer using the coordinates of the BMU and set
the hit counter (H) to 1.

(b) if λcurrent! = null, verify the coordinates of the retrieved state λcurrent
and the BMU have the same coordinates.
i. If coordinates are identical increment H of λcurrent by 1.
ii. If coordinates are not equal, relocate λcurrent in V layer to the loca-

tion of the BMU. Reinitilize λcurrent such thatH = 1 and set λcurrent
to non-solid. Remove all sub-sequences that consist of f(λcurrent) in
set Γ .

(c) Create transitions between λcurrent and the immediately preceding state
λprevious (the selected state for input WCOVi−1).
i. If f(λcurrent) == f(λprevious) and X,Y coordinates of λcurrent and
λprevious are identical, initiate repeat list R if the repeat counter
C = 0.

ii. If C > 0, retrive element C from R and increment the elements hit
counter by 1.

iii. If C > 0 and C is not in R, add C to R and set the hit counter of
the new element to 1.

(d) λprevious = λcurrent
(e) For each ψi ∈ Ψ , If H ≥ threshold (T ), mark ψi as a solid state.

i. If solid state ψi consists of R that has a element C with H ≥
threshold(T ), mark C as solid.

(f) ∀ ψi ∈ Ψ that is solid, identify sub-sequences if
i. Rule 1 :- If two solid states A and B are linked by a transition l1;

then f(A).appened(l1) is a solid sub-sequence.
ii. Rule 2 :- If a transition l2 has a recursive relationship to the solid

state A; then the length of the solid sub-sequences represented by A
could be increased by appending the number of solid elements in A’s
repeat list R.

(g) Add identified sub-sequences to Γ
2. Repeat from step 1 for all weighted covariance matrices WCOVi ∈WCOV
3. Repeat steps 1 - 2 for the specified number of iterations
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Table 1. Solidification of subseqences in the Homo Sapiens mitochondrial genome
with different T% values , number of occurances (Occ) and the ratio of the total size
of sub-sequences to the size of the input string as a percentage(%)

1% 4% 5% 6% 8.5% Occ (%)

AC
√ √ √ √ √

1493 9.01
CC

√ √ √ √
1770 10.68

AA
√ √ √

1602 9.67
CA

√ √ √
1529 9.23

CT
√ √ √

1441 8.70
TA

√ √ √
1374 8.29

AT
√ √

1232 7.44
TC

√ √
1203 7.26

TT
√

1003 6.05
AG

√
796 4.80

GC
√

710 4.29
GA

√
618 3.73

TG
√

513 3.10
CG

√
436 2.63

GG
√

429 2.59
GT

√
418 2.52

Table 2. Composition of the repeat lists associated with repetitive nodes GG, CC, TT
and AA

1 2 3 4 5 6

GG 3415 659 179 50 - -
CC 30469 11808 4266 837 76 -
TT 11291 2822 661 240 60 -
AA 20500 6730 2583 1140 420 60

5 Experimental Results

In order to evaluate the proposed architectural model an experiment was per-
formed using the mitochondrial genome of Homo sapiens2. The experiment was
conducted using a square lattice based SOM of 104 neurons and a learning rate
of 0.25, a participant factor (pf) of 2 and 100 iterations as network parameters.

During the execution of this experiment, the T%3 value was varied between
1% and 8.5%. The results of solidification for the corresponding T% values are
given in table 1 and the contents of R for states containing recursive transitions
are given in table 2. For example, if T% value was set at 5% (82845 hits), the FSM
in the V layer has six solid states. These solid states are extracted as explained

2 Source:http://www.ebi.ac.uk/ Accession number: V00662.
3 T% = (Threshold(T)/Total Number of Hits(N))*100% ; Represents the T value as
a percentage.

http://www.ebi.ac.uk/
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Fig. 1. The extracted FSM at P = 5%. The dotted circles represent the number of hits
incured by that node after learning is complete.

Table 3. Set of identified sub-sequences origination from the state AC and the number
of occurances (Occ)

Transition Sub-sequence Occ

AC → CC ACC 515
AC → CA ACA 447
AC → CC → CT ACCT 129
AC → CA → AA ACAA 145
AC → CC → CA → AA ACCAA 49

in section 4.2 to a smaller FSM depicted in figure 1. Using the extracted FSM
a set of sub-sequences (Table 3) were generated by using the state “AC” as the
origin.

The generated sub-sequences in table 3 indicate that the model is able to iden-
tify sub-sequences of varying length. The length of the identified sub-sequences
above could be further increased by incorporating the information available in
the repeat lists. However, when considering the number of hits per repetitive
element in table 2 it is clear that all the elements do not meet the T% criteria
of 5%. Hence, at current value of T% the sub-sequences identified in table 3
are not extendable. Nevertheless, if the T% value was to be reduced from 5%
to 0.1% (1657 hits) three additional characters of both C and A could be used
to extend the sub-sequences which consist of states CC and AA. For example
the sub-sequence ACCT identified above could be extended to ACCCCCCCT if
T% was set to 0.001% (17 hits). Also ACCCCCCCT sub-sequence only occurs
once throughout the entire input sequence whereas ACCT occurs 129 times.
This implies our model is capable of capturing sub-sequences that has a single
or a very low occurrence if the T% value is set accordingly. This draws us to
an important observation. That is, the length of the sub-sequences identified is
inversely proportional to the T% value.
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6 Conclusion and Future Work

The sequence learning model proposed in this paper was able to identify dom-
inant sub-sequences in a strand of genome data. The T% values that are used
to differentiate between the solid and non-solid sub-sequences ensure that the
data analyst is capable of identifying variable length sub-sequences from the
input sequences. The versatility of T% value ensures that sub-sequences of dif-
ferent ranges could be identified such as the sub-sequences above or below a
certain value of T% (analogous to low/high pass filtering) or within a range of
two T% values. It is also important to note that experiments on larger datasets
(mtDNA taxonomy generation, player modeling) were indeed performed but the
page limitation enforced has disabled the inclusion of these experiments due to
the inabilty to present them in sufficient detail.

Furthermore, it could be observed that the FSM generated in the V layer
resembles a Markov chain. However, it is important to note that this study
solely focuses on the learning aspects of the SOM when generating the FSM and
the conditional probabilities are not associated with the FSM. Nevertheless, as
a future work, the capability of integrating this model with the training of a
Markov model is a viable path.
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Abstract. Artificial Neural Networks (ANN) performance depends on network 
topology, activation function, behaviors of data, suitable synapse's values and 
learning algorithms. Many existing works used different learning algorithms to 
train ANN for getting high performance. Artificial Bee Colony (ABC) algo-
rithm is one of the latest successfully Swarm Intelligence based technique for 
training Multilayer Perceptron (MLP). Normally Gbest Guided Artificial Bee 
Colony (GGABC) algorithm has strong exploitation process for solving ma-
thematical problems, however the poor exploration creates problems like slow 
convergence and trapping in local minima. In this paper, the Improved Gbest 
Guided Artificial Bee Colony (IGGABC) algorithm is proposed for finding 
global optima. The proposed IGGABC algorithm has strong exploitation and 
exploration processes. The experimental results show that IGGABC algorithm 
performs better than that standard GGABC, BP and ABC algorithms for Boo-
lean data classification and time-series prediction tasks. 

Keywords: Artificial Bee Colony, Gbest Guided, Classification, Prediction. 

1 Introduction 

An Artificial Neural Network (ANN) is a mathematical model that tries to simulate 
the structure and function of human biological networks. It has the most powerful and 
attractive tools suitable for solving combinatorial problems such as prediction [1], 
forecasting [2], classification and numeric function optimization [3]. ANN have prov-
en the outstanding performance in the area of engineering, mathematics, social com-
puting, medical, seismic and information technology [4]. Researchers have extended 
ANN topologies with different connections like Multilayer Perceptron (MLP), Radial 
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Basis Function [5] and so on. Besides that, the ANN tools were proven to be very 
successful in data classification (Boolean classification) especially with the univa-
riate, multivariate of real and time-series data. Among the examples of the ANN tools 
applications are weather, bankruptcy, traffic forecasting and others [6-7].  

The success key point of ANN approaches are the learning algorithms which are 
used to train, test and validate the network for corresponding task. There are also 
other different learning algorithms proposed by researchers such as the supervised and 
unsupervised [8]. An example of the well-known supervised learning algorithm used 
to train ANN for different tasks is the Backpropagation (BP) algorithm. However, the 
BP algorithm is prone to local minima traps and has a slow convergence speed. This 
has motivated researchers to find suitable tools to solve these problems. There are 
different improvements used with the standard BP learning to overcome the draw-
backs, for example introducing new parameters, learning rate, momentum, first orders 
and second order and others.  

Swarm Intelligence (SI) has become a research interest to different domain of re-
searchers in recent years. They take more interest to develop new learning techniques 
based on SI movement and thinking behaviors such as Honey Bee Colony [3], Bees 
Algorithm [9], Artificial Bee Colony (ABC) algorithm and others [10]. Particle 
Swarm Optimization (PSO) and its variations have been introduced for solving  
optimization problems and successfully applied to solve many real problems like 
classification, clustering and prediction [11]. Motivated by the foraging behavior of 
Honeybees [12], researchers have initially proposed ABC algorithm for solving  
various optimization problems.  

For this research in order to balance between exploration and exploitation proce-
dures of the Gbest Guided ABC (GGABC) algorithm and at the same time improve 
the effectiveness of classification and prediction tasks, an enhanced searching scheme 
called Improved Gbest Guided ABC (IGGABC) is proposed. The novel IGGABC 
algorithm and three standard learning algorithms ABC, BP and GGABC are used to 
train multi-layer perceptron (MLP) for Boolean functions classification and time se-
ries prediction tasks. 

The rest of the paper is organized as follows. Section 2 provides preliminaries of 
Boolean function classification, water level height time series and rudimentary of 
Artificial Neural Networks (ANN). Section 3 describes the Improved Gbest-Guided 
Artificial Bee Colony (GGABC) Algorithm. Section 4 discusses about the experiment 
results. Finally, the conclusion of this work is provided in Section 5. 

2 Preliminaries 

In this research, the proposed and standard learning algorithms of Boolean function 
classification and time series prediction present two solutions. Each task is discussed 
in the following sub-sections. 
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2.1 Boolean Function Classification 

There are many types of Boolean operations; however, the most commonly used are 
the XOR, 3-Bit Parity and Encoder/Decoder operators. XOR is not linearly separable, 
consequently it cannot be implemented using single layer network; a three layered 
network is required to solve the problem. In order to solve the XOR problem using 
the MLP, a hidden layer is needed with 2 or more neurons [13], where each of these 
neurons produces a partial solution and then the output neuron combines those solu-
tions and solves the XOR problem [14]. The 3-bit parity or even parity problem can 
be considered as a generalized XOR problem but it is more difficult for classification 
[15]. This problem has been addressed because they are nonlinearly separable, and 
hence can not be solved by Single Layer Perceptron, such as the perceptron [16].  
In other words, if the number of binary inputs is odd, the output is 1, otherwise it is 0. 
The third classification task is 4-Bit Encoder/Decoder, which is well known in com-
puter science. The network is presented with four distinct input patterns, each having 
only one bit turned on. A decoder is a logic circuit which accepts a set of inputs that 
represents a binary number and activates only the output that corresponds to the input 
number. 4-Bit Encoder/Decoder is quite close to the real-world pattern classification 
task, where small changes in the input pattern cause small changes in the output  
pattern [17].  

2.2 Water Level Height Time Series  

Coastal flooding is primarily caused by storm surge, waves and water level height but 
includes many other influences. Changes in the global sea level have far reaching 
consequences for both humans and the natural environment. The population and the 
economy must be protected against flooding caused by sea water level. To achieve 
this, knowledge of long, medium and short-term trends of the water levels is impor-
tant. Here the historical data of year 2011 of Port Aransas station PTAT2, water level 
height with six-minute in feet, of the water above or below Mean Lower Low Water 
(MLLW), offset by 10 ft [18]. Port Aransas experiences a humid subtropical climate, 
enjoying similar temperatures to those of other Gulf Coast regions, such as Deep 
South Texas and Southern Florida. The area experiences an average annual rainfall of 
31.92 inches (811 mm), with prevailing winds out of the southeast from the Gulf of 
Mexico.  

2.3 Artificial Neural Networks (ANN) 

The ANN working model has different tasks such as, multiplication, summation and 
activation. In multiplication stage the weights are multiplied by an input signal.  
Initially, weights were chosen randomly but with the passage of time researchers 
started taking an interest to get optimal weight in weight equation. Figure 1 shows the 
architecture of MLP with hidden layers, output layer, and one input layer. 
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Fig. 1. Artificial Neural Networks 

ANN with feed-forward topology mainly consists of one or more artificial neuron 
in parallel organization [19]. MLP is the well-known type of feed-forward NNs shows 
the flow from input to output in one direction with no back-forward firing. ANN 
learning is an inferred process which can not be perceived directly, but can be as-
sumed to have happened by observing changes in performance [20]. The learning 
objective is to minimize the cost function, which is the difference between desired 
output and NN output. The networks were trained for finding optimal weights, which 
reduce the error until the convergence.  

3 Improved Gbest-Guided Artificial Bee Colony (GGABC) 
Algorithm 

3.1 Gbest-Guided Artificial Bee Colony (IGGABC) Algorithm 

Gbest Guided Artificial Bee Colony (GGABC) algorithm as an optimization tool 
provides stochastic search procedure in which individuals called foods positions  
are adapted by the GGABC with time, and the bee’s aim is to discover the places of 
global food sources [21]. The exploration is the famous procedure in swarm-based 
algorithms for finding best position within specified areas. These properties are the 
solution to given problems. Exploration includes things captured by terms such as 
search, variation, risk taking, experimentation, play, flexibility, discovery, innovation 
[22]. In SI, the exploitation consists of modification, alternative, invention, efficiency, 
collection, and execution towards getting best solution. To advance the exploitation 
procedure, ordinary ABC algorithm modified with Gbest guided practice called 
GGABC by incorporating the information of Gbest solution into the solution search 
equation proposed for training MLP [21]. The new candidate solution for both agents 
is generated by moving the old solution towards or away from another solution based 
on random selection from the population. Here the employed and onlookers bee sec-
tion of GGABC will be modified for improving exploration procedure as: 
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where yj is the jth element of the global best solution, Ψ ij is a uniform random 
number in [0,C], where C is a nonnegative constant. 

3.2 An Improved Gbest Guided Artificial Bee Colony Algorithm 

The exploitation and exploration procedures with balance quantity are the well-known 
possessions of Honey Bees based learning algorithms for competent performance. 
These possessions are used for solution to a given tasks. The exploitation method 
should refer to the ability to apply the information to find a better solution, and the 
exploration process leads to the ability to explore the different unknown regions in the 
solution space to discover the total finest [23]. Although the Gbest guided ABC algo-
rithm has successfully increseased the poor exploration procedure of standadrd ABC 
in the employed and Onlooker Bees section. However, sometimes GGABC algorithm 
fails to overtrapped the local minima with fast convergence rate due to the similar 
search stretgy of employed and onlooker bees phases [21]. In other words, by using 
Gbest guided method if the employeed Bee phase fails to increase the exploration 
amount, onlooker Bees cannot reach to global optima successfully. Furthermore, the 
Gbest guided technique use the random strategy in scout bee phase as in standard 
ABC, so that exploitation procedure cannot be improved. 

