(12)

United States Patent
Werbos

US006882992B1

(10) Patent No.:
5) Date of Patent:

US 6,882,992 Bl
Apr. 19, 2005

(54

(76)

*)

@D

(22

(60)

D
(52)
(58)

(56)

DE

NEURAL NETWORKS FOR INTELLIGENT
CONTROL

Inventor: Paul J. Werbos, 5304 First Place
North, Arlington, VA (US) 22203

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 576 days.

Appl. No.: 09/654,396

Filed: Sep. 1, 2000
Related U.S. Application Data
Provisional application No. 60/152,922, filed on Sep. 9,

1999, and provisional application No. 60/152,167, filed on
Sep. 2, 1999.

Int. CL7 oo, GO6F 17/00
US.CL e 706/48; 706/16
Field of Searchc.coooooiiiiiiin 706/48
References Cited
U.S. PATENT DOCUMENTS
4,874,963 A * 10/1989 Alspector
5,005,459 A * 3/1992 Ohta et al.
5297232 A * 3/1994 Murphy
5434951 A % 7/1995 KUWAd .ooreevererereereennen. 706/28
5,444,822 A * 8/1995 Shinoharaccceeeunen. 706/41
5,586,219 A * 12/1996 Yufik
5,619,619 A * 4/1997 Shinohara et al. 706/28
5,651,098 A * 7/1997 Inoue et al.
5,701,398 A * 12/1997 Glier et al.
5794224 A * 8/1998 Yufik
5,832,183 A * 11/1998 Shinohara et al. 706/20
5,943,663 A * 8/1999 Mouradian
FOREIGN PATENT DOCUMENTS
196 12 737 A1 10/1996

OTHER PUBLICATIONS

Dual-mode dynamics neural network (D2NN) for the trav-
eling salesman problem, Sukhan Lee; Huang, D.; Neural
Networks, 1995. Proceedings., IEEE International Confer-
ence on , vol.: 4, Nov./Dec. 1995 pp.: 1880-1885 vol. 4.*

Solution of the traveling salesman problem with an adaptive
ring, Hueter, G.J.; Neural Networks, 1988., IEEE Interna-
tional Conference on , Jul. 24-27, 1988 pp.: 85-92 vol. 1.*

A neural network for solving the travelling salesman prob-
lem on the basis of city adjacency in the tour, Joppe, A.;
Cardon, H.R.A.; Bioch, J.C.; Neural Networks, 1990,
IJCNN International Joint Conference Jun. 7-21, 1990
pp-:961-964, vol. 3.*

Neural networks for extraction of weak targets in high
clutter environments, Roth, M.W.; Systems, Man and Cyber-
netics, IEEE Transactions on , vol. 19, Issue: 5, Sep./Oct.
1989 pp.: 1210-1217.*

* cited by examiner

Primary Examiner—Anthony Knight

Assistant Examiner—Michael B Holmes

(74) Antorney, Agent, or Firm—Oblon, Spivak, McClelland,
Maier & Neustadt, P.C.

(7) ABSTRACT

A method and system for implementing a neuro-controller.
One example of a neuro-controller is a brain-like stochastic
search. Another example is a neuro-controller for controlling
a hypersonic aircraft. Using a variety of learning techniques,
the method and system provide adaptable control of external
devices (e.g., airplanes, plants, factories, and financial
systems).

4 Claims, 56 Drawing Sheets

Miller, Sutton, Werbos, MIT Press, 1990

U.S. Patent Apr. 19, 2005 Sheet 1 of 56 US 6,882,992 B1

L

Miller, Sutton, Werbos, MIT Press, 1990

US 6,882,992 B1

Sheet 2 of 56

Apr. 19, 2005

U.S. Patent

sprin) 29 sapifiqede)) ayI'T-uielg pIJUBAPY
uonezrumdo ‘Fupjoen ‘spodxd SUTOld :[01UOD .
uoneoLJISSe[o/uonoIpaId orueuip o
UOT)BOLJISSB[O/U0NOIPaId o1jels o
spe, pue
SAOT, "SA S[OO], SUIJIOA -- WY dY} JO 9elS #
odA) Kzzny ‘sadKiqns ‘A103s1Y ‘s9dA) 1q T e
(19N [BINAN © ST 1eUM #

SUIAW '8 saniigede :jonuoy pue .
HonaIpald ‘sansounielg 104 S19N [eINAN

U.S. Patent Apr. 19, 2005 Sheet 3 of 56 US 6,882,992 B1

Fig.
3
Specific
Problem
Solvers

Computational

lb:ystems L.meSkyJ

Expert Systems

General Problem Solvers MCCHHOCh
$ Pitts gNeuron

Logical. Reinforcement Widrow LMS

Reasoning [earning &Perceptrons

BaCkerp 14 <

Neuro, Hebb “—“‘Psychologlsts PDP Books
Learnmg Folks - _

U.S. Patent Apr. 19, 2005 Sheet 4 of 56 US 6,882,992 B1

U.S. Patent Apr. 19, 2005 Sheet 5 of 56 US 6,882,992 B1

The Brain As a Whole System
Is an Intelligent Controller

US 6,882,992 Bl

Sheet 6 of 56

Apr. 19, 2005

U.S. Patent

¢INND) S19U [einau wimuenh -(p3inguIsip]
le[npownnui :anonu3s/NoquAs .

uielg jewey Jiseq puonag sysnai #

sipdani) ‘uoneubeul, ‘Aydselaiy jelodii)l
‘SYI0M)3U jeneds -- uhisag 86, ‘djoquAsyng -

9031 uleig-jewiey Jiseq =

£6/11 woiy pajudwajdw| Z-1L61 ubisag -

[dOY) INUJ anndepy paseq-1apo *

93uahiou| jeuonenduiod
JO S|9na] 93dilll

314

U.S. Patent Apr. 19, 2005 Sheet 7 of 56 US 6,882,992 B1

+ 4 General Object Types [bushar, wire, G, 1)
« Hetshould aliow arbitrary number of the 4 objects

+ How design RNN to input and output FIELDS -- variabies ke the SET of
values for current ACROSS all objects?

‘0661 OIMUAPLIY ‘sddy Surnduto)) [pAnaN

yooqpupry ‘pd ‘UIBIA UT M [J 995 '1S9qQ UONBUIQUIO)) #:
VTV (14X avg s1ompaid 1ou uonorpaid J1:¢ odAT,
VTV ‘uonopaid woiy 09 ([+3)X [enioe uoym g odA T, «
INTIN T wodJ (1+1)X 101paxd 03 uren 3s11j :S19YIQ #
AMOWAN ‘0T “(3)X woay (1)'4 101paxd 17 odAL #
%1 01 L] suonjeoiyisse|o jnej (3)n eyep 1930
‘(1)X erep 10Suos asn ‘s103otpaid urely ¢ [y #

US 6,882,992 B1
X

Sheet 8 of 56
@

Apr. 19, 2005
Y1)

W9ISAS ansoubeigjosauAL e

U.S. Patent

US 6,882,992 Bl

Sheet 9 of 56

Apr. 19, 2005

U.S. Patent

7= “T-1 sawy Jo AJowou,, ou
NQ SOTWRUAD TEUIIUT ALY AW SIS

S10311)

()X [emoy

sindino

—

()X parorpaiq L

sindur

()0

(S1S] SWAISAS HuInARa] pasinaing s,

U.S. Patent Apr. 19, 2005 Sheet 10 of 56 US 6,882,992 B1

D
S g

D £ B
&) § =
l = O 8
’/ = LE) é
\’l, g 3
= "i" A ~ B E
2PN F 2
/"o\‘ x
Q. w
\ s 3%
O =

Fig.
10

US 6,882,992 Bl

Sheet 11 of 56

Apr. 19, 2005

U.S. Patent

syue],
aSeIdAY JOULIOJIY JEDUONBIWIWIPIS UONBIY I13)BAIRIJ

| T

ISnqoy Aind @
[RUOTIUIAUO)) []

)7

U.S. Patent Apr. 19, 2005 Sheet 12 of 56 US 6,882,992 B1

Generalized MLP

4—

w

=

=

=

||
+— ‘.><‘—‘
-« —

Fig.
12

US 6,882,992 Bl

Sheet 13 of 56

Apr. 19, 2005

U.S. Patent

N 03 [-+Wi=T JOF Op
s s R

d1IN 03ZIT74INT9 10 SNOILYNO]

€T
81

US 6,882,992 B1

Sheet 14 of 56

Apr. 19, 2005

U.S. Patent

¢SONANEALIIPN 3] 3lejnJjed MOH

4!

81

US 6,882,992 Bl

Sheet 15 of 56

Apr. 19, 2005

U.S. Patent

41N pazijelauah jo) uonesedoiyiey

SI
‘31

US 6,882,992 B1

Sheet 16 of 56

Apr. 19, 2005

U.S. Patent

INLLNOYENS TYNA HLIM JTNYI/d8

ol
814

US 6,882,992 Bl

Sheet 17 of 56

Apr. 19, 2005

U.S. Patent

.59[qe) dn3{007] PAYLIOLD),, PI[[B) SOWHIWOS —
AKIOWAA 9ANRIVOSSY ‘I0QUIIIN I1SAIBIN I'] —

ueIqqoH DVIND ‘AdY ‘183071~
SmoIn) sinduy Jo Joqunp Se suonoung Jloows

J0 uonewIxolddy 1eIN00Y QIO SUISIOAY], S uoLeq —

FuIuIeoT 19MO[S ‘UOIBZI[RIAUAL) 19119¢] —

(dTN) uondasiad 10Aenniy 1eqolo -

1041NOJ NI NOILYININOYddY
NOILINN4 304 03Sn SNNY TUNOLLNIANOI

L1

‘1]

US 6,882,992 Bl

Sheet 18 of 56

Apr. 19, 2005

U.S. Patent

j10M39U U0 Jo sindino 7 juasaidar S pue J
(1-D ‘OX3=T ((1-HT ‘OXF=0)X

g

A 4
70
B (e
: N?

A 4

T wy [()F

A

[N411) JIOM]3N 1U3LINIIY
pahhe1-au) 3ul

8]
‘319

US 6,882,992 B1

Sheet 19 of 56

Apr. 19, 2005

U.S. Patent

soeos own d[dnnu 9AJOAUL ABW SUOISIIN(,,
snonunuod 10 (*** ‘7 ‘1 ‘) AI2IOSIP 9q AW }

()0 (suonoy)
SoJqeLIe A JONUOD)

(1)X $9[qeAISqO)

. lojue[d

.m-w w L
¢lonuog sjleym o

‘31

y

US 6,882,992 Bl

Sheet 20 of 56

Apr. 19, 2005

U.S. Patent

uoneziwnd(Q) snsioA Surori], SNSIOA SUTUO])e

uonoen peol 3urgueyd o3 Jdepe 03 WIed[30 —
SUILIBYT SNSIOA JAT)dEPY SNSIOA POXI e

YOBQPA9,] SNSIOA PIEMIOJPID e

(1D 29 wopowr) QN[N "SnsIdA (P10) OSISe

(13ppe1 i) 10A1u0 uj S3310YY Jofel .

814

US 6,882,992 Bl

Sheet 21 of 56

Apr. 19, 2005

U.S. Patent

SEANIT NIYOYd 9H.L LNO SLND TOYLINOD MIvMI0ddddd

E——

B i e T LT St

1C
‘S

US 6,882,992 Bl

Sheet 22 of 56

Apr. 19, 2005

U.S. Patent

uoneziundg 3Jueui0}13d anil =
[S3UIHUA 1U0SIUAY ‘S10S59904U
|an} f°3) Spueg 9IUBULIOHIJ MOLIEN 1391\
LLOW ‘SWa1031) SNSIan A1jeay
Aijigels jem3y 131831 =
aluI Juawdojanag -

huljeam] snsiap Guiuiea] #

joJ1U09 huuieat jo s1oedul|

i
314

US 6,882,992 Bl

Sheet 23 of 56

Apr. 19, 2005

U.S. Patent

(soqo Ay) Suruei§old orweuA(drewnrxorddy “sa —
(opg/uosAig To8uag) NO)T SA peayeyoo] days-u —
HNLL 4dAO NOLLVZINILJOe
PassSnosI(] 2 O], ‘oz1[1qelS 01 SABp\ € —
A10109[R1] 90UI9JOY 10 JUIOd RS :ONTIDV L.

(uewiny JO UONIIPald) SIO(] Modxy 9yl 1ey M\, —
(Tv 10 Azzn,]) SA®BS 11odxy oyl 1M —
Io7[013U0)) I3 10 Wadxyg Ado) :DNINOTDe.

S)sel/sieoy/sauaeotddy ubisagg -

314

U.S. Patent Apr. 19, 2005 Sheet 24 of 56 US 6,882,992 B1

Fig.
24

US 6,882,992 Bl

Sheet 25 of 56

Apr. 19, 2005

U.S. Patent

JON [1A9(J,, 10 UITUQ SUOISIOA AV
1addeipy 9SION ‘I9[[0NU0D) N 1L PO°4N -
(18 10 dwey[9 ‘pIoy) . SurweansnnaL, e

(06 USIBIA)

QUITUQ dANdepY/QUIFO UIEdT #
(sseln)) onuo)) dAndepy

(9911 ¥20)

[onuo)) Ayutyuy H Io 1snqoy #

Ripgels 139 o1 sAej 3l

ST
‘31

US 6,882,992 Bl

Sheet 26 of 56

Apr. 19, 2005

U.S. Patent

[>H) AIgels J0] sahuey Isiawered
'SOIUOSIOUAY WOk} ajdexy =,

>

(pareSedoidyoeq) ()T Ae1S [emoy
I0L1yg Jo
SOATIBALIX(]

US 6,882,992 Bl
7y

Sheet 27 of 56

Apr. 19, 2005

(I-+)IX 21818, PaHIsa(

1041107 anndepy 1934ipuj Jo eapj

U.S. Patent

LT
81

US 6,882,992 Bl

Sheet 28 of 56

Apr. 19, 2005

U.S. Patent

&

[JdIN [EANaN] [041U0Y 10] (L1)
auul] yhinodyy uonesedoldyoeg

8¢
314

US 6,882,992 Bl

Sheet 29 of 56

Apr. 19, 2005

U.S. Patent

WAISAS INLIY anndepy (Jyd+daH) € 193]

6C
319

U.S. Patent Apr. 19, 2005 Sheet 30 of 56 US 6,882,992 B1

| X0

sensor inputs

ut)

actions

RLS may have internal dynamics and
“memory” of earlier times t-1, etc.

suoneyoadxa :A301oyoAsd Uy

US 6,882,992 Bl

sjeod waay-3uof :Suruuerd ur uonduny ANnN @

2s0[01 ApIqissod oy} 9ZIuIuIw :SoWes Ul e

Sheet 31 of 56

10110 Sunyorq) SZIwIuIw :3uoen Ul .

OZTWITXBUW/ZIWIUIW 03 JeyM JNdwoo 9y} [[23 9 #

Apr. 19, 2005

uonunj AN

1€
31

U.S. Patent

U.S. Patent Apr. 19, 2005 Sheet 32 of 56 US 6,882,992 B1

Fig.
32

US 6,882,992 B1

Sheet 33 of 56

Apr. 19, 2005

U.S. Patent

s[opowr ureig-¢ ‘urelg-g

(S[opowr WN[[9gaIad ‘NY L) dULI) IoXIy s
/861 ‘Surtuwrergord
OISLINAY [enp pazijeiouar) pue urwwersord
onSLINAY Ten(‘LL6] ‘Onuo aandepe pajededoidsoeq

€R61 USSP (VSE) UOSIOPUY-UOPNS-0)IRE o
+(T-0 S[OAQ]) 9L -[9POIN #

SINUY anndepy Jo SauAlL

€¢
31

US 6,882,992 Bl

Sheet 34 of 56

Apr. 19, 2005

U.S. Patent

‘L ¥0O ddH

“ue)
O

(M OX)r — s

[1 [¢1
Tk + D/ (M T+ %:,Iﬁm — (M (Dx)f I\mlﬂ% o !

\ ’)

N? +1/M T+ D)%)+ (DnMx)N) - (M (DX)[) = S% =(a

(#)n
L+ DA+ DX + (On()x)) xeIN = (DX) [

149

314

US 6,882,992 Bl

Sheet 35 of 56

Apr. 19, 2005

U.S. Patent

W)

WAISAS N1 annuepy (ysd) | 193]

G¢
814

US 6,882,992 Bl

Sheet 36 of 56

Apr. 19, 2005

U.S. Patent

(WT(MX).[PAIPaI] dZIWIXEIA 0} ()T UTeL]

pajorpaxd (1), [

[0< "Jyaw) InLY anndepy
JU3pUadag-uoNay - 1931

9¢

31

US 6,882,992 Bl

Sheet 37 of 56

Apr. 19, 2005

U.S. Patent

bgY | pEIEPIOSLOY) PUB PIET ASINOIAR

vaibay Yo

1004 JIo
W04

18|04
LORBPHOSUOD Buloo)

' DONIHNLOVANNYN NI SYHOMLIN TYHNIN TYIOIALLHY

LE
sued 9-9 ansejdowiay] 10j $S30id IYIW =i

US 6,882,992 Bl

Sheet 38 of 56

Apr. 19, 2005

U.S. Patent

(1+1f
WIdISAS 21119 anndepy (3¥9+d0H) € I3AI]

Nt

8¢

81

US 6,882,992 Bl

Sheet 39 of 56

Apr. 19, 2005

U.S. Patent

(Dyy=10810], , .

e L E LT L L

i wit

uonoy

A
[}
1
1

[SPOIN

(1r)de/(1+)re=1+)y

(1+)d

e

Jiisg)

[dH{) uleifold INsUNgy fend

6¢

814

US 6,882,992 Bl

Sheet 40 of 56

Apr. 19, 2005

U.S. Patent

(OHVE) €661 10q0Y UosaUILf

(. JH(,,) oruosiodAH xo0)/ded#

(dHQ) 2[ISSIA uruysLIye[ed
Iopue[omy

10J082101¢] (DY) AOIOYNOIJ/JOSUN #
(NS pue dHA)

MAIN “PENNDM SOGIIAN/0TerueS

SO 1710 £]9N316G

‘314

US 6,882,992 Bl

Sheet 41 of 56

Apr. 19, 2005

U.S. Patent

suonngISIg Aupqeqodd anig Gunapald #
ewndo
[230] 3023S3 0] MOY 3RP3[Mouy Ulewop

104} UIE3] YIIYM ‘SHIOMIBN uoneubew],
WA1SAS U0ISIAG

[E3124B131H B JO S|ANa] uiea] 0] SAeM

0/1 }IOMIaN/PaINGUISIQ 105 SNNY #

sanqedes pasueapy o4y .’

U.S. Patent Apr. 19, 2005 Sheet 42 of 56 US 6,882,992 B1

« AGeneral Obiect Types (hushar, wire, 6, 1)
« Hetshould aliow arbitrary number ofthe 4 Bhi&ﬂis

+ How design ANN to input and output FIELDS -- variables like the SET of
values for current AGROSS all objects?

