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Abstract

Multilayer perceptrons have received much attention in recent years due to their universal approximation capabilities. Normally, such
models use real valued continuous signals, although they are loosely based on biological neuronal networks that encode signals using spike
trains. Spiking neural networks are of interest both from a biological point of view and in terms of a method of robust signaling in particularly
noisy or difficult environments. It is important to consider networks based on spike trains. A basic question that needs to be considered
however, is what type of architecture can be used to provide universal function approximation capabilities in spiking networks? In this paper,
we propose a spiking neural network architecture using both integrate-and-fire units as well as delays, that is capable of approximating a real
valued function mapping to within a specified degree of accuracy. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Multilayer perceptrons (MLPs) have received significant
attention in recent years. The main reason for this is the fact
that MLPs are capable of approximating any continuous
F € €(#", R") arbitrarily well by means of spatially-
local basis functions. Note that (%", Z") denotes the
space of continuous functions or mappings F :2" — #".
This property is termed universal approximation (Cybenko,
1989; Funahashi, 1989; Hornik, Stinchcombe & White,
1989). This means that given a function F(x), a model can
be constructed as

G(x) = Bo(AX + o), (D

where x € #" is the input, A € #" X #™ are the input layer
weights, B € #" are the output layer weights, ¢ € #" are
the bias inputs and o are some appropriately chosen basis
functions, that can be shaped, offset and scaled,1 to approx-
imate F(x) to an arbitrary degree of accuracy.

The results for universal approximations are normally
made using real valued inputs, outputs and weights.
However, in real biological systems, signals are encoded
using spike trains, not real values. This raises the question
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E-mail address: angelo@postman.riken.go.jp (N. Iannella).
! These operations correspond to the transformations made by the hidden
layer weights, bias weights and output layer weights, respectively.

of how function approximation (whether ‘universal’ or not)
can be achieved in spiking neural networks (SNNs). This
issue is of interest for the development of spiking neural
network models for practical applications as well as obtain-
ing an understanding of possible biological computational
mechanisms.

Neural coding refers to the scheme by which we attach
meaning to the spiking signals. It is, therefore, useful to
examine the various methods of neural coding that have
been developed. Neural coding has been the subject of
much debate and various spike train information encoding
methods have been proposed in the literature (Bialek, Rieke,
de Ruyter van Steveninck & Warland, 1991, 1997; de
Ruyter van Steveninck & Bialek, 1995; DeWeese, 1996).
Once we have explored the various methods of neural
coding schemes, it is then possible to clearly see which of
the various methods are best suited to our goal of function
approximation.

In this paper, we propose a spiking network model based
on a particular coding method. In Section 2 we review some
of the more well known methods of neural coding. This
review does not seek to be comprehensive, but sets the
foundation for the remainder of this paper. In Section 3,
we describe a network architecture and indicate how it is
capable of approximating arbitrary function mappings. In
Section 4, we describe an integrate-and-fire network archi-
tecture, based upon our general architecture. Section 5 gives
some experimental results that show the performance of the
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network. In Section 6 we qualitatively compare the
proposed network with the Maass et al. model. Conclusions
are given in Section 7.

2. A brief overview of neural coding schemes

The earliest neural coding method proposed is the mean
or temporally averaged firing rate for encoding information.
More recently, there has been growing recognition that the
traditional view of mean firing encoding is often inadequate.
Experiments from the fly visual system (Bialek et al., 1991,
1997) and studies of the middle temporal (MT) area of the
monkey have indicated that the precise timing of spikes can
be used to encode information, such a scheme is called
temporal coding. Population coding is another scheme in
which information is encoded in the activity of a given
population of neurons firing within a small temporal
window. Within this framework a notion of rate coding
can be extracted as a (weighted) instantaneous average
measure of firing activity in a given neuron population.

Function approximation methods have been demon-
strated for several encoding schemes. Sanger (1998) demon-
strated that function approximation can be performed by a
population of spiking neurons based on a rate coding
scheme, that assumes that information is encoded by the
instantaneous average firing probability, but avoids the
need to compute this rate explicitly. He showed that a
network of spiking neurons can be constructed such that
the output neurons’ firing probability is a desired smooth
function of the input neurons’ firing probability. This result
suggested a duality relationship between the firing nature of
spiking cells and the deterministic smooth behavior of their
tuning functions. Furthermore, investigation of both super-
vised and unsupervised learning resulted in adaptive algo-
rithms that were similar to those rules used in standard
artificial neural network theory. This allows classical neural
network approximation and learning methods, based on
continuous variables, to be implemented within populations
of spiking neurons without the need to calculate the inter-
mediate cell firing rates.