In addition to improve the exploration procedure and balance with exploitation, 
this section explains the proposed IGGABC algorithm by incorporating the informa-
tion of best and guided solution into the solution search equation. The proposed 
IGGABC algorithm as an optimization tool that provides efficient search procedure in 
which individuals called foods positions are adapted by the two global guided artifi-
cial bees with time, and the bee’s aim is to discover the places of global food sources. 
This improved technique increases the exploration procedure through the guided 
strategy in Scout Bee. The step by step procedures of IGGABC are given in two sec-
tions as: 

3.1.1   Improved Gbest Guided Employed Bee Phase 
Each global guided employed bee produces new solutions (food source positions) Vi,j 
in the neighbourhood of xmi for the global guided employed bee using the equation as:            ௜ܸ௝ ൌ ௜௝ݔ ൅ ߰௜௝൫ሺݔ௝௕௘௦௧ െ ௜௝൯ݔ ൅ ൫ݕ௝௕௘௦௧ െ  ௜௝ሻ൯ (2)ݔ

Where x shows the 1st row of the foods area, i represent the 1st iteration of em-
ployed bee, j explains the fix random value in D, k explicates a solution in the neigh-
bourhood of, i and evaluates them, xj

best    shows the jth element of the global best 
solution found so far, 

 
yj

best    represents  the jth element of the best solution in the 
current iteration and ߰௜௝  is a uniform random number in [0,C]. 
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3.2.2   Improved Gbest Guided Onlooker Bee Phase  
An improved gbest guided onlookers bee section were produced the new solutions 
(new positions) υi for the standard onlookers from the solutions xi, selected depending 
on Pi, and evaluate them through equation (3) as:                   ௜ܸ௝ ൌ ௜௝ݔ ൅ ߰௜௝൫ݔ௜௝ ൅ ௞௝൯ݔ ൅ ߰௜௝ሺݕ௝ܾ݁ݐݏ െ  ௜,௝ሻݔ

     
(3) 

Where ݕ௝ܾ݁ݐݏ represents the jth element of the global best solution and ߰௜௝   is a 
uniform random number in [0,C]. The greedy selection process is used for the on-
lookers between Vi of gbest guided employed section and Vj of and gbest guided 
onlookers bee section. The gbest guided scout bee also called unemployed bees; they 
choose their food source randomly. If the improved guided employed bees don't find 
the improved solution through a predetermined number of trial's inside limits, be-
comes guided scouts and their solution abandoned.  

4 Experiment Results 

4.1 Parameter Setting  

In this work, ABC, BP, GGABC and IGGABC algorithms are used to train MLP for 
Boolean classification and water level height prediction. To calculate the performance 
of these algorithms by Mean of MSE, NMSE, MAE, RMSE, SNR, classification and 
prediction accuraccy, using Matlab 2012a software. The parameters of the problems 
for classification and prediction are given in Tables 1 and 2, respectively.  

Table 1. Parameters of the problems for boolean function classification  

Problem Colony Range NN structure Dimension   MCN 
XOR [10,−10] 2−2−1+ Bias(3) 13 1000 
3-Bit Parity  [10, −10] 3−3−1+bias(4) 49 1000 
4 BitEncoder  [10,−10] 4−2−4+Bias(6) 49 1000 

 

Table 2. Parameters of the problems for heat waves temperature prediction  

Problem Colony Range Hidden Nodes Dimension      MCN 

ABC [10, −10] [2,9] [9, 49] 2000 
GGABC [10, −10] [2,9] [9, 49] 2000 
IGGABC [10,  −10] [2,9] [9, 49] 2000 

During the experimentation, 10 trials performed of training for above mentioned 
tasks. The sigmoid activation function used for network production for classification 
and prediction. During the simulation, when the number of input's signals, hidden 
nodes, output node and running time varies, performing training algorithms were 
stable, which is important for delegation ANN in the current state. 
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4.2 Results of Boolean Function Classification  

The simulation results for the boolean classification problem using above algorithms 
are given in the Tables 3, 4 and 5, respectively. The above learning algorithms were 
tested after training the network, with trained parameters values. In Table 3, the MSE 
for training data set is presented from above mention algorithms. The IGGABC has 
outstanding performnce from others algorithms for XOR, 3 bit and 4 bit problems in 
terms of MSE, NMSE, MAE, convergence and accuracy. The MSE, NMSE, MAE is 
continuously decreasing with stable ratio by using IGGABC algorithm for boolean 
classification. Furthermore, the proposed IGGABC algorithm has stable convergence 
for XOR, 3 bit parity and 4 bit encoder / decoder problems as shown in Figure 2.  

Table 3. Simulaion results for XOR classification  

Algorithm MSE NMSE MAE Accuracy (%) 

BP 0.018124 0.118143 0.089484 56.21 
ABC 2.41E-03 1.17E-02 0.002311 97.11 
GGABC 3.41E-03 1.38E-02 0.001983 99.98 

IGGABC 1.41E-04 5.15E-04 0.001721 99.99 

Table 4. Best single results for 3-Bit parity problem 

Algorithm MSE NMSE MAE Accuracy (%) 

BP 0.005334 0.018331 0.068212 76.21  

ABC 0.005455 0.012245 0.018533 94.01  

GGABC 0.000121 0.063811 0.010429 98.25  
IGGABC 0.000113 0.011217 0.010124 99.80  

Table 5. Best single results for 4-bit Enc/Dec problem 

Algorithm MSE NMSE MAE Accuracy (%) 

BP 0.001754 0.014466 0.022837 78.59 

ABC 0.001765 6.40E-03 0.038437 92.71 

GGABC 0.001543 2.00E-03 0.017211 95.25 

IGGABC 0.000872 1.00E-04 0.008423 97.07 
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Fig. 2. Learning curves of XOR and for 3-Bit parity though learning algorithms 

The simulation results of water level height by proposed IGGABC and standard al-
gorithms are given in the Tables 6, 7, 8, 9 and Figures 3 and 4, respectively. The val-
ues of MSE, NMSE, MAE, RMSE, SNR and accuracy obtained MLP trained through 
IGGABC for water level height time series has efficeient performance from other 
algorithms. Among the standard learning algorithms for water level height prediction, 
the GGABC outperforms than BP and ABC algorithms. 

Table 6. Average MSE for water level height prediction  

MLP Structure BP ABC GGABC IGGABC 
3-2-1 0.008712 0.004092 0.005098 0.001287 

3-3-1 0.009634 0.002200 0.003988 0.000933 

3-4-1 0.004853 0.003855 0.004833 0.001691 
3-5-1 0.001562 0.000817 0.002418 0.000362 

3-6-1 0.009528 0.001552 0.001565 0.000155 

3-9-1 0.009631 0.023598 0.001091 0.000520 

Table 7. Average NMSE for water level height prediction  

MLP Structure BP ABC GGABC IGGABC 

3-2-1 0.512123 0.402223 0.317421 0.228234 
3-3-1 0.540935 0.302384 0.307224 0.121221 
3-4-1 0.506473 1.099223 0.334234 0.113021 

3-5-1 1.012634 0.323849 0.290915 0.108076 

3-6-1 0.552934 0.230394 0.229117 0.024659 
3-9-1 0.609298 0.027299 0.216438 0.0276794 
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Table 8. Average MAE for water level height prediction 

NN Structure ABC BP GGABC IGGABC 

2-2-1 0.005982 0.009721 0.003962 0.003281 
3-3-1 0.002489 0.009978 0.002841 0.003289 
4-4-1 0.005536 0.007885 0.002984 0.001629 
5-5-1 0.008971 0.005624 0.008902 0.001964 
7-7-1 0.002583 0.009987 0.001953 0.001190 
7-9-1 0.025902 0.009531 0.001983 0.001272 

Table 9. Average RMSE for heat waves temperature prediction 

NN Structure BP ABC GGABC IGGABC 
2-2-1 0.084764 0.096556 0.099484 0.100419 
2-3-1 0.082988 0.049867 0.048969 0.064292 
3-3-1 0.085343 0.047127 0.047749 0.034125 
3-5-1 0.075124 0.052887 0.046915 0.081863 
4-4-1 0.062225 0.091203 0.063103 0.032302 
4-5-1 0.075185 0.071169 0.071197 0.031021 
5-6-1 0.078237 0.032588 0.043509 0.092101 
5-9-1 0.079316 0.020421 0.024224 0.021446 

Table 10. Best average results for water level height prediction 

Algorithm MSE NMSE SNR MAE RMSE Accuracy 
BP 0.00024 0.12881 34.31 0.00873 0.00499 90.01  
ABC 0.00018 0.20566 35.50 0.01429 0.00434 91.83  

GGABC 0.00105 0.28901 36.98 0.00755 0.01027 93.93  

IGGABC 0.00092 0.10479 37.11 0.00102 0.00311 97.42  

 

Fig. 3. Water level height prediction using GGABC algorithm 
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Fig. 4. Water level height prediction using IGGABC algorithm 

The predicted signals of water level height time-series data are very close to the ac-
tual signals using proposed IGGABC algorithm. Furthermore, during the learning 
process of proposed and standard learning algorithms for water level height time se-
ries, the IGGABC algorithm has the ability for fast convergence in the collection of 
average simulation results. 

5 Conclusion  

In this paper, we have proposed the Improved Gbest Guided Artificial Bee Colony 
(IGGABC) algorithm to improve the existing algorithms. We also have proven that 
the IGGABC algorithm collected the exploration and exploitation with balance quan-
tity successfully, through improved Gbest guided methods of employed, onlooker 
bees, which proves the high performance of training MLP for Boolean function classi-
fication and time series prediction. Furthermore, the proposed IGGABC algorithm 
achived the high accuraccy rate in classification and prediction tasks.  
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Abstract. Independent Component Analysis (ICA) has been widely used for
separating artifacts from Electroencephalographic (EEG) signals. Still, a few chal-
lenging problems remain.

First, in real-time applications, visual inspection of components should be re-
placed with an automatic identification method or a heuristic for artifacts detec-
tion. Second, as we will explain more in the paper, we expect to have a clear
order relationship between an electrode and a corresponding component. Third,
we need to minimize the EEG information loss during artifact removal while also
minimizing the residue of the artifact in the cleaned signal.

In this paper, we propose a decomposition of the independent components.
This decomposition separates each component into two vectors, one - we call lo-
cal vector - maintains maximum information from the unique EEG information
encoded by an electrode, while the other - we call shared vector - absorbs over-
lapping artifact information. We present an explicit Pareto-based multi-objective
optimization formulation that trade-off similarity between the local vector and the
original vector on the one hand, and the uncorrelatedness of all local vectors from
all components on the other hand. We demonstrate that the proposed method can
automatically isolate artifacts from an EEG signal while preserving maximum
EEG information.

Keywords: Electroencephalography, Independent Component Analysis, multi-
objective optimization.

1 Introduction

Independent Component Analysis (ICA) is a common technique for the removal of
artifact. A study in [1] shows that eye movement, eye blinking, cardiac, myographic,
and respiratory artifacts can be isolated from Magnetoencephalographic (MEG) using
ICA.

Previous work on the removal of eye blinks and eye movements activities relied
on the substraction of the electrooculargraph (EOG) signal from the signals obtained
through EEG electrodes to correct for ocular artifacts. ICA has also been demonstrated
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to remove this type of artifact from EEG signals [2]. In both cases, however, certain
level of EEG activities will still be removed; the quantification of how much of these
activities have been removed and in which band remains unclear.

The wide adoption of ICA stems from the theoretical basis of the technique. How-
ever, a number of challenges remains. First, many brain computer interface (BCI) ap-
plications, such as augmented cognition applications [3,4], require real-time, or at least
automatic, correction of the EEG signal. Most implementations of ICA are demon-
strated on off-line correction of the signal and those used ICA for real-time applications
relied on some heuristics that have not been fully validated.

A second problem is that there is no clear order on the components. In other words,
we may find that one component is represented using equal weights in the mixing equa-
tion. The distribution of the mixed signal across components make sense in classical
signal processing applications such as the famous cocktail party problem, which was
the original motivation for ICA. In EEG recording, while we do not aim in this paper to
localize the signal, it is biologically more plausible to expect more local information is
captured through each electrode than non-local information.

A third problem is that there is a trade-off level between the removal of artifacts and
removal of EEG information from the signal. ICA does not guarantee that all artifacts
are captured by one component. Instead, some components captures most of the arti-
facts, but in addition, they also capture real EEG information. The more components
we remove to correct the signal, the more EEG information we also remove. This level
of trade-off is very difficult to evaluate.

In [5], a cut-off threshold for ICA is proposed as a preprocessing step for artifact
components identification. This solves the first problem mentioned above. This paper
addresses the two remaining challenges.

In this paper, we propose a decomposition of the independent components that the-
oretically guarantees that the first part of the decomposition captures as much local
information as possible, while the second part captures joint information. Through this
decomposition, we demonstrate that we are able to generate a clean signal. We rely on
a multi-objective optimization approach to model this decomposition and present two
metrics to quantify the amount of EEG information lost during the cleaning process.
We use the pareto-based Multi-objective evolutionary optimization algorithm (NSGA-
II) [6] to solve the problem.

In the remaining of this paper, we first provide background information on ICA Sec-
tion 2, followed by the proposed method in Section 3, the methodology in Section 4,
results in Section 5, and conclusions in Section 6.

2 Independent Component Analysis (ICA)

ICA, a blind source separation technique, has been widely used to separate signals from
multiple sources. An example of a source separation problem is when multiple people
talk in a cocktail party; one may pay attention to voices in one discussion while ignoring
voices from other discussions. ICA can be used in such a party to separate the mixed
discussions and background noise by using multiple microphones. Similarly, in BCI
research, multiple electrodes measure signals from multiple brain locations. ICA would
aim in this situation to separate the sources of the EEG signals.
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The blind source separation problem is classically formulated as X = AS, Where
X is the measured mixed signals, A is the mixing matrix, and S is the Sources. Math-
ematically, ICA performs linear transformation on mixed signals to components such
that the components are statistically independent and distributed non-gaussian . Once
we haveA and the estimated sources Ŝ, we can findW such that Ŝ = WX . The cleaner
signals can be reconstructed from only the useful components. X̂ =W−1Ŝ.

The fast ICA algorithm (FastICA) [7] implements the fast fixed-point algorithm for
Independent Component Analysis. Two preprocessing steps of centering and whiten-
ing are implemented in the fastICA matlab package. FastICA provides a mathematical
proof for the convergence of the algorithm to discover independent sources. However,
it does not address any of the three problems we discussed in the introduction.

3 Proposed Method

In EEG analysis, each electrode senses local information as well as overlapping in-
formation from the rest of the scalp. If we use ICA, we will most likely obtain one
component capturing the background noise. We can simply eliminate this component
and reconstruct the signals. Each reconstructed signal will have the local signal with-
out noise. However, it won’t separate the local information from the other signals. The
reason for this is simple, after removing the components with the noise, we are left
with three components only. When we project these three components back to the four
electrodes, it is not mathematically possible that we isolate the local signal of each
electrode.

Now, let us assume we can isolate the local signal. This signal will be different from
the local signal captured by each electrode in two aspects. First, it will exclude the
background noise. Second, it will exclude the overlapping information from the other
electrodes.

Let us recall the mixing equation X = W−1Ŝ. Remember that we used X̂ to denote
the estimated mixed signal after cleaning. Here, we use X since we do not delete any
component from Ŝ, therefore, it is guaranteed that we get back the original signal. Let
us now rewrite this mixing equation as follows:

X =W−1Ŝ = W−1(S1 + S2) = W−1S1 +W−1S2

Here, we decompose the independent components into two component matrices. Let
us define C as the covariance matrix between X and S1; therefore,

C =
covar(X,S1)

σ(X)× σ(S1)

In this decomposition, our aim is to make the matrix C a diagonal matrix and maxi-
mize the values on the main diagonal. This can be formulated as

↓ f1 =
1

N

∑
i

(1 − Cii)
2
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At the same time, we would like to minimize the correlation between each variables
in X and all components S1 except the one on the main diagonal corresponding to that
variable.

↓ f2 =
1

N2 −N

∑
i

∑
j �=i

C2
ij

When values on the main diagonal are non-zero and all other off diagonal values
are zeros, we have a bijective relation between the original signal and each component
in S1. In fact, since we maximize the correlations on the main diagonal, we guarantee
that the matrix S1 captures as maximum uncorrelated (notice that S1 is a diagonal
matrix with non-zero elements on the main diagonal; therefore, it has a complete rank)
information as possible from the original data.

For convenience reasons, we can now formulate our multi objective optimization
problem as

min[f1 f2]

f1 =
1

N

∑
i

(1− Cii)
2

f2 =
1

N2 −N

∑
i

∑
j �=i

C2
ij

In this paper, we use the pareto-based multi-objective evolutionary optimization al-
gorithm (NSGA-II) [6]. However, the dimension of the problem is very large. Imagine
a 10-20 standard EEG cap with 19 sensors with a sampling frequency 128Hz and an
epoch of 2 seconds, the genetic algorithm will attempt to optimize 19 vectors, each of
them is of length 256; that is, 4864 variables. This is a very large scale optimization
problem.