US 6,882,992 Bl

Sheet 43 of 56

Apr. 19, 2005

U.S. Patent

uonapaat pus sindne pue My sindul
Yo1ym 131 11 jeqojh e sauiiap A1LIIdNI SIUL
B3PI SIY) SIS WISAS INsoubelp pununiog *
‘(AN9WAS fuisoduwn legsnd 1eyl
0] payuI] S1IM { [10) ()31 pue ()seqsng
10 UONJUN) SE [1+1}4eqsng 191p3id B #

199110 1y} uo ejep [ie 1300
199110 J0 3dAL YIBa 10} 30 ‘SION 31 ¥ UIel]

\\\

aseg (44) PIEMI0JpOS] UTUONIINAL
pUY-pUY 01 YIeolddy ajdus

US 6,882,992 Bl

Sheet 44 of 56

Apr. 19, 2005

U.S. Patent

suonaunj anjep 01 A3y -- huldde g/1 lesduady #
1009086 fi10-tdepe ‘NoGTURIXXX Ul S SNYS Wel] #
(M6 = ((1+DX '6°9) uonaipaid .
M wK‘DX) =pnlt
‘NYS ue S113u 13310 31 Jo AMINANS YL *
(I13s1 X axi] 1snf) pLib
311 1910 PI3L € Se paupap T‘10)99A AleIjIXNE U ppy #

310]3(Sk ‘SYI0M1aU [apoiu 133110
1€30] JO uoneulquiod 3yl se ‘44 19N 14 [eqojh e auyag *

(Guipuad Jugled) uonezieisusy .
U923y y:s1aN19ige

U.S. Patent Apr. 19, 2005 Sheet 45 of 56 US 6,882,992 B1

g1

U.S. Patent Apr. 19, 2005 Sheet 46 of 56 US 6,882,992 B1

rig. Stochastic ED (See HIC Ch. 13

Full Design Also Does the Dynamics Right

US 6,882,992 Bl

Sheet 47 of 56

Apr. 19, 2005

U.S. Patent

+I 1BN
sa)e)s 1sixe-1sod

(v)d

SH00|9
18ybiH

—_—
WoJ 4 OJu]

1‘M‘6 0B

¥

—p
D abew]

|eoo) Azzn4

e T L B RO R R R

AN B A B R

(1).,0 “yf :S1IBN
S9)e)]s
(v

'

Anus
)o

AII<I
n

SJBLIPOIN

P R—
\

uoIsioaQ

NO01g UOISII{(] € JO 21NJoN.IG

US 6,882,992 Bl

Sheet 48 of 56

Apr. 19, 2005

U.S. Patent

sanqissod jo 3|UN0J y *
3IudnBIIAU] ANIT-Ulelg 0] [RIONAY -
suoneaddy [enualod «

cluepodw 1 S1 AYM #

¢SSITg s11eum *

ahuajleuy ydieasaygy -Ssiig
PJa1e3ds AISeyIols aji-uiely

Y
319

§}1MI.417) [PI1RL10))
‘UM TH 39S

US 6,882,992 Bl

Sheet 49 of 56

Apr. 19, 2005

U.S. Patent

6V

314

US 6,882,992 Bl

Sheet 50 of 56

Apr. 19, 2005

U.S. Patent

afpajmouy urewiop pjing ol Aeme si Auuies -
X S9jduexo Auelll 1900 sujelj Y. S99S,, WAISAS -
SW3go1d Xew Jo Ajnue) e Sjuasaidi xnmn -
(X M dznuIXe oL n puij o1
SUIea1 Yalym wolsAs e ping
'SSIg #
uonauny ssaull4 ‘(mn szuxew o1 n pui
:Ja41eas IMNSeyaIols [euonuanuoy *

¢SSI1g slieum

0S

314

US 6,882,992 Bl

Sheet 51 of 56

Apr. 19, 2005

U.S. Patent

LN Seuenioduij 31oul S1 3Gp3jmou)y uiewoqg -
"PoyIa Ya1eas NIdats-uiewop 1s9q
9]} ie3| 01 S SSITY juiewiop/Ajiuie] e 0]
BUOoJ3(Sw3jgoid ucneziundo Jnels 1ISON *
SaI3dod diyd pasap
10 UoneN1Iads Si X 313um ‘swajqold
uBISap ISTA SOW Jo Ajnuey 3wy se (X ‘mn *
NNOII S19N1331(0 ¢S3110 JO 13quinu 3jqelien] -
S31119 J0 SA1eUIPI009 J0 13S AU SI Y Al3AYM
-- SIajold 4S1 11e Jo Ajiuey 3 se i mn #

|58

suonevnady/sajauiexy s

US 6,882,992 Bl

Sheet 52 of 56

Apr. 19, 2005

U.S. Patent

¢119 ‘93U 1inday ¢Udieas aij) ajeiall MOH -
~10 yaeoidde 4g3S 10 gog'd je 9 Awiey-nueijog -

&\Qﬂmvbwﬁ& ‘X))o =(X _ n)id
1201 4ans (1 @ yynyJomou e upell -

SIONUONIQ :Y218aS SYGIY ISEN{ JO pury S0 #

[S1S u11361e] se . anjea pajepdn, pjo asnj
(‘)N 19u e 1depe ‘(n Gunepdn jo peaisy| -

POUIAI HIURId-19))04 10 UIBMS SZUIBIIBIRd *
~SONIINISSOd AU JO OML ¢EMOH

4
311

US 6,882,992 Bl

Sheet 53 of 56

Apr. 19, 2005

U.S. Patent

a+)X

(T-H)n

()m

QOHLIW 1SN90Y 34nd

81

US 6,882,992 B1

Sheet 54 of 56

Apr. 19, 2005

U.S. Patent

ALITUYNOLLIONNA INIYIINIONI*
J1SAS J010[N/UONIY UY*

[ISAS)
WASAS , suoneldadxy, uy+

(SaNJeA) WaIsSAS Jeuonows, uy:

melg ay) uj udbAuUII0
I9NOIN 19I0-1SL 104 S1S3LY ¢

U.S. Patent Apr. 19, 2005 Sheet 55 of 56 US 6,882,992 B1

J(t+1)-J(¢) from Upper System

Additional Local
Utility Components

US 6,882,992 Bl

Sheet 56 of 56

Apr. 19, 2005

U.S. Patent

INj[34319 pue MY A0
‘911 9d1/P3auS/Aulyiooms :19mo7+
Jugiuj Guipue]
'$004g HNOH ‘UNUSIW ‘SHSEL
‘ONIT-1Y ‘eljfuey jeseq :apPPIN+
X9110203N pue anug
210w ‘9SION ‘sanjep :uielg saddn:

cpuisuielge -

314

US 6,882,992 B1

1

NEURAL NETWORKS FOR INTELLIGENT
CONTROL

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is related to and claims priority to
two U.S. Provisional applications: (1) Application Ser. No.
60/152,167, filed Sep. 2, 1999, and (2) Application Ser. No.
60/152,922, filed Sep. 9, 1999, the contents of which are
incorporated herein by reference. The present application is
also related to the flowing other co-pending U.S. applica-
tions: Ser. No. 09/271,439, filed Mar. 18, 1999, Ser. No.
09/147,338, filed May 10, 1999, Ser. No. 60/101,680, filed
Sep. 26, 1998, and Ser. No. 60/127,952, filed Apr. 6, 1999,
all naming Paul J. Werbos as sole inventor. The contents of
those four co-pending applications are also incorporated
herein by reference.

SUMMARY OF THE INVENTION

1. Field of the Invention

The present invention is directed to a method and system
for providing intelligent control of devices (e.g., airplanes,
plants, factories, and financial systems) using neuro-control,
control theory and related techniques. The present invention
also discuses the use of quantum devices and experiments
for use in quantum computations.

2. Discussion of the Background

As shown in FIG. 1, neuro-control is the overlap between
control theory and neuro-engineering. Additional details of
neuro-controllers can be found in several references. Those
references include: (1) the Wiley Encyclopedia of Electrical
and Electronic Engineering (1999) (hereinafter “Wiley™);
(2) The Roots of Backpropagation: From Ordered Deriva-
tives to Neural Networks and Political Forecasting, by
Werbos, 1994 (hereinafter “Roots”™); (3) Handbook of Intel-
ligent Control, D. White and D. Sofge, eds. (hereinafter
“HIC”), 1992; (4) Stable Adaptive Control Using New Critic
Designs—xxx.lanl.gov/abs/adap-org/981 0001 (hereinafter
“LANL"); (5) Organization of Behavior, D. O. Hebb (1961)
(hereinafter “Hebb™); (6) Neural network design for J func-
tion approximation in dynamic programming, xxx.lanl.gov/
abs/adap-org/9806001, Pang and Werbos (1998) (hereinafter
“Pang™); (7) Origins: Brain and Self-Organization, K.
Pribram, ed., 1994; (8) Brain and Values, Karl H. Pribram,
ed., 1998; (9) Neuro-controllers, by P. Werbos in J. Webster,
ed., Fncyclopedia of Electrical and Electronic Engineering,
(1999); (10) K. Astrom and B. Wittenmark, Adaptive
Control, Reading, Mass.: Addison-Wesley, First Edition,
1989 (hereinafter “Astrom”); (11) K. Narendra and A.
Annaswamy, Stable Adaptive Systems, Englewood, N.J.:
Prentice-Hall, 1989 (hereinafter “CNarendra”); (12) Richard
F. Stengel, Optimal Control and Estimation, Dover edition,
1994 (hereinafter “Stengel™); (13) J. Tsitsiklis & B. Van Roy,
An analysis of temporal-difference learning with function
approximation, IEEE Trans. Auto Control, Vol. 42, No. 5,
May 1997, (hereinafter “Tsitsiklis”); (14) P. Werbos, Brain-
like stochastic search: A research challenge and funding
opportunity, Proc. Conf. Evolutionary Computing (CEC99),
IEEE, 1999 (hereinafter “CEC99”). The contents of each of
those references are incorporated herein by reference.

WILEY addresses practical considerations in control in
general and provides a number of examples with citations.
However, because it is a broad evaluation of many methods
and their uses, it only has a few basic equations. Roots,
particularly chapters 2 and 8, contains critical mathematical
concepts and pseudocode which are necessary to a full

10

15

20

25

30

35

40

45

50

55

60

65

2

implementation of these ideas (although there are other
complementary tools in related literature). It also contains
the primary original work on backpropagation, from 1974
and 1981.

HIC provides implementation details for a more advanced
collection of tools, and is perhaps more complete than any
other source yet in existence. LANL is far more difficult and
current, and also surveys more recent work in the control
area, particularly focusing on: (I) stability issues, (2) new
learning rules and (3) links to modem control and brain-like
intelligence.

Current issues relating to intelligent control include: (1)
how to get good predictions or predictive networks, as
needed in many neuro-control designs; (2) what lessons
have been or will be learned from large-scale real-world
applications; and (3) what are the possible implications for
understanding the brain. A recent survey shows that 80% of
the real-world applications of artificial neural networks
(ANNSs) in Europe are based on control and/or prediction.
(See Presentation by Errki Oja, IEEE SMCia99 Conference,
June 1999, the contents of which are incorporated herein by
reference.)

To create a context for the present invention, the basics of
“neuro-control” are examined. Paul Werbos and Allon Guez
coined the word “neuro-control” in 1988 to refer to an
emerging field of research depicted in FIG. 1. Neuro-control
is defined as the use of well-specified neural networks—
artificial or natural—to perform “control tasks,” the kinds of
tasks that control theory tries to address. As shown in FIG.
1, neuro-control is a subset of control theory. It is also a
subset of neural network rescarch, at the same time. Neuro-
control is not an alternative to control theory or rigorous
mathematics; rather, it is a special case, offering some
special advantages and some new general-purpose designs.
In fact, the most important algorithms here are actually
general-purpose algorithms, which can be applied either to
neural networks or to other sorts of control systems. For
example, the methods discussed herein can be used to tune
the weights or parameters of a gain-scheduling system used
to control a complex plant.

Many biologists have used the term “neural control” to
refer to some very different strands of research. The portion
of that research that does not involve the use of any
mathematical models is beyond the scope of the present
invention and is not discussed herein.

In practical terms, there are many different forms of
control theory. Even for people who do not use neural
networks or adaptive fuzzy logic, it may be difficult to figure
out what the real choices are from the different schools of
control theory.

Prior to the 1987 ICNN meeting organized by Hecht-
Nielsen and IEEE, there was a lot of research by individuals
in the neural network field, but the field had not yet
coalesced into a unified stream of research (e.g., mutual
communication). Just as the neural network field itself was
coalesced by that meeting in 1987, the field of neuro-control
was first coalesced by an NSF workshop in New Hampshire
in 1988. That workshop led to the book Neural Networks for
Control, MIT Press, 1990, edited by Miller, Sutton and
Werbos. That book then stimulated a great deal of follow-on
research in many different communities. Some parts of that
book (like the chapter by Shanno) contain important ideas
for future research that the community has yet to catch up
with. But other parts (like the pseudocode in chapter 3 and
some parts of chapter 4) have sometimes been misleading to
the practical engineer. Since that workshop, NSF has played

US 6,882,992 B1

3

the lead role in supporting fundamental research in neuro-
control. NSF has also worked closely with other agencies
and the private sector in transferring that research to appli-
cations.

The ability to predict or model the system that one is
trying to control is a very critical part of any control design.
Furthermore, designs which learn to perform control are
often built up by hooking up or extending designs which
learn to perform prediction. This is true both in classical
control and in learning control, with or without neural
networks. In classical control, the task of predicting or
modeling the outside world (e.g., a “plant”) is called “system
identification.” Hereinafter, the term “neuroidentification” is
used to describe “system identification”, when it is per-
formed by neural networks (or other learning-based
systems).

The state of the art methods work very well in a wide
variety of applications (e.g., controlling financial systems,
vehicles, robots, electric motors, or chemical plants).
However, there are other more difficult applications—like
the management of complex electric power grids and com-
munication networks—which may require new, more
sophisticated neural networks.

As shown in FIG. 3, the neural network field, as it is
known today, was born in 1987, when 2,000 people unex-
pectedly showed up at the “small” IEEE International Con-
ference on Neural Networks in San Diego. Up until then, in
the 1970°s and 1980s, the neural net field was viewed by
most of the world as either a discredited heresy or as a small
special-interest niche.

Back in the 1950’s and 1960’s, the ancestors of neural
networks, the “perceptrons,” were a large and respected part
of artificial intelligence (AI), which was itself a new field.
Perceptrons were one of the three major approaches to
developing artificial intelligence; the others were the Gen-
eral Problem Solving school of Newell, Shaw and Simon,
and the special-purpose work aimed at better chess players
and so on. But in 1969, Minsky and Papert published a
landmark book, Perceptrons, incorporated herein by refer-
ence. Perceptions argues: (1) it is possible to adapt ANNs
made up of one input layer and one output layer, but such
networks are far too weak to solve simple classification
problems (like the “XOR” problem), let alone achieve
brain-like intelligence; and (2) no one had envisioned any
plausible way to adapt multilayer networks or recurrent
networks, to make them solve these kinds of problems.

The solution to the problem was created in the form of
“backpropagation,” a very general algorithm described in
the 1974 Harvard Ph.D. thesis of the present inventor, Paul
Werbos. (That thesis is reprinted in its entirety in ROOTS,
the cover of which is shown in FIG. 4.) Backpropagation
was developed as a true intelligent system, a model for how
the higher intelligence in the human brain might work.
Backpropagation was not intended to be limited to a simple
classification scheme to use with “XOR” problems.

Hebb argues that the intelligence in the brain is based
entirely on learning. He argued that intelligence could be
explained as a kind of emergent phenomenon, based on what
happens when billions of neurons all learn from experience
over time. In order to replicate this kind of intelligence, the
“general learning rule” used by the general neuron must be
determined and then used to adapt a system made up of
billions of artificial neurons. Hebb even remarked about
what this general learning rule might be like.

Although no “general learning rule” has been discovered
yet, it is possible to hook up three types of neurons, each

10

15

20

25

30

35

40

45

50

55

60

65

4

with a different general learning rule, to build up a kind of
intelligent system. Backpropagation is part of this larger
design, but only one part. Using generalized
backpropagation, (for any ordered differentiable system) a
complete design (in a neural network implementation, with
links to neuroscience) was described in detail in the first
thesis proposal to Harvard of Paul Werbos in 1972. The final
Ph.D. dissertation described adapting complex time-series
models to fit political and social data to make forecasts a
century ahead of time.

While reading this specification, one or ordinary skill will
realize that the brain is not just a pattern classifier. The brain
as a whole system is an intelligent controller, as illustrated
in FIG. 5. The operation of the brain is highly complex, but
serves one common function—to help the brain compute its
ultimate outputs, which are actions. In other words, to
understand the mathematics which underlies and unifies
intelligence in the brain, one must understand the mathemat-
ics of intelligent control.

As shown in FIG. 6 there are three general levels of
computational intelligence. The first illustrated bullet men-
tions the kind of design or model that was proposed to
Harvard back in 1971-1972. That kind of design is called a
“model based adaptive critics” or a “model based approxi-
mate dynamic programming (ADP).” It took many years
(and many working examples) before many people were
persuaded to try out backpropagation. The first real imple-
mentation of this class of control design did not exist until
November 1993. In the last few years, there have been a
number of new implementations of this type of design,
demonstrating its power in real-world applications, and new
theoretical work, demonstrating superior stability properties.
This class of designs is now the high-end limit of the present
state of the art in learning control.

On the other hand, in the last few years, it was discovered
how this class of design falls short of the original goal—the
goal of understanding the kind of intelligence which exists
in the mammalian brain. NSF sponsored a major initiative in
Learning and Intelligent Systems (LIS), encouraging more
collaboration between engineers, biologists, computer sci-
entists and psychologists. Through collaborations it has been
shown that there are certain very fundamental capabilities in
the brain—even in the tiniest mouse—which cannot simply
evolve as emergent behaviors of a three-network system.
There are additional capabilities which need to be hardwired
into the basic learning circuitry. In a nutshell, these involve:
(1) a structure or hierarchy to represent time; (2) relational
structure and compression in the representation of space; (3)
“imagination” or a learning-based stochastic search to avoid
getting stuck in large local minima; and (4) a true represen-
tation of probability density functions.

Finally, it should always be remembered that the base
mammal-brain is not the ultimate intelligent system. Higher
levels of intelligence are certainly possible. For example,
symbolic reasoning gives humans some capabilities that are
substantially richer than those of the smallest mouse.
However, it will not be possible to understand those higher
levels of intelligence in a scientific way, until the base
mammal-level brain is understood. The failures of classical
Al mainly may be due to the effort to build a higher-level
system before having mastered the prerequisites.

SUMMARY OF THE INVENTION
It is an object of the present invention to improve on
known control systems.
It is an additional object of the present invention to

provide a method and system for learning a solution to a
general family of problems using intelligent control.

US 6,882,992 B1

5
BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention
will become readily apparent when the specification is read
in conjunction with the drawings in which:

FIG. 1 is a diagram showing that neuro-control is the
overlap between control theory and neuro-engineering;

FIG. 2 is description of what a neural network (also
referred to herein as “a neural net”) is;

FIG. 3 is a tree showing the origins of artificial neural
networks (abbreviated herein “ANN”);

FIG. 4 is an image of the cover of the “Roots” book
referred to above;

FIG. 5 is an illustration of how the brain functions in ANN
terms;

FIG. 6 is a description of the three levels of computational
intelligence;

FIG. 7 is an illustration of the interconnection of objects
in a control system;

FIG. 8 is a description of three types of diagnostic
systems;

FIG. 9 is an illustration of a supervised learning system;

FIG. 10 is an illustration of an exemplary control system;

FIG. 11 is graph showing the difference in prediction
errors between conventional and “pure robust” control sys-
tems;

FIG. 12 is an illustration of a generalized MLP;

FIG. 13 is a pseudocode fragment showing how some
equations of the generalized MLP are calculated;

FIG. 14 is an illustration of how derivatives are calculated
according to the chain rule for ordered derivatives;

FIGS. 15 and 16 are pseudocode fragments showing how
some other equations of the generalized MLP are calculated;

FIG. 17 is a description of how conventional ANNs are
used; and

FIGS. 18-56 illustrate other portions of the present inven-
tion.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The method and system of the present invention are
described hereinafter. As would be readily understood by
one of ordinary skill in the art based on the teachings herein,
the system of the present invention can be implemented
using any one of a number of techniques. Those techniques
include, but are not limited to, using: (1) a general-purpose
computer (including a processor, memory, and peripheral
devices), (2) an ASIC, and (3) a programmable logic device
(e.g., a one-time programmable device or a
re-programmable device). Examples of re-programmable
devices include SRAM-based, DRAM-based and non-
volatile memory (e.g., EEPROM)-based devices (e.g.,
FPGAs). Furthermore, a hybrid design using a combination
of at least two of options (1)~(3) is also possible.

