
154

Bayes Meets Bellman: The Gaussian Process Approach to Temporal
Difference Learning

Yaakov Engel YAKI~AL1CE.NC.IIUJI.AC.IL

Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem 91904, Israel

Shie Mannor SHIE~.MIT. EDU
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA 02139

Ron Melr RMEIR~--~EE.TECtlNION.AC. IL
Department of Electrical Engineering, Technion Institute of Technology, IIaifa 32000, Israel

Abstract

We present a novel Bayesian approach to the
problem of value function estimation in con-
tinuous state spaces. We define a probabilis-
tic generative model for the value function by
imposing a Gaussian prior over value func-
tions and assuming a Gaussian noise model.
Due to the Gaussian nature of the random
processes involved, the posterior distribution
of the value function is also Gaussian and is
therefore described entirely by its mean and
covariance. We derive exact expressions for
the posterior process moments, and utilizing
an efficient sequential sparsification method,
we describe an on-line algorithm for learn-
ing them. We demonstrate the operation of
the algorithm on a 2-dimensional continuous
spatial navigation domain.

1. Introduction

Gaussian Processes (GPs) have been used extensively
in recent years in supervised learning tasks such as
classification and regression (e.g. Gibbs & MacKay,
1997; Williams, 1999). Based on a probabilistic gener-
ative model, GP methods are theoretically attractive
since they allow a Bayesian treatment of these prob-
lems, yielding a full posterior distribution rather than
a point estimate as in non-Bayesian methods. More-
over, the Ganssian structure often yields closed form
expressions for the posterior moments, thus completely
avoiding the difficulties associated with optimization
algorithms and their convergence behavior. A Gaus-
sian process is a (finite, countably, or uncountably in-
finite) set of jointly Gaussian random variables.
special case, which is our main focus here is the case
where the random variables are indexed by a vector

in ~d. In this case each instantiation of the process
F is simply a function f : li~ d --+ I~, and F(x) is
random variable whose distribution is jointly Gaus-
sian with the other components of the process1. The
prior distribution of the process is fully specified by
its mean, which we take to be zero, and its covari-

ance E(F(x)F(x’)) d~f k(x,x’), where E(.)
expectation. In order for k(., .) to be a legitimate co-
variance function it is required to be symmetric and
positive-definite. Interestingly, these are exactly the
requirements made of Mercer kernels, used extensively
in kernel machines (Sch61kopf & Smola, 2002).

Reinforcement Learning (RL) is a field of machine
learning concerned ~dth problems that can be formu-
lated as Markov Decision Processes (MDPs) (Bert-
sekas & Tsitsiklis, 1996; Sutton & Barto, 1998). An
MDP is a tuple {S,A,R,p} where S and A are the
state and action spaces, respectively; R : S x S --+ L~
is the immediate reward which may be a random pro-
cess2; p : S x A × S --> [0, 1] is the conditional transition
distribution. A stationary policy 7r : S × A ~ [0, 1] is
a mapping from st’ares to action selection probabili-
ties. The objective in RL problems is usually to learn
an optimal or good suboptimal policy, based on simu-
lated or real experience, but without exact knowledge
of the MDP’s transition model {p,R}. Optimality is
defined with respect to a value function. The value
V(x) of a state x is defined (for some fixed policy
as the total expected, possibly discounted payoff col-

XHere and in the sequel we use capital letters to denote
random variables and processes (e.g. F(x) and F, respec-
tively) and lower case letters for their instantiations (e.g.
f, f(x)). Bold lower case letters denote vectors (e.g.
with indexed lower case components (e.g. xi); 0 denotes
a vector or a matrix of zeros whose dimensions should be
clear from the context.

2The general case is/g : S x A x S --r R; to simplify the
exposition we ignore the dependence on the action.

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

155

leered along trajectories starting at that state3. The
value function of a policy ~r is defined as

V(x) = E (fi 7tR(xt’xt+l)’x° ’ t =o (1.1)

where the expectation is taken over the policy de-
pendent state transition distribution p~(xqx)
~.~c~p(x’lu, x)~r(ulx). Here 7 e [0, 1] is a discount
factor4, and/~(xt, xt+l) is the expected reward.