To overcome the dimensionality of the problem, we do the optimization in the fre-
quency domain instead of the time domain. By using a Fast Fourier Transform (FFT)
on the principal components, we at least half the dimensionality of the problem if we
use a resolution of 1Hz and work with the magnitude of each spectrum. Since some
bands will have close to zero values, they can also be removed from the optimization.
This reduces the dimensionality even further.

More importantly, the signal in the time domain generates a sequence of interdepen-
dent values. This level of interdependency creates extensive level of linkages among
the variables that makes the optimization problem very difficult. By transforming the
signal to the frequency domains, amplitudes within one epoch can be assumed to be
independent variables.

4 Methodology

A synthetic data set proposed by [5] will be used in this work. It assumes 6 sources of
signals. Two of the sources are assumed to be EMG operating at high amplitude and
high frequencies overlapping with High Beta and Gamma bands. Each source operates
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Table 1. The synthesis of the six signal sources

Source ID Band Amplitude Frequency Band Amplitude Frequency

s1 Delta 14 4 Beta 52 22
s2 Theta 23 7 Beta 70 19
s3 Delta 16 5 Alpha 43 11
s4 Alpha 44 9 Gamma 56 47
s5 EMG 144 31 EMG 337 51
s6 EMG 282 28 EMG 246 49

with a mixture of two frequencies representative of classic EEG bands as shown in
Table 1.

The six sources are mixed into four signals, x1,x2,x3,x4, as follows:

x1 = s1 + 0.9 ∗ s5
x2 = s2 + 0.9 ∗ s6

x3 = s3 + s5

x4 = s4 + s6

The signals are sampled at 256Hz. Besides, the fifth source was activated in the last
250ms of every second, and the sixth source was activated in the last 500ms of every
second. All other sources were activated from time 0. The reason for delayed activation
of the EMG signals is that in real-world dataset, there is no guarantee that the artifacts
are synchronized with the actual sampling window. The signals are shown in Figure 3.

Given the problem structure above, the independent components contained a total
of 28 unique frequencies with non-zero amplitudes. The chromosome had 60 variables
in total for all components; a significantly smaller search space than the original 1024
dimensions in the time domain.

The problem in this work is a bi-objective optimization problem with a decision vec-
tor of size 60. Despite the average dimensionality, the level of non-linearity is high.
Differential evolution (DE) is used in the NSGA-II framework. The following parame-
ters are used: population size = 50, mutation rate = 0.0167, F = 0.5, Crossover Rate =
1. Generation = 1000

5 Results

The result of this work is presented by showing the Pareto front of the solutions (Fig-
ure 1).

As shown in Figure 1, the Pareto front is evenly distributed along the two objectives.
It provides good tradeoffs between the two objective functions. Those Pareto solutions
labelled in the figure are those solutions that were chosen for further analysis. They
include the two extreme solutions and another 4 solutions selected uniformly across the
Pareto frontier.
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Fig. 1. The evolution of the Pareto Front From NSGA-II over selected generations (left) and the
final Pareto front (right)

Fig. 2. Information loss and residual calculated for the 6 selecting Pareto solutions selected from
the first Formulation. The blue line corresponds to artifact residue, the red line corresponds to
information loss. The best solution is clearly P2.

The results as shown in Figure 2 demonstrates that as we move from P1 to P6 on
the Pareto front, the reconstructed signals improve in terms of their EEG contents, but
level of artifact also increases. P2 is found to be a good tradeoff between information
loss and artifact residue.

In Figure 3, the resulting signals of the proposed method is compared to the fastICA
algorithm. The information loss and residue for fastICA are 0.0103 and 0.00155 which
are much higher than all solutions. The top row of the figure shows the mixed signal on
the left, and the clean signal with local information alone on the right. It is evident in
these plots the EMG impact at the end of the one second data.

The second row shows the output of the fastICA algorithm. The components are
visualized on the left, while the reconstructed signal is visualized on the right. A closer
look at the fourth variable would show that the cleaned signal carries no similarities
with the original signal. This is also the case in all other signals, although the scale may
mislead the eye.

The last two rows show the solutions obtained from the multi-objective optimization
approach. P1-P4 are shown. The results match what we have in Figure 2. Although there
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Fig. 3. First Row are the mixed signals(left) and clean signals(Right); Second Row are the in-
dependent components from ICA(left) and reconstructed signals from ICA(Right); Components
from P1 (left) and Components from P2 (right) (third row); Components from P3 (left) and
Components from P4 (right) (fourth row), respectively
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are some distortions in the signals, the proposed method maintains the signal order,
while reducing the amplitude of the artifacts.

6 Conclusion

In this paper, we presented a multi-objective formulation of the independent compo-
nents analysis problem. The first objective attempts to maximize the main diagonal
elements in the correlation matrix between each variable in the original mixed signal
and and the corresponding components. The second objective minimizes the off diag-
onal elements in the same matrix; thus forcing a conflict to create a trade-off between
local and joint information. Results indicate that the proposed formulation discovers
components that are closer to the original clean signal with more EEG information and
less artifact residual than the classical ICA.

This work raises two challenges that we will address in our future work. First, the
vast amount of data in EEG experiments (big data) creates very large scale optimization
problems. We will investigate efficient ways to design optimization problems for big
data. Second, the role of the components is not to duplicate the original data. The mixing
matrix needs to be maintained to mix the components. In this work, we discovered
components that are close to the original matrix. In our future work, we will address
second concern by conditioning the optimization problem with the mixing matrix.
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Abstract. In traditional research, data fusion is referred to as multi-
sensor data fusion. The theory is that data from multiple sources can
be combined to provide more accurate, reliable and meaningful infor-
mation than that provided by a single data source. Applications in this
field of study were originally in the military domain; more recently, in-
vestigations for its application in various civilian domains (eg: computer
security) have been undertaken. Multi-sensor data fusion as applied to
biometric authentication is termed multi-modal biometrics. The objec-
tive of this study was to apply feature level fusion of fingerprint fea-
ture and keystroke dynamics data for authentication purposes, utilizing
Artificial Neural Networks (ANNs) as a classifier. Data fusion was per-
formed adopting the cooperative paradigm, a less researched approach.
This approach necessitates feature subset selection to utilize the most
discriminatory data from each source. Experimental results returned a
false acceptance rate (FAR) of 0.0 and a worst case false rejection rate
(FRR) of 0.0006, which were comparable to—and in some cases, slightly
better than—other research using the cooperative paradigm.

Keywords: Multi-Sensor Data Fusion, Multi-Modal Biometrics, Fea-
ture Level Fusion, Cooperative Data Fusion, Fingerprint Recognition,
Keystroke Dynamics, Artificial Neural Networks.

1 Introduction

Data fusion involves the combination or integration of data from multiple sen-
sors or sources, and is traditionally referred to as multi-sensor data fusion [1].
Historically, as a formal research discipline, it was primarily the province of mili-
tary research (and subsequent applications), but more recently has been applied
to industrial processes, medical diagnosis, logistics, and computer security.

Using data from multiple independent sensors/sources makes a system less
vulnerable to failure than a single source, because information from multiple
sources (both correlated and uncorrelated) is exploited to provide a better out-
come [2]. Provided the fusion method is appropriate to the types of data, and
is performed correctly, the system should become less sensitive to noisy data
(removing the influence of irrelevant data) and thus more robust.

Multi-modal biometrics is a term used when multi-sensor data fusion is applied
in the area of biometric authentication. Though based on similar premises, and

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 578–585, 2014.
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having many similarities to formal data fusion, multi-modal biometrics has some
differences in relation to data fusion levels.

Section 2 discusses the data fusion paradigms and levels as applied in multi-
modal biometrics. A review of data fusion in relation to multi-modal biometrics
research is presented in Sect 3. Section 4 describes the experimental methodology.
Lastly, Sects 5 and 6 present the results and conclusions respectively.

2 Data Fusion Paradigms and Levels

There are three configurations that precipitate the data fusion paradigms [2].
Complementary Data Fusion is utilized where all available data from indepen-
dent sources (covering a different region, physical attribute, or aspect of an
object) are combined to provide an overall view of the region, attribute, or as-
pect. Competitive Data Fusion paradigm is utilized where data sources provide
independent measurements of the same information about a region, physical
attribute, or aspect of an object. They are competitive in that a fusion system
must decide which sensor’s data most correctly represents the region, attribute or
object. Cooperative Data Fusion (the least researched) is related to the compet-
itive paradigm. However instead of data sources competing, data are combined
such that information can be derived that would be otherwise unattainable from
individual data sources.

There are four data fusion levels (sensor, feature, confidence score, and deci-
sion) in a multi-modal biometric system [5,8]. Raw data represents the richest
source of information (though possibly contaminated), and is fused at the sen-
sor level. Biometric capture modules are responsible for acquisition of raw data,
which can then be processed in a fusion module such that a new single vector (of
integrated raw data) is obtained. An important restriction is that only samples
of the same biometric trait can be used in the fusion process at this level [9].

Fusion at the feature level involves raw data (from each mode) being passed
to corresponding feature extraction modules. Feature extraction requires the
selection of salient features that best represent the entity and provide recognition
accuracy [8]. At this stage, the features relating to each mode remain separate.
Data alignment (to make the features from multiple sources compatible) and
feature selection (to mitigate the ‘curse of dimensionality’ [5]) may be required
prior to fusion. The fusion module then combines the feature vectors from each
mode. The single fused feature vector is then passed to the matching module
for comparison to a registered template1. The output from the matching module
is then passed to the decision module, where the final classification decision is
made. Feature level fusion results in accurate and robust authentication, because
data at this level is closer to raw data—than the subsequent fusion levels—and
maintains more discriminatory information than those levels [3].

Confidence score level fusion is the most commonly researched of all fu-
sion levels in multi-modal biometrics [8,9]. The biometric capture and feature

1 The registered feature vector template must have been processed in the same manner,
and result in the same format, as the query feature vector.
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extraction modules perform their tasks as they would for feature level fusion.
However, the individual feature vectors are passed to corresponding matching
modules for comparison with registered templates. For each mode, comparison
between a query feature vector and its corresponding registered template gen-
erates a confidence score—in the continuous domain (interval [0, 1]). One confi-
dence score is calculated in each matching module, and passed to a single fusion
module where they are combined into a single scalar value in the continuous
domain. This is passed to the decision module where the final classification de-
cision is made. Fusion at this level requires less processing (than the previous
levels) in order to achieve an appropriate level of system performance.

Decision level fusion is the most abstract, where accept/reject decisions—from
multiple data sources—are consolidated into one final classification decision [5,8].
The biometric capture, feature extraction, and matching modules perform their
tasks as they would for confidence score level fusion. The individual confidence
scores are passed to corresponding decision modules, where accept/reject de-
cisions are made for each mode. The multiple decisions are integrated (in the
fusion module) to generate the final classification decision. Fusion at this level is
more scalable than other levels because it requires the least amount of processing
in order to achieve an appropriate level of system performance.

3 Review of Feature Level Data Fusion Research

There has been little research in the area of feature level data fusion where a
cooperative approach has been applied. This review discusses some that have.

Reference [4] used two biometric characteristics (facial and iris recognition)
for their experiment. They performed data fusion at the feature level by con-
catenating the feature sets from both sources. To reduce the high dimensionality
of combined data sets, they proposed the Direct Linear Discriminant Analysis
(DLDA) technique to attain a ‘Reduced Joint Feature Vector’ (RJFV). As the
RJFV consisted of ‘relevant’ feature level data, their methodology achieved the
same goals as a feature selection approach.

Ten samples each from 140 individuals were selected from two facial image
databases. Two iris image databases were utilized; 10 high quality samples each
from 100 individuals, and 10 low quality samples each from 100 individuals.

Best results were achieved when the high quality iris images were fused with
the facial images. From the ROC curves presented by the authors2, a FAR and
a FRR of 0.0 were achieved.

Reference [5] used two biometric characteristics (facial recognition and hand
geometry). A median normalization scheme was used to align the feature vectors.
The sequential forward floating selection technique was employed to obtain a
reduced feature vector.

Their experiment appears to be a combination of feature level and confidence
score level fusion, which can be considered in part a cooperative data fusion
approach. Five facial image samples and 5 hand geometry samples were collected

2 Refer [4], Figure 5.
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from 100 participants. Best results, derived from the authors ROC graph for the
two fused modalities, were a FAR of 0.0001 and a FRR of 0.133.

Reference [6] used two biometric characteristics (facial and fingerprint recog-
nition). A key point descriptor was defined for each minutiae extracted from a
fingerprint image; this was used to align the feature sets corresponding to the
two modalities. The feature sets were concatenated to give the combined feature
vector and three feature reduction strategies were applied.

Five facial images and 5 fingerprint scans were collected from 50 individuals.
The best results—a FAR of 0.0102 and a FRR of 0.0195—were achieved using
the Delauney triangulation classifier, and their ‘3 points in a specific region’
feature reduction strategy.

Reference [7] used two biometric characteristics (facial and palmprint recogni-
tion). Normalization was applied and a distance-based separability value—based
on class membership using a Nearest Neighbour (NN) classifier—was calculated
for each of the normalized data sets. Fusion was performed by concatenating nor-
malized facial data sets with weighted normalized palm data sets. The Nearest
Neighbour classifier was used to classify data by the Euclidean distance between
each feature in the query and registered samples.

Twenty facial images and 20 palmprint images were collected from 119 partic-
ipants. One sample (per participant) was used for training purposes (providing
119 fused training vectors); there were 2,261 (119x19) samples (per participant)
used for testing purposes. Results achieved 90.73% recognition rate4. Though [7]
did not provide values for the typical performance variables, it was of interest
because fused vectors of feature level data were used when testing the fusion
method.

In the next section, we describe our approach where we used feature level data
fusion with a cooperative paradigm.

4 Research Method

The experiment involved the feature level fusion of fingerprint feature and
keystroke dynamics data5, adopting the cooperative approach and using Artifi-
cial Neural Networks (ANNs) for performance classification. Ninety participants
were recruited from the authors’ institution. The recruitment criterion required
that participants typed on a standard computer keyboard on a regular basis,
and could use their right index finger.

As a preliminary to the experiment described in this paper, individual ex-
periments were conducted using keystroke dynamics and fingerprint recognition
data sets [10,11]. Keystroke dynamics data collection involved participants pro-
viding 140 typed samples of a 20-character string. The keystroke duration and

3 Refer [5], Figure 6.
4 As FAR and FRR were not used, direct comparison of results is not possible.
5 Although keystroke dynamics is widely considered a ‘weak behavioural biometric’,
and fingerprint recognition is considered a ‘strong physiological biometric’, the re-
search objective was to demonstrate the viability of the cooperative fusion process.
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digraph latency metrics were extracted from recorded keystroke event time values
(in milliseconds). Normality statistics (normality, kurtosis, skewness coefficients
and standard deviation) were utilized for feature selection, which resulted in a
24 element array of metrics for all 140 samples for each participant [10].

Fingerprint feature data collection involved participants providing 140 scans
of their right index finger. The Verifinger SDK 4.2 Visual C++ Library was uti-
lized to extract minutiae information from each scan. Feature selection involved
choosing 8 minutiae common to a participants 140 samples, and utilizing 6 at-
tributes inherent to each minutia. This resulted in a 52 element array of metrics
for all 140 samples for each participant [11].

Selected features from both data sets were normalized according to the mini-
max method, and written to uniquely named metrics files for each participant.

Subsequent to these initial experiments, a complementary data fusion exper-
iment was conducted utilizing the same data sets [12]. As this approach utilizes
all available data, the complementary fusion process concatenated (appended)
a fingerprint feature sample (of 52 metrics) to a keystroke dynamics sample (of
24 metrics) resulting in 76 metrics per sample. This was performed for all 140
samples for each participant6.

Cooperative data fusion requires feature subset selection applied to the multi-
ple data sources [13]. The premise is that ‘more relevant’ features will provide
improved performance, and incidentally reduce the size of each sample.