Maass et al. (Maass, 1997; Ruf, 1997) gave the first illus-
tration that using a simple mathematical model of the biolo-
gical neuron, a spiking neuron can compute a linear
weighted sum in temporal coding. The proof took advantage
of the mechanism that both excitatory (EPSPs) and inhibi-
tory (IPSPs) post synaptic potentials can shift the firing time
of a spiking neuron and that the initial phases of these
potentials are approximately linear. Furthermore, it was
demonstrated that a spiking neuron, that receives EPSP
and IPSP inputs from a population of presynaptic excitatory
and inhibitory neurons can emulate a sigmoidal neuron with
a piecewise linear gain function in temporal coding. This led
to a theorem that any feedforward or recurrent analog neural
network, for example a multilayered perceptron, consisting
of sigmoidal neurons that employ a piecewise linear gain

function, can be simulated arbitrarily closely by a network
of spiking neurons with analog inputs and output encoded
by temporal delays of spikes. This holds even in the
presence of noise. Maass (1997) also illustrated that from
computational complexity theory, not only could SNNs
emulate sigmoidal networks in principle, but also that
SNNs were computationally as powerful or more powerful
than sigmoidal neural networks. Thus, Maass (1997)
showed that spiking neural networks that employ temporal
coding are theoretically capable of universal function
approximation.

In this paper, our interest is not driven from a theoretical
point of view in the usual sense of trying to prove universal
approximation, although this is a very important network
property. Rather, our interest is in the question of how arbi-
trary functions can be approximated in a simple and prac-
tical manner using spiking networks. In this paper, we
propose a method of constructing temporally coded, spiking
neural networks that can be used for function approximation
in a robust manner, to be defined precisely later in the paper.

3. A spiking network architecture
3.1. Neural encoding method

In this section, we derive a general framework for a class
of spiking neural network models capable of forming arbi-
trary nonlinear function mappings (not necessarily univer-
sal) between an input and an output. To achieve this, we
firstly define the neural encoding method used and then
determine a neural architecture capable of forming the func-
tion mapping.

Biological neurons receive many spikes that form a repre-
sentation of the information received by the neuron. In our
work, we have chosen to use a temporal encoding scheme
that is defined such that the inter spike interval (ISI), the
temporal distance between two successive spikes, represents
a real-valued quantity. The relationship between real valued
inputs x; and the ISI is typically defined as follows,

x; =T(2) — T(1) = A,

where x; is the effective real value of the i-th input, 7;(1) and
T«2) correspond to the arrival times of the first and second
spikes, respectively, and A, is used to denote the ISI.

3.2. A network architecture

In this section, we describe the characteristics of a proposed
network architecture, capable of approximating any nonlinear
map. Our interest is to seek a network that could be used to
form the arbitrary mapping F: R” — R". In addition, obtaining
such a network raises the issue of parameterization. How can
a spiking network be trained to approximate some arbitrary
nonlinear map F, given some training set of (multidimen-
sional) data :{U;, V;, i=1, ..., N}, where U, =
[ug1 gy - ug,] and Vy = [vy vy -+ v,,], that represent
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Fig. 1. The proposed network architecture capable of forming arbitrary nonlinear maps in a piecewise fashion. Both the input and output units, represented by
rectangles, simply transmit input and output spikes, to and from the layer of spiking neurons. Our model spiking neurons are represented by diamonds.
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Fig. 2. The proposed model spiking unit consists of two input lines, an activation unit and two output lines. Its basic operation, when it fires, is to transform two

incoming spikes to another spike pair of spikes with some desired ISI of ¢.

observations of the mapping F? For reduced complexity, we
will consider the case of one dimensional nonlinear maps.

