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Abstract– In this paper, a recently developed machine
learning algorithm for neural networks referred to as Extreme
Learning Machine (ELM) is used to classify protein sequences
with ten classes of super-families. Performance of ELM is
compared in terms of training time as well as generalization per-
formance with the main conventional neural network classifier
- Backpropagation Neural Networks. Results show that ELM
needs four orders of magnitude less training time compared to
Backpropagation Neural Networks classifier. The classification
accuracy of ELM is also higher than that of BP network.
Compared with conventional learning methods, the ELM can
be easily implemented.

I. Introduction

It is known that traditionally all the parameters of the
feedforward networks need to be tuned and thus there ex-
ists the dependency between different layers of parameters
(weights and biases). For past decades gradient descent-
based methods have mainly been used in various learning
algorithms of feedforward neural networks. However, it is
clear that gradient descent based learning methods are
generally very slow due to improper learning steps or may
easily converge to local minimums. And many iterative
learning steps are required by such learning algorithms
in order to obtain better learning performance. It is also
known that many tuning or adjustment based learning
methods may face difficulty in training the networks with
non-differential activation functions.
Unlike popular implementations such as Back-

Propagation (BP), Huang, et al[1] have recently proposed
a new learning algorithm called Extreme Learning Ma-
chine (ELM) for Single-hidden Layer Feedforward neural
Networks (SLFNs) which are either additive neurons
or kernel based schemes. For additive neurons based
SLFNs one may randomly choose the input weights and
the hidden neurons’ biases and analytically determine
the output weights of SLFNs[1]. Input weights are the
weights of the connections between input neurons and
hidden neurons and output weights are the weights of the
connections between hidden neurons and output neurons.
For Radial Basis Function (RBF) kernel based SLFNs,
instead of tuning the centers and impact widths of RBF

kernels we may just simply randomly choose these kernel
parameters and analytically calculate the output weights
of RBF networks[2], [3]. After the input weights and the
hidden layer biases are chosen arbitrarily, SLFNs can
be simply considered as a linear system and the output
weights (linking the hidden layer to the output layer)
of SLFNs can be analytically determined through simple
generalized inverse operation of the hidden layer output
matrices. As analyzed by Huang, et al[1], [2], [3], ELM
tends to have good generalization performance and can
be implemented easily. Unlike other tuning/adjustment
methods (e.g.,[4]) which may neither be suitable for non-
differential activation functions nor prevent the troubling
issues such as stopping criteria, learning rate, learning
epoches, and local minima, the ELM algorithm can avoid
these difficulties very well.

In this paper, the performance of ELM with sigmoidal
activation function for protein sequence analysis is in-
vestigated and compared with the main neural network
classifier - BP based neural networks classifiers. Raw
protein sequences data with ten classes of super-families
were obtained from a well-known database1. Feature
extraction from this raw data was first performed and
then these were used to train the classifiers. The trained
classifiers were then tested with data not seen during the
training to evaluate its accuracy. The results indicate that
the ELM classifier produces similar classification accuracy
but requires training time of orders of magnitude less than
the BP and SVM.

The paper is organized as follows. Section 2 gives a brief
description of different neural network classifiers including
ELM and BP. Section 3 presents a brief description of the
protein sequence database and the applied feature selec-
tion method. Performance comparison of ELM classifier
with BPNN classifiers are reported in Section 4 along with
a discussion of the results. Conclusions from this study are
summarized in Section 5.