Reference [14] proposed a feature subset selection method that accumulates
weights from trained ANNs. The Accumulated Relative Local Gain (ARLG)
sums all weights connected to an input layer node. The ARLGs for each input
layer node are ordered by magnitude, with the largest relating to the most rele-
vant feature and the smallest to the least relevant feature. Thus a subset of the
most relevant features can be determined. Equation 1 presents the method of
calculation [14]:

LGik =
∑
j

|Wij ×Wjk| (1)

where LGik represents the ARLG for each input layer node, Wij are the weight
values connecting the current ith input layer node and its associated hidden layer
nodes, and Wjk are the weight values connecting the current jth hidden layer
node and its associated output layer nodes.

The cooperative data fusion process—to select feature subsets—applied Eqn 1
to the trained ANN weights that resulted from the complementary fusion exper-
iment [12]. Trained ANN weights had a direct correspondence to participants’
complementary fused data files (which were simply concatenated samples of the
data sets from both sources).

The feature subsets selected by the above process were used to extract metrics
from the complementary fused data files7; these were subsequently used as ANN

6 The experimental results for all three experiments are provided in Sect 5 for com-
parison with the results from the current experiment.

7 Data sets are available upon request from the authors.
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inputs in the final analysis procedure, which involved ANN training utilizing a
two layered Multi-Layer Perceptron architecture (with back propagation).

Fifty participants’ metrics data were randomly assigned to the training group,
and the remaining 40 to the non-training group. One ANN was trained for each
training group member.

For each training group member, training data was generated as follows: 30
samples were randomly chosen (and removed) from their metrics file, for the
positive training case; 1 sample was randomly chosen from each of the other
training group members metrics files (1 x 49), for the negative training case. This
resulted in 79 samples for each member’s training file. To assist training, cross
validation data (for each training group member) was obtained by randomly
selecting (and removing) 10 samples from their metrics file8.

For each training group member, testing data was generated as follows: 100
samples (not used for training/validation) were used to test for Type II errors
(false rejection); 100 unused samples from each of the other training group mem-
bers (100 x 49), and 140 samples from each of the non-training group members
(140 x 40), were used to test for Type I errors (false acceptance). This provided
10,600 samples for testing each training group member.

A dedicated ANN was trained for each training group member using their
training data. The weights from each member’s trained ANN were saved and
used as their registered template; this meant a dedicated ANN configuration for
each member. For testing, the 10,600 test samples for that particular individual
were applied to their dedicated ANN and the ANN’s output was used to calculate
the error metrics. The same ANN architecture utilized for training was used as
a pattern classifier for testing purposes.

5 Results and Discussion

Classification for a biometric authentication system involves determining the
likelihood that two samples belong to the same individual [3]. This necessitates
a decision based on the predicted outcome (in this case, ANN output), and
involves the use of a decision threshold applied to the predicted outcome.

The two performance variables used to measure results were the False Accep-
tance Rate (FAR), the ratio of Type I errors to the number of samples available
for testing Type I errors, and the False Rejection Rate (FRR), the ratio of Type
II errors to the number of samples available for testing Type II errors. As in-
dicated in Sect 4, there were 10,500 samples for Type I error testing and 100
samples for Type II error testing for each training group member.

The individual test results demonstrated a FAR of 0.0 for all members. This
meant that no impostor samples (out of 10,500 per participant) were accepted.
Results also demonstrated that only one member registered a non-zero FRR.
That FRR was 0.03, which meant that (for that member only) 3 genuine sam-
ples (out of 100) were incorrectly rejected. The average FAR was 0.0 and the

8 With 40 samples removed from members metrics data and used for training purposes,
100 samples remained per training group member to test for Type II errors.
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average FRR was 0.0006. So no impostor samples (out of 525,000) were incor-
rectly accepted, and there were 3 in 5,000 genuine samples incorrectly rejected.

For comparison, Table 1 shows the average FAR and FRR figures for the
previous experiments: Keystroke Dynamics only [10], Fingerprint Recognition
only [11], Complementary Data Fusion approach [12]. Also included are the
results for the Cooperative Data Fusion approach—i.e. the current experiment.

Table 1. Summary results for previous and current experiment

Experimental Approach FAR FRR

Keystroke Dynamics only 0.0277 0.0862
Fingerprint Recognition only 0.0 0.0022
Complementary Data Fusion 0.0 0.0004
Cooperative Data Fusion 0.0 0.0006

In relation to the findings presented in Sect 3, the current experiment returned
FAR results comparable to [4], and slightly better than the other reviewed works.
Reference [4] used 1,400 facial and 2,000 iris image samples, but did not specify
how many samples were used to test Type I errors, whereas the current experi-
ment used 10,500 samples per participant to test Type I errors.

The FRR results were comparable to the reviewed works, with [4] achieving
only slightly better results. Again, the authors did not specify the number of
samples used to test Type II errors; the current experiment used 100 samples
per participant to test Type II errors.

6 Conclusion

Section 5 demonstrated that the cooperative feature level fusion (a less re-
searched approach) of keystroke dynamics and fingerprint recognition data
achieved results better than, or comparable to, the studies discussed in Sect
3. Feature subset selection was applied to data from both sources prior to fusion.

As demonstrated in Table 1, the cooperative data fusion approach attained
improved outcomes compared to the keystroke dynamics experiment [10] and the
fingerprint recognition experiment [11]. This approach also achieved an equiva-
lent average FAR to the complementary data fusion approach [12], with a 0.0002
difference in the average FRR.

The experimental method for this study involved more participants than many
published studies, and there were generally many more samples provided by
participants in the current study.

Although cooperative feature level fusion has not been the subject of extensive
past research, our experiment performed extremely well. The choice to utilize
weights from previously trained ANNs for feature subset selection was purely to
demonstrate the viability of the cooperative data fusion approach; other available
feature subset selection methods may perform as well.
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Abstract. Imbalanced data sets are common in real life and can have a negative 
effect on classifier performance. We propose using fuzzy output error (FOE) as 
an alternative performance function to mean square error (MSE) for training 
feed forward neural networks to overcome this problem. The imbalanced data 
sets we use are eye gaze data recorded from reading and answering a tutorial 
and quiz. The goal is to predict the quiz scores for each tutorial page. We show 
that the use of FOE as the performance function for training neural networks 
provides significantly better classification of eye movements to reading com-
prehension scores. A neural network with three hidden layers of neurons gave 
the best classification results especially when FOE was used as the performance 
function for training. In these cases, upwards of a 19% reduction in misclassifi-
cation was achieved compared to using MSE as the performance function. 

Keywords: Eye tracking, reading comprehension prediction, fuzzy output error 
(FOE), imbalanced data sets, performance function. 

1 Introduction 

In this analysis we look at the practical application of predicting reading comprehen-
sion based on eye gaze recorded from participants while they read and completed a 
quiz. We have found no published papers on predicting reading comprehension using 
artificial neural networks. Current applications of eye tracking in reading analysis only 
take into account basic assessment of reading behavior such as using fixation time to 
predict when a user pauses on a word.  We intend to explore the use of more complex 
analysis of eye gaze to make more complex prediction about the users reading beha-
vior. We do this by investigating the use of artificial neural networks to predict these 
complex behaviors. However, this application poses us with several obstacles namely 
restricted size in the data sets that are highly imbalanced. We explore a method for 
improving classification performance of artificial neural networks (ANN) in this scena-
rio. We investigate the use of fuzzy output error (FOE) [1] as the performance function 
for training the feed forward neural networks using back propagation training.  
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We assess whether the use of this performance measure is better suited to this type of 
problem compared to mean square error (MSE).  

The intended use of reading comprehension prediction from eye gaze is in the de-
sign of adaptive online learning environments that use eye gaze to predict user read-
ing behavior. 

2 Background 

2.1 Eye Movements during Reading 

Eye movements can be broadly characterized as fixations and saccades. A fixation is 
where the eye remains relatively still to take in visual information. A saccade is a 
rapid movement that transports the eye to another fixation. Generally when reading 
English fixation duration is around 200-300 milliseconds, with a range of 100-500 
milliseconds and saccadic movement is between 1 and 15 characters with an average 
of 7-9 characters [2]. The majority of saccades are to transport the eye forward in the 
text when reading English, however, a proficient reader exhibits backward saccades to 
previously read words or lines about 10-15% of the time [2]. Backward saccades are 
termed regressions. Long regressions occur due to comprehension difficulties, as the 
reader tends to send their eyes back to the part of the text that caused the difficulty 
[2]. Comprehension of the text can have significant effects on the eye movements 
observed [2,3]. Eye gaze patterns can be used to differentiate when individuals are 
reading different types of content [4]. In this application both support vector machines 
(SVM) and ANN were used to classify eye movement measures as either relevant or 
irrelevant text for answering a set of questions. ANN’s have also been used to predict 
item difficulty in multiple choice reading comprehension tests [5]. Their analysis took 
into account the text structure, propositional analysis of the text, and the cognitive 
demand of the text, but not eye gaze.  

2.2 Performance Functions for Imbalanced Data Sets 

Dealing with imbalanced data sets is not a new problem. Performance functions for 
dealing with imbalance in data sets include increasing the weight-updating for the 
minority class and decreasing it for the majority class [6,7]. This error function was 
designed specifically for use in the back-propagation algorithm for training feed for-
ward artificial neural networks. Many other methods have been used to overcome the 
problem of imbalanced data sets such as using under-sampling, over-sampling, and 
other forms of sampling to reduce the imbalance. An example of a cost sensitive 
learning algorithm is MetaCost [8] which is based on relabelling of training data with 
their estimated minimal cost classes. Another way of achieving cost sensitivity is to 
change the algorithm used to train the classifier to utilize a cost matrix, such as with 
neural networks [9,10].  
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2.3 Fuzzy Output Error (FOE) 

Fuzzy Output Error (FOE) [1] is an extension of Fuzzy Classification Error (FYCLE) 
and Sum of Fuzzy Classification Error (SYCLE) [11]. However, FOE uses a fuzzy 
membership function to measure the difference between the predicted and the target 
values. Instead of mean square error (MSE), FOE describes the error in a fuzzy way 
and then sums the fuzzy errors to get the total error. FOE is defined as follows for a 
data set of n records with matching pairs of target and predicted values for each 
record 1 to n: ܧܱܨ ൌ ∑ 1 െ ො௜ݕሺߤ െ ௜ሻ௡௜ୀଵݕ ∋ ݊ ݁ݎ݄݁ݓ  Գ and ߤሺሻ is the membership 
function of a desired classification and its complement describes the error.  The 
membership function is termed the FOE Membership Function, which we will refer to 
as FMF subsequently.  

The FMF is used to describe the output of a fuzzy classification (or a regression) in 
regards to how close that output is to the target output. The membership function itself 
represents the fuzzy set for “good classification”. The value of ߤሺݔሻ gives the degree 
of membership of the error in the good classification fuzzy set and consequently the 
complement of ߤሺݔሻ  gives the error measure. In the case of perfect classification ݕො െ ݕ ൌ 0  so the membership value is ߤሺݕො െ ሻݕ ൌ 1. Conversely, when ݕො െ ݕ ൌ 1  
the classification is completely wrong so the membership value is ߤሺݕො െ ሻݕ ൌ 0. FOE 
can represent crisp classification, i.e. the special case of ߤሺݔሻ ∈ ሼ1,0ሽ. The more ߤሺݔሻ 
tends toward 0 the higher the error, since the difference is larger. FMFs can be created 
in any shape in order to describe the output of a function. It is important to note that  
the difference between target and predicted values is not taken as the absolute value of 
the difference (i.e. |ݕො െ  Although this would make the FMF simpler as only one .(|ݕ
side of a piecewise linear function would be needed, it provides more flexibility in 
describing the types of error. For example, false negatives may be considered a much 
worse error than false positives when screening for diseases.  

3 Method 

A user study was conducted to collect participants’ eye gaze as they read a tutorial 
and completed a quiz based on the tutorial’s content. The tutorial and quiz were 
coursework from a first year computer science course at the Australian National Uni-
versity. The tutorial and quiz were presented to participants in two formats. The first 
format (denoted by A) involved presentation of the tutorial content slide followed by 
questions and the content slide. As there are 9 topics there are 18 slides in total dis-
played in this format. The second format (B) involved presentation of the questions 
and the content slide and so there are 9 slides in total displayed in this format. Each of 
the 9 slides is 400 words long with an average Flesch Kincaid Grade Level1 of 12. All 
participants were university students and therefore had at least high school level edu-
cation indicating that the readability of the slides should not be above their reading 

                                                           
1  Flesch Kincaid Grade Level is an indication of the minimum level of education required to 

read and comprehend a piece of text. The Flesch Kincaid readability test is designed for con-
temporary English and United States educational system grading. 
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abilities. Participants answered two questions to measure their comprehension (18 
questions in total); one question is multiple-choice and the other is cloze (fill-in-the-
blanks). The two types of questions are to assess different forms of comprehension. 
The scores that the participants can receive for each question are 0, 0.5 and 1. Once 
the participants finished the quiz and before being shown their results, participants 
were asked to subjectively rate their overall comprehension on a scale of 1 to 10 with 
10 being complete understanding.  

Format A was presented to 15 participants (6 female, 9 male) with an average age 
of 22.3 years. Of these participants, 7 stated that their degree or major was related to 
computer science or information technology. English was not the first language for 4 
participants. Format B was presented to 8 participants (1 female, 7 males), with an 
average age of 21.8 years. All participants stated that they had a major or degree re-
lated to computer science. English was not the first language for 3 participants. 

The study was displayed on a 1280x1024 pixel monitor. Eye gaze data was record-
ed at 60Hz using Seeing Machines FaceLAB 5 infrared cameras mounted at the base 
of the monitor. The study involved a 9-point calibration sequence. EyeWorks Analyze 
was used to pre-process the gaze point data to give fixation points. The parameters 
used for this were a minimum duration of 0.06 seconds and a threshold of 5 pixels. 

3.1 FMF Shapes Used to Calculate FOE 

In this analysis we investigated one FMF shape used for calculating FOE. This FMF 
(Fig. 1) is designed to be a model of FYCLE.  

 

Fig. 1. FMF used to calculate FOE 

3.2 Data Set Information  

The raw eye gaze data consists of x,y-coordinates recorded at equal time samples 
(60Hz). Beyond fixation and saccade identification many other eye movement meas-
ures can be derived that reveal much about the participants' reading behavior such as; 
maximum fixation duration (seconds), average fixation duration (seconds), total fixa-
tion duration (seconds), and regression ratio. The number of inputs varies depending 
on the presentation method as the inputs are generated from the pages that the partici-
pant viewed. This means that in format A as the participants view the tutorial content 
page and then the questions and content page, the inputs are generated from both pag-
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es for the scores obtained from the questions and content page. Since there is a large 
difference in the ranges for each of the inputs we normalized the inputs to a range of 
[0,1]. The two outputs for all data sets are the multiple choice question score and 
cloze question score. The multiple-choice score can take values of 0 or 1 and the 
cloze score can take the values 0, 0.5 or 1. This is therefore a classification problem; a 
binary classification task for the multiple-choice score and a 3-class classification task 
for the cloze score. However, as shown in Table 1 the ratio of the number of data 
instances in each class for each problem is considerably imbalanced for each output.  

Table 1. Properties of each data set 

Properties of data set Format A Format B 
Number of Inputs 49 26 
Size 135 72 
Multiple choice score class imbalance  
    Percentages in classes 1/0 

109/26 
81%/19% 

59/13 
82%/18% 

Cloze Score class imbalance  
    Percentages in classes 1/0.5/0 

124/11/0 
92%/8%/0% 

69/1/2 
96%/1%/3% 

4 Results and Discussion 

Several ANN architectures were trained using the scaled conjugate gradient algorithm 
[12] and FOE used as the performance function. As a comparison the same ANN 
architectures were trained using MSE as the performance function and the Leven-
berg–Marquardt algorithm [13]. The number of inputs for each presentation format is 
outlined in Table 1 and all networks have 2 outputs. From initial testing it was found 
that a single layer network performed poorly with average misclassification rate 
(MCR) around the 0.5 for all both FOE and MSE.  We have chosen two and three 
layer topologies to trial for the analysis. The following topologies were tested: [10 5], 
[20 10], [30 15], [50 25], [12 6 3], [16 8 4], [20 10 5], [30 20 10], and [60 30 15]. The 
notation [X Y Z] indicates neurons in the first hidden layer to the third hidden layer. 
As a baseline comparison MSE is used as one of the performance functions. Reported 
are the average misclassification rate (MCR) values from 10-fold cross validation 
with standard deviations, summarized in Table 2 and Table 3.  