The network architecture we propose is based on the idea
of massive parallelism observed in biological nervous
systems. In simple terms, the methodology we propose is
to build a large network that temporally and spatially sepa-
rates incoming spikes into different regions of the network,
that in turn generate corresponding new spike pairs. These
new output spikes may have any desired ISI. Hence, the
network can form a piecewise mapping that can approxi-
mate any real valued function f: R — R.

For this case, the network consists of an input unit, an
output unit and a single layer of spiking neurons, as depicted
in Fig. 1. Our proposed spiking neuron model (represented
by a diamond in Fig. 1) is composed of three ‘sections’, two
input lines one of which possesses a delay 74, an activation
unit capable of firing a spike and two output lines (one
possessing delay ¢) as depicted in Fig. 2. Our model is
based on the fact that a biological neuron is composed of
three basic parts: a dendrite, a soma and an axonal tree.
Traditionally, the neuron in a neural network was effectively
treated as a ‘point particle’ modeled by the dynamics of the

soma, and the connections were treated as transmission
lines. In the model we propose, the effect of a neuron firing
an action potential is considered in terms of the multiple
resultant spikes that emanate via the axonal tree.

We consider that input spikes enter our model neuron via
the two input lines. Mathematically, our proposed model is
defined by the following set of equations. Consider a neural
unit a with activation y,(¢) at time ¢.2 This activation occurs
as a result of two inputs U,(7) and Ug(t — 74) that are
delayed with respect to each other by a time 74, and passed
through some operator %, where

Ya(t) = GLU(1) + Up(t — 79)]. 2

The total input entering the activation unit is designated by
() where

2 In a biologically-oriented model, y, represents the total somatic
membrane potential, given by the summation of all postsynaptic potentials.
In biological neurons, this summation is spatio-temporally nonlinear.
Currently, we only consider linear summation, since the addition of nonli-
nearities would simply increase the difficulty in achieving function
mappings.
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Fig. 3. The input space is subdivided into regions, with signals corresponding to each region being passed into a particular processing unit.

(@) = Uy(t) + Ut — 7). 3)

Let the inputs U,, Ug be obtained from the input lines as
filtered versions of input spike trains r,(¢) and rg(?), respec-
tively,3 where

Ua(t) = F1a(1) “

U.B(t - ’Td) = Jﬂr[g([ - ’Td) (5)

where 7 is a low-pass filter. If the activation y, exceeds a
threshold level 6 at time f;, the activation unit ‘fires’ to
produce an output spike s(7),

ot—t) ify,()=0
s(1) = { (6)

0 otherwise

The spike s(f) then exits our activation unit via the two
output lines generating a new spike pair having an ISI of
¢ seconds and denoted by

h(r) = [s(), s(t — P)].

Conceptually, the model is easy to understand. The equa-
tions above describe one input and one output, so to
construct a network capable of function approximation, it
is necessary to use many such units, each with their own
associated 74 and ¢ values. Each processing unit corre-
sponds to each segment* as depicted in Fig. 3.

The threshold value 6 requires a method of parameteriza-
tion. This could be set simply at 8 = 2L, where

2L = max(y,) = max(4[Un(T)) + Ug(Ty — 1)),

corresponding to the maximum of the activation y,,
provided that 74 =T, — Ty, for a pair of spikes. However,
this method would not be robust enough in practical circum-

* This corresponds well with biological spiking neurons where it is well
known that the dendritic and axonal branches have transmission delays that
primarily depend on their respective length and diameter. Furthermore,
each spike arriving at different points on the dendritic tree evokes a current,
that is transmitted up the dendrite to the soma and whose maximum (or
minimum) is delayed by some amount. For simplicity, it is assumed that
spikes occur at the same loci on the dendritic tree.

* This need not be the case in practice. Recently, there has been some
suggestion that biological networks may actual perform a type of ‘multi-
plexing’.

stances and would easily fail if the spikes were anything less
than exactly coincident. A solution is, therefore, to set 6 to
some lower value, but not too low so that firing occurs for
any spikes. We consider below such a method of setting 6 to
allow some latitude in the input ISI for each unit.

3.3. Threshold calculation

Here, we show that it is possible to set the firing threshold
for the unit so that there is an allowable tolerance in the
timing between the input spikes, below which the unit will
still fire. Thus, perfect coincidence is not required, and in
this sense, the system is robust enough to variations in the
ISI (that could be attributable to any number of physical
factors and is a desirable feature to have).