The value function can be shown to be the solution to
the Bellman equation, which should be satisfied for all
xE2ds,

V(x) = fx, exP~(X’[X)(/~(x,x’) +TV(x’))dx’. (1.2)

If the state space is finite the integral in Eq. (1.2)
replaced by a sum over x’ C 2(. Generally speak-
ing, RL is concerned with finding a policy r* deliver-
ing the highest possible total payoff from each state.
Many algorithms for solving this problem are based on
the policy iteration method, in which the value func-
tion must be estimated for a sequence of fixed policies,
making value estimation a crucial algorithmic compo-
nent. Undoubtedly, the best known method for value
estimation is a family of algorithms known as TD(A)
(Sutton, 1988) which utilize temporal differences
make on-line updates to their estimate 9 of the value
function. The simplest member of the TD(,~) family
is TD(0). The TD(0) update at the transition from
to xt+l is simply

~(xt) := 9(xt) +r/tSt , where

(~1~ = rt ¯ "~V(Xt+I) -- ?)(xt)

is the 1-step temporal difference at time t, rt is the
reward sampled in the transition and ~t is a time de-
pendent learning rate.

Up to now, kernel methods have been largely ignored
in the field of RL. This is due to two reasons. First
and foremost, kernel algorithms generally scale super-
linearly in the number of samples, both in terms of
space and time. Second, most of these algorithms re-
quire random and/or repeated access to training sam-
ples. For these reasons, kernel algorithms, GPs in-
cluded, were considered ill-fitting to the RL domain

SThe value should strictly be denoted as V~; however,
since most of this paper deals with a fixed policy (with the
exception of Section 5), we retain the simpler notation V.

¯ 4.When 3’ = 1 the policy must be proper, see Bertsekas
and Tsitsiklis (1996).

5This is a degenerate special case of the Bellman equa-
tion which results from our problem statement, namely
evaluating the value function of a fixed policy.

which normally requires on-line operation. As fax
as we are aware the only exception is Dietterich and
~¥ang (2001) in which the value function is estimated
off-line using a support vector machine.

The rest of the paper is organized as follows. In the
following section we present our generative model for
the value function and derive the exact posterior value
distribution. In Section 3 we describe our on-line spar-
sification method; Section 4 unifies the results of the
two preceding sections in the description of an on-line
sparse algorithm for GP temporal difference (GPTD)
learning. In Section 5 we present experiments with
GPTD on continuous 2-dimensional mazes, and we
conclude in Section 6.

2. Gaussian Processes for TD Learning

In analogy to GP regression we impose a Ganssian
prior over value functions, i.e., V ..~ A/’(0, k(., .)), which
means that V is a GP for which, a priori, E(V(x))
and E(V(x)V(x’)) = k(x,x’) for all x,x’
form of the function k should reflect our prior knowl-
edge concerning the similarity of states in the do-
main at hand. Recalling the definition of the temporal
differences (1.3), we propose the following generative
model for the sequence of rewards corresponding to
the trajectory Xl, x2,. ̄ ¯, xt:

-R(xi, x~+l) = Y(xi) - 7Y(xi+l) + Y(xi)

where N is a white Gaussian noise process that does
not depend on V but may be input dependent, i.e.,
N ,,~ iV’(0, ~) with ~(x,x’) = ao(x)26(x - x’),

denotes the Dirac delta function. To simplify mat-
ters we will assume that ao (x) is constant over ,Y and
denote it simply by ao. Eq. (2.4) may be viewed as
latent variable model in which the value process plays
the role of the latent or hidden variable while the re-
ward process plays the role of the observable output
variable. For a finite trajectory of length t we define
the (finite dimensional) random processes

= ,R(x,))-*

v, = V(x,)),
Nt = (N(xl),... , N(x,))-r , (2.5)

and the vector and matrices (respectively)

k,(x) k(x,, x)),
Kt = [kt(xl),..., kt(xt)]

E]t = diag(ao2,..., a2), (2.6)

where diag(.) denotes a diagonal matrix whose diago-
nal is the argument vector. Using these definitions we

156

may write

Nt 0 Et

Defining the (t- 1) x t matrix

Ht

1 -7 0 ...
0 1 -7 ...