For format A, on average the MCR produced from using FOE as the performance 
function for training the neural networks to predict the question scores is lower than 
that from using MSE as the performance function. However, the results are not statis-
tically different. However, there is a statistically significantly difference between the 
mean MCR values from 10-fold cross validation for each topology for format B 
(p=0.02<0.05, 2-sided, paired Student's t-test). Therefore, on average the MCR pro-
duced from using FOE, as the performance function for training the neural networks 
to predict the question scores is lower than that from using MSE as the performance 
function. 
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Table 2. Comparison of MCR from using FOE and MSE as the performance function for 
training ANNs to classify the Format A data set 

Topology 

MCR 
FOE Result  MSE Result 

Difference 
in MCR 

% Reduc-
tion in 
MCR 

Mean St. Dev. Mean St. Dev. 

[10 5] 0.32 0.29 0.25 0.10 -0.06 -25.3 
[20 10] 0.42 0.28 0.35 0.09 -0.07 -19.8 
[30 15] 0.33 0.16 0.38 0.15 0.04 11.9 
[50 25] 0.28 0.06 0.33 0.12 0.05 14.2 
[12 6 3] 0.23 0.25 0.23 0.14 0.00 -0.4 
[16 8 4] 0.20 0.08 0.27 0.07 0.07 24.5 
[20 10 5] 0.21 0.06 0.26 0.15 0.05 19.2 
[30 20 10] 0.24 0.05 0.31 0.11 0.07 22.8 
[60 30 15] 0.25 0.08 0.39 0.13 0.13 34.8 
Average 0.28 0.15 0.31 0.12 0.03 9.11 

Table 3. Comparison of MCR from using FOE and MSE as the performance function for 
training ANNs to classify the Format B data set  

Topology 

MCR 
FOE Result  MSE Result 

Difference 
in MCR 

% Reduc-
tion in 
MCR 

Mean St. Dev. Mean St. Dev. 

[10 5] 0.30 0.26 0.29 0.14 0.00 -1.5 
[20 10] 0.27 0.15 0.37 0.15 0.10 26.7 
[30 15] 0.33 0.21 0.46 0.13 0.13 29.1 
[50 25] 0.52 0.22 0.47 0.18 -0.04 -9.3 
[12 6 3] 0.16 0.07 0.24 0.13 0.07 31.1 
[16 8 4] 0.16 0.06 0.30 0.14 0.14 46.4 
[20 10 5] 0.16 0.07 0.24 0.10 0.07 30.6 
[30 20 10] 0.26 0.11 0.39 0.15 0.13 32.6 
[60 30 15] 0.35 0.22 0.36 0.10 0.01 2.5 
Average 0.28 0.15 0.35 0.14 0.07 20.91 

 
Overall, the results reflect that fact that the data sets are quite hard to classify. This 

could be due to several factors: class imbalance, small data sets, and too many feature 
inputs. However, these obstacles can be common in real world problems so it is im-
perative that such obstacles can be overcome. FOE has been shown to be a flexible 
performance function that can be tailored specifically for each problem. By defining 
different error membership functions (the FMF used) for FOE the outcome of training 
ANNs to classify the eye movement measures can be improved compared to using 
MSE. This is shown for both data sets where on average the use of FOE as the per-
formance function for training the neural networks produces neural networks that are 
better as predicting the multiple choice and cloze scores.  



592 L. Copeland, T. Gedeon, and S. Mendis 

Notably, for both data sets the topologies that generate the best predictions are [16 
8 4], [20 10 5], and [30 20 10]. This reiterates the fact that the data set is hard to clas-
sify and contains complex relationships, as three layers of hidden neurons are needed 
to provide decent classification results. Furthermore, using FOE as the performance 
function for training generates upwards of a 19% reduction in misclassification com-
pared to using MSE. Particularly, when using the [16 8 4] topology and FOE as the 
performance function for training creates a neural network that produces on average 
38% and 46% reduction in misclassification, for formats A and B respectively, com-
pared with using MSE.  

5 Conclusions and Further Work 

We have shown that the use of FOE as a performance function for training feed for-
ward neural networks provides better classification of results than using MSE when 
the data is imbalanced. The use of FOE as the performance function for training neur-
al networks provides significantly better classification of eye movements than reading 
comprehension scores. We found that the eye movement data is quite complex so it is 
optimal to use a neural network with three hidden layers of neurons. In these cases the 
use of FOE as the performance function for training gave upwards of a 19% reduction 
in misclassification compared to using MSE as the performance function, with a max-
imum of 46% reduction in misclassification, which is a significant improvement in 
classification. These are promising results and show that when dealing with a small 
data set with a large imbalance in classes MSE is not the optimal performance func-
tion to use for training neural networks. Further work will be needed to generalize to 
other data sets as well as with other classifiers. Additionally, we intend to extend this 
analysis to compare to existing techniques for handling imbalanced data sets such 
sampling methods and cost-sensitive learning. 

One of the advantages of using FOE is that it is a flexible error function that can be 
tailored to the data sets and problem. Specifying the shape of the FMF used to calcu-
late FOE does this. However, there is no simple way of constructing an FMF. In this 
analysis we only investigated one FMF. Other FMF shapes should be tested such as 
those described in [14]. However, a beneficial approach would be to learn the most 
appropriate FMF shape from the data set. An initial investigation on how to do this 
was also done in previous work but was restricted to looking at fuzzy signatures [14]. 
An area of further exploration is how to apply the learning of FMF shape when using 
other classifiers such as neural networks.  

The application of predicting reading comprehension from eye gaze is in adaptive 
online learning environments. Prediction of comprehension would allow a system to 
adaptively change to a student’s knowledge level making the learning process more 
streamlined and targeted toward their capabilities. Much is left to do in this respect. A 
primary area of interest is in predicting reading comprehension without questions. In 
both scenarios here the participants had access to the questions and the tutorial con-
tent at the same time so that they could cross-reference the text and questions to find 
the most appropriate answer. In a scenario where the student is shown text and no 
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comprehension questions it would be beneficial to be able to predict their comprehen-
sion without needing to interrupt them with comprehension questions.  
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Abstract. Adaptive tracking-by-detection methods are widely used in computer 
vision for tracking objects. Despite these methods achieve promising results, 
deformable targets and partial occlusions continue to represent key problem in 
visual tracking. In this paper, we propose a part-based visual tracking method. 
First, we take advantage of the existing online learning appearance model to 
learning the appearance of each part. Second, we propose a novel part initializa-
tion method and an affine invariant structural constrain between these parts. 
Third, a tracking model based on the appearance of each part and the spatial re-
lationship between the parts is proposed. We make use of an optimization algo-
rithm to find the best parts during tracking, update the appearance model and  
the structural constraints between  parts simultaneously. In this paper we show 
our method has many advantages over the pure appearance learning based 
tracking model. Our method can effective solve the partial occlusion problem, 
and relieve the drift problems. What’s more, our method achieves great result 
while tracking the target of which geometric appearance changes drastically 
over time. 

Keywords: tracking, appearance model, structural constrains, part-based. 

1 Introduction 

Object tracking has many practical applications and has long been studied in comput-
er vision. An approach to tracking which has become particularly popular recently is 
tracking-by-detection [1, 2, 3, 4, 7, 11]. It has been shown that an adaptive appearance 
model, which updating the model during the tracking process, is the key to good per-
formance.  

These methods train a model to separate the object from the background via a dis-
criminative classifier can often achieve superior results. These methods often don’t 
consider the motion model and have been termed “tracking by detection”.  For ex-
ample, Avidan[4] used a Support Vector Machine as an off-line binary classifier to 
distinguish target from background. Helmut Grabner[3]  used an on-line boosting 
method to choose discriminating features and classify the target and background. 
Babenko et al.[5]employ an online Multiple Instance Learning based appearance 
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model to resolve the sample ambiguity problem. All of these method delineate the 
tracked object by a single regular bounding box(e.g., a rectangular or circular win-
dow), which renders them sensitive to partial occlusions and shape deformations. 

Deformable part-based models have been successfully applied to object detection and 
object recognition on numerous occasions. Part-based appearance models [6, 8, 10] have 
been shown to have favourable properties such as robustness to partial occlusions and 
articulation. In those cases, highly variable objects are represented using mixtures of 
deformable part-based models.  But, some difficulties in extending part-based appear-
ance models to visual tracking are still remain to solve. Firstly, it is hard to decide which 
parts are the “good” parts, which means these parts can well distinguish the object from 
background. Secondly, because the appearance model needs to be updated online, we 
have to adjust parts dynamically, reducing or adding parts according to the part deforma-
tion. Thirdly, when encountering partial occlusions, these parts need to be updating dy-
namically. 

In this paper, we proposed a novel tracking method, which is based on learning the 
appearance of parts of the object and the spatial relationship between these parts. Our 
method adopts an effective appearance model to learning the appearance of each part. 
At the same time, we propose a novel structure description method to show spatial 
relationships between the parts.  Our final tracking model can well handle the partial 
occasion and strong deformation problem. 

In summary, our main contributions are: (1) we propose a novel structure descrip-
tion method to show spatial relationships between the parts (2) we propose a tracking 
model which makes full use of the appearance of each part and the spatial relation-
ships between these parts. The appearance of each part and the structural constrains 
update online. We discuss the appearance model in section 2.Section 3 introduce our 
new tracking model, section 4 presents our experimental results, and section 5 con-
cludes the paper. 

2 Appearance Model 

In this paper, we choose the compressive based features extracted appearance model 
[1] as our part learning model. The appearance model is generative as the object can 
be well represented based on the features extracted in the compressive domain. It is 
also discriminative because it uses these features to separate the target from the sur-
rounding background via a naive Bayes classifier. In this appearance model, features 
are selected by an information-preserving and non-adaptive dimensionality reduction 
from the multi-scale image feature space based on compressive sensing theories. 

This method assumes that the tracking window in the first frame has been deter-
mined. At each frame, sample some positive samples near the current target location 
and negative samples far away from the object center to update the classifier. To pre-
dict the object location in the next frame, drawing some samples around the current 
target location and determine the one with the maximal classification score. The fig1 
illustrates the appearance model. 
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The appearance model is efficient and robust, but its tracking box is kept un-
changed. We use the method as our part appearance model and propose the structural 
constrain among these parts, which make our method is robust to deformable targets. 

 

Fig. 1. The illustration of the compressive based features extracted appearance model .The blue 
arrows illustrate that one of nonzero entries of one row of R sensing an element in x is equiva-
lent to a rectangle filter convolving the intensity at a fixed position of an input image. 

3 Parts Based Tracking 

3.1 Part Initialization 

Our algorithm is based on part learning. The initial position of parts has to be chosen 
so as to be good for image representation. It is obvious that the part which contains   
affluent target character information should be chosen. We propose a novel method to 
select the effective parts. Firstly, we use the FAST algorithm to find key points. 
FAST(features from accelerated segment test) is an efficient key point detecting algo-
rithm. We assume that the area where these key points aggregating contain abundant 
information and should be regard as one part. Therefore, we use the K-means  
clustering algorithm to classify these key points into several categories. For each cat-
egory, we exclude the outlier points and use a rectangle to encompass these points. 
These rectangles are the parts we chosen. Fig.2 show the illustration of initialization 
of parts. In experiment, we found that 3 or 4 parts usually is a good option. 

 

Fig. 2. Example of initialization of parts in David seq. (b) displays key points detected by the 
FAST algorithm. (c) shows the four initialized parts. 



 Part-Based Tracking with Appearance Learning and Structural Constrains 597 

3.2 Structure Description 

Most patch-based algorithms use the distance between patch center and target center 
as structure description. The description is rotation-invariant. However, it cannot res-
ist scale variance. In this paper, we propose a new method to descript the structure 
constrain as shown in Fig3. The position of each part is defined by

1 1( , , ..., , , , ..., )c m a m
t t t t t t tX X X X D D D= where c

tX denotes the center position of an 

object, i
tX indicates the center position of the ith local part, we define the spatial 

relationship between these parts. 

 1

/ ( / ), 1,2,...,
n

i i j
j

D R R n i n
=

= =
 

(1) 

Where iR  is the distance between the center of ith part and target center. The de-

scription is affine invariant, Eqn.(2)proves it can resist scale variance. 

 
1 1 1

/ ( / ) / ( / ) / ( / ) /
n n n

i j i j i j i avr
j j j

aR aR n aR a R n R R n R R
= = =

= = =    (2) 

These Distances describe the structural constraints between these parts. When the 
target suffers rotating, scaling, translation and changes in view angle, these distances 
should stay the same.  

 

Fig. 3. Description of the structure of the target.(a) the initial part (b) illustrates the structure 
description of a target. 

3.3 Tracking 

Our tracking algorithm is based on the appearance model of each part and the struc-
tural constraints between these parts. For each part, we train the appearance model to 
online learning the appearance of each part. Assume four parts,

1 2 3 4, , ,P P P P , we con-

struct four trackers, 
1 2 3 4, , ,T T T T  based on our appearance model. During tracking, 

each tracker can get some candidate rectangles of each part, 1,..., n
i iL L with scores 

1,..., n
i iS S . These scores indicate the possibility of the rectangle to be the correspond-

ing part. The higher score a rectangle gets, the higher possibility the rectangle can be 
the corresponding target. Since each contains partial information of the target, it may 
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drift easily. We use the structural constrains between these parts to solve that prob-
lem, which lead to our final tracking model. This can be expressed by the following 
optimization problem. 

 
1 1

arg max ( )
n n

i i
i i

w f pλ
= =

+   (3) 

While iw represents the appearance similarity of each parts and ( )if p  represents 

the structure term among each part, λ control the relative weight between the appear-
ance term and structure term. To solve the optimization problem, we can get the ap-
pearance score of each part through our appearance model, but the structure model is 
hard to determine. We don’t know the center of our tracking object, which should be 
determined by the parts. At the same time, the location of each part is still unknown. 
Since the problem is unsolvable, we have to find the approximate solution. We con-
sider the fact that the variance between two serial frames in video is relative small. 
Thus the target is impossible to change drastically. We use the template matching 
method to roughly locate the object and get the center of the object. Then we can 
solve the Eq3 to precise positioning the location of each part. Finally, we use the min-
imum enclosing rectangle method to get the final tracking result. Update the appear-
ance model of each part and the structural constrains between these parts as well. 

In all, tracking procedure mainly includes three parts: (a) Using the appearance 
model to locate every candidate parts and get the similarity. (b) Template matching 
method to get the center. (c) Optimizing the Eq.2 to precisely locate each part. And 
finally, we use these parts to get the position of the target. The main steps of our algo-
rithm are summarized in Algorithm1. 

 

Algorithm 1. Part-based learning and structural constrains tracking 
Input: ith video frame, the structural constrain of object in previous frame 

  1.  Use the each appearance model of part (
1 2 3 4, , ,P P P P ) to sample rectangles, 

and    Calculate the likelihood score of these rectangles ( 1,..., 1,..., 1,..., 1,...,
1 2 3 4, , ,n n n nW W W W

). 
2.  Maximize the equation 3 to find the best parts ( 

1 2 3 4, , ,P P P P ) . 

3.  Update the appearance model of each part and the spatial relationship between 
these parts. 

4.  Get the final tracking result through the location of each part. 

Output: Tracking location Lt  and the structural constrain.  

3.4 Discussion 

Our tracking algorithm mainly has two advantages over some other algorithms. 
Firstly, it can well handle the situation that the target suffers dramatic deformation. 
For many tracking methods based on appearance learning, when the target or the 
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background changes greatly, the tracking result may contain background information 
which may lead to the model drifting gradual. For our algorithm, due to the fact that 
each part contains the partial information of target object, and the structural term ex-
press the global information of the target. When the appearance of the target changes 
dramatically, each part can find the corresponding part. At the same time, because the 
structure constrain, these parts are unlikely to drift. As shown in Fig4, our tracking 
algorithm perform well on the ice skater video. 