In a computer-implemented embodiment, the system
includes at least one computer readable medium. Examples
of computer readable media are compact discs, hard disks,
floppy disks, tape, magneto-optical disks, PROMs
(EPROM, EEPROM, Flash EPROM), DRAM, SRAM,
SDRAM, and network devices (e.g., Ethernet or Token-ring
cards) that enable computer code devices (described below)
to be received remotely. Stored on any one or on a combi-
nation of computer readable media, the present invention
includes software for controlling both the hardware of the

10

15

20

25

30

35

40

45

50

55

60

65

6

computer and for enabling the computer to interact with a
human user. Such software may include, but is not limited
to, device drivers, operating systems and user applications,
such as development tools. Such computer readable media
further includes the computer program product of the
present invention for controlling a system using neuro-
control. The computer code devices of the present invention
can be any interpreted or executable code mechanism,
including but not limited to scripts, interpreters, dynamic
link libraries, Active X components, Java classes, Matlab
extensions, and complete executable programs.

As shown in FIG. 7, one example of a practical applica-
tion where a higher intelligence may be needed is the
diagnosis and control of an entire electric power grid.
Conventional neural networks are trained to input a fixed set
of input variables and predict a fixed set of target variables.
Usually, every example in the training set must have the
same number of inputs as every other example, and the same
number of desired outputs or targets. How then can a neural
network be trained to be a portable diagnostic system, which
can work on different power grids, when different grids
require different numbers of inputs and outputs to the
network? How can training data from different grids be
exploited in training such a network, and how can the known
structure of these different grids be exploited to improve the
forecasts or the control structures? A newly developed class
of neural networks called “ObjectNets” solve this problem.

As shown in FIG. 8, prediction is critical to diagnostics,
not just control. There are three main ways to develop a
diagnostic system based on trying to solve a prediction
problem. In the first approach, a database is built which
contains examples where certain specific types of faults are
present or absent (i.e. Fi equals 0 or 1, for various i). The
system is then trained to predict the variables Fi in that
database. This is a good way to try to predict or identify
known types of faults. In the second and third approaches,
one starts from a more normal database on the plant, which
may or may not contain examples of faults; one trains a
system to predict how that plant normally evolves over time.
In second approach, the diagnostic system raises an alarm
whenever the behavior of the plant deviates significantly
from what the prediction system would predict. This is a
good way to identify the possibility of a new, unknown fault
mode. This is sometimes referred to as a “novelty detection”
approach. In the third approach, the computer looks ahead
(using the normal model) to see if the plant seems to be
moving towards an unacceptable operating regime. The
ideal diagnostic system would combine all three
approaches—to warn of all three types of failures—and
would also include sensitivity information (computed via
backpropagation) if appropriate. (See Roots, ch. 7, regarding
sensitivity information.)

Recently, Olli Simula from Kohonen’s center in Finland
described a real-world success using the novelty detection
approach, in order to diagnose (and fix) a large AB&B paper
mill. But that approach used a Kohonen-style SOM network
as the basis for the novelty detection scheme. Likewise,
Accurate Automation (AAC) reported a similar system, used
to diagnose failure in helicopters. Simula’s paper reported
that the system was extremely useful, but still had some
problems in adapting to drifts and changes in process
parameters. This may be expected when “normal behavior”
is judged from a static snapshot of the plant, i.e., without
exploiting knowledge about the dynamics of the plant. In
order to improve the quality of those diagnostic systems,
without losing the special features of the SOM network, a
true dynamic prediction system could be trained to predict

US 6,882,992 B1

7

the behavior of the plant. For example, the TLRN network
described below could be trained. The hidden nodes of that
TLRN network could then be used as additional features, as
additional inputs to be plugged into the SOM. These addi-
tional dynamic features should enhance the power of the
SOM to detect novelty. Of course, there are many other ways
to do novelty detection, with or without SOMs.

How can a prediction system—a system which learns to
predict the observed variables X(t) as a function of u(t) and
of X(t) and u(t) for earlier times t<t be designed? At the
present time, simple neural networks or adaptive controllers
are used. They treat the dynamic problem of prediction over
time as a kind of static problem. For example, sometimes
they predict X(t) as a function of u(t), without using any
information about earlier time periods. That is a purely static
approach.

A wide variety of techniques are available to learn static
input-output mappings, such as a function X(u), based on
examples of X and u. In the neural network field, this task
is called “supervised learning” and is illustrated in FIG. 9.
Sometimes the examples are stored in a database, called a
“training set.” Sometimes, the examples come one-by-one
from real-time experience, and the system learns in real
time. In the neural network field, networks that are capable
of learning to approximate any smooth nonlinear relation
between X and u are used. In classical control theory, often
X is assumed to be a linear function of u. In general, the task
of learning to approximate X as a function of u is a very
general task. Thus, this task is called “supervised learning,”
regardless of whether a neural network or some other
function approximator is used. In summary, one way to
predict X over time is to plug in X and u into any one of the
standard supervised learning systems now available in the
neural network field or elsewhere. There is another way to
use supervised learning systems to make predictions of X(t).
Instead of using u(t) as the input to the neural network, a
larger input vector is constructed by combining all the
components of the vectors of u(t) and of u(r) and X(t) for all
T between t-1 and t-k, for some choice of k. This kind of
prediction system is called a Time-Delay Neural network
(TDNN). (Narendra has sometimes called it an “input-
output” model.) The purely static approach is just a special
case of the TDNN approach to prediction (where k=0).

The TDNN approach has the advantage of being fairly
simple to understand and implement. All one has to do is
program a supervised learning system and plug in the
appropriate inputs and outputs. However, it also has a lot of
disadvantages and weaknesses. A truly general-purpose
brain-like prediction system would almost certainly have to
use a more powerful approach to prediction. In practice, it
makes sense to try TDNNS first, in most problems—and then
to try something more powerful if the quality of prediction
needs to be improved.

FIG. 10 illustrates an example of a very standard, very
simple kind of TDNN that was used (see HIC, chapter 10)
to predict the behavior of a model chemical plant. There are
six input variables and only one “target” variable (i.e., only
one variable to predict). The target represented the acidity
(pH) of the output of the plant at time t. The inputs
represented the acidity measured at three previous times, and
the setting of a control valve (F) at three previous times.
Each of the six inputs was fed into each of the three “hidden”
neurons, whose outputs in turn were fed in as the inputs to
the final output neuron on top. As discussed later, the
equations used for these kinds of model neurons are known.

This design represents—a “multi-layer perceptron”
(MLP) with one hidden layer. In most problems, the number

10

15

20

25

30

35

40

45

50

55

60

65

8

of inputs and outputs is generally known, and users just try
out different numbers of hidden neurons. They pick the
smallest number of hidden neurons that performs
sufficiently, without degrading performance. (The number of
hidden units can also be selected as discussed in HIC chapter
10.)

At the bottom of FIG. 10 is a technical comment written
for people in statistics or signal processing. The TDNN
structure provides a general purpose non-linear way to learn
the types of models which statisticians call nonlinear “ARX”
models. Signal processing people call them “FIR” filters.
“ARX” means “autoregressive with exogenous variables.”
Box and Jenkins wrote a classic book on ARX types of
models, and related models for time-series prediction, back
around 1970. Ever since, the Box and Jenkins types of model
have been used very widely in all kinds of statistical
applications, such as electricity demand forecasting, sales
forecasting, etc.

The ARX types of model are a very small subset of a more
general class of models called “ARMAX.” Often neural
network people try to persuade someone to use neural
networks instead of the old Box and Jenkins methods that
they were using before. They argued that the neural nets
could handle causal effects between variables, and nonlinear
effects, which those old linear time-series methods could not
handle. But when performance comparisons were run, the
Box and Jenkins methods—based on the best possible full
ARMAX models—performed about as well as the TDNN
methods, sometimes a little better, sometimes a little worse.
In those cases, there is no reason for anyone to change to
neural nets. As discussed later, instead a new structure
should be used that combines the full power of ARMAX
modeling, together with the nonlinearity of a neural net-
work. The combined design should provide better perfor-
mance and justify someone paying for the use of a new
prediction system. (Note: In adaptive control, some authors
have used the letters “ARMA” to represent a different kind
of system—what the statisticians call “ARX.”)

Often people asked: “Why this structure? Why one hidden
layer?” There are two aspects to this question. First, why do
we need hidden neurons at all? In fact, long ago Bernie
Widrow and Rosenblatt and others developed excellent
learning algorithms for MLPs without hidden layers. Bern-
ie’s LMS algorithm is what makes the modem work—this a
very critical multi-billion dollar application of a very simple
learning rule. But Marvin Minsky, in his classic book
Perceptrons, showed how hidden neurons are absolutely
essential to learning even very simple input-output relations,
like the XOR problem. All of the really powerful theorems
about the power of MLPs require that the MLPs should have
hidden neurons of some kind.

But why this layered structure? If there are layers, why
one layer? Why not have direct connections between inputs
and outputs. Moreover, is a layered structure required? In
short, no. But first general lessons learned from training this
general type of TDNN are discussed in reference to predict-
ing four complex chemical systems (three simulated and one
based on data from an actual plant).

FIG. 11 shows the average errors obtained when using the
same TDNN model, trained in two different ways, over four
different chemical databases. In each of the four groups, the
high bar on the: left represents the errors which resulted
when the TDNN was trained in the usual way, based on
minimizing square error. The low bar on the right represents
the error when the exact same TDNN was trained all over
again, on the exact same dataset, using a radically different

US 6,882,992 B1

9

training approach. This reduced the prediction error by a
factor of three, on average. This training method is called
“the pure robust method,” and is discussed in ROOTS. (See
also HIC chapter 10 for the details of how to do it better
(under various names). The pure robust method (under
various names) is now fairly widely used with neural
networks in the chemical industry. The pure robust method
is a time-series sort of approach. It is very different from the
usual sort of methods to improve supervised learning, and it
should be able to improve forecast accuracy even when
other improvements are also in effect. In fact, in 1978 the
same type of method (slightly refined) was shown to cut in
half the errors of a more conventional econometric style
model, in predicting GNP across many countries over time.

FIG. 53 illustrates the basic idea of the pure robust
method. For each value of the weights, a stream of predic-
tions is built, from the initial time to the final time. Predic-
tions are made at each time t by plugging in the predictions
which were generated for time t-1, not the actual data in the
training set for the true values of X(t-1). Backpropagation
through time is then used to calculate the derivative of error
with respect to the weights, and the weights are adjusted
according to those derivatives.

This process works very well for systems like chemical
plants that have a certain kind of underlying regularity, and
are more or less determined by their inputs and the control
variables. However, trying to predict more truly noisy
systems, like economic systems, or systems which fall into
long-term phase shifts, may be impossible for any stream of
predictions if the network must match the entire history of
data.

In that case, to achieve robustness, a more general type of
method, called the “compromise method,” is used as dis-
cussed in chapter 10 of HIC. Financial analysts have used
the compromise method with neural networks and been
successful, but, for that very reason, they have not published
their main results. (A more conventional econometric model
in work was reported in IEEE Trans SMC 1978.)

At first sight, there is an analogy between this method and
a method called “parallel identification” in adaptive control.
See HIC chapter 10 for an explanation of why those methods
are actually very, very different in practice. (The key point
lies in how the derivatives are calculated used to adapt the
model.)

If the accuracy of the predictions is not important, or if the
predictions from simple TDNNs are “good enough,” then
this more complex method in unnecessary. However, if the
predictions from TDNNSs are not accurate enough, the neural
networks are not at fault. In those situations, the more
powerful methods should be used. It may, however, be more
difficult to get things to converge. There is a kind of
Murphy’s Law here, that more accurate predictions take
more effort in the learning stage. HIC and ROOTS contain
a number of suggestions about how to handle convergence
problems.

As discussed above, the present invention is not limited to
the usual layered structure. The layered structure has a lot of
disadvantages. It is used mainly for historical reasons and
because a lot of people are not familiar with the generalized
form of backpropagation.

FIG. 12 illustrates a more general form of network design,
first published in 1988, and explained in more detail in
Roots, chapter 8. In this design, the number of hidden units,
but not the number of layers, must be decided since there are
no layers. Every possible feedforward neural network made
up of the usual kind of neuron can be expressed as a special
case of this design, with some of the connection weights set
to zero.

10

20

25

30

35

40

45

50

55

60

65

10

At first, this design seems to have an obvious disadvan-
tage compared to the usual design. It has more connections,
and more weights. Usually, if we have more weights, we
have larger errors in learning what those weights should be,
from the same amount of data.

However, in state-of-the-art neural network work, people
use a variety of techniques to reduce the number and size of
weights. There are automatic connection-pruning and grow-
ing techniques, and techniques for adding penalty functions
to the error function. A few of these are discussed in HIC, but
others are discussed all over the literature. For example,
Phatak of SUNY Binghamton has developed penalty func-
tions which lead to a combination of high accuracy together
with fault tolerance, by encouraging large numbers of small
connections instead of small numbers of connections.

When these proper techniques are used, the disadvantage
of the Generalized MLP disappears. Unlike the usual case,
the connections are chosen based on their importance to an
application, as revealed by the data. This is better than
wiping out whole groups of connections based on an arbi-
trary historical convention. Curiously enough, it is actually
easier to write down the equations for the Generalized MLP
(and its adaptation) than it is for the more popular structure.

FIG. 13 illustrates how the outputs of the Generalized
MLP are calculated as a function of the inputs and weights.
The last line shows the usual way of calculating the predic-
tion error—the square error—which is used in most neural
network studies. In most practical applications, s=tanh(v)
and all the variables vary between —1 and +1. Sometimes
s=tanh(W'v), where W' is a new weight or parameter (called
the “gain” parameter) to be adapted. Herein, the input vector
is labeled “X,” and the target vector is labeled “Y*,” in order
to match the usual notation of statistics and supervised
learning research.

In most applications today, the weights in the network are
trained according to a very simple procedure. At each time
t, the derivatives of error, E(t), are calculated with respect to
all of the weights in the network. The weights are then
adapted/adjusted in proportion to those derivatives. More
precisely, the derivatives are multiplied by a global constant
called the “learning rate,” which is how much the weights
can be changed. This is a simple application of the classical
method of steepest descent. This approach is either referred
to as “basic backpropagation,” or “vanilla backpropaga-
tion.”

When using steepest descent to do CLASSIFICATION
rather than PREDICTION, the square error formula is not
the best one to use. In other words, if the target variable is
binary (0 versus 1), something else should be used. (e.g., the
usual logistic measure of error, just as one would in ordinary
statistics). Likewise, instead of using fixed learning rates and
steepest descent, there are better ways to use the derivatives.
The Adaptive Learning Rate (ALR) algorithm, as originally
defined in HIC, chapter 3, yields a far more reliable
convergence, even for large problems, without imposing too
much extra complexity. The ALR algorithm works espe-
cially well when (1) different learning rates are adapted for
different groups of weights, with similar scaling properties
and (2) the inputs and outputs of the network are scaled to
have a similar range of variation in the data.

FIG. 14 illustrates the concept of an ordered derivative,
which is explained in more detail in ROOTS, chapters 2 and
8. Consider the simple kind of causal chain shown on the
left, where z1 determines z2 and where z1 and z2 together
determine z3. The ordinary, simple partial derivative of z3
with respect to z1 is 4. In other words, if z1 is increased by

US 6,882,992 B1

11

1 unit, the direct effect of this change is to increase z3 by 4
units. But there is also an indirect effect from z1 to z2 and
from z2 to z3. The ordered derivative is defined as the total
impact of z1 on z3, including both direct and indirect
impacts. Ordered derivatives are indicated by using a super-
script plus sign next to the derivative sign. In ROOTS (ch.
2), a new chain rule for ordered derivatives was proven,
which makes it possible to calculate ordered derivatives in
a straightforward minimum-cost way through all kinds of
nonlinear feedforward structures—neural networks or any-
thing else. (In HIC, chapter 3, a generalization to the case of
recurrent structures is described.)

LeCun has sometimes argued that backpropagation was
first invented by Larry Ho, insofar as LeCun was later able
to derive a way to calculate derivatives through the usual
layered MLP by starting from the calculus of variations
methods published in Ho’s textbook (and elsewhere) and
performing a brief derivation. But the chain rule for ordered
derivatives is derived even more briefly from basic calculus
and logic in chapter 2 of HIC, and it provides more gener-
ality.

The chain rule for ordered derivatives may seem like
overkill, when adapting a simple three-layer MLP, but it is
essential for the Generalized MLP. It is also essential in
disentangling the derivatives which are generated by other
types of complex nonlinear structures—neural and
nonlinear—such as complex control systems.

FIG. 15 illustrates the equations needed to calculate the
derivatives of E with respect to all of the weights, for the
Generalized MLP, based on a straightforward application of
the chain rule for ordered derivatives. See ROOTS chapter
8 for more discussion of this example and some pseudocode.

A brief description of notation is again appropriate.
Instead of writing out the ordered derivatives as a kind of
fraction, the prefix “F_” is used. For example, “FﬁWi].” is
used to represent the ordered derivative of E with respect to
W,;. This notation is used because all of the ordered deriva-
tives that are needed are derivatives of E with respect to
something. The “numerator” of the ordered derivatives does
not need to be written out, because it’s the same thing for
everything here. Second, this notation can be inserted
directly into a computer program, which makes it easier to
keep track of what the variables mean in the computer
program. Third, the same sort of notation can be used in
almost any application of backpropagation; this kind of
notation can be very useful in keeping track of derivatives
for very complex systems. Finally, there is an intuitive
interpretation here. For example, “F_v;” can be thought of
as “derivative feedback back to the variable v,.” Finally, this
notation leads to the notion of a DUAL SUBROUTINE,
discussed with respect to FIG. 16.

FIG. 16 illustrates another way of expressing the exact
same calculations shown in the FIG. 15. It provides another
way of programming the calculations in a computer (or
structuring them in hardware), which makes it far easier to
build up complicated control systems.

The basic idea is that the first calculations can be done
exactly as before, in the “main program” of a backpropa-
gation routine. In other words, the variables F_Y, are all
calculated in the “main program.” But then, the calculations
which propagate the feedback back from F__Y to the weights
(and inputs) of the network are all performed in a DUAL
subroutine. If the neural network itself is implemented by a
subroutine called GMLP, this subroutine could be called
F__GMLP. In the simplest implementation, this subroutine is
programmed to output BOTH F W; for all ij and F_X; for

10

15

20

25

30

35

40

45

50

55

60

65

12

all input variables i. The subroutine would input X(t) and W,
and F_Y, but it would not need to know E or Y* or any other
external information.

In ordinary mathematical notation, we refer to functions
rather than subroutines or procedures. Thus, if we represent
the generalized MLP as a function f, we need to define two
functions, F_f, and F_{f, to represent the two different
outputs of the dual subroutine. Thus, the subscript W in this
equation. But it only takes one subroutine call to generate
both outputs.