1http://pir.Georgetown.edu



II. Brief Description of Main Neural Network Classifiers

A. Extreme Learning Machine for SLFNs

Unlike popular implementations such as Back-
Propagation (BP), Huang, et al[1] have recently proposed
a new learning algorithm called Extreme Learning Ma-
chine (ELM) for Single-hidden Layer Feedforward neural
Networks (SLFNs) which are either additive neurons or
kernel based schemes. For additive neurons based SLFNs
one may randomly choose the input weights and the hid-
den neurons’ biases and analytically determine the output
weights of SLFNs[1]. Input weights are the weights of the
connections between input neurons and hidden neurons
and output weights are the weights of the connections
between hidden neurons and output neurons. After the
input weights and the hidden layer biases are chosen
arbitrarily, SLFNs can be simply considered as a linear
system and the output weights (linking the hidden layer to
the output layer) of SLFNs can be analytically determined
through simple generalized inverse operation of the hidden
layer output matrices.
For N arbitrary distinct samples (xi, ti), where xi =

[xi1, xi2, · · · , xin]T ∈ Rn and ti = [ti1, ti2, · · · , tim]T ∈
Rm, standard SLFNs with Ñ hidden neurons and activa-
tion function g(x) are mathematically modeled as

Ñ3
i=1

βig(wi · xj + bi) = oj , j = 1, · · · ,N, (1)

where wi = [wi1, wi2, · · · , win]T is the weight vector
connecting the ith hidden neuron and the input neurons,
βi = [βi1,βi2, · · · ,βim]T is the weight vector connecting
the ith hidden neuron and the output neurons, and bi is
the threshold of the ith hidden neuron. wi ·xj denotes the
inner product of wi and xj .
The fact that standard SLFNs with Ñ hidden neurons

each with activation function g(x) can approximate these

N samples with zero error, means that
�Ñ
j=1 ,oj−tj, = 0.

i.e., there exist βi, wi and bi such that

Ñ3
i=1

βig(wi · xj + bi) = tj , j = 1, · · · , N. (2)

The above N equations can be written compactly as:

Hβ = T (3)

where

H(w1, · · · ,wÑ , b1, · · · , bÑ ,x1, · · · ,xN )

=

⎡⎢⎣ g(w1 · x1 + b1) · · · g(wÑ · x1 + bÑ )
... · · · ...

g(w1 · xN + b1) · · · g(wÑ · xN + bÑ )

⎤⎥⎦
N×Ñ

(4)

β =

⎡⎢⎣ βT1
...

βÑ
T

⎤⎥⎦
Ñ×m

and T =

⎡⎢⎣ tT1
...
tTN

⎤⎥⎦
N×m

(5)

H is called the hidden layer output matrix of the neural
network[5], [6]; the ith column of H is the ith hidden
neuron output with respect to inputs x1,x2, · · · ,xN . In
theory, it has been shown [7], [6] that when Ñ = N for
any randomly given input weights and hidden neurons’
biases the hidden layer output matrix H is invertible and
there exists output weights β such that Hβ = T.
In most cases the number of hidden neurons is much less

than the number of distinct training samples, Ñ U N , H
is a nonsquare matrix and there may not exist wi, bi,βi
(i = 1, · · · , Ñ) such that Hβ = T. Thus, ŵi, b̂i, β̂ (i =
1, · · · , Ñ) are to be found such that they satisfy :

,H(ŵ1, · · · , ŵÑ , b̂1, · · · , b̂Ñ )β̂ −T,
= min
wi,bi,β

,H(w1, · · · ,wÑ , b1, · · · , bÑ )β −T, (6)

which is equivalent to minimizing the cost function

E =
N3
j=1

⎛⎝ Ñ3
i=1

βig(wi · xj + bi)− tj
⎞⎠2 (7)

When H is unknown, gradient-based learning algo-
rithms are generally used to search the minimum of
,Hβ −T,. The popular learning algorithm used in feed-
forward neural networks is the back-propagation learning
algorithm where gradients can be computed efficiently
by propagation from the output to the input. There are
several issues for these gradient-descent based algorithms
such as local minimal, overfitting, slow convergence rate,
etc.[1]
It is very interesting[6] to note that unlike the most

common understanding one has that all the parameters
of SLFNs need to be adjusted, the input weights wi and
the hidden layer biases bi are in fact not necessarily tuned
and the hidden layer output matrix H can actually remain
unchanged once arbitrary values have been assigned to
these parameters in the beginning of learning.
For fixed input weights wi and the hidden layer biases

bi, from equation (6), to train an SLFN is simply equiv-
alent to finding a least-squares solution β̂ of the linear
system Hβ = T:

,H(w1, · · · ,wÑ , b1, · · · , bÑ )β̂ −T, =
min
β
,H(w1, · · · ,wÑ , b1, · · · , bÑ )β −T, (8)

The unique smallest norm least-squares solution of the
above linear system is:

β̂ = H†T (9)

where H† is the Moore-Penrose generalized inverse of
hidden layer output matrix H[8].
The special solution β̂ = H†T is the smallest norm

least-squares solutions of a general linear system Hβ = T,
meaning that the smallest training error can be reached
by this special solution. As analyzed by Huang, et al[1],
from the viewpoint of Vapnik-Chervonenkis (VC) dimen-
sion (and hence number of parameters)[9], this method



may tend to reach good generalization performance. (For
detailed discussion, refer to [1], [9])
The three main steps involved in ELM algorithm can

be summarized as:
ELM Algorithm[1]: Given a training set ℵ = {(xi, ti)|xi ∈
Rn, ti ∈ Rm, i = 1, · · · , N}, activation function g(x), and
hidden neuron number Ñ ,

step 1 Assign arbitrary input weight wi and bias bi, i =
1, · · · , Ñ .

step 2 Calculate the hidden layer output matrix H.
step 3 Calculate the output weight β: β = H†T.
Unlike other tuning/adjustment methods (e.g.,[4])

which may neither be suitable for non-differential acti-
vation functions nor prevent the troubling issues such as
stopping criteria, learning rate, learning epoches, and local
minima, the ELM algorithm can avoid these difficulties
very well.

B. Backpropagation Neural Network (BPNN)

As mentioned above, gradient-descent based learning
BP algorithm minimizes the cost function (cf. equation
(7) also):

min
wi,βi,bi

E =
N3
j=1

⎛⎝ Ñ3
i=1

βig(wi · xj + bi)− tj
⎞⎠2 (10)

based on:

Wk =Wk−1 − η∂E(W)

∂W
(11)

where the vector W is the set of weights (wi,βi) and
basis (bi) parameters, and η is the learning rate. The
method for calculating the gradients for the sigmoid
approximation of neural networks is called the backprop-
agation method, where the gradients can be computed
efficiently by propagation from the output layer to the
input layer. It is known that learning rate η should be
carefully selected. Another precaution is the local minima
presented in the cost function surface. Moreover, early
stopping or regularization method has to be used in the
training process in order to improve the generalization
performance.

III. Protein Sequence Classification Problem

In this paper, we use the same database as and adopt the
preprocessing method similar to the work done in Wang,
et al[10]. The protein sequences are transformed from
DNA sequences using the predefined genome code. Protein
sequences are more reliable than DNA sequence because
of the redundancy of the genetic code. Two protein
sequences are believed to be functional and structurally
related if they show similar sequence identity or homology.
These conserved patterns are of interest for the protein
classification task.
A protein sequence is made from combinations

of variable length of 20 amino acids
�

=
A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y .

The n-grams or k-tuples features will be extracted as
an input vector of the neural network classifier. The
n-gram features are a pair of values (vi, ci), where vi
is the feature i and ci is the counts of this feature
in a protein sequence for i = 1, · · · , 20n. In general,
a feature is the number of occurrences of an animal
in a protein sequence. These features are all the
possible combinations of n letters from the set

�
.