 

Fig. 4. Tracking result of ice skater 

Another big advantage of our algorithm is that it can well handle the partial Occlu-
sion problem. Each part is learned by our appearance model, and we can get some 
candidate rectangles with corresponding scores. When a part is occluded while other 
parts not, we can know this happen due to the fact that the average score of this part is 
much less than the other parts get. So we can dynamically reduce the learning rate of 
occluded part.Fig4. 

 

Fig. 5. (a)The target  (b) The face is partial occupied by a book. In our algorithm, we can 
detect the yellow rectangle and the purple rectangle is occupied by comparing the average 
scores they get. 

4 Experiment 

In experiments, we will verify the performance of our algorithm. Development envi-
ronment of our algorithm is Visual Studio 2010 and Intel OpenCV library on Intel 
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Core(TM)2 Duo CPU E7500 and 3.00GB RAM. We evaluate our tracking algorithm 
with the online AdaBoost method and the compressive tracking algorithm on 4 chal-
lenging sequences.  

For the David indoor sequence shown in Fig 6(1), the illumination and pose of the 
object both change gradually. Our method performs well but the OAB method failed 
and the CT approach can’t locate accurately. For the Singer sequence shown in Fig 
6(2) the illumination and the scale changes drastically, the proposed tracker is robust 
to scale and illumination change. Our method has the structural constrain term, so it 
can well handle this situation. For Fig 6(3), the pose of the object changes drastically, 
our method performs well while the other methods fail to track. For Fig 6(4), the 
background and the object both change drastically, our method achieved great result 
while the other method failed. Fig5 has demonstrated our method can well handle the 
partial occlusion well. Our method is very efficient, which runs at 40 frames per 
second (FPS) on our development environment. 

 

Fig. 6. Screenshots of some sampled tracking results 
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5 Conclusions 

In this paper, we presented a novel approach to tracking based on part learning and 
structural constrains between these parts. Our formulation generalizes previous me-
thods by combining the appearance learning model and the spatial relationships 
among parts. The appearance of parts and their spatial relationship is updating online. 
In contrast to other based on appearance learning model, our algorithm can well han-
dle large variation in pose. Our approach models an object as a set of parts, each parts 
is trained and updated individually using the compressive based features extracted 
appearance model. Our algorithm can well solve the partial occlusion problem via the 
parts learning method. The Structural constraints between parts are rotation-invariant. 
So our approach can well handle the rotation and scale variation problem.  When the 
object is very small or the resolution of target is very low, each part contains little 
information and may drift easily. So our approach does a relatively poor job on that 
situation.  
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Abstract. The main theme is to show that a one-hidden-layer neural
network, which has learned a Bayesian discriminant function, can be used
for estimating hidden Markov chains. The crucial point of the algorithm
is the use of the logistic function as the activation of the output unit
of the network. The network learns a single discriminant function, but
converts it to the individual discriminant functions at all the steps.

1 Introduction

We prove that a neural network, which has learned a Bayesian discriminant func-
tion, can be used for estimating a hidden Markov chain. The purpose is not to
assert that the method substitutes the traditional methods of estimating hidden
Markov chains but to show a neural network has this capability. Rather it is to
show that the network can realize the well-known forward recursive equation.

The earlier works have dealt with neural networks which can learn Bayesian
discriminant functions [3-9]. They are characterized by the logistic activation
function of the output units. The activation function is used to obtain the logit
transform of the output of the networks. In this article, the posterior probabilities
of the hidden states are individually obtained by means of the network.

This paper treats the forward recursive algorithm of estimating two-state
hidden Markov chains. Mathematical back ground of the algorithm can be seen
in [2] and [10]. Conversion of the algorithm to the backward one and extension
to the interpolation algorithm are its corollaries.

The network learns a Bayesian discriminant function, where the prior proba-
bilities are the equilibrium probabilities of the states. Hence, the Markov chain
can be used as a teacher sequence without modification. When the network is
used for estimating a hidden Markov chain, the individual prior probabilities
depend on the posterior probabilities of the previous state. Hence, the network
is equipped with a module having a memory node.

C.K. Loo et al. (Eds.): ICONIP 2014, Part I, LNCS 8834, pp. 602–609, 2014.
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2 Use of Bayesian Discriminant Functions

Let x ∈ Rd be the observables, let S = {s1, s2} be the hidden states and let
{(x(t), s(t))}Tt=1 ⊂ Rd×S be a segment of the Markov chain. We suppose that the
Markov chain is irreducible and temporarily homogeneous. Hence, it is ergodic.
Let {π1, π2} be the equilibrium distribution of the states, and let pij , i, j = 1, 2
be the transition probabilities: pij = Pr(s(t) = sj |s(t−1) = si). Then,

π1 =
p21

p12 + p21
, π2 =

p12
p12 + p21

. (1)

Denote the state-conditional probability distributions by p(x|si), i = 1, 2 and set
p(x) = π1p(x|s1) + π2p(x|s2). Then, by the Bayesian relation we have

P (si|x) = P (s1|x)
P (s1|x) + P (s2|x) =

π1p(x|s1)
π1p(x|s1) + π2p(x|s2) . (2)

For convenience, we set ψi(x) = P (si|x), i = 1, 2, (ψ2(x) = 1 − ψ1(x)) and
sometimes write

ψ(x) = ψ1(x). (3)

Now let ψ
(t−1)
i (x) be the posterior probabilities of the state si at t− 1. Then,

the prior probabilities at t are

π
(t)
i = ψ

(t−1)
1 (x(t−1))p1i + ψ

(t−1)
2 (x(t−1))p2i, i = 1, 2. (4)

With π
(t)
i , i = 1, 2, the posterior probabilities of the state si at t are

ψ
(t)
i (x) =

π
(t)
i p(x|s1)

π
(t)
1 p(x|s1) + π

(t)
2 p(x|s2)

. (5)

As before, we sometimes write

ψ(t)(x) = ψ
(t)
1 (x). (6)

Let σ be the logistic function: σ(t) = (1 + e−t)−1. Then, we have

ψ(x) = σ(log
π1
π2

+ log
p(x|s1)
p(x|s2) ), i = 1, 2, (7)

and

ψ(t)(x) = σ(log
π
(t)
1

π
(t)
2

+ log
p(x|s1)
p(x|s2) ), i = 1, 2. (8)

Hence,
ψ(t)(x) = σ(σ−1(ψ(x)) + C(t)), (9)

where

C(t) = log
π
(t)
1

π
(t)
2

− log
π1
π2
. (10)
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Set

Q(x) = log
π1
π2

+ log
p(x|s1)
p(x|s2) and Q(t)(x) = log

π
(t)
1

π
(t)
2

+ log
p(x|s1)
p(x|s2) . (11)

Then, ψ(t) = σ(Q) and ψ̂(t) = σ(Q̂). Since σ is monotone, ψ(t), ψ̂(t), Q and Q̂
are all Bayesian discriminant functions [1].

When training with the teacher sequence is completed, the output of the
neural network is to approximate ψ(x). We denote the approximation by ψ̂(x).

Hence, the inner potential of the output unit is σ−1(ψ̂(x)). The estimation Ĉ(t)

of C(t) can be obtained recursively where πi and π
(t)
i , i = 1, 2, are replaced by

their estimations π̂i, π̂
(t)
i , i, j = 1, 2.

Consequently, the estimated Bayesian discriminant function ψ̂(t)(x) at t can
be obtained simply by shifting the inner potential of the output unit of the
trained network by the constant Ĉ(t) if the activation function of the output
unit is σ.

3 Training of the Neural Network

Let ξ(x, s) be a function on Rd × S, and let E[ξ(x, ·)|x] and V [ξ(x, ·)|x] be the
conditional expectation and variance of ξ(x, s) respectively. Let F (x,w) be the
output of the neural network, where w is the connection weight vector. Then,
we have a proposition:

Proposition 1. Let

E(w) =
∫
Rd

∑
i=1,2

(F (x,w) − ξ(x, si))
2πip(x|si)dx. (12)

Then,

E(w) =
∫
Rd

(F (x,w) − E[ξ(x, ·)|x])2p(x)dx

+

∫
Rd

V [ξ(x, ·)|x]p(x)dx. (13)

Since this is a slight modification of the proposition in [13], we omit the proof.
It is easy to see that if ξ(x, s1) = 1 and ξ(x, s2) = 0, E[ξ)(x, ·)|x] = ψ(x). Hence,
when E(w) is minimized, the output F (x,w) is expected to approximate ψ(x).

Accordingly, training of the network is carried out by minimizing

En(w) = 1

n

T∑
t=1

(F (x(t), w) − ξ(x(t), s(t)))2, (14)

where {(x(t), s(t))}Tt=1 is the teacher sequence. While training the Markov prop-
erty of the chain is ignored. This algorithm of training is often used [3-11,13].
The approximation attained by this method is approximately in the sense of
L2(Rd, p), p(x) =

∑
i=1,2 πip(x|si) [4], because the probability distribution of

the observables x is p(x).
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4 Construction of a Neural Network

To show that the algorithm works efficiently, we present an example of simu-
lation. Though the simulation can be with any kind of state-conditional prob-
abilities as far as the network can approximate the discriminant functions, we
suppose that they are the normal distributions:

p(x|si) = 1√
(2π)d|Σi|

e−
1
2{(x−μi)

tΣ−1
i (x−μi)}, i = 1, 2, (15)

where μi are the mean vectors and Σi are the covariance matrices. For simplicity,
let the latter be non-degenerate. Accordingly, the Q defined by (11) is a quadratic
form:

Q(x) = log
π1p(x|s1)
π2p(x|s2) = log

π1
π2
− 1

2
log

|Σ1|
|Σ2|

−1

2
{(x− μ1)

tΣ−1
1 (x− μ1)− (x− μ2)

tΣ−1
2 (x− μ2)}. (16)

Fig. 1. The structure of the neural network used in the simulation. D = 1
2
d(d + 1).

The box M is the module which converts the posterior probability at the previous step
to the prior probabilities at the present step (see the test).

There are unit vectors vi, i = 1, ..., 12d(d + 1), in Rd such that (vi · x)2 are
linearly independent, where · stands for the inner product. We fix these vectors.
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Let ν be any rapidly decreasing probability measure on Rd and let g be a twice
continuously differentiable slowly increasing function defined on R such that
g(2)(0) �= 0. It is proved in [4] that, for any quadratic form q defined on Rd and
any ε > 0, there exist constants ai, i = 1, ..., 12d(d + 1), bi, i = 1, ..., d, c and δ
for which ‖q − q̄‖L2(Rd,ν) < ε, where

q̄(x) =

1
2d(d+1)∑

i=1

aig(δvi · x) +
d∑

i=1

bix+ c. (17)

Hence, (16) can be approximated by (17) in L2(Rd, ν) with any accuracy and
(17) is realized by a neural network shown in Figure 1 without the module M.

Since ψ
(t−1)
2 (x) = 1−ψ(t−1)

1 (x) and π
(t)
2 = 1− π(t)

1 , Ĉ(t) is obtained if ψ
(t−1)
1 (x)

is given. The function of the module M is to memorize ψ
(t−1)
1 (x) and input

ψ
(t−1)
1 (x) to the output unit. If a memory unit and two units with log activation

function are available, the module can be constructed.

5 Simulation

This simulation is to show that the neural network works well. It can be seen
that the output unit with the logistic activation function is essential in the
algorithm. The simulation is in a two-dimensional, two-state case: d = 2,m = 2.
The state-conditional probability distributions are normal: N(μi, Σi), i = 1, 2.
The parameters of the state-conditional probability distributions are in Table
1a.

Table 1. The means and variance-covariance matrices of the state-conditional proba-
bility distributions (a). Those of the teacher sequence (b) and the test sequence (c).

a

State Mean μi V-C. Mat. Σi

s1 (1.00,0.00)

(
2.00 1.00
1.00 1.00

)

s2 (0.00,0.00)

(
1.00 0.00
0.00 1.00

)

b

State Mean μ̂i V-C. Mat. Σ̂i

s1 (1.00,-0.01)

(
1.99 0.99
0.99 0.98

)

s2 (-0.01,-0.02)

(
0.93 −0.03
−0.03 1.05

) c

State Mean μ̂i V-C. Mat. Σ̂i

s1 (1.02,0.01)

(
1.96 0.95
0.95 0.95

)

s2 (0.08,-0.4)

(
1.18 −0.09
−0.09 1.07

)
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Fig. 2. The state-conditional probability density functions p(x|θ1), p(x|θ2), the proba-
bility density functions p(x) of the observables and the theoretically obtained Bayesian
discriminant function ψ(x)

The state-conditional probability density functions p(x|θ1), p(x|θ2), the prob-
ability density functions p(x) = π1p(x|θ1) + π2p(x|θ2) of the observables are
illustrated in Figure 2 with the theoretically obtained Bayesian discriminant
function ψ(x).

The teacher sequence {(x(t), s(t))}Tt=1 is a segment of the Markov chain from
the source with T = 5000. The test sequence is also a segment of the Markov
chain. It includes 1000 pairs. The two sequences are mutually independent. They
are plotted in Figure 3. The parameters calculated from the teacher sequence
are in Table 1b and those calculated from the test sequence are in Table 1c.

Fig. 3. Plots of the observables in the teacher sequence and test sequence

In the simulation, the activation function of the hidden layer is the logistic
function, but they are shifted, g(t) = σ(t+2), so that the condition g(2)(0) �= 0 is
satisfied. The network is trained with the teacher sequence. The training process
is shown in Figure 4 with the difference ψ(x)− ψ̂(x).

Both the theoretically obtained Bayesian discriminant function ψ and the sim-
ulated Bayesian discriminant function ψ̂ are tested with the test sequence. When

it was tested we supposed that π
(0)
1 = π1 and π

(0)
2 = π2. Hence, two sequences

{ψ(t)(x(t))}Tt=1 and {ψ̂(t)(x(t))}Tt=1, T = 1000, are obtained, where the former is
obtained recursively with (4) and (5), and the latter is also obtained similarly but
the discriminant function is replaced by the one obtained by simulation. Then,
x(t) are allocated to the state s1 or s2 depending on whether ψ(t)(x(t)) > 0.5

(ψ̂(t)(x(t)) > 0.5) or not.
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Fig. 4. The learning process and the difference ψ(x)− ψ̂(x). Learning proceeded from
the left to the right (See text), where ψ̂I is the output for the initial values, ψ̂L is the
output while learning, and ψ̂ is the final output.

Among 1000 test observables, 654 are from the state s1 and 346 from the state
s2. The allocation results are illustrated in Table 2 in the rows marked by ”For-
ward algorithm”. The number of observables correctly allocated with ψ is 765,
and those with ψ̂ is 762. In the rows marked by ”With known previous state”,
allocation results knowing the previous states s(t−1) are shown. Naturally the
allocations results are better. In the rows marked by ”Without history”, the allo-
cation results without information on the history of the chains are shown. These
are the results of the ordinary Bayesian classification. These results are worse
than others. The allocations by the forward algorithm with ψ and ψ̂ coincided
for 993 observables.

Table 2. The numbers of observables allocated to the respective states s1 and s2, and
the numbers of correctly allocated ones with the two discriminant functions ψ and ψ̂

Theoretical ψ Alloc. to s1 Alloc. to s2 Correctly alloc.

Forward algorithm 787 213 765

With known previous state 722 278 794

Without history 810 190 752

Learned ψ̂ Alloc. to s1 Alloc. to s2 Correctly alloc.

Forward algorithm 788 212 762

With known previous state 724 276 798

Without history 802 198 756

6 Discussions

It is shown that a neural network having the output unit equipped with logistic
function can be efficiently used for estimating the states of hidden Markov chains.
The allocation results by the theoretical and simulated discriminant functions,
ψ and ψ̂, coincided for more than 99 % of observables. With the algorithm, a
segment of the Markov chain can be used as a teacher sequence without mod-
ification. While training of the network, the pairs {(x(t), s(t))} are regarded as
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independent. The network can convert the learned discriminant function ψ̂ to
those at the respective steps ψ̂(t), where the output unit with the logistic activa-
tion plays an essential role. As stated before, this paper is not to assert that the
algorithm replaces the traditional forward methods of estimating hidden Markov
chains but to show the neural network performs the work efficiently. This paper
extends the range of the well-known capability of neural networks.
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Research (22500213) from the Ministry of Education, Culture, Sports, Science
and Technology of Japan.
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Abstract. Social network plays a vital role in Chinese business and is
highly valued by business people. However, social network analysis is dif-
ficult due to issues in data collection, natural language processing, social
network detection and construction, relationship mining, etc. Thus, we
develop the Corporate Leaders Analytics and Network System (CLANS)
to tackle some of these problems. Our contributions are in three aspects:
1) we collect data from multiple sources and do the preprocessing to
make it available to use; 2) we construct a business social network and
formulate the similarity relations among individuals and corporations; 3)
we conduct further data mining to discover more implicit information,
including important entities finding, relation mining and shortest path
finding. In this paper, we present the overview of CLANS and specifically
address these three major issues. We have made an operational system
and achieved basic functionalities.