Let us look at the simplest case where the activation is
given by

Ya = U(T)) + Ug(Ty — 74)
and the inputs U,, Ug are expressed by
Ur(t) = Lexp(—(r — t)/DH(t — 1),

forI'=«a, B and 1;,=T), Ty — 74, where L is some arbitrary
positive constant and H(¢) is the Heaviside step function. We
specify a tolerance value p and derive 6 such that a given
unit produces an output spike pair if

(T) =Ty — 14| =p @)

For the purpose of this paper, we specify the time decay
characteristics 7 of the input spikes. Choosing a threshold
value of 1.5L gives

15L=L+Le " )
and hence

P
T Q) ©)

thus ensuring that the neuron will fire when the time differ-
ence between spikes is p or less. Hence, the proposed
network model is capable of robust performance by allow-
ing for some tolerance in the range of input ISIs that will
evoke an output. Accepting that biological systems possess
a degree of robustness, then it is also reasonable to consider
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mechanisms of introducing these characteristics in a model
as well.

4. An integrate-and-fire network

We now look at a simple specialization of the model
described in Subsection 3.2. In particular, it is interesting
to consider networks whose unit activation y, is modeled by
the leaky integrate-and-fire (IAF) model. In this case, we
identify y, as the membrane potential.

Let the input spike signal pair r(¢) be expressed as follows

( ra() ) ( &1 — 1) )

r(n) = = ,

ra(t) 8t — 1p)

where tf,, 15 are the spike arrival times at the different input
lines, where # < 5. Let us express U, and Up as

U () = Fr (t) = exp(— ! ; h )5{ (t—1))

S
and

r—1ty— T
#)H(t—to—rd),
-

S

UB(t - Td) = ,?"rﬁ(t - ’Td) = exp(—

respectively. The total input .#(t) to our activation unit is

).7-[(t —1)

t—t
TS

J()=U,(t) + UB(t — Ty = exp(—

t— 1ty —
+exp(— 071}1)5{(1 —ty — Ty),

S

where ¢; represent spike arrival times, 74 is the (synaptic)
time constant, 74 is the (dendritic) delay and JH() is the
Heaviside step function. Our activation y, is described by
the leaky TAF model,

d 1
)0 = Ty + I@), (10)
t Tm

where y,(f) represents the membrane potential, 7, is the
membrane time constant. When the membrane potential
reaches threshold 6, a spike is produced and transmitted
via the output lines. The output spikes A(#, ¢p) have an ISI
of ¢.

In this case, to ensure that our model neuron fires with a
prespecified tolerance p, the threshold parameter 6 is deter-
mined as follows. We select p and 74 as before, and initially
we set 7= p/In(2). Noting that

p=|1a— Al (11)
and using #;, =1y + 74, an analytical expression for the
total membrane potential can be easily obtained by
solving Eq. (10). Thus, the required threshold is obtained
as a function of time constants and the tolerance range,

and is given by

6(p) = [XrTs/(Tm*Ts)(eP/Tm +1)— X:’.s/(ﬂxffs)(ep/fs + 1),

(Tm/Ts - 1)
7. [ 1+el™

Xr = — 7/ .
T \ 1+ eP7

This method of threshold determination is used in the
next section to show the performance of the network
architecture.

12)

5. Experimental results
5.1. Function approximation

Here, we present some simulation results to show the
behavior of the proposed model. In the experimental results
given here, we approximate three nonlinear functions:

g1(x) = 1 + sin(4mx)
) =(x—16)0°—x+4

g0 =Q2x— 1.6 —2x + 4

Fig. 4 shows the approximation results for segment sizes is
g1, &: Ax=0.1 units, and g;: Ax=0.05 units. It can be
observed that the model approximates the functions as
required. In order to show the results more clearly, a low
resolution is used with large segment sizes. However, by
increasing the resolution with a larger number of units and
smaller segment sizes, a more accurate approximation
would be obtained.

5.2. Gradient descent learning

In this section, we demonstrate that the proposed archi-
tecture does not require a complex learning algorithm to
learn an arbitrary mapping. In fact, we show that it is possi-
ble to utilize a simple gradient descent learning algorithm to
train the network.