0 0 ... 1

we may write (2.4) concisely

Rt-1 ---- HtVt -F Nt-1 ̄

(2.7)0

0
0

-7

(2.8)

(2.9)

Using standard results on jointly Ganssian random
variables (Scharf, 1991) we obtain

Rt-1
v(x))

0 Et-t

and the posterior distribution of the value at some
point x, conditioned on the observed sequence of re-
wards rt-! = (rl ,rt_l) T is given by

(V(x)[Rt_1 = rt-1) -.~ Af {~t(x),pt(x)}

where

(2.10)

~t(x) = kt(x)TH~qtrt_l,
pt(x) = k== - kt(x)TH+t qtHtkt(x)

with Qt = (HtKtH/+ Et_l) -1 ,

and k== = k(x,x). (2.11)

The expressions above can be written in a somewhat
more familiar way, by separating the input dependent
term kt(x) from the learned terms:

vt (x) = kt (x) Tat, Pt (X) kzz - kt(x)T Ctkt(x),
(2.12)

where c~t = Ht-I-Qtrt-1 and Ct = H/QtHt.

While this concludes the derivation of the value GP
posterior, there are several points worth noting. First,
note that in addition to the value estimate ’St (x) we are
provided with an uncertainty measure pt(x) for that
estimate. This opens the way to a wide range of pos-
sibilities, some of which we touch upon in Section 6.
Second, the assumptions we make on the noise process
N seem to be questionable. Let us consider the valid-
ity of these assumptions. The value process satisfies
the Bellman equation (1.2) while we assume the model

(2.4). Equating the expressions for V(xi) from these
two equations we get

f - -N(xi)

+ f - - x’))dx’.

When state transitions axe deterministic p~(x’[x)
5(x~- xi+l), the first integral ~lishes and we are left
with

N(xi) [~(xl, xi+l) - R(xi, X/ q-l) ,

which is exact if R(x, x’) ~
Af{/~(x,x’),a02(x)} Vx, x’. As the state transi-
tions move away from determinicity this equality
turns into an approximation. In Section 5 we experi-
mentally demonstrate the effect of non-deterministic
transitions on the value estimate.

Finally, we note that computing the exact GP estima-
tors is computationally unfeasible in all but the small-
est and simplest domains, since we need to compute
and store (~t (t x 1) and Ct (t x t), incurring a
of O(t3) time and O(t2) space (The O(ts) dependence
arises from inverting the matrix Qt). In the following
section we describe an efficient on-line sparsification
method that reduces this computational burden to a
level that allows us to compute a good approximation
of the GP posterior on-line.

3. On-Line Sparsification

In order to render the algorithm described above prac-
tical we need to reduce the computational burden as-
sociated with the computation of the functions ~)t and

Pt in (2.11). In Engel et al. (2002) an on-line spax-
sification method for kernel algorithms was proposed
in the context of Support Vector Regression. This
method is based on the following observation: Due
to Mercer’s Theorem the kernel function k(.,.) may
be viewed as an inner product in a high (possibly in-
finite) dimensional Hilbert space 7-t (see Schhlkopf
Smola, 2002 for details). This means that there exists
a generally non-linear mapping ¢ : X --+ ?-I for which
(¢(x),¢(x’)} n = k(x,x’). Although the dimension
of 7/ may be exceedingly high, the effective dimen-
sionality of the manifold spanned by the set of vec-
tors {¢(xi)}~=1 is at most t, and may be significantly
lower. Consequently, any expression describable as a
linear combination of these vectors may be expressed,
to arbitrary accuracy, by a smaller set of linearly inde-
pendent feature vectors which approximately span this
manifold6.

~Based on similar ideas, several other sparsification al-
gorithms have been previously proposed, e.g. Burges, 1996;

157

Taking advantage of this insight we maintain a dictio-
nary of samples that suffice to approximate any train-
ing sample (in feature space) up to some predefined
accuracy threshold. Our method starts with an empty
dictionary :Do = {}. It observes the sequence of states
xi,x2,.., one state at a time, and admits xt into the
dictionary only if its feature space image ¢(xt) can-
not be approximated sufficiently well by combining the
images of states already in :Dt-i = {.~i,...,~m,_,}.
Given the set of mt-i linearly independent feature
vectors corresponding to the dictionary states at time
t - 1, {¢(xj)}j=, , we seek the least squares approx-
imation of ¢(xt) in terms of this set. It can be easily
verified that this approximation is given by the solu-
tion to the following quadratic problem:

m~n {aTI~t_la - 2aTkt-l(xt) + ku}, (3.13)

where I~t-1 is the kernel matrix of the dictionary
states atime t-1 (i.e., [I~t-i]i,j = k(~i,~j) with i,j =