Keywords: social network, business analytics, data mining, China mar-
ket, business elites, corporations.

1 Introduction

Social networks are essential for business in China and many other emerg-
ing economies. Especially, relationship plays a crucial role in Chinese business
model [1]. Related researches indicate that social networks among US firms ben-
efit the debt financing [12], firm performance [6], and corporate governance [5].
However, few studies focus on corporations and elites in China. Hence, it is
important to collect, investigate and analyze these business relations for corpo-
ration and elites in China.

Further, the analysis of Chinese social network is significant for business
people. Investors take into account and highly value the social connecting is-
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sues among Chinese firms for their investment decision. Besides, common busi-
nessman would also like to learn more about specific information for Chinese
companies, senior executives and their social networks, for better or potential
commercial activities.

Although the analysis of business social networks in China is important, there
are a number of difficulties in data collection, natural language processing, net-
work detection and construction, relationship mining, etc. Thus, we design and
implement the Corporate Leaders Analytics and Network System (CLANS) to
tackle some of these proposed problems, with the help of available computational
approaches in social computing [4] [9].

The objective of CLANS is to identify and analyze social networks among
corporations and business elites. Specifically, we currently focus on 2,500 Chinese
listed firms and their senior managers. In this paper, we introduce the system
overview of CLANS and mainly focus on addressing three issues: 1) how we
collect data and make it available to use; 2) how to construct and quantify
business social network; 3) how to mine more implicit information from social
network.

We address the problems with our novel approaches: 1) we collect data from
multiple sources and do the preprocessing to make it available to use; 2) we
construct a business social network and formulate similarity relations among in-
dividuals and corporations; 3) we conduct data mining to discover more implicit
information, including important entities finding, relation mining and shortest
path finding.

The organization of the paper is as follows. We present the CLANS system
in Section 2. Specifically, Section 2.3, 2.4, and 2.5 describe more details in ad-
dressing the three major issues. We present our system in website version in
Section 3. Section 4 gives a conclusion.

2 CLANS System

2.1 System Overview

The architecture of CLANS consists of six components, shown in Fig. 1. For
Data Acquisition, we collect raw data from multiple sources (Section 2.2). Then
we conduct Data Preprocessing (Section 2.3) and Social Network Construction
(Section 2.4) to create entities and relations respectively. Then, all entities are
stored in XML files for Data Management, with an auxiliary database to store
relations [13]. After that, CLANS conduct Data Mining (Section 2.5) and provide
Search Services (Section 2.6) with the latest data.

2.2 Data

We collect raw data related to listed firms and senior managers from two major
sources. The first source is the biography of each of these corporate leaders
among all the listed firms reported in the annual reports, which are available
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1. Data Acquisition

2. Data Preprocessing

4. Data Management

5. Data Mining

6. Search Service

3. Social Network Construction

Fig. 1. Architecture of CLANS

electronically in China Securities Market and Accounting Research Database
(CSMAR) and a personnel database compiled by Zhongcheng Xin Ltd. Each
record in CSMAR contains company’s stock code, report year, individual name,
position, gender, age, title, education background, biography and payment, from
year 1999 to 2012, with totally 399,216 records and about 2,500 companies. The
data provided by Zhongcheng Xin Ltd. contains the structured work experiences,
like company, position, start year and end year, and education experiences, like
college, major, degree, start date and end date. It covers 84,859 records and
68,289 people. But it do not cover every people in CSMAR.

The second source is the online news and Sina Weibo posts related to all senior
managers and listed firms. We crawled all news in "http://news.baidu.com/"

by searching the name of all corporate leaders and firms. In total, we get 1,126,299
company related news and 16,374,279 people news. As Sina Weibo has become
the most important micro-blogging platform in China, and news agents are more
likely to utilize it to public news, we also crawled Weibo posts related to our
target names. We get 2,367,619 company related posts and 19,445,929 individual
posts.

2.3 Data Preprocessing

We conduct data preprocessing to create individual entities, identify related
online news and Weibo posts, and extract individual detail structured timeline
information.

Name Disambiguation. In this stage we encounter and tackle two major is-
sues. Problem one is that a certain person matches multiple records, so we need
to extract unique individual entities. In CSMAR, people may stay in one com-
pany for several years so he appears in annual records repeatedly, or he works
in many companies so he appears in multiple companies’ annual records. Mean-
while, although the data in Zhongcheng Xin Ltd. already has unique identifiers
for each people, we need to map people to CSMAR. To figure out this problem,
our solution is that, if two records share a high similarity of cognizable features
(like name, age, gender, company and birthplace) over a defined threshold, we
consider them as the same person. In this way, we identify 87,458 individual
entities in CSMAR and find the common 46,130 people in two datasets.

Problem two is that a popular name in our database matches multiple peo-
ple from Internet sources. A name may map multiple individual entities in our

"http://news.baidu.com/"
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database or a name in our database may map multiple people in online news
and Weibo posts. As Weibo posts are shorts and using a nonstandard language
with similarities to SMS style, online news is much longer than Weibo posts,
and the language styles used in news are much more standard. Then we use a
two-round labeling method to identify Weibo posts and a third-round labeling
method to identify related online news to a certain person. For the first round,
we use the related key words (like company stock name, positions, and college)
to the certain person in our database to do the filtering. Then we get a small
size of reliable data set in which most posts are truly related to the people in
our dataset. In the second round, we use the labeled result from the first round
as training set, then transform the text into vector expression based on tf-idf [8]
and calculate the cosine similarity [11] of the unlabeled posts to it. After select-
ing above a threshold, we get the final related Weibo posts. Same as the first two
rounds in Weibo posts, in the third round for online news, we apply the Latent
Semantic Allocation [2] to the labeled result from the second round, map all the
documents to vectors in the lower dimensional latent semantic space, calculate
documents similarities, set the threshold and label the rest news. We select a
random sample of 1000 posts and news, and it shows that the problem is solved
by a precision rate of 98% for Weibo posts and 86% for online news.

Timeline Extraction. For people in CSMAR, who are not covered in
Zhongcheng Xin Ltd. data, we analyze personal unstructured profiles and ex-
tract structured timeline information, like education and work experience. We
adopt different strategies for different parts. For education timeline, we em-
ploy rule-learning algorithm with precision rate 95.1%. For working timeline, we
combine rule-learning algorithm with HMM model [3], owning to expression’s
diversity and complexity, and we achieve a precision rate of 83.1%.

2.4 Social Network Construction

We construct a business social network, which contains two parts of individ-
ual and corporation, and formulate similarity relations among individuals and
corporations. Then we construct the news social network for individual and cor-
poration based on Weibo posts and online news.

Individual Social Network Construction. We construct alumni and col-
league social network respectively and formulate similarity relations among
them, and then integrate them with weighting coefficients to construct the indi-
vidual social network. We present the alumni, colleague and integrated individual
social network in the website, shown in Fig. 2b.

We define the alumni relationship as the closeness of the relationship between
two alumni based on the combination of four criteria, including major, degree,
time of enrollment, and intersection school time. We deduce 13 types of rela-
tionships between two alumni and assign the corresponding weight empirically.
For example, the closest relationship (same major, same degree and same time
of enrollment) means that the two people are classmates, with a high possibility
that they know each other well, so we assign the weight between them to 0.9,
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while the farthest relationship is 0.1 (with different major, different degree and
no intersection school time).

Definition 1. Let position rank (PS) denoted as a representation of job level by
integer ranging from 0 to 9. The higher position rank has a larger value. The PS
of a board chairman and a CEO are assigned to be 9 and 8 respectively, while we
assign the independent director to be 1. Let value relation between two colleagues
denoted as the average position rank of the two people. Let close relation between
two colleagues denoted as the intersection years that they work together.

Definition 2. Let colleague relationship denoted as a combination of value rela-
tion and close relation. The colleague weight between person pi and pj is defined
as

ωpi,pj =
∑

t∈L(pi,pj)

PSt,pi + PSt,pj

2
, (1)

where L(pi, pj) denotes a collection of the intersection years that person pi and
pj used to work with each other, and PSt,pi denotes the position rank of person
pi in the year t. At the end, all the weights are normalized, which is also applied
in the following weight calculation.

We define the individual social network as an undirected graph G(V,E). In
G(V,E), every edge (relationship) has weighted value, which is defined as

Wi,j = αωal
i,j + βωco

i,j , (2)

where ωal
i,j is a weight for alumni relationship, ωco

i,j for colleague relationship;
α and β denotes the corresponding percentage that the alumni and colleague
relationship contribute to the individual relation respectively. We can construct
the specific individual social network according to personalized requirements by
specifying different weighting coefficients.

Corporation Social Network Construction. We construct the corporation
social network based on individual relations and formulate the similarity relation
among corporations. We present the corporation social network in the website,
shown in Fig. 2c.

Definition 3. We define the corporation social network as an directed graph
Ĝ(V̂ , Ê). In Ĝ(V̂ , Ê), every vertex (corporation) has feature set Pi = {p1i , p2i , · · · ,
pni } and every direct edge (relationship) has weighted value Wi,j = (ωgp

i,j , ω
nk
i,j ). n

is the size of the set (total number of staffs); ωgp
i,j is a weight for group member-

ship, ωnk
i,j for network relationship.

ωgp
i,j, ω

nk
i,j are defined as follows:

ωgp
i,j =

∑
pk
i ∈Pi∩Pj

PSpk
i
∗ ωgp

pk
i

, (3)

ωnk
i,j =

∑
(pk

i ,p
r
j )∈L2(Pi,Pj)

PSpk
i
∗ ωnk

pk
i ,p

r
j
. (4)
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PSpk
i
denotes the position rank of person pki in corporation i; ωgp

pk
i

is a weight for

pki connecting Pi with Pj ; L2(Pi, Pj) denotes a collection of connections between
(Pi − Pi ∩ Pj) and (Pj − Pi ∩ Pj) ; ωnk

pk
i ,p

r
j
denotes a weight between pki and prj

calculated in the previous equation.

Thus, the corporation weight from corporation i to j is defined asWi,j = αωgp
i,j+

βωnk
i,j , where α and β denotes the corresponding percentage that the two relations

contribute to the corporation social network respectively.

News Social Network Construction. We construct the news social network
for individual and corporation based on Weibo posts and online news. As Weibo
posts and online news publishmultiple newsmentioned corporate leaders andfirms
every day, it is important to identify how they are connected with each other and
provide these information to investors.We have already identified eachWeibo post
or online news to an individual entity (Section 2.3), so we construct their social net-
work by identifying two individuals or corporations share the same posts or news.
Using this way, we find all the relations among corporate leaders and corporations,
and present their relations in the website, as shown in Fig. 2b and 2c.

2.5 Data Mining

We conduct data mining to discover implicit information in these three aspects:
important entities finding, relation mining, and shortest path finding.

Important Entities Finding.We utilize two algorithms to discover important
individual and corporation entities in social network respectively. We integrate
this with search result, so users could find important entities when they search.
For individuals finding, our algorithm is refer to the work of [14], which takes
into consideration of both personal and network information. The basic idea
is that commonly the person with high position level plays an important role
in business social network, and if he knows someone with close relation, then
that person is also important. For corporations finding, we apply PageRank [10]
algorithm, which only take account of the corporations’ relationships.

Relation Mining. For any specific corporation, relation mining uses a method
to find out its important correlated corporations and its staffs who support
those links. The corporation relations are defined as a sequence of relationships
{êi,1, êi,2, · · · , êi,j}, where i and j represents the source corporation and target
corporation respectively. A clustering algorithm is utilized to group the relation-
ships by weight, and a pre-defined threshold is used to select the relations in
the group. Then we identify its important correlated corporations. Each corpo-
ration relation is defined as êi,j = {ẽnk

pk
i ,p

r
j
, · · · , ẽgp

pd
i

, · · · }, where ẽnk
pk
i ,p

r
j
denotes

a connection between person pki in corporation i and prj in j, and ẽgp
pd
i

denotes

person pdi connecting corporation i with j. We use the same method to identify
the important staffs that support those corporation links.
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(a) Homepage (b) Person page (c) Company page

Fig. 2. Sample pages of websites

Shortest Path Finding. We utilize the state-of-the-art tools to identify the
shortest path between three components: people-to-people, people-to-company
and company-to-company. As shown in Figure 2b and 2c, users could check
the shortest path among people and companies. If they have direct connection,
two people have direct connection like schoolmate, family, friend or colleague,
or people and company have the employment relationship, or two corporations
have the cooperative relationship, the system returns the direct relation between
them. For two people or two corporations, who do not have direct connection
with each other, shortest path aims to find out the indirect connection between
them through closest connected intermediate nodes. For people and company,
shortest path aims to find out the possible link to the people who worked in
the company and have a high position level. We use the state-of-the-art tools
to compute the shortest path for any input person or corporation within three
seconds.

2.6 Search Service

In CLANS, we provide two types of services: entity search and relation search.

Entity Search. Given any keyword, system returns a list of ranked persons and
companies. Chosen a person/corporation, the system returns related information
about the person/corporation.

Relation Search. Given any two keywords, the system returns shortest path
between them and the corresponding intermediate nodes and link information.

3 Website Illustration

We have been establishing a website to demonstrate CLANS. Though still first
version, it now can visualize basic information, temporal timeline and relations,
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shortest path, recent, positive and negative new (we use the sentiment analysis
tools in [7]) for both companies and individuals. Fig. 2a shows the homepage, in
which shows popular corporations and individuals with their news. Fig. 2b and
2c show the basic information, timeline, temporal relations, news and shortest
path of a senior executive and a corporation, which are the results of Section 2.3,
Section 2.4 and Section 2.5.

4 Conclusion

Social network is of great importance for Chinese business model and business
people. However, the analysis is difficult due to issues in data collection, natural
language processing, network detection and construction, etc. Thus, we develop
CLANS to solve some of these problems. CLANS aims at constructing and min-
ing social network among corporations and business elites. In this paper, we
have described the system overview and specifically addressed three issues with
our proposed novel solutions. We have established an operational system and
achieved basic functionalities. We create a website to visualize information for
both companies and individuals. However, it is just the first version and the de-
velopment of CLANS with more powerful functions as well as a wider researched
scope will be our long-term project.

Acknowledgement. This work was supported in part by a grant from the Re-
search Grants Council of the Hong Kong Special Administrative Region, China
(Project No. CUHK 413212).
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Abstract. In this paper, we carefully review all our work since 2012 and establish 
the concept of the Multiple-MLP Ensemble Re-RX algorithm. We first examine 
the background and procedures of the Recursive-Rule Extraction (Re-RX) algo-
rithm family and its variants, including the Multiple-MLP Ensemble Re-RX  
algorithm (“Multiple-MLP Ensemble”), which uses the Re-RX algorithm as its 
core to find the rules for seven kinds of mixed (i.e., discrete and continuous 
attributes) datasets. We compare the accuracy against only the Re-RX algorithm 
family. The Multiple-MLP Ensemble Re-RX algorithm cascades standard back-
propagation (BP) to train a multiple neural-network ensemble, where each neural 
network is a Multi-Layer Perceptron (MLP). Strictly speaking, multiple neural 
networks do not need to be trained simultaneously. Therefore, the Multiple-MLP 
Ensemble avoids the previous complicated neural network ensemble structures and 
the difficulties of rule extraction algorithms. The extremely high accuracy of the 
Multiple-MLP Ensemble algorithm generally outperformed the Re-RX algorithm 
and its variant. The results confirm that the Multiple-MLP Ensemble approach fa-
cilitates the migration from existing data systems toward new analytic systems and 
Big data. 