Another way of viewing dual subroutines is by consider-
ing the definition used in the last line of FIG. 16. A dual
subroutine is simply a fast way to perform the calculation
shown here. This kind of calculation is sometimes called
“backpropagating through” the neural network f.

In ordinary adaptive control, people do not use dual
subroutines. It is common to write out derivatives in terms
of matrix calculations, which appear straightforward.
However, for large sparse nonlinear systems (like many
neural networks), the computational cost of using
backpropagation—implemented through dual subroutines—
is often far less. Once a subroutine like F__GMLP is
available, it is extremely easy to use it instead of exhaustive
matrix calculations. Again, see ROOTS chapter 8 for some
pseudocode. See also HIC for various ways of using dual
subroutines.

In the previous figures, basic backpropagation and its
ability to adapt a Generalized MLP for use in supervised
learning, were discussed. That is one way to perform the task
of supervised learning. But is it the best? In fact, there are
dozens and dozens of competing designs for how to do static
prediction. There are alternative designs used in the neural
network field, in the fuzzy logic field, and in traditional
control engineering.

FIG. 17, addresses the main competing designs used in
practical applications in the neural network field. MLPs are
probably used in about 75 percent of the applications, while
“local” neural networks are used in almost all of the rest.

The local neural networks vary a lot in details, but they all
are based on the same principle. Whenever one tries to
predict Y=£(X) for a new input vector X, one actually goes
back to a training set to try to find an example of a vector
X(7) that is as close as possible to the new vector X. Then,
for the new vector X, the network predicts that Y will be the
same as it was for that example in the database. It is a nearest
neighbor approach. It may be done (1) explicitly, (2) implic-
itly or (3) by weighting several nearest neighbors; however,
the principle is always the same. Among the most popular
local networks are radial basis functions (RBF), CMACs,
and some of the networks designed by Kohonen.

In practical experience, people have found that MLPs
give better accuracy for a given size of network, when there
are more than a handful of input variables. However, they
have found that the learning process is faster with the local
networks. Therefore, networks that use real-time learning
with one to three input variables do better with local
networks. But when they have a fixed database to work
from, and they want the most accurate possible results,
MLPs do appear better. There are also some special situa-
tions where the number of inputs is not so large as it appears,
and local networks may work better. For example, when all
of the input vectors come from a few very small clusters in
input space, the local methods may work better. In fault
classification, when there are very few examples of known
faults in the data, a local method may work better in
characterizing that limited data. To achieve the combination

US 6,882,992 B1

13

of (1) high accuracy, (2) many inputs, and (3) fast real-time
learning, advanced techniques and ongoing research are
used.

FIG. 17 mentions some recent mathematical research
which helps to explain this kind of practical experience. In
the early days, lots of people proved theorems showing that
neural networks have “universal approximation properties.”
This means that any well-behaved nonlinear function can be
approximated as accurately as desired simply by adding
more and more neurons and connections to the network.
This is true for MLPs, local networks, and for dozens of
different types of networks. Other people outside of the
neural network field proved the same sort of thing for other
function approximators, (e.g., Taylor series and fuzzy logic
systems).

But all of those approximation theorems were very weak.
The theorems simply state that accuracy increases by adding
more neurons or more terms in the approximations. They do
not say how many terms must be added. It would not be
practical to add millions of extra neurons just to reduce a
prediction error by a tiny fraction. When networks become
larger, it usually becomes harder to learn all the weights in
an accurate way from a limited amount of data. Also, if too
many weights are used, the errors may be increased when
the network is tested over new data (which is not in the
training set).

In approximately 1993, Prof. Andrew Barron of Yale
proved some new types of approximation theorems, which
are far more useful. With the MLP, he proved that the
number of needed hidden neurons increases fairly slowly
with the number of inputs, when trying to achieve a given
level of accuracy in approximating a smooth function. But
with local networks or “linear basis” systems, the number of
hidden neurons or terms increases exponentially. This
explains why MLPs allow more compact networks, and
more accurate results, when using more than 3 or 4 inputs.
Similarly, ordinary Taylor series are also an example of
linear basis function approximators.

As review, Barron’s theorems only apply to smooth
functions. Sometimes, in intelligent control, approximate
functions are needed which are not smooth. If a function
cannot be approximated accurately with an MLP, the
“smoothness” characteristic should be investigated. Some-
times the problem is trying to approximate something which
is not a function at all. For example, trying to predict stock
prices as a function of the number of sunspots at the same
time causes trouble. But sometimes there is a well-defined
function out there which simply is not smooth or simple.

In HIC, chapter 13, Simultaneous Recurrent Network
(SRN) were discussed in relation to a true brain-like con-
troller. More recently, in Pang, it was shown that the simple
problem of trying to navigate mazes efficiently—in the
general case—requires the use of an SRN. That is, an MLLP
simply cannot learn the required functions, but an SRN can.
The training for this SRN was even harder and longer than
the training for an MLP, even with the use of an Adaptive
Learning Rate. However, the many possibilities for speeding
up training and building modular software were not
explored. (Chua at Berkeley has apparently sped up the
calculations by a factor of 10,000 using his type of chip
design.)

Advanced research includes bringing together the best of
the global networks, like MLP and SRN, together with the
best of the local networks. For example, many papers have
been published on the “mixture of experts” systems
(inspired by Michael Jordan and Geoff Hinton), which use

10

15

20

25

30

35

40

45

50

55

60

65

14

multiple MLPs in parallel to make predictions for different
regions of state space. This can be especially useful when
there is a dangerous region of state space (like a region
where your motor is about to explode) where you want a
special network trained to that region, which will not be
affected by experience in other regions. There is also a little
bit of work on “syncretism” (HIC chapter 3) and “memory-
based learning” which offers the hope of a true unification of
global and local capabilities.

By comparison, how would fuzzy logic or traditional
control deal with this same class of problems? In the field of
fuzzy logic, Bezdek of Florida has done some very serious
surveys of the methods used to perform supervised learning.
Unfortunately, he sometimes calls this task “system identi-
fication.” The methods he surveys, representing the main-
stream of fuzzy logic work, are all based on some kind of
clustering approach. In other words, they are based on the
same general principle as the local neural networks. In fact,
sometimes the difference between a fuzzy system and a
neural system can be a distinction without a difference. The
same exact radial basis function approximator has some-
times been called “a classical alternative to neural
networks,” “a form of neural network” or “a form of fuzzy
system identifier.” But again, the strengths and weaknesses
are similar to those of a local neural network, no matter what
the name is. Sometimes it is more convenient to call it a
fuzzy system, if that makes it easier to explain to people in
words what the system is doing.

Is it possible to design and train fuzzy systems which have
as much flexibility and power as global neural networks?
This is unknown, because no one has proven theorems like
Barron’s results for MLPs, for fuzzy systems. However, the
inventor believes so. For example, the complex neurofuzzy
system used by Kwang Lee in electric power is speculated
to have power similar to that of an MLP—though the
training is more difficult. A system called Elastic Fuzzy
Logic (ELF) was proposed in 1992 and was described in
Chapter 13 of ICS. ELF can be trained using backpropaga-
tion and can also be used instead of neural networks in any
of the discussed control designs. Equivalent mathematical
formulations were later described by Ron York and by
Toshio Fukuda. Fukuda of Japan and Hirzinger of Germany
are perhaps the leaders in the world, so far, in applying
advanced learning control systems to practical real-world
problems in robotics. (See WILEY for discussion of Hirz-
inger’s work.)

But what about traditional control theory? How do tradi-
tional people handle the problem of learning an input-output
mapping? Even today, the most popular approach is to look
for a linear model, Y(t)=MX(t). This is much simpler than
using a neural network, even an MLP. But of course, the
approximation will be very bad, if a nonlinear function is to
be approximated over a large operating region. Still, it may
be good enough to model the small perturbations away from
a desired setpoint with a linear model, thus keeping a plant
very close to that setpoint. On the other hand, if there is a
chance that something would knock the plant away from that
setpoint, it is better to find a model which works over a
larger region, not just the neighborhood of the setpoint. In
that way, the plant could recover from such disruptions in a
safe way. A hybrid design is possible, using a linear model
near a setpoint, and a neural network for points away from
the setpoint. There are two standard ways to adapt or train
such a linear model—(1) Widrow’s old Least Mean Squares
algorithm, which is very cheap and robust (see LANL), and
(2) Recursive Least Squares (RLS) which is more expensive
but theoretically more accurate for linear-plus-white-noise

US 6,882,992 B1

15

systems. Narendra has used both methods at different times
in his work on classical adaptive control.

What do people do in traditional control when they need
to learn to approximate nonlinear functions from experience,
as in supervised learning? Many leaders of that field, like
Narendra, simply use neural networks. Slotine has some-
times used a combination of neural networks and wavelet
systems. In fact, Harold Szu showed years ago that wavelet
systems can be adapted by using backpropagation. Many
people have used Taylor series, over the years, but this has
a number of limitations. For example, ordinary Taylor series
have the weak approximation properties of linear basis
function methods, and they also have problems due to the
strong correlation between the terms of the expansion.

In practical control engineering, people mainly use a
concept called “gain scheduling,” which is really very
similar to a local neural network—with the same pros and
cons. That is, it is a piecewise constant or piecewise linear
approximation which is easy to work with but which leads
to poor accuracy when there are many inputs. (See the
papers by White in HIC for a discussion of the practical
tradeoffs.) Actually, methods like backpropagation and neu-
ral network learning can be used to tune the parameters of
a gain scheduling system just as easily as they can be used
to train an MLP.

Unfortunately, the TDNN or input-output approach is not
the best way to predict dynamical systems. The TDNN
approach is usually the easiest way to model a dynamical
system, but it usually is not the most accurate. The Time-
Lagged Recurrent Network (TLRN), shown in FIG. 18, is
the most accurate way to do prediction. The TDNN approach
is the most popular approach, in academic publications, but
the greatest success of neural networks in economically
valuable applications is based on TLRNs and related
designs. TDNN is a good place to start, but TLRNs generate
better products in the end, if there is the software and
sufficient time to use them.

Like the Generalized MLP, the TLRN is a very broad and
general architecture. By making or breaking connections in
this architecture, the system starts at the general architecture
and converges to the specific structure most suitable for the
application. Thus, there are many special cases of the TLRN
design.

Basically, to construct a TLRN, a static neural network
design (such as a Generalized MLP) is selected, and the
“z~1” feedback loop is added as shown in FIG. 18. In other
words, it resembles a discrete time situation, where “t” is an
integer. The MLP is set up so that it has n+nR outputs, where
n is the number of target variables to be predicted and nR is
some number of memory units. The number nR can be
arbitrarily small or large, just like the number of hidden
units. Structurally, the MLP is set up to have m+nR inputs.
In operation, in each time period, the nR memory outputs are
fed-back from the last time period as inputs in the new time
period.

In describing the static neural network in the center of this
system, two functions, f and g, are used as shown in FIG. 18.
These functions actually represent the two different outputs
of a single network. This is the same kind of kludge as seen
with the dual subroutines, due to the fact that ordinary
mathematical notation is not set up to talk about subroutines
or networks which have more than one vector of outputs.

ROOTS, section 2.4, describes how to adapt “models with
memory” using backpropagation through time. TLRNs are
nothing but the special case of “models with memory”
where the model happens to be a neural network. In the 1987

10

15

25

30

35

40

45

50

55

60

65

16

Proc. IEEE SMC, incorporated herein by reference, the
TLRN neural network was described in the same way. Also
in 1987, Lokendra Shastri and Raymond Watrous imple-
mented a kind of TLRN, properly trained, for speech rec-
ognition. (See ICNN Proceedings, 1987, IEEE, the contents
of which are incorporated herein by reference.) Later, after
this was widely discussed and published in the neural
network community, many authors proposed special cases of
the TLRN, some using consistent training procedures, others
using training procedures which are either unreliable or
extremely costly. When this structure is trained by use of
true backpropagation through time (BTT), the derivative
calculations are exact, and they cost about the same as a
forward pass through the same system, exactly as with static
backpropagation.

In the simplest form of backpropagation through time, the
inner static network is a generalized MLP, and the data is a
time-series running from t=0 to t=T.

The algorithm for calculating the derivatives (F__x/t)) is:

1. Set F_x(T+1) to zero.

2. For t=T back to I, do as follows:

2a. Initialize the array FO_x(t) to zero;

2b. Set FO__x(D)n.,; to Y=Y, *(t) for i=1 to n (error
feedback to neurons calculating Y)

2¢. Set FO_ x(Dy,,.; to F_x, (t+41) for i=1 to ng
(feedback to neurons

N+ning

F_x,(0F0_x,(1) + Z WiF_v,)

=t

Fv (=5 ((0)F _x,0)

calculating ng) 2d. For i=N+n+ng back to m+1,
calculate:
From there, the derivatives can be calculated with respect to
the weights simply by using the same equation for F_ W,
that was used with basic backpropagation (adding up the
results over all times t, of course). In defining the TLRN
more precisely, R(0) may be chosen to be set to zero, or even
to adapt the values of R(0) as if they were an extra set of
weights, during the training. Roots (chapter 8) provides the
equations and pseudocode for a slightly different description
of the TLRN, which is equivalent to the one given here,
except that it also allows for a memory back two periods.
As these training equations are examined, it may become
apparent that: these equations require calculations back-
wards through time. The neural networks in the brain
couldn’t possibly be doing this sort of thing. So how would
the brain do this kind of thing? And what happens if learning
is in real time, and one cannot afford the kind of database
(memory) that this calls for? Regarding the first question—
none of the popular designs in the literature are good enough
to represent what the brain does. See Pang for a discussion
of the various alternatives. The Error Critic design described
in that paper and in HIC chapter 13 (also discussed in some
recent papers from Prokhorov and others of Ford Motor
Company) is the only plausible theory around for how the
brain could do this kind of training. Regarding the second
question—fortunately, engineering does not have to do
things exactly as the brain does them all the time. BTT with
a finite time horizon is usually fast enough. With modern
dedicated chips, it is still the best way to adapt this kind of
structure in real time (unless a hybrid architecture as pro-
posed in the WCNNBO5 Proceedings (incorporated herein by
reference) is affordable).

US 6,882,992 B1

17

Finally, one more warning to the user in some
applications, the structure in FIG. 18, using a Generalized
MLP inside, may not form slowly-changing stable memories
as much as needed in some applications. In that case, the
usual sort of neuron model is replaced with the “sticky”
neuron (described in HIC chapter 10). This is essentially
identical to the simple “gamma” neuron described by
Principe. Principe’s software is available on its Neuro-
Dimension (ND) website, and comes with extensive web-
based instructional assistance, the contents of which are
incorporated herein by reference. In a truly general-purpose
system (like the brain), the static network in FIG. 18 likely
would be something like an SRN, or a hybrid between an
SRN and a local neural network. Fortunately, to controlling
an industrial motor is not that complex.

In conventional time-series statistics, many people swear
by the practical hands-on methods given in the classical text
by G. Box and G. Jenkins, Time-Series Analysis, Holden-
Day, 1970, incorporated herein by reference. At times, those
simple time-series methods, used on one variable at a time,
perform just as well as sophisticated TDNNs, which input all
kinds of causal information about the target variable(s).
Basically, the TLRNs allow one to combine the best time-
series capabilities of those kinds of methods, together with
the capabilities for nonlinear analysis of many-variable, as is
available in neural networks. In other words, one does not
have to choose between time-series methods and neural
networks. Unfortunately, many people in neural networks
and even in traditional adaptive control do not understand
the basic ideas described by Box and Jenkins. For example,
a very simple stochastic process (called ARMA(1,1)), may
be described by write the equation:

x(t+1)=bx(£)+u()+0u(r-1),

where b and 0 are parameters of the model, and u represents
a random number, a white noise disturbance term. Box and
Jenkins show that such a simple stochastic model cannot be
represented exactly by any finite input-output model. One
can approximate this model as well as one likes, by using
infinitely large input-output models, but that is not very
useful in practice.

On the other hand, a TLRN structure with a linear static
part can represent any order of ARMA process exactly. In
fact, the first application of backpropagation through time
(in 1974) was to the estimation of a multivariate ARMA
model. It is important to realize that the simpler AR models
are a special case of the larger family of ARMA models, and
that decades of empirical work have shown the importance
of using the general case.

Many control theorists have looked at the equation above,
originated by the statisticians, and misunderstood what the
equation means. They assumed that “u” means a control
variable—but the statisticians were using a different nota-
tion! This has deprived many people of the tools they need
to model (and control) the fullest range of real-world plants.
(By the way, the people in optimal control do not have this
problem. The state space modeling and Kalman filtering
methods described in the classic texts by Stengel and by
Bryson and Ho fully capture the power of many-variable
linear ARMA models.)

A more practical example of the power of TLRNs is
present below. In 1997, the ISIE held its international
conference in Guimaraes, Portugal. There was an entire
session devoted to the use of neural networks to control
switched reluctance (SR) motors. SR motors are widely used
in some applications, because of their characteristics (e.g.,
low cost and high power). But they are not used in many

10

15

20

25

30

35

40

45

50

55

60

65

18

other applications, where high precision is required, because
they are not accurate enough, when they are controlled by
traditional methods.

Everyone in that field seemed to agree that the core
problem was to make a kind of prediction. They knew what
the inputs and targets were, and they could get high-
precision control if only they could train a good enough
prediction model. All of the papers in the session except one
used TDNNS, because of a mistaken conventional wisdom
about the power of TDNNs. All of them failed to achieve
enough precision to make the exercise useful at all. Some of
them even suggested that the problem itself might be hope-
less. The single exception tried both a TDNN and a simple
form of TLRN. It was not the most general, powerful form
of TLRN, but it did have the required basic feedback. It was
a 100% success, pointing the way to what appears to be a
major new economic opportunity for this industry.

Another important application is the new application to
meet the new Clean Air standards. (See WILEY for more
discussion and citations.) Several years ago, the new Clean
Air Act ordered that companies could not sell cars any more
in half the United States, unless they could meet tough new
standards. Nobody in the Big Three in the US could figure
out how to meet those standards in an affordable way—even
after years of research and huge expenditures, trying out all
kinds of approaches, including traditional control
approaches. One of the requirements involved direct control
of emissions, and one called for a diagnostic system to
predict misfire problems. Using a TLRN adapted by back-
propagation through time, Ford Research was finally able to
meet those standards, in a demonstrated affordable system.

In Business Week last fall, Ford announced that this
neural network solution (using a dedicated neural network
chip) will be deployed in all Ford cars in the US, starting in
2001. In many of the recent neural network conferences,
there are papers with authors including Feldkamp,
Puskorius, Prokhorov, Marko and others which describe
Ford’s broad and impressive experience with TLRNs and
with neural network control.

There are also some interesting examples by James T. Lo
(in signal processing), Mo-Yuen Chow (in electric motor
diagnostics), Ted Su (in his University of Maryland Ph.D.
thesis), and many others. In signal processing, the terms
“FIR” and “IIR” are essentially equivalent to the distinction
between TDNN versus TLRN structures.

Usually, “control” shapes or influences the behavior of
some kind of external “plant” or “environment.” Sometimes
the operation of something that one has a very good handle
on, like a motor or a robot arm, is controlled. Sometimes the
behavior of something that is not completely controllable,
like the ecosystem of a lake or even a national economy, is
influenced. Control theory can be applied to these situations,
and in these situations the word “plant” is used to describe
what is being controlled or influenced.