1,...,mr-i), kt-l(x) = (k(xi,x),...,k(xm,_,,x))T

and ktt = k(xt,xt). The solution to (3.13) at =
I~t_iii’Ct_l(Xt) and substituting it back to (3.13)
obtain the minimal squared error incurred by the ap-
proximation,

8t --]gtt-kt-1 (xt)Tat ---- ktt-]<$-I (xt)TI~t__llkt-1 (xt).
(3.14)

If St > v, where v is an accuracy threshold parameter,
we add xt to the dictionary and we set at -- (0,..., 1)T

since Yt is exactly represented by itself. If st _< v
the dictionary remains unchanged. Either way we are
assured that all the feature vectors corresponding to
states seen until time t can be approximated by the
dictionary at time t with a maximum squared error v,

rrt~

¢(x~) = Ea~,j¢(:~j) + ¢~es, where IlCresH2 < v.
j-----1

(3.15)
In order to be able to compute at at each time step,
we need to update I~t i whenever the dictionary is
appended with a new state. This is done via the par-
titioned matrix inversion formula (Scharf, 1991):

I~t = kt-1 (x/) T kit

K~-i- = st1[E~I~.Ji_a[+&ta: l-&t]’(3"16

where at = I~t-_iik~-i(x~). Note that at equals the
vector at computed in solving (3.13), so there is
need to recompute it.

Smola & Bartlett, 2001; Williams & Seeger, 2001; Csat6 &
Opper, 2001, to mention a few. However, all but the latter
are inapplicable to the on-line setting.

Defining the matrices ~ [At]ij = aij, ’~t =
[¢(xi),...,¢(xt)], ’I)~ ’es = [¢~es,...,¢[es] we
may write Eq. (3.15) for all time-steps up to t, con-
cisely as

Ct = ~,,A: + ~’e’. (3.17)

By pre-multiplying (3.17) with its transpose we obtain
a decomposition of the full t x t kernel matrix Kt =
@tT@t into two matrices"

Kt = AtktA[+ K[es, (3.18)

where I~t = ~:~t. The matrix AtI~:tA~ is a rank
mt approximation of Kt. It can be shown that the
norm of the residual matrix K~e8 is bounded above
by a factor linear in v. Consequently we make the
following approximations:

Kt ~ AtITQAT, kt(x) w., A~kt(x). (3.19)

The symbol ~ implies that the difference between the
two sides of the equation is O(v). We note that the
computational cost per time step of this sparsification
algorithm is O(m~) which, assuming mt does not de-
pend asymptotically on t, is independent of times, al-
lowing this algorithm to operate on-line. Our on-line
version of the GPTD algorithm draws its computa-
tional leverage from the low rank approximation pro-
vided by this sparsification algorithm. In the next sec-
tion we show how.

4. On-Line GPTD

We are now ready to combine the ideas developed in
the last two sections. Substituting the approximations
(3.19) into the exact GP solution (2.12) we obtain

=
= k== - f,t(x)S tf, t(x), (4.20)

 t(x)
pt(x)

where we define

I=It = HtAt ,
= + ,
= ,
= H tH,. (4.21)

Note that the parameters we axe required to store and
update in order to evaluate the posterior mean and

7Due to the sequential nature of the algorithm, for j >
mi, [At]~,i = O.

SWe can bound mt under mild assumptions on the ker-
nel and the space 2d, however space does not allow us
to pursue this and other interesting issues concerning our
sparsification method any further here.

158

covariance are now 6t and Ct whose dimensions are
mtx 1 and rnt x mr, respectively. We will now derive
recursive update formulas for 5q and Ct. At each time
step t we may be faced with either one of the following
two cases. Either 7:)t = 7:)t_1 or 7)t = 7:)t-1 U {xt}.
Case 1. 7:)t = ©t-l: Hence I~t = I~t-1,

Defining ht = at-t - 3"at,

]T fi[:t-1fit + oo J "
Defining Afq_1 ~ Kt-lflt = l~t-t (xt-t) - 3"f¢t-t(xt),
we get

]
(I-"It-lA]{t-1) y }’ttZA~:t-1 Jr" 0.2 J ’

We obtain (~t using the partitioned matrix inversion
formula.

1 [stQt-l+gtg[-gt]
Q t = s~ - g -tr

1 ’

wheregt = Qt-jI:-It_lAkt_l, st = 0.~ - c/Al<t_l and
ct = Ht-tgt - hr. Let us now compute at.