A gradient descent learning algorithm can be derived as
follows to determine the value for ¢, to approximate some
desired function F(x;). For each ¢,, we have simply

A¢a = ’Y(F(xz) - d)a)

ba = ¢a + A,

The delay ¢, is updated for the unit that has fired.

An example of one simple trial is given below to demon-
strate the effectiveness of gradient descent learning. Values
for ¢, were initially selected at random between [0, 3] and
v =0.025. Gradient descent training was applied to the
network until an error of 0.01 was achieved for all the ¢,s.

In Fig. 5, gradient descent learning is applied to the func-
tion g3(x) = (2x — 1.6)3 — 2x + 4. Fig. 5a shows the initial
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Fig. 4. Experimental results showing the approximation of nonlinear functions by the proposed network. The functions approximated are g;(x) = 1 + sin(4mx),
g =(x— 1.6)° =x + 4, g3(x) = (2x — 1.6)°> — 2x + 4. The lower two plots demonstrate that by increasing the number of units and decreasing the segment

size, a better approximation to the function gz(x) is obtained.

random selection of ¢,s and the final learned values within
an error of 0.01 and Fig. 5b shows the corresponding errors
after training between the trained values of ¢, and the
desired output F(x;).

6. A qualitative comparison of the proposed model with
the Maass et al. network model

It is useful to compare the network we have proposed

Training F(x) to gs(x)
6 a) ' A ¢a’s before training
5 o $,'s after training
g
4

—~
X

~
w

-0.005;

-0.015 ‘

0.015 ; '

with the well established Maass (1997) network model
that also uses a temporal coding scheme.

The Maass construction provides a possible explanation
of the observed speed of fast information processing in the
cortex. It was also shown that spiking neurons can compute
linear functions in temporal coding, provided that the spik-
ing neuron fires only once within a small (fixed) time inter-
val and that the initial phases of both excitatory and
inhibitory postsynaptic potentials are well described by
linear functions. Using this approach, Maass et al. also

Training Errore(x)

0.01f
0.005}
0,

-0.01}

0 05 1 15

X

Fig. 5. Application of gradient descent learning to the proposed network: (a) initial selection of ¢,s, the final trained ¢, s and the desired function; (b) error

between the values of the trained ¢, s and the desired function.
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demonstrated that upon reception of the correct amounts of
inhibitory and excitatory inputs at specific times, a spiking
neuron can in fact behave as a sigmoidal unit with a piece-
wise linear activation function. On this basis, it was then
shown that a spiking network can achieve universal function
approximation.

The SNN architecture we propose is able to temporally
and spatially separate incoming spikes into different regions
of the network, that in turn generate corresponding new
spike pairs. These output spikes can have any desired ISI.
Our basic processing unit does not require the condition that
it must fire only once within a given small time interval. In
addition, we allow some tolerance in the range of input ISIs
that do evoke an output, thereby providing a network with
robust properties in terms of spike timing.

In terms of function approximation characteristics, we
suggest that it may not be necessary to simulate a sigmoidal
neural network to achieve useful function approximation
capabilities. As shown above, it is possible to employ a
relatively simple architecture to model arbitrary functions.

Two drawbacks are evident with the proposed model.
Firstly, the approximation of arbitrary nonlinear maps is
piecewise and not continuous. This is an area to be exam-
ined in future work. Secondly, like most other models, the
nonlinearity of the dendrite was not considered.

7. Conclusion

In this paper, we have considered the issue of function
approximation in spiking networks. Such networks,
although widely considered in the biological literature, are
not as well represented in the signal processing and control
community. However, for some practical applications spik-
ing networks have particular merit.

From a bio-computational point of view, it is of particular
interest to discover mechanisms of how spiking neural
networks can approximate arbitrary nonlinear functions.
Answers to this question may have some important implica-
tions for neurological computation.

We have proposed a simple spiking neural network archi-
tecture that has ability to transform incoming pairs of spikes

to outgoing pairs with any desired ISI. Our architecture
achieves this by spatially and temporally separating incom-
ing spikes into different regions of the network, that in turn
generate corresponding new spike pairs with any desired
ISI. This is the underlying mechanism that allows our spik-
ing neural network to approximate arbitrary nonlinear
network architecture that is capable of approximating func-
tion mappings.
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