In all these situations, a “Control System” is to be
designed. As shown in FIG. 19, a Control System inputs a
set of variables at each time t; usually thought of as a vector,
called X(t), of sensor inputs. The Control System also
outputs a stream of variables, u(t). These usually represent
signals to actuators, i.e. signals to systems like motors or
valves or muscles, which take physical action. The variables
u are usually called “control variables™ or “control signals™
or “action variables.” On the top of the flowchart of FIG. 19
is a small box labeled “z™'” which includes inputs labeled
“R.” This is one crude way of representing that the external
world has some kind of memory of its past state, R. The
vector X represents the observables of the plant—i.e., the

US 6,882,992 B1

19

variables that can be seen. However, the actual true state of
the plant, R, typically involves many additional variables
which are not seen. The notation “z*” is a fancy way of
saying “delay the signal by one time period.” In other words,
FIG. 19 illustrates that the present state of reality depends on
the state of reality in the previous time period.

This notation it makes it easier to build up descriptions of
how to design neural networks or learning controllers. Also,
there are some nice mnemonics—X for eXternal or eXog-
enous variables, and R for Reality or Recurrent or Repre-
sentation. (In the human brain, a representation R of the total
state of Reality is built up, not just what one sees at the
current moment. Accordingly, recurrent neural networks are
needed to do this.) In classical control theory, the letter “u”
is standard, but they use a small “y” instead of X and a small
“x” instead of R. The vector R is usually called the “state
vector” of the plant.

Also note that the variable “t” (for time) may be discrete
or continuous. Large parts of control theory deal with the
case where actions are taken at discrete time intervals. This
may be called discrete time or sampled time or digital time.
In such cases, t is represented as an integer, t=0, 1,2, . . . up
to a maximum time T or infinity. Other large parts of control
theory treat t as a continuous variable. Karl Astrom has
published a book which analyzes very carefully what can
happen when these two formulations are crossed. However,
most people simply pick whatever is most convenient at the
time, which is usually good enough.

There are some situations where decisions need to be
made in parallel over very different time periods—e.g., one
must decide what torque to send to each motor in factory at
each millisecond, but one must also decide what part to
make every minute or so. This kind of multilevel decision
making requires far more sophisticated mathematics, build-
ing on traditional control theory, but going beyond it.

The first control choice is between old, Single-Input
Single-Output (SISO) methods and more modern methods
which are designed to handle Multiple Input and Multiple
Outputs (MIMO) in a coherent, integrated way. SISO meth-
ods can be thought of as the old legacy computer systems
based on Cobol which are lingering on to the present day.
Physical SISO controllers have been used to build simple
circuit elements to implement multiplication by a constant
(proportional response), Integration and Differentiation. The
goal was simply to design a static set-point linear controller,
which would not blow up, to control a known linear SISO
plant.

SISO design principles require a careful use of Laplace
transforms. First, on the positive side, there are many simple
systems where SISO is good enough. Why spend more time
and effort when you already have a controller which is
simple and good enough for your purposes? For example,
Tom McAvoy has spoken about the problem of trying
control a difficult benchmark problem in the control of large
chemical plants, the Tennessee Eastman plant. Why try to
control all hundred or so valves by a large neural network,
when the difficulty of the problem can be reduced by
“closing the loop” on some of the valves by a simple PID
controller? Instead of controlling those valves directly, with
a high-bandwidth (small sampling time) system, why not
use a PID controller for each of them, and then let the
higher-level controller try to control the setpoint which the
PID tries to achieve? This is like having a higher-level
system tell a thermostat what temperature to aim at, at every
time period, and letting the thermostat turn the furnace on
and off to achieve that temperature. In fact, many of the
applications of neural nets in control use the neural net to

10

15

20

25

30

35

40

45

50

55

60

65

20

tune the settings (like the setpoint or other parameters) of a
set of simple PID controllers. Karl Astrom of Sweden has
used this idea of “self-tuning” to facilitate the large-scale use
of modern tools like adaptive control, in industries where
few working engineers are ready yet to throw out their old
PIDs. In fact, it is interesting how the human nervous system
seems to use an arrangement like this. The higher level
system (the brain) sends signals to control the setpoints of
simple nerve cells, out in the muscles, which look a lot like
PID systems!

Second, many people claim that PIDs have the advantage
of being easier to understand and more of a white box than
new methods like neural networks. During an applications
panel in the WCNN94 conference (Erlbaum), one university
professor asserted that no one in the real world, in industry,
would ever use neural networks in control, that they would
always use PIDs in real-world applications, because people
in industry have a need to use more of a white box approach.
After he finally stopped laughing, Lee Feldkamp of Ford
replied roughly as follows: “Those SISO systems may look
simple and white-boxish to you in the textbooks, when you
see them applied to academic problems. But you should see
what happens when people try to use them on a real industry
system, like a car. There are lots and lots of inputs and
outputs in a car. No matter how you try to simplify things,
there are lots and lots of interconnections and nonlinearities
you have to deal with in the real world. Now it’s possible to
bend and twist these SISO systems by trial and error, and
hook up them up so that they seem to work, but the end
result is anything but a white box. It looks more like a pile
of spaghetti. And if there were any formal stability guaran-
tees for the SISO case, it’s hard to imagine that they would
prove a whole lot about the overall system. By comparison,
an MLP is much more of a coherent, understandable white
box.”

In fact, “modem control theory” and computational intel-
ligence both focus on the MIMO case which is discussed in
greater detail below.

FIG. 20 further discloses that “feedforward” control and
“feedback” control are both possible. This terminology has
nothing to do with feedforward neural networks! An
example is provided. Suppose that the motors in a robot arm
are controlled, so as to make the hand go to a desired
location x*. One approach is to look at the actual position X,
and compare that with the desired location, and move to
close the difference. This approach requires that the system
see where the hand actually is (x), and use that information
in the control decision. That is an example of feedback
control. But in feedforward control, a controller is built
which gets the hand to x* without using any information
about x! That may sound impossible. Sometimes it is
impossible, and maybe the robot arm example is one of
those times. However, in those cases where feedforward
control is possible, the controller is usually easier to analyze,
and it may be easier to prove that certain kinds of instability
will not occur.

FIG. 20 also discloses a third major choice—the choice
between a fixed control system, versus a control system
which may be adaptive or learning or both. This choice is
extremely important and real, in practical applications, but it
is also very hard to analyze in a formal theoretical way. (See
WILEY for more discussion.) After all, what is the differ-
ence between feedback, adaptation and learning? Don’t they
all involve some kind of memory loop from time t-1 to time
t, as in a TLRN?

As a practical matter, feedback control involves very
strong, quick responses to current observations of one of the

US 6,882,992 B1

21

variables being monitored and controlled. Adaptive control
tries to account for shifts (usually slow) in the parameters or
dynamics of the plant. For example, a feedback controller
might respond to abrupt, measured changes in the tempera-
ture of a plant, while an adaptive controller would try to
adjust itself to account for changes in the friction along the
pipes as they slowly get clogged up over time. Learning
control tries to build up an increasingly effective general
strategy of control which remains valid even as temperatures
and friction parameters change. For example, adult drivers
usually have a good ability to adapt to parameters like a
change in the slipperiness of the road they are driving on.
When they hit a patch of ice or snow, they adjust their
driving very quickly; they adapt. But beginning drivers often
have problems under those conditions; they have not yet
learned an adaptive strategy of driving. This idea of learning
to be adaptive is crucial to the success of the Ford
application, and crucial to many applications of control
today. (Sometimes the people at Ford call this strategy
“multistreaming.” Again, see WILEY.) There are lots of
ways to combine these approaches, depending on the appli-
cation. For example, learning methods can fine-tune a feed-
forward controller whose initial parameters were developed
by an earlier generation of fixed control methods.

Finally, the fourth major choice is the most concrete
choice, in many ways. What kind of control system should
be built? What is the basic design principle? Is it a controller
that “clones” or emulates some other existing control
system, like a human expert or an expensive computer
program? Does it keep the plant at a desirable fixed oper-
ating point, like the temperature setting of a thermostat
(tracking system or regulator)? Does it maximize some
measure of performance or profit, or minimize some mea-
sure of cost, over time? There are many different types of
learning systems and control design which aim at these
different tasks. There are also some ways of combining these
approaches (see HIC and WILEY).

FIG. 21 illustrates the concept of feedforward control. In
a formal sense, feedforward control is the special case of
feedback control, where the flow of information from the
variables to be influenced and the controller is prohibited.
Feedback loops or memory within the controller itself are
also prevented that might lead to possible instability.

Naturally, this concept requires identifying the variables
to be influenced (versus the other variables in the system).
It generally assumes that the variables to be influenced are
affected by the other measured variables, but not vice-versa.
For example, the variables being observed might be mea-
surements of the liquids coming into a chemical reactor from
the outside, and the variables being influenced might be
measurements of what comes out of the reactor. The chal-
lenge in this case is to build a controller which (1) responds
to disturbances in the inputs and (2) “rejects them”—
responds to them in a way which cancels out the impact on
the output. Widrow’s recent text on inverse control discusses
this philosophy of disturbance rejection in great detail, and
the signal processing group at Ronneby in Sweden has
demonstrated some applications. However, in a real chemi-
cal plant, there may be some residual causal flow backwards
in the plant, and the analysis must be made carefully. Pure
feedforward control can work only when the downstream
part of the plant does not have an “internal memory”—when
the behavior can be predicted by a TDNN kind of model,
using as inputs only the upstream measured variables and
controls.

From the viewpoint of learning control, the desire for
feedforward control is simply a constraint on the structure of

10

15

20

25

30

35

40

45

50

55

60

65

22

the network being adapted. It requires no fundamental
change in the learning techniques. Sometimes it is better
simply to avoid such constraints, and let the learning method
discover what kind of controller actually has the greatest
stability. In theory, both learning and adaptation disrupt the
simple mathematical properties of a feedforward network;
however, if the changes (the implied gain) of the learning
and adaptation loops are relatively slow, stability may be
guaranteed by an extension of the analysis which is applied
to the original fixed feedforward controller.

FIG. 22 illustrates the practical benefits of using learning
control, compared with non-learning control. Virtually all of
the learning control methods discussed herein could be used
either with neural networks or with any other well-behaved
non-linear structure containing weights or parameters to
adapt.

The first main benefit of learning control is that it provides
an alternative to the process of “tweaking,” which is very
familiar to anyone who has worked on control in the real
world. The usual tweaking process is an extremely expen-
sive process. For example. About 80% of the cost of
developing that the F— 15 came after the plane was offi-
cially first developed and a classical provably stable control
system was installed. When the plane was first flown, of
course that provably stable control could not actually stabi-
lize the craft over the desired operating range. Thus, data
was collected, the controller was tweaked, they tried again,
and so on. Most of this cost was related to such changes in
control algorithms and software. An improved controller
would actually learn on the fly and reduce the need for all
this tweaking. A more bulletproof controller would not need
such tweaking? This is one of the main practical benefits of
using learning control.

The second main benefit is that we have new learning
control algorithms, which are capable of learning to handle
very tricky nonlinear systems full of disturbance. Thus they
can stabilize tricky plants which have very narrow and
twisty regions of acceptable performance—something
which is very hard to do, if possible, using traditional
methods. Some of the most exciting emerging applications
of learning control are based on this advantage—creating
acceptable performance in systems that simply could not
work before these new control methods were available.

“Back in 1992, White and Urnes tried out a learning
control system, to see if it could stabilize a model of the
F-15, after the F-15 was hit by unpredictable damage (like
a wing being shot off). The neural net learned to stabilize the
new version of the plane in two seconds in half the cases. In
half the cases, they failed, and the plane would have crashed.
This was certainly not an example of guaranteed stability!
Yet with classical approaches the plane would have crashed
98% of the time. At least these methods seemed to save the
airplane half the time. (See White’s chapters in HIC.) These
simulations were based on McDonnell-Douglas’s best, well-
tested model of their own airplane.

Based on these exciting results, a large ($4 m/year)
program was set up at NASA Ames, led by Chuck
Jorgensen, to follow up and try to implement those capa-
bilities. The program has also stimulated a number of
imitators in this area of research, which is now called
“reconfigurable flights control.” It will be many years before
the full potential of this approach is realized. Already,
however, a first generation neural net controller was flight
qualified and used to land a real MD-11 jumbo jet (a year or
two ago), complete with human passengers, with all the
usual flight surfaces locked up. This is not bad for a
beginning. A third major benefit is that designs are now

US 6,882,992 B1

23

capable of true performance optimization over time, in the
general nonlinear case with disturbances.

FIG. 23 provides additional details about the three major
types of control task—cloning versus tracking versus opti-
mization over time. This three-fold classification cuts across
all kinds of control system design, old and new. Many
systems in the real world are a hybrid of the three types, but
these are the building blocks.

The first control type is the cloning system. In “cloning,”
the goal is simply to duplicate the performance of an existing
controller, which may be a human, an animal, or even an
existing control program which works well in theory but is
too slow or expensive to use in practice.

There are two different ways to “clone™ the behavior of an
existing controller. In the traditional, expert system
approach, the existing controller has to be an articulate and
cooperative human being. This human expert is interrogated,
to elicit a set of “IF THEN™ rules such as “IF the motor gets
hot THEN turn it down fast.” These verbal rules are then
interpreted as mathematical rules, using the procedures of
traditional Al or fuzzy logic.

An alternative approach is to record what the human (or
other controller) actually sees and does, and then train some
kind of prediction system to predict what the human would
do. That prediction system then becomes a copy or “clone”
of the human expert. In this kind of cloning, the first major
step is simply to construct a database of what the expert sees
and does. After that, general purpose prediction-learning
system is applied, like TDNNs or TLRNs. McAvoy has
called this approach “modeling the human operator”—but it
does not have to be human.

Many control engineers only know about one kind of
control—tracking control. In the simplest kind of tracking
control, the user provides a fixed desired state X*. The
engineer tries to design a controller which maintains that
state in a more or less stable way. Stability is the only
consideration in this kind of design. However, once a stable
design is found, sometimes it is possible tweak the param-
eters a little to improve some kind of performance. This is
called “setpoint control” or “homeostatic control.”

In a more sophisticated form of tracking control, the
control engineer tries to move the plant along a desired path
in time, X*(t). In some cases, the user will supply an actual
schedule of desired values for X*(t), like the desired trajec-
tory for a robot arm. In other cases, X*(t) will be supplied
implicitly, through a user-supplied “reference model.” The
reference model simply specifies how to calculate X*(t) over
time.

In modern control theory, there are two main forms of
tracking control—robust control and adaptive control. The
main consideration in building a tracking controller is sta-
bility in staying near X*. Therefore, three different
approaches to achieving stability are discussed below. These
stability issues are extremely complex (see LANL), but the
bottom line is surprisingly simple: the best, most reliable
way to stabilize almost any kind of plant is to reformulate
the tracking problem as a problem in optimization over time!
This kind of reformulation is not very expensive. There is
one way of doing it which requires only a very small and
easy enhancement to the conventional forms of adaptive
control. In addition, the optimization approach makes it
possible to minimize a carefully chosen weighted sum of
tracking error and actual cost. This provides stability and
higher performance.

The most sophisticated, powerful and brain-like control
designs—both in traditional control and in learning
control—are based on efforts to optimize some measure of

10

15

20

25

30

35

40

45

50

55

60

65

24

performance over time. Following the language of Von
Neumann and Morgenstern, this user-selected measure of
performance is called a “utility function U.” There are three
main varieties of design in this group.

For the linear case, with white noise disturbances and a
quadratic performance measure, there are the well-known
LQG (Linear Quadratic) designs, explained at length in the
classic textbooks of Bryson and Ho and of Stengel. These
methods have become the method of choice in many real-
world application areas, such as the control of cruise
missiles, since the 1960s. This is another major branch of
modern control theory.

In the nonlinear case, when the plant can be predicted
exactly, and there are no random disturbances, the sum of U
over future time can be maximized simply by looking for an
optimal plan of action for the next N time periods ahead into
the future. Of course, this only maximizes U over the next
N time periods, not over the infinite future, but there are
many cases where the effects of the present actions begin to
die off after N periods of time anyway. This kind of explicit
N-period lookahead can be done in many different ways, but
the basic idea is very straightforward. It always requires a
model or predictor of the plant available.

The third kind of method converges towards the optimal
strategy even without such an explicit lookahead, and even
in the presence of random disturbance. This class of methods
is the most powerful class of methods, but also the most
complex. It is sometimes called “approximate dynamic
programming,” “reinforcement learning,” “adaptive critics,”
or “neurodynamic programming”. (See LANL for a sum-
mary of the history of this class of methods, and for some
new designs in the class.)

FIG. 24 illustrates an example of how “cloning” has been
used in real-world application. Years ago, Accurate Auto-
mation Corporation (AAC) was given a grant to see whether
neuro-control could solve the very difficult control problems
involved in operating a proposed new aircraft called the
National Aerospace Plane (NASP) NASP was intended to
show that an airplane could go so fast that it could reach
escape velocity and thereby get into earth orbit—as an
airplane, at airplane-like costs.

AAC used the following approach. They coded up the
NASP model into a flight simulation shell, running on a
Silicon Graphics machine. It did not look exactly like what
you see on this figure, but it was similar. In effect, they
programmed the NASP control problem as a video game for
humans to play. In actuality, the real craft would be far too
fast for a human to control in real time; however, they
simply stretched out the time dimension, so that humans
would have a chance. For several weeks, dozens of people
at NASP and elsewhere played this interesting video game,
but the game was so hard that few of them were able to
succeed in a truly reliable way. In the meantime, the “video
game” recorded the actions of the human players, and the
state variables which determined what the humans saw on
the screen. After a couple of humans had thoroughly mas-
tered the game, AAC simply trained a TDNN neural network
to predict or emulate what these humans did as a function of
what they saw. Thus within a few weeks, at minimal cost,
they had a very, very robust nonlinear controller which could
stabilize this nonlinear plant under many strenuous condi-
tions. Soon after, AAC was applying its tools to more serious
parts of the NASP program. After the NASP program was
shut down, AAC became the prime contractor on LoFlyte,
which was the main continuing project in hypersonics in the
Us.

Note that this kind of simple, stable controller can be used
as a starting point—an initial architecture and initial

US 6,882,992 B1

25

weights—for a neural net controller which is further tuned
so as to optimize performance, and thereby go beyond the
kind of performance that a human could achieve. That may
or may not amount to the globally optimal strategy, but it’s
already an achievement to find a stable controller that can
outperform the best human.

New hypersonics projects have begun to appear in recent
years, which go far beyond the LoFlyte technology. It
appears that more advanced learning control will play a
bigger role in this more advanced work, but the details are
somewhat sensitive and preliminary at present.

In some applications, automating a human job, starts off
with a strategy called “teleoperation.” In teleoperation, a
human operator is hooked up to the kinds of inputs and
outputs that are supplied to a computer. For example, the
human may “see” through a virtual reality helmet, linked to
images from a computer or a digital camera on a robot, and
the human may manipulate a joystick that controls a robot
arm. The human is asked to try to perform the task that the
robot will perform later on. Even if teleoperation is too
costly too use on the production line, it can provide an
excellent test, to make sure that the sensors and actuators
available are good enough to make it possible to do the task.
If no human can do the task, the hardware may need to be
redesigned, before trying to train an intelligent controller to
do the task. Then, after the data is available from
teleoperation, a neural network is trained to emulate or clone
the human operator. That is one way to get a good basic
controller.

In modern control there are two main approaches to
achieving stability, in ordinary tracking problems—robust
control and adaptive control. The well-developed tools used
in industry for robust control are all designed for the linear
case. But in adaptive control, the linear and nonlinear case
are perhaps equally developed. Leading figures in adaptive
control like Narendra of Yale have shown how the non-linear
case can be handled by using neural networks in place of
matrices, in a common design framework.

The relation between robust control and adaptive control
can be explained by considering a passage in the I Ching,
one of the classic Great Books of China. The I Ching asks:
“Which is stronger (more stable), the oak tree or the grass?
The oak tree appears much stronger, but when the typhoon
comes, that one survives and which one breaks?” The grass
survives, because it bends, it adapts. The oak tree is about as
stable as one can imagine, for a plant which tries to maintain
a fixed position and shape.

