Neural Encoding: Firing Rates and

Spike Statistics

e Dayan and Abbott (2001) Chapter 1

Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks

Spike Trains

e Action potentials can be represented as a sequence of spike
timing:
ti,1=1,2,3,..,n,and
0<t; <T

® The spike sequence can be represented as:

n

p(t) =3 6t — t,)
=1
e For any well-behaved function h(t),

n (o)

}:h@—m):/“ drh(T)p(t — 7).

i=1 -

Background: Dirac 0 Function

e Dirac 0 function has the following propreties:

/ﬁ&ﬂ:l

/ a's(t — (1) = f(t)

and it will be used a lot in the following.

Firing Rate

“Firing rate” can mean many different quantities.

e Spike count rate is defined as

n 1 T
= — = — d
r=g=g | dmao.

where 1 spikes occured within a time interval of 0 < t < T,
which is the entire trial period of a single trial.

e Trial average (z) means the average of the same quantity z at
the same time point over multiple trials.

e Firing rate is defined as
1 t+At
r(t) = — dr{p(T)).
=75 o)

e Spiking probability within interval (¢, t + At) is r(t)At.
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Average Neural Response and Firing Rate

® Average neural response can be represented in terms of firing
rate:

/dTh(T)(p(t— 7)) = /dTh(T)r(t—T)

e Average firing rate over multiple trials can then be defined as:

(ny 1 [T 1 [T
(r) = T = ?/o dr{p(t)) = ?/0 dtr(t).

Measuring Firing Rates
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Summary of Different Firing Rates

e Single trial, entire trial duration:

n 1 T
= — = — d .
== e

o Multiple trials, short time interval:

t+At
=5 drlelo.

e Multiple trials, entire trial duration:

n T T
(r) = <—T> _ %/0 dr{p(r)) = %/0 dir(1).

Measuring Firing Rates w/ Sliding Windows

e Fixed-size sliding window

n
Tapprox (t) = Z w(t — ti); where
1=1

1/At i —At/2 <t < At/2

0 otherwise.

w(t) =
It can also be written as

Tapprox(t) = /OO drw(T)p(t — T)

— o0

which is a linear filter with kernel w.



Measuring Firing Rates w/ Sliding Windows (ll)

o The equation below is basically a convolution of spike train with a

kernel function:
[e.e)
fappron(t) = [ dru(mp(t - 7).
— o0

Compare to the definition of a convolution:

(F+g)(t) = / T drf(r)glt—1) = / T drf(t—r)g(7).

o —00
o A smooth window function (or kernel) w can be used (here, a
Gaussian):
1 T2
V2mow T CE) ’

where the std of the Gaussian o, controls the window size.

w(T) =

Tuning Curve: V1, Gaussian
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o Neurons are sensitive to stimulus attributes s: denote by s.

® The neural response tuning curve is a function of s is

(r) = f(s).

e A typical example is that of V1 neurons (figure above), a Gaussian tuning

curve:

1 S — Smax 2
f(S) = TmaxeXp |\ —— |\ —— .
2 of
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Measuring Firing Rates w/ Sliding Windows (lll)

e Instead of looking at both sides of a time point ¢, we can also look

at only spikes in the past.
w(r) = [o®7 exp(—ar)]y,

where 1/« determines the temporal resolution of the estimate,
and

z ifx>0
2]+ = ,
0O otherwise

This kernel is called a causal kernel.

e Note that w(t — ;) is summed up, so any spikes in the future
will have a negative value plugged into w ().
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Tuning Curve: M1, cos
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o Motor cortex neurons:
f(s) =70+ (rmax — r0) cos(s — Smax),

where s is the arm reach angle, and ¢ the baseline response

and r7max the max response.

e f(s) reaches min at 21y — rmax, which can be a negative
value, which should not exist, so:

f(S) — [TO + (Tmax - TO) COS(S — Srnax)]+-
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Tuning Curve: V1, sigmoid
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V1 disparity-sensitive neurons:

J(s) = 1+ exp ((31/2 —5)/As)’

where s is disparity and s /5 is where disparity response is half

the max.
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Stimuli that Makes a Neuron to Fire

Weber’s law: “just noticeable” difference in stimulus, A s, has the
property:
As

—— = constant.
S

Fechner’s law: Noticeable differences set the scale for perceived
stimulus intensities. Perceived intensity of stimulus of absolute
intensity s varies as log s.

/Tdtﬂzo
0 T

— Over the same input, across trials: (-).

Zero mean stimulus:

Averages:

— Over different inputs: usually averaged over time as a single
long stimulus. 15

Tuning Curves: Spike-Count Variability

e Tuning curves gives average firing rate, but do not describe the
spike count variability around the mean firing rate () = f(s)

across trials.

e Spike-count rate can be from a probability distribution where
f(s) is the mean.

e The variabilty is considered to be noise:
— Noise distribution independent of f(s): additive noise.

— Noise distribution proportional to f (s): multiplicative noise.
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Periodic Stimuli

e Given stimulus s() frominterval 0 < ¢ < T, we can replicate
with a phase shift of 7.

T T+ T
/Odth(s(t-l—T)):/T dth(s(t)):/o dth(s(t)) .