For example, the 2-gram (400 in total) features are
(AA,AC, · · · , AY,CA,CC, · · · , CY, · · · , Y A, · · · , Y Y ).
Consider a protein sequence V AAGTV AGT ,
the extracted 2-gram features are
{(V A, 2), (AA, 1), (AG, 2), (GT, 2), (TV, 1)}. The 6-
letter exchange group is another commonly used piece
of information. The 6-letter group actually contains
6 combinations of the letters from the set

�
. These

combinations are A = {H,R,K}, B = {D,E,N,Q},
C = {C}, D = {S, T, P,A,G}, E = {M, I, L, V } and
F = {F, Y,W}. For example, the protein sequence
V AAGTV AGT mentioned above will be transformed
using 6-letter exchange group as EDDDDEDDD and
their 2-gram features are {(DE, 1), (ED, 2), (DD, 5)}.
We will use en and an to represent n-gram features from
a 6-letter group and 20 letters set. Each sets of n-grams
features, i.e., en and an, from a protein sequence will be
scaled separately to avoid skew in the counts value using
the following formula:

x =
x

L− n+ 1 (12)

where x represents the count of generic gram feature, x is
the normalized x, which will be the inputs of the classifiers;
L is the length of the protein sequence and n is the size
of n-gram features.
In this study, the protein sequences covering ten super-

families (classes) were obtained from the PIR data-
bases comprised by PIR1 and PIR22. The ten super-
familes to be trained/classified in this study are: Cy-
tochrome c (113/17), Cytochrome c6 (45/14), Cytochrome
b (73/100), Cytochrome b5 (11/14), Triose-phosphate
isomerase (14/44), Plastocyanin (42/56), Photosystem II
D2 protein (30/45), Ferredoxin (65/33), Globin (548/204),
and Cytochrome b6 − f complex 4.2K (8/6). The 56
features were extracted and comprised by e2 and a1.

IV. Performance Evaluation

Levenberg-Marquardt (LM) learning algorithm, one of
the fastest algorithm of BP’s variants, is used in our
simulations. Besides faster convergence achieved by the
LM algorithm, we also avoid all the headaches of tuning
the learning rate η. The LM provided in MATLAB
has been well optimized at quite low level, such as
the binary code level. The release MATLAB version
of ELM codes can be downloaded from the ELM host
site: http://www.ntu.edu.sg/home/egbhuang/. For BP,

2Protein Information Resources (PIR), http://pir.Georgetown.edu

http://www.ntu.edu.sg/home/egbhuang/
http://pir.Georgetown.edu


the method of early stopping was applied to improve the
generalization performance using validation data.
All the simulations are based on a 3.0GHz CPU with

768MB memory. All the simulation results are averaged
over 50 trials. It was found during our simulations that BP
required large memory and for this applications it would
be out of memory when more than 40 hidden neurons are
assigned to the BP networks.

A. Training data from PIR1 and testing from PIR2

The 949 protein sequences selected from PIR1 were used
as the training data and the 533 protein sequences selected
from PIR2 as the test data.

Fig. 1. The relationship between the generalization performance and
number of hidden neurons: ELM where protein sequences training
dataset (PIR1) and testing dataset (PIR2) are fixed.

The performance of BP classifier is shown in Table
I and Figure 2. The performance of ELM classifier is
shown in Figure 1. As observed from Table II, the best
generalization performance obtained by ELM is 88.03%
while the best generalization performance obtained by BP
is 86.929%, thus ELM can obtain better generalization
than BP. As observed from Table II, ELM can run 11038
times faster than BP in the case when best generalization
performances are obtained for both BP and ELM. It also
be seen from Table II, the standard deviation of the
generalization performance of ELM is much smaller than
BP’s, meaning that ELM may run much more stable than
BP. The relationship between the spent learning time and
the number of neurons for ELM and BP are shown in
Figure 3 and Figure 4, respectively.

B. Reshuffling training and testing data from PIR1 and
PIR2

As shown above, the ELM can obtain better generaliza-
tion performance than BP if PIR1 is chosen as the training
dataset and PIR2 as the testing dataset. One might

Fig. 2. The relationship between the generalization performance
and number of hidden neurons: BP where protein sequences training
dataset (PIR1) and testing dataset (PIR2) are fixed.