Robust control is like the oak tree. It tries to find fixed
design parameters that can stabilize the plant over a wide
range of uncertainty about the parameters of the plant. It
tries to do as well as one can to insure stability, subject to the
requirement that the controller itself is utterly fixed and
rigid. Adaptive control, by contrast, tries to cope with
uncertainty and change in the unknown plant, by adapting its
own parameters somehow. In theory, adaptive control would
be expected to be more stable, because it takes advantage of
an extra freedom in design; however, in control engineering
today, it is widely believed that robust control leads to more
reliable stability and better performance. Recent research
(LANL) has begun to explain this paradox, and point the
way towards new adaptive control designs that live up to
their potential as a more stable, higher-performance
approach.

The third approach is a new design strategy, which can be
seen as the convergence of two very different philosophies.
On the one hand, the ability to train systems to “learn offline
to be adaptive online” was proposed (see WILEY). If offline

10

15

20

25

30

35

40

45

50

55

60

65

26

training issued (using an optimization-over-time approach)
to train a “fixed feedback controller” (a TLRN) over a real
or simulated database, then the resulting controller may act
in practice as a kind of adaptive controller. This is true even
when the database includes lots of variation in the param-
eters and couplings of the plant. This is the basis of the new
Ford clean air control system. On the other, advanced
researchers in nonlinear robust control have proven that the
robust control problem in the general case turns out to be
equivalent to the problem of solving a certain Hamilton-
Jacobi-Bellman equation—the basic equation of stochastic
optimal control! The learning-based designs that were devel-
oped for Approximate Dynamic Programming are an effec-
tive numerical technique for actually implementing this kind
of general-purpose nonlinear robust control, when they are
used in offline learning. In summary, two control philoso-
phies which sound very different in theory end up pointing
towards the same new practical approach to stabilizing
complex real-world nonlinear systems.

FIG. 26 is taken from an actual application paper, apply-
ing robust H-infinity control to the problem of stabilizing a
model hypersonic aircraft. (See WILEY.) In this work, the
authors first derived stable ranges for the controller param-
eters 0, and 0,, assuming that the airplane would be loaded
so that the center of gravity would be 12 meters away from
some reference point. Next they derived ranges which would
keep the aircraft stable when the center of gravity is as 11.3
meters, only two feet away. Notice that the two ranges are
totally nonoverlapping. This means that any setting of the
parameters which can stabilize the craft when it is at 12
meters would be sure to crash the airplane if it moved by
only two feet. Riding in such a craft sounds very similar to
walking upright in a canoe; it could tip over at any moment!

Common sense says that the stability of this airplane
would be a lot better if the center of gravity is tracked at
every moment, and 0, and 8, are adjusted to match whatever
it is. That is exactly what adaptive control is all about—not
requiring 0, and 6, to be fixed, but adjusting them to
accommodate changes in the parameters of the plant. In
principle, that ought to increase stability. Why doesn’t it
seem to work out that way in practice?

FIG. 27 illustrates the present state of the art in modern
control. More precisely, it describes a design called Indirect
Adaptive Control (IAC), used by Narendra, one of the two
best-known practitioners of adaptive control in the world
today. (See LANL for discussion of Astrom, the other one.)
In Narendra’s classic 1989 textbook on stable adaptive
control, he gives equal weight to IAC and to another design,
called Direct Adaptive Control. However, in his paper for
Gupta, he explains why IAC is the most powerful design, for
use both in linear adaptive control and in nonlinear adaptive
control based on neural networks.

The Model and the Action network (or “controller”) of
FIG. 27 can could be matrices, in effect, or neural networks.
In TIAC, the Model and the Action network are adapted
concurrently. The Model network is adapted to be a good
predictor of the plant, based on minimizing square predic-
tion error. The Action network (or matrix!) is adapted so as
to minimize tracking error, (X,,(t+1)-X(t+1)), at the very
next time period (t+1). This can be done by adapting the
weights of the Action network, W, in proportion to the
derivatives of tracking error with respect to those weights.

Those derivatives can be calculated by calculating the
derivatives of every output with respect to every input for
the Model and the Action net, and then using the conven-
tional chain rule. On the other hand, they can also be
calculated more easily and cheaply by simply starting from

US 6,882,992 B1

27
F_X(t+1)=X(t+1)-X, 7. 1), backpropagating that through
the Model to derive F_u(t) and then backpropagating that
through the Action network to get the required derivatives
F_W,. Narendra’s various papers describe this process in
more detail, from various viewpoints.

But: what are the problems of this design? Why does it not
outperform the more rigid linear robust approach? Many
university researchers seem to believe that IAC has the best
stability guarantees of the existing neural net control
designs. This is not true. Even in the linear case, IAC is only
guaranteed to be stable under extremely restrictive
conditions, as Narendra himself has discussed in very great
detail. (See LANL for more discussion.) Real plants in the
real world frequently fail to meet these conditions. Thus in
industry, it is well known that methods like IAC can often
go unstable, and can also show very slow response to
transient disturbances, especially if there are phenomena
like delays and dead-times in the plant. Again, what is the
problem?

Intuitively, the problem here is actually very simple. It is
similar in a way to the ancient problem described by
Wiener—the problem of a thermostat that goes unstable
when it pushes too hard towards a desired temperature and
ends up overshooting. The problem is that this design is
based on a kind of myopia or short-sightedness. The system
only considers tracking error at the very next time step, t+1.
In real plants, the actions which get you as close as possible
at time t+1 may end up sending you further away a moment
later. A million patches on the system cannot overcome the
basic fact that the system is not even addressing the problem
of how to stay close to the desired trajectory for more than
one time period into the future!

These problems exist even for plants that are totally
deterministic. When plants are subject to unbounded random
noise (like ordinary white noise), one can never provide an
absolute guarantee that the plant will never diverge from a
finite desired region.

One way to fix this problem is to try to minimize the sum
of tracking error over multiple time periods into the future.
In other words, the problem of tracking is treated as a
problem in optimization over time. FIG. 28 shows the
simplest architecture for doing that. This design is almost
identical to previous one, except that the derivative calcu-
lations account for the effect of u(t) on the model and the
tracking error in future times. Once a fixed database, model
and Action network are obtained, as required for the previ-
ous design, this design is directly implemented. The deriva-
tives can be calculated using backpropagation through time.
See ROOTS (chapter 8) for some pseudocode on how to do
this.

In fact, this kind of multiple-period lookahead, using
backpropagation through time to calculate the required
derivatives, was done by four different researchers by 1988,
before the IAC design was applied to neural network con-
trol. These four were: Paul Werbos (as part of the 1987 DOE
official model of the natural gas industry), Bernard Widrow
(in his classic amazing truck-backer-upper, reported in many
places), Michael Jordan (in some robotics work) and Uno of
Japan (also in some robotics work). Since then, many people
have pointed out that this approach can be viewed as a fast,
neural net way implementing the classical control method
called “Model Predictive Control.” Suykens of Belgium
(cited in LANL) has pointed out that the stability guarantees
for nonlinear Model Predictive Control are far stronger than
the guarantees for adaptive control—and they automatically
apply to the neural network case of that method. McAvoy
(HIC, chapter 10) pioneered the use of this approach in the

10

15

20

25

30

35

40

45

50

55

60

65

28

chemical process industries, and it has spread to many
applications in those industries. Again, it was also the basis
of the first high-performance clean air controllers at Ford.

However, BTT is not a truly brain-like design. Also, MPC
does not really account for random disturbances. Originally
it was believed that (X, (t+1)-X(t+1))* had to be minimized
in IAC. In some simple designs, the error function depends
only on X(t+1) (or at least does not depend on the far future).
In fact, for any dynamical system which can be stabilized,
there will exist a function called a Lyapunov function which
can be minimized at time t+1, and thereby stabilizes the
system. But how is that Lyapunov function found?

In recent years, many clever people (like Slotine) have
found Lyapunov functions for certain very specialized kinds
of dynamical systems. Recently, the idea of “control
Lyapunov functions” has somehow become a hot new topic
at meeting of the IEEE Conference on Decision and Control
(CDC). How, tough can Lyapunov functions for a general
nonlinear system (which may be very messy), be found in a
more automated way?

The design is shown in FIG. 29. It turns out that dynamic
programming generates a function, called the J function,
which is automatically a Lyapunov function (at least in the
deterministic case, with an appropriate choice of U). The
IAC can be modified by replacing (Xref(t+1)—X(t+1))2 by a
parameterized function of X(t+1) or even a neural network,
and then adapting that function so as to make it approximate
the J function of the system. Back in 1972, this flowchart
was included in the inventor’s thesis proposal to a Harvard
PhD thesis committee, along with specifications for how to
adapt all three parts. The Model and the Action net are
adapted exactly as they are in ordinary IAC (except that
F__X(t+1) is initialized to the gradient of J with respect to
X(t+1), which calculated can be very easily by using
backpropagation). The Critic Network can be adapted by a
method called Heuristic Dynamic Programming (HDP), and
described in several papers. HDP is essentially identical to
the method of Temporal Differences as described by Sutton
in his classic 1988 paper. (See LANL.)

This leads up to the question of how a universal stable
adaptive controller is generated for the MIMO linear case.
Does this design lead to stability guarantees far stronger than
those for IAC?

Several new methods have been developed (see LANL)
which are good enough to solve known problems. There is
still a lot of room to prove total system stability results, ala
Narendra, for the more general case, but this work should be
well within the capabilities of good researchers in modern
control theory. In the meantime, control designs developed
based on learning-offline-to-be-adaptive-online (using either
BTT or designs like this one) do not have the same insta-
bilities which could arise sometimes as a result of online
learning.

Designs for learning-based Approximate Dynamic Pro-
gramming (ADP) are sometimes called “reinforcement
learning systems.” FIG. 30 illustrates the traditional vision
of what a reinforcement learning system is.

Years ago, at an NSF workshop, one of the chemists once
said: “Sometimes I wish someone could just develop a
general purpose black box which would solve all these weird
control problems in a really automatic sort of way. On the
one side, I would just plug it into whatever sensors I had
available. On the other side, I would plug it into my
actuators. And 1 would give it some kind of input or function
to tell it how well it is doing, and then let it figure out all the
rest. I would let it figure out the dynamics of all the variables
it is monitoring, and it would somehow learn to maximize
whatever kind of performance metric I feed into it.”

US 6,882,992 B1

29

In essence, that is exactly what a reinforcement learning
system is. It is hooked up to actuators u and sensors X, as
shown in FIG. 30. It also receive a performance metric or
utility function U, which it learns to maximize over time.

One may ask: if this kind of black box is available, why
is it not used everywhere? The problem is that many, many
generations of such black boxes exist, and the ones which
are the most popular are also too slow and too weak to
achieve the kind of performance needed in engineering
applications. Nevertheless, there are also some more
advanced designs which are beginning to pan out, and there
is a clear pathway for how to build systems which really
mimic the kind of intelligence seen in the brains of mammals
(see LANL).

In order to use reinforcement learning on a control
application, it is not enough to simply choose which a “black
box”. The sensors, actuators and utility function must also be
chosen as well. Although the kinds of actuators and sensors
that are needed, may be straight forward, what about the
utility function? What should be used? In principle, there is
no technical solution which identifies the appropriate utility
function. The utility function is supposed to represent what
the designer wants the system to do. Specifying a utility
function is an exercise in trying to explain what the designer
really wants. People in decision theory have spent years in
those kinds of exercises. In practice, people often try out a
utility function, simulate the results, and discover that the
system really does give them the requested result, but that
result is really not the desired result. Then a designer may
change the utility function to express what he/she really
wanted a little better.

In tracking applications, the utility function may simply
represent tracking error. Experience shows that it helps to
use a nice smooth measure of tracking error, in order to
speed up the learning by the system.

Sometimes, in control, the plant does not need to follow
a nominal trajectory—as long as it stays inside of some safe
region, otherwise minimizes energy use, and gets to where
it is supposed to go. In such a case, the utility function might
be a weighted sum of energy use, terminal accuracy, and a
safety factor. The safety factor might be flat and zero in a
large region, and rise smoothly at the edges of that region.
Sometimes the optimal solution to this kind of control
problem will end up being a pulsed or cyclic or even chaos
controller. It may take special tricks (like “shaping” (HIC))
to converge to this kind of optimal controller.

By picking a tricky utility function, the system can solve
a problem which requires true intelligence. For example, in
a game-playing (Al) application, U may be defined as +1 for
a victory in the game, -1 for a defeat, and O for a draw or
for anything else. A reinforcement learning system trained in
this general sort of way (by Tesauro of IBM) has demon-
strated master-class capabilities in the game of backgam-
mon.

Attempts to design reinforcement learning systems by
building systems which learn to approximate the Bellman
equation of dynamic programming are now the foundation
of the modem ADP or reinforcement learning field. (See
LANL.) Dynamic programming is the only exact and effi-
cient technique available to solve the problem of optimiza-
tion over time in the general nonlinear, stochastic case.
Dynamic programming works as follows. As shown in FIG.
32, first the user supplies a utility function and a stochastic
model of the plant to be controlled. Then the technical expert
tries to solve the Bellman equation for that choice of model
and utility function. More precisely, the expert tries to find
a function J which satisfies the Bellman equation, for that

10

15

20

25

30

35

40

45

50

55

60

65

30

model and that utility function. After he does that, it is
guaranteed that (under certain conditions): if, at every time
t, the action vector u(t) is chosen to maximize the expression
shown in the Bellman equation, the expected total value of
U over future time will be maximized. In other words,
dynamic programming converts a problem in long-term
optimization into a much more straightforward problem in
simple, short-term function maximization—after the func-
tion J is known.

The next question is: why bother to approximate dynamic
programming? Why not use the exact real thing, for every
control problem in the world? The answer is completely
expressed in a four-letter Anglo-Saxon word: cost. The cost
of solving for J “exactly” (in a finite element approximation)
rises exponentially with the number of state variables in the
system. Thus true dynamic programming works very well
when there are one or two variables, but much beyond that
it becomes totally unworkable, in most applications.

Actually, there is one special case of serious engineering
interest where the Bellman equation is solved exactly, with
many variables; the classic linear-quadratic situation men-
tioned very briefly above. The classic LQG methods do map
into dynamic programming. There are many interesting
connections between those methods and reinforcement
learning (LANL).

How can we approximate the solution to the Bellman
equation as accurately as possible, in the general case? The
obvious solution is to approximate the nonlinear function J
by some kind of universal function approximator—a neural
network. Then the weights in that network are adapted, to
make J fit the Bellman equation “as closely as possible” in
some sense. This kind of a neural network is called a “Critic”
network, and FIG. 34 some tricks in how to adapt it.
Actually, there are some other possibilities here. For
example, instead of training a network to approximate J, a
neural network is trained to approximate the gradient of J
with respect to the state variables. Or a network is trained to
approximate another function related to J, called J' or Q.
There are many possibilities here which lead, in turn, to
many different general-purpose designs.

FIG. 23 gives an overview of the main types of ADP
design, which have branched and proliferated a great deal in
the last few years. The types form a ladder from top to
bottom (i.e., from zero to level 5). The first three levels all
involve model-free reinforcement learning designs
(although Sutton has sometimes used a model for the limited
purpose of generating simulated data to train a model-free
design). The next three levels all involve truly model-based
designs, similar to IAC. The next two lines on the figure
involve more complex and brain-like designs. (See LANL or
WILEY for pointers to work on those areas and links to
neuroscience.) For motor control today, levels O through 5
likely would be powerful and challenging enough.
Nonetheless, some work on the use of Error Critics in hybrid
designs could possibly be useful. (Again, the recent work of
Prokhorov and in WCNN95 contain a few ideas.)

Many people have asked at first: “Isn’t it wrong for a
reinforcement learning system to have to depend on a Model
of the plant? Shouldn’t the system be able to do everything
it needs to do based on learning?” It is important to remem-
ber that the Model blocks in the model-based designs can
also be filled in with neural networks which learn to predict
the plant. There is no need for a fixed prior Model here. On
the other hand, in applications where a good model happens
to exist, it is useful to be able to exploit that model, as these
design do indeed permit. Recall that one can always back-
propagate through any differentiable model, neural or
normeural, using the chain rule for ordered derivatives.

US 6,882,992 B1

31

FIG. 34 illustrates a few equations to describe the basic
principles of HDP and TD, and to point a very tricky pitfall
in the ADP area. When trying to train a network to represent
the J function, that network may be represented as a function
JLX, W). Usually the weights W which make J obey the
Bellman equation are not known exactly. Accordingly, one
approach is to train W so as to minimize the square error in
the Bellman equation by minimizing the square of the
difference between the left-hand side of the equation and the
right-hand side. This requires accounting for the way in
which changes in W affect both sides of the equation. This
approach is very close to the classic method developed by
the Russian mathematician Galerkin for approximately solv-
ing partial differential equations.

Unfortunately, this method has very serious drawbacks. In
the simple case of a linear plant with a linear utility function
and Gaussian noise, this method almost always converges to
the wrong weights. More recently (in LANL) the same thing
was proven for the more usual Linear-Quadratic-Gaussian
kind of plant. Thus, in formulating HDP, the weights should
not be adapted according to the complete, total gradient of
error in the Bellman equation. Instead, W should be adapted
so as to make J(X(t),W) match the right-hand side more
closely, treating the right-hand side as fixed. One way to do
that is to adapt the weights W in proportion to the derivatives
shown at the bottom of the figure. A more general approach
(spelled out in HIC chapter 13) is to use any kind of
supervised learning system here, treating the right-hand side
as the vector of targets and x(t) as the vector of inputs. W
cannot be trained here until after X(t+1) is known or
sampled. This may seem strange, but it does not lead to any
fundamental problems.

FIG. 35 shows the simplest ADP system in use today—the
system published by Barto, Sutton and Anderson (BSA)
back in 1983. Actually, the first published implementation of
an adaptive critic system was much earlier than that—
Bernard Widrow’s 1973 paper on “learning with a critic,”
using a level zero critic.

The BSA system—Ilike the usual “Q learning systems”™—
used only lookup tables for the function approximations.
There were only two “networks”—a Critic and an Action
network. (Some people would prefer to call the Action
network “a controller.” However, this is confusing, because
a “controller” sometimes refers to an Action network and
sometimes refers to the entire control system, Critic and all.)
The Critic was trained to approximate J, in effect, using a
method equivalent to HDP. The Action network was trained
by a special kind of reward-and-punishment scheme.

The BSA system has performed surprisingly well in some
applications in Al, like backgammon. But the use of asso-
ciative action training works far better when the choice of
actions is small and discrete. In engineering applications,
where the control variables are continuous and somewhat
larger in number, this method tends to be very slow in
learning. As the number of variables and controls grows, the
method basically falls apart. Thus it is certainly not a
brain-like design, even though it has been able to explain
some of the results of reward-and-punishment experiments
in animal learning.

FIG. 36 describes a more sophisticated model-free design,
which has worked well in some difficult engineering appli-
cations. This time, there are two real neural networks. The
upper network is trained to approximate a function called
either “J*” or J' is function both of X and of u; an optimal
strategy results simply by picking u to maximize J'(X,u). In
an Action-Dependent HDP, the Action network is trained
using backpropagation to perform that maximization. In

10

15

20

25

30

40

45

50

55

60

65

32

other words, the weights in the Action network are simply
adapted in proportion to the derivatives of J' with respect to
those weights, calculated by using backpropagation on the
Critic and backpropagating the resulting derivatives back
through the Action network. The Critic itself is adapted by
a process essentially identical to HDP, except, of course, that
the network has additional inputs. (See HIC.) In Q learning,
there is no actual Action network. Actions are generally
chosen based on an exhaustive evaluation of all possibilities.
(However, several authors have reinvented “policy Q7
designs which are the same as ADHDP.) Back in 1990,
ADHDP and several other methods were tried on some
outstanding problems. The first major success story was the
work by White and Urnes on reconfigurable flight control
HIC).