N J/

g

Holds when s(T" + 7) = s(7) forany 7
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Spike-Triggered Average
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e Average stimulus (over trials), 7 before spike occurred:

C(r)= <l Zs(ti —7')> R % <Zs(ti —7)

L

¢
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Spike Triggered Average Example
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o Neuron of the electrosensory lateral-line lobe of the weakly

electric fish Eigenmannia.

e Input [, spikes, and spike-triggered average shown.
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Spike Triggered Average and Stimulus-Response
Correlation

® Spike-triggered average can be represented as:

T T
O(r) = i/o dt (p(t))s(t—7) = <—1>/0 dtr(t)s(t—7).

(n) n
e The firing-rate stimulus correlation function is:
1 T
Qrs(T) = = / dtr(t)s(t+ 7).
T Jo
Thus,

1
C(r) = m@rs(—T).
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Stimulus Autocorrelation and White-Noise Stimuli
o White noise stimulus: any one time point of the stimulus is
uncorrelated with any other time point.

e Stimulus autocorrelation function:

Qss(T T/ dt s(t + 7).

o For white noise stimulus,

0 it —T/2<71<T/2,T#0

Qoo(7) = o28(t) #T1=0

where o is the stimulus variance.
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Multiple-Spike-Triggered Averages
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Instead of a single spike, you can look for stimuli triggering a
pattern of spikes.

Blowfly H1 neuron data are shown above.
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Stochastic Process

Point process: stochastic process that generates a sequence of
events, like action potentials.

Probability of an event at time t is usually dependent on all past
events.

Renewal process: current event only depends on immediate past
event so that intervals between successive events are
independent.
Poisson process: All events are statistically independent.

— Homogenous: firing rate is constant over time.

— Inhomogeneous: firing rate is dependent on time.
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Spike-Train Statistics

e The probability density of a random variable z is p[z].

/_O; dzp[2] = 1.

e Probability of z taking a value between a and b:
b
Pla < z < ] :/ dz plz].

a

e Forsmall Ax,
Plzx < z < x 4+ Azx] = p[z]Ax.

e Probability of spike sequence given prob. density of spikes
plti,ta, ..., tn] and a shortinterval At:

Plti,ta, ..., tn] = plt1, ta, ..., tn](AL)".
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Poisson Distribution

e Poisson experiment:

— Number of events in one time interval is independent of that in another
non-overlapping interval.

— Probability of a single event during a short interval is proportional to
the length of the interval, and is independent of events outside that
interval.

— Probability that more that one event can occur in a very short interval

is negligable.

e The number X of outcomes in such an experiment (in a specific time
interval) has the Poisson distribution.

e Binomial random variable with distribution b(x; n, p) approaches Poisson
distribution as n — oo, p — 0, and . = np stays fixed.

Ref: Walpole and Myers, Probability and Statistics for Engineers and Scientists, 3rd ed. Macmillan (1985)
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Poisson Distribution (Il)

Prln]

e The number of events 1 in a given interval 1" is

exp(—p)p"
n!

Prn] =

)

where L is the average number of events in that interval. Note, if firing rate
is r and the interval is 1", . = r'I".

® The probability of an ordered sequence of spikes is:

At

P[tl,tQ,...,tn]:n!PT[n] <T) .
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Interspike Interval

e Probability of two successive spikes at t; and ¢;1 with
ti +7 <tiy1 <t; +7+ Atis
— No spike within 7 (interspike interval) and,

— Spike witin a short period At immediately following that.
No spike within 7
——
Plti+7 < tjp1 < ti+7+AL) = rAt exp(—rT)
~~
Firing within At

e Mean and variance of interspike interval:

) = [ drrrep(rm) = 3

2 > 2 2 1
or = dr T°rexp(—r7) — (1) = .
0 r
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Properties of Poission Distribution

e Variance and mean of spike count is the same:

o2 = (n?) — (n)? =1T = p.

o Fano factor:

is 1 for homogeneous Poisson process.

o Coefficient of variation:

2
g
CV — _n7
(1)
is 1 for homogeneous Poisson process (7 is the interspike

interval).
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Spike-Train Auto- and Crosscorrelation Function

e |S| distribution describes T between two successive spikes.

e Generalizing this to times between any two pair of spikes in a

spike train is spike-train autocorrelation function:

T
Quo(r) = 7 [t (o0 = () (olt +7) = ().

Property:
Qpp(T) = Qpp(—T).

e Do the above across two spike trains to get the crosscorrelation

function.
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Auto- and Crosscorrelation Histogram Comparison of Poisson Model and Data
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e Number of spike-pairs with distance within 1 4+ 1 /2A¢: Ny,

e Normalize IV,,, by the number of intervals in each bin n? At /T’ 0 20 40 60 80 100 "0 20 40 60 80 100
interspike interval (ms) interspike interval (ms)
and duration of trial 7"

9 e Fano factor and ISl distribution show close match between
N'rn - 77, At/T . .
H,, = T . Poisson model and experimental data.
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Neuronal Response Variability The Neural Code
in vitro current injection in vivo current injection  in vivo visual stimulation L. . .
e How is information coded by spikes?
20mvV

o A matter of intense debate: Rate coding or temporal coding?
100 ms

e Other perspectives: Independent or dependent spikes?

Independent-spike code

Correlation code

e Poission model does not account for neuronal repsonse variability
in in vivo (alive animal) experiments as compared to in vitro (in
isolated tissue).

Independent-neuron code

Synchrony and oscillations
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