_ 1 [i:i[_ 1 ~t] [stQt_l +gtg-[lgt

= a,-1 + ¯ (4.22)
8t

Similarly, we get

Ct = Ct-1 + l--ctc[¯ (4.23)
8t

Case 2. Dt = T~t-1 U {xt}: Here, I~t is given by
(3.16). Furthermore, at = (0,..., 1)T since ¢(xt)
exactly representable by itself; therefore

At = 0T
] ’ a~-t -3’ "

Going through the algebra we get

qtl = t-I
(I=It-iAkt-i) T Aktt + 02 ’

where Aktt a~_{ aT_l (A~{t_ 1 -- 3’~,_l(X/)) .}_3’2kit, De-

noting gt = a~ + Aktt - Al<Tt_lCt_lAkt_~ and using
again the partitioned matrix inversion formula we get

[]1 stQt-1 +gtg[-gt5-~t = -z-st -gt~
1

with gt as before. Defining at = ~It-lgt - at-i, we
can now compute &t and Ct:

(4.24)

Ct = Ct-1 + -Kctct
ct

(4.25)

At any point in time (say t) we can compute the pre-
diction for the value and its variance at some arbitrary
state x using the analog of (2.12):

9t(x) = l{t(x)-C&t, pt(x) kzz - l{ ,(x)TCtl~t(x) ¯
(4.26)

Note that the Akt’_l~t_~ -rt-t term appearing in the
update rules for &t (4.22) and (4.24) is (up to a
the temporal difference 5t-~ defined in (1.3). Another
point worth noting is that evaluating ~)t(x) and pt(x)
costs only O(rnt) and O(rn~t) time, respectively. Table
1 outlines the algorithm is pseudo-code.

So far we have described the on-line GPTD algorithm
for infinite horizon discounted problems. It is straight-
forward to modify the algorithm to handle episodic
tasks. In this kind of tasks the learning agent’s ex-
perience is composed of a series of learning episodes
or trials. At the beginning of each trial the agent
is normally placed at a random starting position and
then follows some trajectory until it reaches one of the
absorbing terminal states (i.e., having a zero outgo-
ing transition probability), and whose value is fixed
to zero. Algorithmically, all that is required is to tern-
porarily set 3" to zero when a goM state is reached, and
make a zero-reward transition to the starting point of
the next trial. The extension to semi-Markov deci-
sion processes, where transitions may require different
amounts of time, is also possible.

5. Experiments

In this section we present several experiments meant
to demonstrate the strengths and weaknesses of the

159

Table 1. The On-Line GPTD Algorithm

Parameters: v, ao, 7
Initialize: Dt = {x~}, &~ = 0, (31 = 0, I~l 1 ~--- 1/kn
for ~ = 2, 3,...

Observe transition: xt, rt-x
Sparsification test:

if ¢, > v (3.14) % add x, to dictionary

Compute I~71 (3.16)
Compute &t, C~ (4.24,4.25)

else % dictionary unchanged
Compute ~t, (~ (4.22,4.23)

GPTD algorithm. We start with a simple maze in
order to demonstrate GPTD’s ability to provide an
uncertainty measure for the value estimate, and its
data efficiency, i.e. its ability to extract reasonable
value maps from very little data. We then move be-
yond value estimation to the more challenging task
of learning the optimal policy (or a good approxima-
tion thereof). We use a more difficult maze and ex-
periment with both deterministic and stochastic state
transitions.

Our experimental test-bed is a continuous 2-
dimensional square world with unit-length sides. An
agent roaming this world may be located at any point,
but can perform only a finite number of actions. The
actions are 0.l-long steps in one of the 8 major compass
winds, with an added Gaussian noise with a standard
deviation of 0.05. Time is also discrete t = 1, 2,3,
In this world there may be one or more rectangular
goal regions and possibly also obstacles - piecewise lin-
ear curves, which the agent cannot cross. As long as
the agent is not in a goal region it receives a reward of
-1 per time-step. Upon reaching a goal state the agent
is given a zero reward and is then placed at some ran-
dom state to begin a new trial.