(As)shown in FIG. 37, ADHDP was applied to the problem
of making high quality parts from carbon-carbon composite
materials. Carbon-carbon composite materials are the work-
horse of the high-performance aviation industry. Because of
their high strength and low weight, aircraft companies have
been forced to put more and more of these materials into
their products. Because of their great cost, they are a major
explanation of the high cost of such aircraft. They are very
expensive because the standard process for making parts
from these materials is essentially a process of PhDs baking
cookies in an oven—and burning the majority of them. Thus
McDonnell-Douglas invested millions of dollars, over many
years, in developing a more rational, continuous production
process, illustrated in FIG. 37. Unfortunately, this process
turned out to be extremely difficult to control. After millions
of dollars of trying every possible modem and Al process on
this system, neuro-control was tried. The standard methods,
like tracking methods, were tried and abandoned. When they
tried the BSA design on a small simulated version of the
problem, it did work, but wouldn’t work well enough when
they tried to scale up to the full problem. Then they tried
ADAC, and it worked on the full problem, making real
quality parts on a continuous assembly line. The economic
potential of this success is very large.

The detailed derivative feedback to the Action network of
FIG. 38 makes it possible to handle much larger numbers of
continuous control variables than with a level-one design.
On the other hand, when the Action variables are discrete or
binary choices, it is not clear how best to use these kinds of
derivatives.

For certain technical reasons (discussed in HIC) this
design can learn somewhat better than the ADHDP design,
under normal conditions. Nevertheless, there are still some
limitations with this class of design. In training the Critic
itself, in each time period, HDP is really just using one scalar
piece of information—one target variable—in each time
period. Faster learning may be possible by using a different
sort of Critic, illustrated in FIG. 39.

FIG. 39 illustrates the core calculations used to adapt a
different kind of Critic, called a X Critic. This Critic
attempts to approximate the A vector, the gradient of the J
function. (In Pontryagin’s work, the lambda variables are
sometimes called the “costates.” They also correspond to
value measures or “shadow prices” in economics.)

In Dual Heuristic Programming (DHP), the Critic is
trained at time t in order to make its output match more
closely to a target output, which is based on the later
observations at time t+1. In HDP, the target for J(t) is based
on a very simple calculation—basically just adding U(t) to
J(t+1). But here, the derivatives must be backpropagated
from k(t+1) and U through the Model and the Action
network, and added, in order to calculate the targets A*(t) for
M1). For details of all these calculations, see chapters 3 and
13 of HIC.

US 6,882,992 B1

33

DHP may be extremely useful in applications like com-
munication network control, where local value measures (or
shadow prices) are needed for all the nodes in the network.
Good value measures are necessary to the effective use of
local optimization tools. Without a good value measure, how
can the local router optimizer know what it is supposed to
optimize? But in that kind of application, DHP training
issued on a special kind of Critic network. An ordinary MLLP
structure is not used as a critic. Instead, an ObjectNet is used
(see FIG. 7).

Even before ObjectNets are considered (as will be dis-
cussed below), DHP has certain advantages over HDP in the
control of distributed systems. In HDP, there is one global
measure of value, the estimate of J.

Suppose, for example, a controller is to be developed for
a system made up of three big subsystems, in different
locations, with small but important interactions between
them. Since any neural network (or other) structure can be
chosen for the Critic network, the Critic could be chosen to
be made up of three sub-networks (each taking input from
one of the subsystems), sending one or two outputs to a
small global integration network. The sub-networks might
be physically installed in chips at the various subsystems.
HDP and backpropagation can still train the whole Critic
system. The backpropagation calculations would involve
one or two feedback signals back along the same channels
that carry the ordinary signals forward to the global inte-
gration network.

In DHP, however, there are lambda value outputs for each
variable in the system; thus the local sub-networks could
directly output the value measures for the variables in each
subsystem. (There would still be some need, however, for
communication between the sub-networks, in order to
account for the interactions between subsystems. In other
words, the Critic structure can be chosen in any way, so long
as it has the right inputs and outputs. However, the network
cannot be expected to yield the best results without some
sort of communication between subsystems.) DHP exploits
the knowledge of the utility function (because it calculates
derivatives of utility), but HDP does not.

There is a way to use HDP or ADHDP (with a weighted
sum Critic) which captures some of the advantages of DHP.
This was used in the work of White and Sofge and discussed
in HIC. Finally, there is also a level 5 design—Globalized
DHP or GDHP—which is a hybrid of HDP and DHP. This
is discussed in LANL.

Even as late as mid-1993, no one in the world had
successfully implemented and published an ADP system
higher than level 2. But within a few years (in part because
of the publication of HIC), 5 groups reported
implementations, as shown in FIG. 40. Since LANL was
published, 5 more groups have reported implementations.
Just this year, physical hardware implementations are begin-
ning to be published. For example, Wunsch of Texas Tech
has reported success in controlling a physical implementa-
tion of the “Lotfi Zadeh fuzzified ball and beam” challenge,
which Zadeh once claimed could not be handled by any
method other than fuzzy logic. A variety of tough benchmark
problems have shown better results from DHP and from
level 5 critics than from any other control designs. (See
WILEY and LANL.) Some of the recent results on missile
interception are extremely impressive, and benchmarked
against a truly large and serious set of alternatives. And
again, the recent work at Ford has begun to push this
envelope far ahead, in an applications context. Recent tests
have been done showing how an effective use of step-by-
step training can reduce the need for ad hoc training tech-

5

10

15

20

25

30

35

40

45

50

55

60

65

34

niques which some authors have used in the past. (ISAS97,
NIST, Washington D.C.)

At IJCNN99, Wunsch’s group reported new results on
very demanding physical plants—improved control of a
complex realistic bioreactor model, and stabilization of a
simulated electric power grid under stress, in collaboration
with Ron Harley of Georgia Tech and South Africa. (Based
on this simulated success, the system is being deployed on
an actual multi-generator grid in South Africa in the summer
of 1999. Previous simulations and hardware tests of the
neural IAC architecture showed instabilities under stress,
but the DHP simulations did not.) Lendaris of Portland State
has reported success in training a simulated electric car to
“learn to be adaptive,” to adjust to unexpected changes in
road friction without crashing the car. AAC also has recent
results which I have not yet had a chance to review, related
to their flight tests at Edwards Air Force Base of a physical
hypersonic airframe.

Even in 1992 (when HIC came out), the model of FIG. 38
was the only model of intelligence in the brain, from any
source, which met all four of the basic tests shown in FIG.
54. In other words, there are many models which have
received a whole lot of attention in computational neuro-
science and psychology as “serious” models, which do not
even meet these four basic tests. Many of these models do
not even attempt to explain intelligence as a whole. Thus,
they may be quite serious as models as specific sub-systems
or functions within the larger intelligence of the brain. Some
of these models describe special circuits, like the retina,
which act as preprocessor circuits rather than part of the
higher intelligence as such. Even though this old theory has
major limitations, it is still important as a starting point for
developing more sophisticated theories or models that meet
the four key tests that are listed.

The first test on this chart is as follows: a plausible model
of intelligence in the brain should include an “emotional” or
“evaluative” or “secondary reinforcement” system. Half the
experiments out there in animal psychology (as inspired by
B. F. Skinner) show us that the brain contains a very
powerful secondary reinforcement system. The work of
Barto and Klopf and their followers have shown that simple
adaptive critic models can do an excellent job of explaining
the kinds of experiments that animal psychologists have
done so far involving rewards and punishments. In
neuroscience, famous classical people like Papez and Olds
showed long ago that there are well-defined and persistent
circuits for secondary reinforcement in the brain. And
finally—any theory of the human mind which does not
include emotions as a fundamental and persistent fact of life
is simply way out of tune with the empirical reality of human
life. These issues are discussed in enormous detail in recent
books edited by and written by Karl Pribram, published by
Erlbaum.

The second test is that the model should include an
“expectations system,” a system which plays a central role
in leaming and behavior both in waking behavior and in
offline simulations (dreams). Grossberg has pointed out that
the simple design of FIG. 35 does not include any kind of
expectations system. Therefore, he argues, this is not accept-
able even as a first-order model of intelligence in the brain.
Without an expectations system, the kinds of experiments
inspired by Pavlov—the other half of the animal
experiments—cannot be explained. (That is, no one
rewarded Pavlov’s dog for foaming at the mouth; it foamed
at the mouth when it expected meat to come.) In his 1990
“Dyna” work, Sutton implemented a suggestion in SMC
1987 that a trained predictive model could be used in

US 6,882,992 B1

35

“dreams,” in offline simulations used to enhance the power
of a Critic network. While this is very useful, it is not enough
by itself to address the Grossberg criticism. It was still based
on the same design as in FIG. 35. However, the design in
FIG. 38 included an expectations system—a Model
network—in a very central role, even in ordinary (waking)
behavior. Furthermore, this way of linking expectations and
emotions fits very closely with Freud’s explanation of
human learning. This structure is derived in the first place as
a translation into mathematics of those ideas from Freud.
(See ROOTS chapter 10.) Third, of course, any reasonable
model of intelligence in the brain should fit the obvious fact
that the brain outputs actions or movements.

Finally, even a first-order model of intelligence in the
brain should meet the test of engineering functionality. This
does not mean that a fixed form of the model, with hard-
wired weights, should be able to reproduce a dozen or two
experiments devised by psychologists. Rather, it means that
the overall structure should be able to learn to handle a wide
variety of very challenging tasks, including the kinds of
complete, complex engineering tasks studied in control
engineering. The brain is an extremely powerful and flexible
engineering device. When one asks about “intelligence,” one
is really asking about how the brain achieves this kind of
high-level functionality.

By 1992 (HIC), the need for the model of FIG. 16 began
to take shape. Brain-like intelligence requires the use of
neural networks, like Simultaneous Recurrent Networks,
which may take many iterations to settle down to an output.
This is actually consistent with the activity of the higher
centers of the brain. For example, the hippocampus (a key
part of the higher emotional system of the brain) follows a
“theta rhythm.” This means that it analyzes one frame
approximately every quarter second. But the underlying
calculations are very rapid recurrent calculations, based on
high-speed gap junction synapses that take on the order of a
millisecond or less to perform a computation. (New experi-
mental results on this were announced in the hippocampus
session at IJCNN.)

But this leads to a problem. If the time between and
“t+1” is a quarter-second long, in the highest centers of the
brain, how can the brain learn to coordinate smooth high-
speed arm movements, where a sampling time of 5 or 10
milliseconds is required? The obvious answer is that we
have “two brains in one”—two entire adaptive critic control
systems inside a single skull, as shown in FIG. 55. The upper
system has a longer sampling time but greater depth and
wisdom. The lower system is also an adaptive critic control
system, but it uses essentially feedforward networks instead
of SRNs for key subsystems. This allows them to maintain
a much faster sampling rate. In fact, this idea fits very nicely
with what is known about the cerebellum (the Action
network of the lower brain). This modified model is dis-
cussed in some detail—along with suggestions for new
experiments in neuroscience—in the recent books edited by
Pribram from Eribaum.

This two-brain design clearly suggests a possibility for
similar “Master-slave” architectures in engineering
applications, when there are similar timing problems
involved. (See for example, the discussion of error critics in
cerebellum-like networks in chapter 13 of HIC.) Prokhorov
of Ford, in recent neural net conferences, has reported good
results with control designs inspired by this approach.

In actuality, even the two-brain design of FIG. 55 is not
enough to capture certain features of the human brain. Back
in 1971, very little was known about the basal ganglia.
Neuroscience texts tended to downplay the importance of

“”

10

15

20

25

30

35

40

45

50

55

60

65

36

that part of the brain. Indeed, science often has a bias, in
downplaying the importance of things that are hard to
observe at the current time. But in recent years, neuroscience
has made great progress in many directions. The recent
workshops organized by Pribram (leading to his edited
books from Erlbaum) with INNS support reported many
recent results from scientists like Mishkin, that have led to
a major advance in our understanding of the basal ganglia.

These new results—examined closely—reveal how the
simple model-based adaptive critics above failed to capture
certain important capabilities, which are essential in the
development of true higher-level intelligence.

Intuitively, these new results imply that there are “three
brains” within a single skull, as summarized in FIG. 56. But
these insights require the development of fundamentally
new mathematical structures, to extend the previous models
in a very radical way. Additional details of that architecture
are found in application Ser. No. 09/147,338 filed May 10,
1999. The biology and intuition behind this model are
discussed in the books Brain and Values and Brain and
Learning, edited by Pribram, Erlbaum, 1996 and 1998,
incorporated herein by reference.

The core of that disclosure was printed as the final chapter
of the book Dealing With Complexity, edited by Karny,
Warwick and Kurkova, Springer, 1998, incorporated herein
by reference. That paper was extremely complex, as one
might expect for the first paper in a new area, trying to
encompass all aspects of what is needed to build a full
brain-like intelligent system.

The key job ahead is to extract the key capabilities from
this global design and fine tune and test each one of these
capabilities. After these various capabilities or subtasks are
understood better, energy can be focused on the larger task
of pulling the capabilities together and trying to replicate the
intelligence of the brain more completely.

FIG. 41 provides a quick overview of the new capabilities
embedded in the new 1998 architecture (described in FIG.
6). Originally this architecture was called the “3 brain
architecture,” because it reflects the idea that the mammal
brain is really three “brains” (three intelligent control
systems) in one. The biology and intuition behind this model
are discussed in the books Brain and Values and Brain and
Learning, edited by Pribram, Erlbaum, 1996 and 1998, the
contents of which are incorporated herein by reference. The
computational concepts are discussed in Dealing with Com-
plexity: A Neural Networks Approach, Karny et al eds,
Springer, 1998, the contents of which are incorporated
herein by reference.

This model is extremely complex, and it will take many
years to pull out all the pieces and demonstrate them, one by
one, in the simplified manner which is now standard in the
worlds of computer science and cognitive science.
Nonetheless, the four major pieces are listed in FIG. 41.

One of the key pieces is an approach to dealing with
spatial structure. There are actually three key engineering
issues here: (1) how to input and output data which form
relational structures, rather than vectors of fixed length; (2)
how to compress such structures in a valid, learning-based
way (as opposed to ad hoc Al tricks); and (3) how to handle
the huge gulf between the tiny slice of reality that an
organism sees and the huge world that it inhabits. In order
to develop the engineering here, it makes sense to start out
by demonstrating the power of networks which solve the
first of these issues—the first, basic variety of ObjectNet.
FIGS. 43 and 44 describe the mathematics of that class of
network. (See my paper in Karny et al for ideas about the
next two issues.)

US 6,882,992 B1

37

In neuroscience, it is not obvious how the brain imple-
ments even the simplest kinds of ObjectNets. However, it
must. In Arbib’s Handbook of Brain Theory and Neural
Networks (MIT Press), the contents of which are incorpo-
rated herein by reference, Olhausen and Van Essen give
some ideas about how the brain does multiplexing of visual
images, in a way which would provide a simple form of this
kind of capability. Baars has suggested that some of his new
work on “multiple searchlights,” and empirical work by
Legothetis, may shed light on this issue. In artificial
intelligence, Lokendra Shastri of Berkeley has begun some
new work bridging the gap to neural networks, which may
also shed some light on these issues. Even Marvin Minsky
claims that his newest book in press may have some relevant
insights.

FIG. 43 illustrates a very simple but elegant approach to
electric power grid diagnostics, developed by the Dortmund
group, one of the two or three most outstanding university
groups in the world applying neural networks to electric
power issues. (The other obvious group is the University of
Washington.) In this simplified example, the grid is assumed
to be made up of four kinds of objects: (1) wires; (2) busbars
hooked up to four wires; etc. It is assumed that there is a
fixed set of sensor variables available for each type of object,
but different sets are available for different objects. In the
Dortmund concept, a model is trained for each type of
object. That model is trained to predict the diagnostics on
that object, as a function of the other sensor variables for that
object and its neighbors. This has worked quite well in
practice—performing just as well as the best expert system
available for that task, but offering other advantages.

This approach is generalized, by reconceptualizing what
is occurring by thinking of this collection of feedforward
networks as a single larger feedforward network. (This is
like the idea of a dual subroutine—a way of performing the
same calculations, but packaging them differently on a
computer.) This feedforward network is a special case of an
ObjectNet, a net which inputs a relational structure and
outputs a relational structure. But this simple feedforward
case can only represent local relations between adjoining
nodes in the network. It also has all the limitations of
feedforward networks discussed with reference to FIG. 17.

FIG. 44 shows the key equations for implementing a more
general class of ObjectNet. The basic idea is to “wrap a
recurrence” around the global feedforward network
described in FIG. 43.

Strictly speaking, the cellular SRN design described at
length in xxx.lanl.gov/abs/adap-org/9806001 is a special
case of object net. It is the special case in which there is only
one type of object (a grid square). The same object model
(cell) is applied over every cell in a rectangular grid.

In retrospect the maze problem in that paper could have
been solved by using a different approach—by defining
three types of objects—a corner square, an edge square, and
an interior square. Using an ObjectNet with three types of
object, instead of just one, allows that problem to be solved
in a more natural way, without having to create fake obstacle
squares to represent the borders of the maze. This would be
a straightforward exercise, and a nice way to begin working
with this class of network.

The full recurrent ObjectNet design allows for immediate
non-local connections throughout a grid, mediated by the
known structure of the grid. For example, the state of a load
at time t might affect a generator at time t+1, even if there
are several wires and busbars between them, but the effects
must be transmitted somehow over the objects in the grid.
SRN ObjectNets can capture these effects, but feedforward

10

15

20

25

30

35

40

45

50

55

60

65

38

ObjectNets cannot. (There are further techniques that can
increase the power of both kinds of ObjectNets, discussed in
the 3-brain patent papers.)

Strictly speaking, there are two types of simple SRN
ObjectNet. One is the type shown here, where the inputs and
outputs are all related to the grid or graph we are modeling
or controlling. The other type inputs grid variables, and
outputs global variables. That type can be constructed sim-
ply by hooking up a grid-to-grid Object net (whose outputs
would constitute a set of hidden nodes) and a global SRN,
where each input to the global SRN may be the sum (over
all of the objects in some object class) of one of the hidden
variables. This may sound complex, but the structure may be
trained in exactly the same ways that we train the simpler
structures, using generalized backpropagation (ROOTS) to
calculate all the derivatives required.

FIG. 45 illustrates the idea of a “decision block,” the most
central idea described in detail in co-pending patent appli-
cation Ser. No. 09/147,338, filed May 10, 1999, entitled “3
brain architecture.” FIG. 45 really points directly to part of
the ultimate model of brain-like intelligence. That model
involves a kind of hierarchical control arrangement, like
many other papers by many other authors, such as Miller,
Galanter and Pribram, decades ago. But this model provides
the key mathematical details that make it a true design, and
not just a conceptual psychological theory.

In particular, in Karny et al includes a new generalization
of the Bellman equation which (unlike Sutton’s earlier
proposal) provides a solid basis for training the various
components of a system like the one depicted in FIG. 45.

Early engineering applications of this Werbos-Bellman
equation would probably involve problems of partitioning
the state space, for one reason or another, and developing an
optimal integrated controller across the various partitions.
These kinds of possibilities are discussed in the Proceedings
of the 10” Yale Conference on Adaptive and Learning
Systems (1998), incorporated herein by reference. Partition-
ing of state space may be especially useful when there are
critical but rarely-visited regions, like regions of incipient
instability, which merit special treatment. They may also be
useful in a “gain scheduling” approach, using different linear
controllers for different regions of state space (see LANL),
and integrating them so as to ensure the stability and
performance of the overall result.