Fig. 3. The relationship between the spent training time and number
of hidden neurons: ELM.

think that the this kind of selection of training dataset
and testing dataset may inadvertently give preference
to ELM classifier. In order to shown whether ELM can
work generally better than BP for this protein sequence
application, one method is to mix together the 949 protein
sequences from PIR1 and the 533 protein sequences PIR2
and then randomly select the 949 protein sequences from
the mixed dataset as the training dataset and the rest 533
protein sequences as the testing dataset at each trial. 50
trials have been conducted for both ELM and BP and the
averaged results are obtained.

The performance of BP classifier is shown in Table



Training Time Training (%) Testing (%) No of
(seconds) Rate Dev Rate Dev Neurons

56.44 91.21 3.0284 72.397 4.9446 5
150.14 98.502 1.3539 84.502 3.2615 10
307.65 98.386 2.9586 84.906 5.6807 15
529.01 98.997 1.4379 85.775 3.1658 20
744.63 99.364 0.8788 86.929 3.1565 25
1045.7 99.355 1.3606 86.502 4.8249 30
1507.4 99.412 1.5512 86.15 4.2458 35

Out of memory (768MB memory, 3GHZ CPU)
when number of neurons ≥ 40

TABLE I

Performance of BP classifier: fixed protein sequences training dataset (PIR1) and testing dataset (PIR2).

Algorithms Training Time Training (%) Testing (%) No of
(seconds) Speedup Rate Dev Rate Dev Neurons

ELM 0.06746 11038 99.63 0.15 88.03 1.19 125
BP 744.63 1 99.364 0.8788 86.929 3.1565 25

TABLE II

Performance comparison of different classifiers: fixed protein sequences training dataset (PIR1) and testing dataset (PIR2).

Fig. 4. The relationship between the spent training time and number
of hidden neurons: BP.

III and Figure 6. The performance of ELM classifier is
shown in Figure 5. As observed from Table IV, the best
generalization performance obtained by ELM is 96.738%
while the best generalization performance obtained by BP
is 96.037%, thus ELM can still obtain better generalization
than BP. As observed from Table IV, ELM can run 17417
times faster than BP in the case when best generalization
performances are obtained for both BP and ELM. Simi-
larly, it also be seen from Table IV, ELM may run much

more stable than BP.

Fig. 5. The relationship between the generalization performance and
number of hidden neurons: ELM where protein sequences training
dataset and testing dataset are randomly generated from mixed
protein sequences database.

V. Conclusions

In this paper, we have evaluated the performance of two
main neural network classifiers, namely BP and ELM on
classification of protein sequences with ten super-families
(classes). This study demonstrates that ELM needs much



Training Time Training (%) Testing (%) No of
(seconds) Rate Dev Rate Dev Neurons

66.604 88.35 1.9389 85.685 1.9389 5
171.02 98.729 1.276 94.524 1.276 10
374.12 99.45 0.88195 94.757 0.88195 15
624.89 99.6 0.53561 95.558 0.53561 20
843.68 99.511 1.0176 95.551 1.0176 25
1228.4 99.576 1.2518 95.378 1.2518 30
1737.5 99.739 0.53529 96.037 0.53529 35

Out of memory (768MB memory, 3GHZ CPU)
when number of neurons ≥ 40

TABLE III

Performance of BP classifier: randomly generated protein sequences training dataset and testing dataset.

Algorithms Training Time Training (%) Testing (%) No of
(seconds) Speedup Rate Dev Rate Dev Neurons

ELM 0.099758 17417 99.758 0.15967 96.738 0.86281 160
BP 1737.5 1 99.739 0.53529 96.037 1.2132 35

TABLE IV

Performance comparison of different classifiers: randomly generated protein sequences training dataset and testing dataset.

Fig. 6. The relationship between the generalization performance
and number of hidden neurons: BP where protein sequences training
dataset and testing dataset are randomly generated from mixed
protein sequences database.

less training time compared to conventional BP classifiers.
The classification accuracy of ELM is much better than
BP. Compared with BP, ELM can be implemented easily
since there is no parameter to be tuned except for network
size which is common to BP.
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