Keywords: Re-RX algorithm, Rule Extraction, MLP, Data Mining, Big Data, 
Neural Network Ensemble, Mixed Dataset, Ensemble Concept. 

1 Introduction 

As Big data and business analytics become the norm, companies with existing data 
warehouse architectures are concerned about implementing these new approaches into 
their own systems, which are based on traditional business intelligence, to reap the ben-
efits of the new analytic systems. Unfortunately, much current advice focuses on what is 
new rather than what to do to migrate from current systems to fully integrated Big Data 
and analytics. What is needed is a new information architecture that combines the best 
of current data warehousing approaches and facilitates integration of new technologies.  

This paper offers solutions for existing systems to move toward “Big Data min-
ing”, so that the computer scientists can meet the strong demands in our high-level 
computer network society. 
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Real-world classification problems usually involve both discrete and continuous 
input attributes. All the continuous attributes must be discretized. The drawback of 
discretizing the continuous attributes is that the accuracy of the networks, and hence 
the accuracy of the rules extracted from the networks, may decrease. This is because 
discretization leads to a division of the input space into hyper-rectangular regions. 

Setiono et al. [1] proposed a recursive algorithm for rule extraction from a neural 
network trained for solving a classification problem having mixed discrete and conti-
nuous input data attributes. This algorithm shares some similarities with other existing 
rule extraction algorithms. Setiono et al. [2] also proposed a valiant of the Recursive-
Rule Extraction (Re-RX) algorithm. They [3] presented a credit card screening appli-
cation of the Re-RX algorithm [1]. Utilizing the Re-RX algorithm, Hayashi et al. [4] 
presented a very modern marketing approach to analyze consumer heterogeneity in 
the context of eating-out behavior in Taiwan. 

Bologna [5] proposed the Discretized Interpretable Multi-Layer Perceptron 
(DIMLP) model with generated rules from neural network ensembles. The DIMLP is 
a “special” neural network model for which symbolic rules are generated to clarify 
the knowledge embedded within connections and activation neurons. 

Zhou et al. [6] proposed the Rule Extraction From Network Ensemble (REFNE) 
approach to extract symbolic rules from trained neural network ensembles that per-
form classification tasks.  

In 2012, Hara and Hayashi [7, 8] first proposed the “Two-MLP Ensemble Re-RX 
algorithm” for data with mixed attributes. The accuracy of the proposed algorithm 
outperformed that of almost all previous algorithms. The simple and powerful idea 
proposed in these two papers is the impetus of the author’s current paper. 

In 2013, Hayashi et al. [9] presented the “Three-MLP Ensemble Re-RX algo-
rithm” with an extremely high performance result for the German Credit dataset, 
which is a two-class mixed dataset.  

In September 2014, Hayashi et al. [10] presented a new framework, Re-RX algorithm 
family, and conducted a comparative study of the accuracies in this ensemble family. In 
this ensemble family, each neural network is an MLP. The Re-RX algorithm is an effec-
tive rule extraction algorithm for datasets that comprise both discrete and continuous 
attributes, and so it is a core part of the Three-MLP Ensemble Re-RX algorithm. 

The authors considered the Three-MLP Ensemble to be a “virtual” ensemble system. 
From an overall viewpoint, this algorithm cascades backpropagation (BP) to train the 
three neural-network ensemble. Thus, strictly speaking, the three neural networks do not 
need to be trained simultaneously. In addition, this simple and new concept of rule ex-
traction from the neural network ensemble can avoid previous complicated neural net-
work ensemble structures and the difficulties of rule extraction algorithms. The extracted 
rules maintain the high learning capabilities of neural networks while expressing highly 
comprehensible rules.  

In this paper, we first review all our work since 2012 and establish the concept of 
“Multiple-MLP Ensemble Re-RX algorithm” from generalized viewpoints and also 
consider potential developments. This comprises Sections 2 through 5. 

In Section 6, we describe the characteristics of the Multiple-MLP Ensemble Re-
RX algorithm. We also consider the three major drawbacks of the Re-RX algorithm 
and propose some methods to resolve them. In Section 7, summarize our innovative 
learning method to train MLPs for extraordinarily high accuracy. 
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2 Recursive Rule Extraction Algorithm: Re-RX Algorithm 

The Re-RX algorithm [1] is designed to generate classification rules from datasets that 
have both discrete and continuous attributes. The algorithm is recursive in nature and 
generates hierarchical rules. The rule conditions for discrete attributes are disjointed 
from those for continuous attributes. The continuous attributes only appear in the condi-
tions of the rules lowest in the hierarchy. The outline of the algorithm is as follows. 

 
Algorithm Re-RX(S, D, C) 

Input: A set of data samples S having discrete attributes D and continuous attributes 
C. 

Output: A set of classification rules. 

1. Train and prune a neural network using the dataset S and all of its D and C 
attributes. 
2. Let D’ and C’ be the sets of discrete and continuous attributes, respectively, still 

present in the network, and let S’ be the set of data samples correctly classified by 
the pruned network. 

3. If D’ = φ, then generate a hyperplane to split the samples in S’ according to the 
values of the continuous attributes C’, and stop. 

Otherwise, by using only the discrete attributes D’, generate the set of classification 
rules R for dataset S’. 

4. For each rule Ri generated: 
If support(Ri)>δ1 and error(Ri)>δ2, then 

• Let Si be the set of data samples that satisfy the condition of rule Ri and let Di 
be the set of discrete attributes that do not appear in rule condition Ri. 

 
• If Di =  φ, then generate a hyperplane to split the samples in Si according to 
the values of their continuous attributes Ci, and stop. 

 
• Otherwise, call Re-RX(Si, Di, Ci). 

 

The support of a rule is the percentage of samples that are covered by that rule. The 
support and the corresponding error rate of each rule are checked in step 4. If the error 
exceeds threshold δ2 and the support meets the maximum threshold δ1, then the sub-
space of this rule is further subdivided by either recursively calling Re-RX when dis-
crete attributes are still not present in the conditions of the rule or by generating a 
separating hyperplane involving only the continuous attributes of the data. 

3 Three-MLP Ensemble by the Re-RX Algorithm 

We recently extended the Two-MLP Ensemble by the Re-RX algorithm to the Three-
MLP Ensemble [9, 11] to achieve extremely high accuracy. The Three-MLP Ensem-
ble is shown as an example of the Multiple-MLP Ensemble Re-RX algorithm. 
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4 Experimental Results 

We trained seven kinds of mixed datasets [13, 14] by the Re-RX algorithm family and 
obtained the accuracies and the number of extracted rules for each test dataset as fol-
lows. In Tables 1–4, the bold numbers are the highest test accuracies of all accuracies 
reported in previous papers, as of June 15, 2014. Some cells in the tables are empty, 
e.g., Three-MLP Ensemble of CARD1. This means that the Three-MLP Ensemble 
Re-RX algorithm did not provide meaningful rules, because the LDff’ was too small 
to provide tertiary rules. The reason for this situation is described in Section 6.1. In 
this case, the final accuracy for the test dataset by the Two-MLP Ensemble Re-RX 
algorithm was the highest for each dataset. 

Table 1. Performance of training and test datasets for CARD1 and CARD2 

 CARD1 
Training 

(%) 

 
Test 

 

No.
Rules 

CARD2
Training 

(%)
Test 

No. 
Rules 

Re-RX only 87.26 83.14 5 88.99 84.93 6 
2-MLP 
Ensemble 

95.37 93.02 7 97.10 94.78 9 

3-MLP 
Ensemble 

  

Table 2. Performance of training and test datasets for CARD3 and German 

 CARD3 
Training 

(%) 

 
Test 

No.
Rules 

German
Training 

(%)
Test 

No. 
Rules 

Re-RX only 86.67 80.57 7 73.00 74.40 13 
2-MLP 
Ensemble 

90.43 85.80 11 78.80 81.80 19 

3-MLP 
Ensemble 

  

Table 3. Performance of test datasets for Bene1 and Bene2 

 Bene1 
Training 

(%) 

 
Test 

No.
Rules 

Bene2
Training 

(%)
Test 

No. 
Rules 

Re-RX only 73.02 72.07 27 72.38 72.93 42 
2-MLP 
Ensemble 

96.61 96.99 34 73.32 73.91 45 

3-MLP 
Ensemble 

97.63 98.14 36 81.36 81.56 54 

Table 4. Performance of training and test datasets for Thyroid 

 Thyroid
Training 

(%)
Test 

No.
Rules 

Re-RX only 97.50 94.89 2
2-MLP 
Ensemble 

99.83 99.72 5

3-MLP 
Ensemble    

 



624 Y. Hayashi et al. 

5 Discussion of Experimental Results 

We focus only on the highlights of the experimental results. The accuracy for the test 
data of rules extracted from CARD1 and CARD2 by the proposed algorithm outper-
forms the accuracies of other previous work. We believe the approximately 10% in-
crease in accuracies from the Re-RX only (raw Re-RX), compared to the Two-MLP 
Ensemble in CARD1 and CARD2, occurred for the following two reasons: 

(1) After the integration of primary rules and secondary rules, we had two new 
rules in the CARD1 dataset. Then we conducted a sensitivity analysis of the contribu-
tion of each extracted rule for the entire test dataset. We summed the values of the 
two rules and obtained 93.02%. This is identical to the actual experimental value. For 
the CARD2 dataset, we obtained the same results. 

(2) Originally, we needed the micro-analysis of the decision trees. Here, we ex-
plain only the important points for the 10% boost of the accuracies. A typical search 
by decision trees such as C4.5 [15] is executed many times in the Re-RX algorithm. 
However, the Three-MLP Ensemble Re-RX algorithm has a chance to execute a deci-
sion tree search many more times. Thus, if the decision tree search overlooks some 
classification rules in the Re-RX only (raw Re-RX), the search in the Two-MLP En-
semble, the Three-MLP Ensemble, or the Multiple-MLP Ensemble, could possibly 
find much more effective classification rules. 

The accuracy for the CARD3 test dataset by Setiono et al. [3] is slightly higher 
than the 85.80% reported in our study. 

For the Bene1 test dataset, our algorithm obtained 98.14%. The accuracy by the 
raw Re-RX algorithm was 73.68 % [1]. Thus, our algorithm greatly outperformed the 
raw Re-RX algorithm in accuracy for the Bene1 test dataset. After the sensitivity 
analysis of the contribution of each extracted rule for the entire test dataset, we 
summed the values of 9 rules and obtained 98.14%. This is identical to the actual 
experimental value. We believe that the reason for this value is the same as that for 
the CARD1 and CARD2 datasets. 

For the Bene2 dataset, our algorithm obtained 81.56% for the test dataset. The 
number of rules extracted was 54. Setiono et al. reported an accuracy of 75.26% for 
the Bene2 test dataset and 67 rules extracted by the raw Re-RX algorithm for the 
Bene2 test dataset [1].  

Clearly, our algorithm showed considerably better accuracy and a much more con-
cise form than that of Setiono et al [1]. Since we used large test datasets, such as 
Bene1 and Bene2, our number of rules extracted also became large (36 rules and 54 
rules for Bene1 and Bene2, respectively).  

For the Thyroid dataset, our algorithm achieved 99.72% for the test data and 
updated the worldwide record of 99.36% by Duch [16]. The Thyroid dataset is a 
multiclass mixed dataset often used for benchmarking studies as a common dataset 
in medicine. 
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6 Discussion of the Multiple-MLP Ensemble Re-RX Algorithm 

6.1 Characteristics of the Multiple-MLP Ensemble Re-RX Algorithm  

We recently clarified the relationships between a raw Re-RX algorithm [1] and our 
Multiple-MLP Ensemble Re-RX algorithm [10]. Because we used an example of the 
Three-MLP Ensemble algorithm stated in Section 3, we can naturally verify the fol-
lowing four important characteristics of the proposed algorithms. [7, 8, 9, 10, 11] 
These four characteristics provide the most fundamental principle for the general 
algorithm. 

(1) The most important principle in the design of our algorithm is an “attrition” 
system for the dataset from a learning dataset that is not correctly classified by the 
extracted rules. Thus, the size of the datasets for rule extraction is monotonically 
decreasing so that our well-designed algorithm outputs the extracted rules to be 
included. In addition, our algorithm uses the minimum necessary number of mul-
tiple-MLP ensembles and terminates automatically. This idea is based on the  
multiple use of “sieves” and is called the “French pastry chef approach”. 
(2) This situation can be interpreted as a kind of “saturated situation”. Depending on 
the characteristics of the datasets, we may see the case of the saturation with only a 
Two-MLP Ensemble. In other cases, our algorithm may proceed to the Five-MLP 
Ensemble with increasing accuracies. Thus, we need not set the number of multiple 
MLPs in the ensemble in advance because our algorithm will terminate in the satu-
rated situation with the minimum necessary numbers of Multiple-MLPs in the ensem-
ble and without outputting more new extracted rules. 
(3) Almost all datasets used in benchmarking or experimental comparative studies are 
not so huge, i.e., not Big data, so we will not be confronted with difficulties in the 
saturated situation.  
(4) The entire Re-RX family uses C4.5 (J4.8) to generate discrete rules. Consequent-
ly, the C4.5 algorithm generates a decision tree based on the amount of information in 
the datasets. The branches of decision trees are not generated in the case of low in-
formation gain. Therefore, we believe that the extracted rules in smaller numbers of 
the Multiple-MLP Ensemble can reflect the characteristics of entire learning datasets. 
Accordingly, since the increased rate of accuracies decreases with the increase of 
Multiple-MLP Ensembles, it is a strong possibility that the final accuracy will gradu-
ally become saturated. 

6.2 Potential Developments of the Multiple-MLP Ensemble Re-RX Algorithm 

Here we describe the potential developments of the proposed algorithm. As an impor-
tant research topic to enhance the entire performance of the proposed Multiple-MLP 
Ensemble Re-RX algorithm, we have the following three major issues. 

(1) The Re-RX algorithm [1] includes some human interaction so currently we cannot 
use the Re-RX algorithm to extract rules from huge datasets like Big data. Therefore, 
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we have begun to implement a fully automated version of the Re-RX algorithm and 
will soon present the details in another paper.  
(2) The Re-RX algorithm requires many iterations of BP learning to train MLP and 
decision tree searches such as C4.5 in the recursive nature of the Re-RX algorithm. 
We have heard from others that the Re-RX algorithm takes much time to extract rules, 
and so it is not practical. The algorithm can be used for only small academic datasets 
but not for Big data. Consequently, we have already implemented the Re-RX algo-
rithm independently from Setiono et al. [1]; our program implemented in Java runs on 
conventional laptop computers for even Bene1 and Bene2 datasets with 3123 records 
and 7190 records, respectively [14]. 
(3) We have no reasonable or theoretical settings of parameters such as δ1 and δ

2
. 

These parameters are quite sensitive for the accuracy of the Re-RX algorithm stated in 
step 3 of Section 3. 

Although we used heuristics in accordance with the properties of datasets, origi-
nally we needed a much more systematic method to determine the optimal values of 
δ1 and δ

2
. Needless to say, the optimal settings of values on δ1 and δ

2
will drastically 

enhance the performance of the Re-RX algorithm. 
For the automated version, we proposed a concrete method to find all the parame-

ters simultaneously [11], i.e., δ1 and δ
2
 and some parameters of various backpropaga-

tion methods from the integrated viewpoints. We believe that this approach makes the 
entire performance of our algorithm “systematic”.  

7 Conclusion  

In this paper, we first focused on the Re-RX algorithm family and compared the accu-
racies within the family. The Three-MLP Ensemble Re-RX algorithm is capable of 
extracting classification rules from neural network ensembles using datasets of both 
discrete and continuous mixed attributes. The novel characteristic of the algorithm 
lies in its extremely high accuracy for mixed attribute datasets. 

Furthermore, since the Re-RX algorithm is a core part of the proposed algorithm, 
the characteristics of the Re-RX algorithm contribute to the success of the proposed 
algorithm.  

Our major claim of the Multiple-MLP Ensemble Re-RX algorithm is its extraor-
dinarily high accuracy, which is essential for “Big Data mining”. To make this algo-
rithm practical, we have begun to implement a fully automated version of the Re-RX 
algorithm and will soon present the details in another paper. 
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