We begin with a simple experiment. The maze, shown
in Fig. 1, has a single goal region stretching the en-
tire length of the south wall of the maze (from y=0 to
y=0.1). We chose the non-homogeneous polynomial
kernel k(x,x’) = ((x, t) +1)5, which corresponds to
features that are monomials of up to degree 5 in the co-
ordinates (SchSlkopf & Smola, 2002), and subtracted
0.5 from each coordinate to avoid any asymmetric bias.
The exploration policy is a stochastic one in which a
southward move is taken with probability 0.8, other-
wise a random move is performed. In Fig. 1 we show
the results after a single trial in which 12 states were

visited including a final goal state. This example illus-
trates the efficiency of the algorithm when the kernel
function is chosen judiciously. As can be seen at the
bottom of Fig. 1 a single policy iteration sweep (i.e.,
choosing the greedy action with respect to the value
function estimate) extracts a near-optimal policy for
a large section of the maze surrounding the states vis-
ited. Looking at the variance map it can be seen that
in the proximity of the visited states the uncertainty
in the value prediction is significantly lower than in
other regions.

As we mentioned in the introduction, a value func-
tion estimation algorithm is usually a component in
a larger RL system whose aim is to learn the optimal
policy, namely, the one maximizing the total payoff
per trial, or in our case, the one minimizing the time
it takes the agent to reach a goal region. One such RL
algorithm that has worked surprisingly well in certain
domains (e.g. Tesanro, 1995), although it possess
theoretical guarantees for convergence, is Optimistic
Policy Iteration (OPI) (Bertsekas & Tsitsildis, 1996).
In OPI the agent does not follow a fixed stationary
policy; instead, at each time step it utilizes a model of
its environment and its current value estimate to guess
the expected payoff for each of the actions available to
it. It then greedily chooses the highest ranking action.
We ran an agent utilizing OPI on the maze shown in
Fig. 2 for 100 trials, once with deterministic transi-
tions, and a second time with the noisy transitions
described above. The kernel we used here was Gaus-
sian k(x,x’) = exp ([[x - x’[[2/(2a2)), where ak
The feature space induced by this choice is infinite-
dimensional (SchSlkopf & Smola, 2002). The value
maps learned mad their corresponding greedy policies
are shown in Fig. 2. Note that while the policies
learned are both similar and quite close to optimal,
the value estimates are different. More specifically,
the value estimates in the stochastic case seem to be
dampened. The variance maps are omitted, since over
the entire maze the variance estimate is close to zero.

6. Discussion

We presented a novel temporal difference learning al-
gorithm based on Gaussian processes and an efficient
sparsification scheme. Using these two essential ingre-
dients we were able to suggest a practical and efficient
method for value function approximation in large and
even infinite state spaces.

Several approaches to RL in continuous space were
considered to date, mostly using parametric function
approximation architecture that are usually employed

160

Value

0.4

0
0 0.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I

Value Variance

0.8 , , , ~ \

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
i

Polic

| i i ~N I I i N N I

I ¢ l i ~1 I i ~1

111 I-- 1
111 1 1

I11 11111
111 ;1111
I11 Ilill
1;I I1111

I 11111
I IIi 11i1¢

liill

~1--\\I111

I I
| I
l I|
t tt ~11111/
I lll~tlll/

I1 11
li ill
;I II1|

||II1~

Figure 1. The results of a single 12-step trial on the simple
maze shown in the figures, sampled on a 30 by 30 grid.
From top to bottom: Top - the points visited during the
trial and contour lin~ of the value fimction estimate. Cen-
ter - The variance of the value estimates. Bottom - A
greedy policy with respect to the value estimate.

Value

.-.,t-.

~E-- ~

--+--

Figure 2. The results after 100 trials on the more difficult
maze showIl in the figures. GPTD with OPI is used to
find a llear-optimal policy. The upper two figures show the
results for deterministic state transition while the lower two
for stochastic ones. For each pair the final value function
is shown at the top and its corresponding greedy policy at
the bottom. The results shown are samples over a 30 by
30 grid.

161

in conjunction with gradient based learning rules (e.g.
Neural networks, CMACs, see Bertsekas and Tsitsiklis
(1996); Sutton and Barto (1998) for a review). In
architectures one must choose the complexity (i.e., the
number of tunable parameters) of the model a priori.
Other approximation methods include fuzzy sets, hard
and soft state aggregation, and non-parametric meth-
ods such as variable resolution, instance-based learn-
ing, viscosity solutions (Munos, 2000) and local aver-
aging (Ormoneit & Sen, 2002) (We refer the reader
Sutton and Barto (1998) for a review of all but the
last two of these methods).

Our approach is fundamentally different from the
above. We postulate a probabilistic generative model
for the value and use Bayesian analysis to extract
a posterior model. Moreover, our approach is non-
parametric - the complexity of the value representa-
tion (the size of the dictionary) is adapted on-line
match the task at hand. Our method goes beyond Re-
inforcement Learning and can be also applied to solve
control problem when the dynamics are known but dif-
ficult to capture. Specifically, our method can replace
discretization based methods (see, e.g. Rust, 1997 and
references therein),

A significant advantage of the Gaussian process ap-
proach is that an error estimate is provided at no ex-
tra cost. Apart from the benefit of having confidence
intervals for the value estimate, there are several other
ways in which this may be put into use. For instance,
the RL agent may use this information to actively di-
rect its exploration (see Dearden et al., 1998); another
possibility would be to use the confidence measure to
provide stopping conditions for trials in episodic tasks,
as suggested by Bertsekas and Tsitsildis (1996).

There are several natural directions for future research.
First, an extension of GPTD to GPTD(A) is called for.
We conjecture that such aa extension will help allevi-
ate the problems experienced with GPTD in stochastic
environments. Second, as mentioned above, we plan to
test new RL methods that make use of the value uncer-
tainty measure provided by GPTD. Third, we would
like to establish convergence guarantees in the spirit
of Tsitsiklis and Van-Roy (1997). Finally, we aim
reliably solving the complete RL problem, i.e., finding
the optimal policy. This may be achieved using an

Actor-Critic architecture (Sutton & Barto, 1998).

Acknowledgments The authors are grateful to N.
Shimkin and I. Menache for helpful discussions. S.M.
was partially supported by the MIT-Merrill Lynch
Partnership.

References

Bertsekas, D., g~ Tsitsiklis, J. (1996). Neuro-dynamic pro-
gramming. Athena Scientific.

Burges, C. J. C. (1996). Simplified support vector deci-
sion rules. Proceedings of the Thirteenth International
Conference on Machine Learning (pp. 71-77).

Csat6, L., & Opper, M. (2001). Sparse representation for
Gaussian process models. Advances in Neural Informa-
tion Processing Systems 13 (pp. 444-450).

Dearden, R., ~iedman, N., & Russell, S. J. (1998).
Bayesian Q-Learning. Proceedings of the Fifteenth Na-
tional Conference on Artificial Intelligence (pp. 761-
768).

Dietterich, T. G., & Wang, X. (2001). Batch value function
approximation via support vectors. Advances in Neural
Information Processing Systems 14 (pp. 1491-1498).

Engel, Y., Mannor, S., & Meir, R. (2002). Sparse online
greedy support vector regression. 13th European Con-
ference on Machine Learning (pp. 84-96).

Gibbs, M., & MacKay, D. (1997). Efficient implementation
of Gaussian processes. Draft.

Munos, R. (2000). A study of reinforcement learning
the continuous case by the means of viscosity solutions.
Machine Learning, 40, 265-299.

Ormoneit, D., & Sen, S. (2002). Kernel-based reinforce-
ment learning. Machine Learning, ~9~ 161-178.

Rust, J. (1997). Using randomization to break the curse
dimensionality. Econometrica, 65, 487-516.

Scharf, L. L. (1991). Statistical signal processing. Addison-
Wesley.

Sch61kopf~ B., & Smola, A. J. (2002). Learning with ker-
nels. MIT Press.

Smola, A. J., & Bartlett, P. L. (2001). Sparse greedy Gaus-
sian process regression. Advances in Neural Information
Processing Systems 13 (pp. 619-625).

Sutton, R. (1988). Learning to predict by the methods
temporal differences. Machine Learning, 3, 9-44.

Sutton, R., & Barto, A. (1998). Reinforcement learning.
MIT Press.

Tesauro, G. (1995). Temporal difference learning and TD-
Ga.mmon. Comm. ACId, 38, 58-68.

Tsitsiklis, J. N., & Van-Roy, B. (1997). An analysis
temporal-difference learning with function approxima-
tion. IEEE Trans. on Automatic Control, ~2, 674-690.

Williams, C. (1999). Prediction with Ganssian pro-
cesses: from linear regression to linear prediction and
beyond. Learning in Graphical Models. Cambridge, Mas-
sachusetts.

Williams, C., & Seeger, M. (2001). Using the NystrSm
method to speed up kernel machines. Advances in Neural
Information Processing Systems 13 (pp. 682-688).