FIG. 46 uses probability distributions. There is a very
famous, very conventional style of neural network called an
“encoder/decoder,” which, in the linear case, approximates
a well-known statistical method called PCA. But PCA does
not give a good model of probability distributions. Thus in
the linear case, it is now very popular to use a neural network
method called “Independent Component Analysis” (ICA) or
an older method from statistics called “Maximum Likeli-
hood Factor Analysis” (MLFA).

The Encoder/Decoder (ED) architecture should compare
it with the alternate architecture illustrated in FIG. 47. FIG.
47 illustrates the null-prediction special case of the Stochas-
tic Encoder/Decoder/Predictor (SEDP) architecture given in
HIC. This architecture, unlike the usual ED architecture,
meets certain standards of statistical consistency, which
allow it to represent probability distributions (like MLFA
and unlike PCA). It provides a true nonlinear generalization
of MLFA. The statistical theory behind this approach has
previously been was discussed; however, the proper imple-
mentation of the mutual information error function was
given only in HIC. The full version of this design allows the
training of a neural net which serves as a stochastic dynamic
model of the world.

US 6,882,992 B1

39

Formally, this design is based on the minimization of an
information measure closely related to the mutual entropy—
the sum of the correction entropy (as described in the GSY
77 paper) plus the decoder error entropy, with the option
(used in HIC) of fixing one of the non-uniquely determined
sets of parameters (if one wants to prevent drift between
equivalent models). HIC provides the error function which
results after performing the appropriate error integrals for
the case of Gaussian noise in the hidden variables. This may
seem like a special case, but two important points are noted.
First, with general nonlinear encoders and decoders, Gaus-
sian noise can effectively represent any continuous noise
distribution. Second, it is possible to perform the same
integrals for alternative distributions.

Comparing this against stochastic resonance approaches,
one can see the importance of performing a nonlinear
transformation before deliberately introducing noise into the
system. Note that this design also provides a basis for how
to train both the nonlinear transformation and the noise
parameters. On the other hand, the estimated state variables
here are continuous. A full treatment of discrete and con-
tinuous hidden state variables may require a merger of this
design with discrete designs such as those developed by
Kohonen, Hinton and Jordan, among others. Stochastic
models of this sort may not be essential in engineering
applications which look ahead from time t to time t+1, but
stochastic models will be truly essentially in designing
systems which explicitly think ahead further into the future.

Indeed, in the real mammal brain, it is possible that the
estimated state vector (R)—the image of reality—is itself
more like an act of imagination than the result of determin-
istic filtering. But it may be many years before engineering
catches up with that level of design, and many more years
before computational neuroscience catches up with engi-
neering.

Many people say that neuro-controllers should never be
used in real-world applications until firm, unconditional
stability theorems are known for them. But such stability
results do not exist for any real-time O(kn) controllers, either
neuro-controllers or traditional adaptive controllers, even for
the general case of controllable plants X governed by
9, X=AX+Bu where A and B are unknown. New forms of
real-time “reinforcement learning” or “Approximate
Dynamic Programming” (ADP), developed for the nonlinear
stochastic case, appear to permit this kind of universal
stability. They also offer a hope of easier and more reliable
convergence in off-line learning applications, such as those
required for nonlinear robust control. Challenges for future
research are also discussed.

There exists a general LAC/HDPG hybrid that is an
improvement a Linear Adaptive Critic, developed for the
control of linear deterministic systems. The improvement
works as described below. When there are n state variables,
LAC requires the collection of n samples, and solves for a
new critic matrix, P, using equations which can be arranged
into the form:

P=old P+((XXT)-inverse)del.

The hybrid would allow the use of m samples, where m is
a positive integer, and solves:

P=old P+(Ilr*(XXT+kl)-inverse)del,

where k is a “regularization factor”, where Ir is a “learning
rate,” and where m=1 (with the right dynamic choices of Ir
and k) brings the method to match HDPG as a limit.
Methods to adapt learning rates and regularization constants

10

15

20

25

30

35

40

45

50

55

60

65

40

are available in the literature, and in our earlier patent
applications on elastic fuzzy logic. One value of this hybrid,
over the LAC architecture, is a greater robustness (even
when m=n) with respect to possible problems with noise and
ill-conditioning in the hypermatrix XXT. Equivalent exten-
sions of other methods (such as HDP, DHP, HDPQO, etc.) are
possible to process m samples at a time rather than one
sample at a time, using the same general numerical
approach.

Turning now to another object of the present invention, a
new learning method is provided. Brain-Like Stochastic
Search (BLiSS) refers to: using networks (Option Nets)
which input a and learn to generate good options u stochas-
tically given a family of utility functions U(u,o), where o is
a vector of parameters or task descriptors, maximize or
minimize U with respect to u. Evolutionary computing is
probably the lead technology today for finding global
minima or maxima to a function U(u). Of course, there are
many forms of evolutionary computing. There are also
classical methods, like Gibbs search and the sophisticated
trust region approaches recently developed by Barhen et al
and used on the Desert Storm tank routing problem. There
are a few neural net designs (like Kohonen nets, but not
Hopfield nets) which have had competitive performance on
some specialized large-scale optimization problems.

On the other had, it is hard to believe that the human brain
uses these kinds of algorithms directly in making complex,
novel decisions. As a result, many people doing basic
research in neural networks have essentially ignored the
need for this kind of systematic stochastic search. Some
kinds of stochastic exploration methods have been devel-
oped (e.g., see Thrun in White and Sofge, 1992), but nothing
with the kind of complexity and richness one finds in the
evolutionary computation literature. The neural network
field, in turn, still plays a leading role in developing the kind
of highly functional network models which, apparently, are
the only models which have a serious chance of eventually
explaining the functional power of biological neural net-
works. (See Werbos in Pribram 1998.) More recent work on
neural networks suggests that this is a major omission—that
greater attention to stochastic search will be a necessary part
of replicating or understanding the higher-order intelligence
found even in the lowest of mammal brains.

As shown in FIG. 48, BLiSS offers a number of advan-
tages from a practical viewpoint. In essence, the training of
Option Nets over a variety of problems in a given domain
allows a network to build up domain-specific knowledge
about how to solve optimization problems in a given
domain. For example, if o is defined to be the set of
coordinates of 100 cities in the 100-city Traveling Salesman
Problem (TSP), an Option net could learn how to set up good
initial guesses for the optimum. Perhaps a recurrent Option
Net (taking the previous best guess as an input) could make
good guesses about how to improve the initial guesses. It
would be interesting to see how training could improve the
strength of such a search mechanism, and compare it with
other less domain-specific search methods. As another
example, there would be great value in training a system
specifically to solve problems in VLSI design, or to solve
problems in aircraft design.

In a brain-like context, the system somehow needs to
search over millions of choices, not just the dozen or two
which are most common in engineering today. In order to
handle such very large problems, there is a need for the
system to learn which variables to focus on in the search.
Generic search techniques, which do not incorporate the
learning of where to focus, cannot ultimately handle such
large problems.

US 6,882,992 B1

41

Of course, there has been a little work in the evolutionary
computing area on ways to tweak parameters of an evolu-
tionary search, analogous to tweaking the learning rates in
neural networks. But the goal here is to achieve a more
all-encompassing sort of learning, which, once again, has
some serious hope of explaining how the human brain
handles these kinds of problems.

Many years ago, Hebb proposed that higher order intel-
ligence in the brain results as a kind of emergent phenom-
enon. He proposed that we could that kind of intelligence
could be replicated, simply by discovering the right “general
neuron model,” including the equations to adapt that general
neuron. He proposed that an artificial intelligent system
could be developed, simply by hooking together trillions of
such model neurons, hooking them up to sensor input and
motor output, and letting them learn everything from expe-
rience.

From an engineering viewpoint, there are reasons to doubt
that this could be done, using Hebb’s ideas about learning,
and one type of neuron only. However, as suggested in 1972
Hebb’s dream may be achievable by using three types of
neuron—one to implement a “critic” network, one to learn
a dynamic model of the external world, and one to execute
actions. (See Werbos in Pribram 1994, and Werbos 1994.)
Backpropagation was part of this design—as was the very
first reinforcement learning design linked to dynamic pro-
gramming. (See Werbos 1998.)

There are reasons to believe that neural network designs
in this family can outperform traditional methods for intel-
ligent control in a wide variety of applications (Werbos
1999) and in terms of rigorous stability results (Werbos
1998). Based on this general vision, and based on the views
of control theory, (mammal) brain-like intelligence may be
achieved by advancing and coupling basic research in three
critical topics: (1) improved supervised learning (neural or
normeural), which provides the basic building blocks for
more complex systems; (2) learning based system
identification, which provides the necessary prediction net-
work; (3) approximate dynamic programming (in relation to
other control methods), which could provide the overall
architecture of an intelligent system—including the critic
and action components.

This kind of design has increasingly improved in practical
engineering applications, but the gap between this approach
and the capabilities of the brain has become more apparent.
Many artificial intelligence (Al) people have long argued
that there is a difference between control and decision. For
example, the problem of how to move muscles at every
moment is problem in control. But the problem of deciding
where to go to college is a decision problem—it conditions
your actions and life for years to come. Originally, it was
hoped that a good capability at making decisions would
emerge from a simpler architecture, without a need to
impose any kind of hierarchy or stratified system of controls
and decisions. But recent work, both in biology and in
analysis of learning methods, suggests that this approach is
false. Prior application disclose a generalized Bellman
equation, considerably more general and flexible than some
alternative approaches suggested by Sutton, which provides
a starting point for the design of such a hierarchical learning-
based decision-making system. In general, the area of “tem-
poral chunking” (decision making as opposed to control in
the narrow sense) is considered to be one of the four new
topics which requires more research—inter-disciplinary
research combining the best of what is known, at least, in Al
and neural networks. The idea of “multiple models” is
another possible test-bed or formulation of this research
task.

15

20

25

30

35

40

45

50

55

60

65

42

Related to this task is the area of spatial chunking. This
essentially involves three sets of similar tasks: (1) the
exploitation of symmetry or “object structure” to construct
neural networks which do not have fixed numbers of inputs
and outputs; (2) true spatial chunking—as in creating con-
densed roadmaps from complex aerial views; and (3) world
modeling—the management of decision problems when the
world that is seen (even including some filtering and pic-
turing of nearby objects out of sight) is actually a very small
part of the larger world to be utilized.

Where does the third new task, BLiSS, come into it? Very
simply—the problem of local minima versus global minima
starts to become overwhelming when thinking in terms of
decisions as opposed to control. For example, traditional
control methods can be used to control hand movements, to
make it place a “Go” piece onto the “Go” board, to a desired
location. But in deciding WHERE to move, the system faces
361 local minima (each grid point on a 19 by 19 board).

Biologically (Werbos in Pribram 1998) the commitment
to a decision seems to take place in an area called the basal
ganglia, which was once very mysterious but is now becom-
ing better understood. The development of options seems to
take place at a layer of the higher cerebral cortex, which is
in fact known to have some stochastic behavior. It is also
fascinating to consider that an image of reality may also be
stochastic, may be constructed as a kind of decision by this
layer of the brain. In fact, Bitterman showed long ago that
the ability to handle certain stochastic aspects of reality is
the hallmark of the mammal level of intelligence, compared
to lower classes of vertebrate.

A fourth “new” topic is the training of neural nets to
represent probability distributions, or probability distribu-
tions conditional on past information. Actually, his was
always a theoretical priority. The training of stochastic
models of the world may be viewed as part of the topic of
system identification. (e.g. see Chapter 13 of White and
Sofge, 192.) However, since this priority did not receive
serious attention from the university research community in
that formulation. A unification of the many various strands
of work may be appropriate when using learning probability
distribution functions in various ways, discrete or continu-
ous or both.

There are two straightforward ways to try to move in the
direction of BLiSS systems. One way is to start from an
existing design, like the particle swarm approach or Suykens
Fokker-Planck machine, and modify it to depend on a. For
example, if the present design requires maintaining a popu-
lation of N choices of u, modifying it to maintain N networks
u[i](ct), where i=1 to N. Then, on each iteration, instead of
just changing u[i], train u[iJ(c), based on the same sorts of
principles. Clearly there is a lot of room for experimentation
and intuition here.

Another way is to use the new training methods (training
u(a, e, T), where ¢ is a vector of random numbers and T is
a temperature parameter) (proposed in the 1998 paper on
“the three brain architecture”). This has the interesting
implication that the parameter T needs to be adjusted over
time, by the brain, as a function of circumstances. (For
example, situations which require quick decisions or high
tension may call for a high adrenaline level and a low T,
while relaxed situations which permit “brainstorming” may
allow higher temperatures.) This fits well with models by
Dan Levine and Sam Leven, which argued that variations in
T (the level of “novelty seeking™) is a crucial variable in
explaining the fluctuations of human thought and behavior.

The issue of structure will be very critical to achieving
any kind of interesting performance here. For example—

US 6,882,992 B1

43

with the TSP or VLSI design problem, one would want to
train networks to input problem descriptors of variable
length. But ordinary neural networks involve fixed numbers
of inputs and outputs. They do not have a rich enough
structure to handle the full range of such problems—though
they may be good enough for some preliminary research.
Likewise, one would expect that an intelligent stochastic
search would require the kind of iterative, relaxation
approach that a Hopfield net (or other recurrent net) permits.
Ordinary feedforward networks would probably have very
limited capabilities here.

Therefore, for maximum performance, research in this
area will have to move relatively quickly to the use of more
sophisticated structures or networks. Examples of such
networks are the cellular SRN of Pang and the Object Net
design described in the “3 brain” application.

FIG. 49 illustrates an overview of one possible way that
the brain may implement its very complex capabilities. It is
possible that the thalamus and the cerebral cortex, together,
form the “Model” network of the brain. As previously
discussed, some of the very counterintuitive predictions of
this mathematical model have been verified by recent
experiments by people like Chapin and Nicolelis and
Richmond—experiments which are very hard to explain by
other families of models. (For example, Richmond’s results
clearly show a kind of fixed synchronization between “win-
dows” of behavior in the cortex, which are incompatible
with any asynchronous model.) The “resonance” between
the cortex and thalamus is explained as the nonlinear version
of the familiar kind of resonance between observations,
predicted observations, and revised state estimates, as in
Kalman filtering (or SEDP).

The cortex appears to be a kind of “dual-output system.”
In SMC 87, a single network with multiple outputs was
described that could be trained on the basis of the sum of the
feedbacks from the various outputs. Layer VI of the neo-
cortex appears to provide the outputs to the thalamus pre-
dicted by that model. Thus, Layer V would be an Option Net.
(Formally, the cortex as a whole is an Option Net, among
other things. Layer V outputs are the ones trained to be
Option Net outputs, but they send feedback to the other
layers to train them to provide help with this task.) The Basal
Ganglia are where decision blocks are actually engaged
(options are turned on, “go” signals are sent out, etc.). Each
level in the hierarchy of decisions-within-decisions is imple-
mented as a LOOP including certain parts of the cortex, the
thalamus and the basal ganglia, as described in many sources
in neuroscience. The Option Net may respond to a kind of
global “Boltzman temperature T”, which corresponds to the
“novelty seeking” parameter in the models of Levine and
Leven, related to the gross level of certain chemicals in the
bloodstream of the brain.

This raises an interesting question: “Is Reality Optional?”
More precisely, does the brain economize on its design by
using the same cells (Layer V) both to imagine interesting
possible states like goal states (one way to express options)
and to imagine what the present state of reality might be (a
stochastic representation of reality, like the stochastic R
vector of SEDP)?

Needless to say, there is more detail to be filled in here,
some of it covered in the Pribram books, but some of it a key
target for future research. In the end, the goal is nothing short
of a cell-type-by-cell-type wiring diagram of how the brain
implements its higher-order learning capabilities, in a way
that can be replicated in toto in engineering systems. At this
writing, NSF has terminated finding for the specific research
initiative (Learning and Intelligent Systems) which would

10

15

20

25

30

35

40

45

50

55

60

65

44

support further research on these topics—trying to unify
engineering understanding with neuroscience—but it is
hoped that new vehicles will be made available in the future.
In any case, there are many related challenges available
today, on the engineering side, as described above, which
will be important to future success in this larger endeavor.
That larger endeavor, in turn, will be crucial to an improved
understanding of the human mind and human potential,
subjects discussed at length in the Pribram books, among
others.

A New Approach

Full-fledged adaptive control or real-time learning control
is still rare in practical applications. This appears to be partly
due to some stability problems which can now be overcome.
For full-fledged real-time learning, (1) the weights or param-
eters of the controller are adapted in real-time and (2) that a
certain cost constraint is followed which guarantees that the
calculations can really be done in real-time, even for mas-
sive control problems (such as the brain).

The new methods given in LANL meet the usual stan-
dards for a true neural network design. Given a network with
n outputs and k connections per output (roughly), it costs on
the order of kn calculations to run the network. It costs about
the same to run backpropagation through such a network.
The new methods in involve similar cost factors. However,
they do not involve any T-period lookahead (which costs
O(knT) calculations), and they do not involve any “forwards
propagation” or “dynamic backpropagation” (which costs at
least O(kn?) calculations).

In classical adaptive control, Astrom describes ways that
one could achieve universal stability, if one performs an
explicit solution of complex Riccati equations over and over
again in every time period. Those are important results, but
they are not enough to meet the cost factor goal.

The classic text of Narendra describes at great length the
historic effort to achieve universal stability in true adaptive
control, in the linear case. It also describes the very large gap
between present designs and that goal. In a series of more
recent papers (cited in LANL), Narendra has become more
and more emphatic about the limitations of Indirect Adap-
tive Control (IAC), which, he argues, is the best of the
existing designs.

Even in the linear case, IAC requires (for stability) that
the “unknown” plant must actually have a known kind of
structure. It does not exactly require that the sign of every
element be known in the matrices A and B, but similarly
difficulties must be known. Even then, A and B must have
certain special properties for IAC to work at all. In the
majority of real-world plants, these tough restrictions are not
met. Thus even in the linear case, adaptive control tends to
g0 unstable in most real-world plants. (There are a few
notable exceptions.) Naturally, the neural network version of
IAC also tends to have stability problems, and problems of
slow transient response, despite its enormous popularity.

Given these problems, it is not really surprising that true
adaptive control has not lived up to its potential in real-world
applications. Most industry users now rely on a variety of
tricks (see LANL and Wiley) to obtain adaptive sorts of
capabilities from controllers designed or trained off-line.

FIG. 27 illustrates how IAC works, for the general, neural
network version. The basic idea is simply that the weights of
the Action network are trained so as to minimize the tracking
error at time t+1. See LANL and the papers of Narendra for
the exact equations.

From an intuitive point of view, there is an obvious
explanation for why IAC can go unstable. In FIG. 27, there
is simply no machinery present to “tell” the Action network

US 6,882,992 B1

45

to avoid actions which lead to large tracking errors beyond
time t+1! The design is purely myopic, purely short-sighted
in time. See LANL and Wiley for more discussions of this
problem.

One solution is to modify IAC, to make it try to minimize
tracking error summed over all future times, not just time
t+1. To do this, the IAC is replaced by the Approximate
Dynamic Programming (ADP) design shown in FIG. 29.
The adaptation of the Critic network in FIG. 29 requires the
use of a user-specified utility function, U, not shown. If U is
chosen to be the same measure of tracking error shown in
FIG. 27, FIG. 29 will have the effect of minimizing the sum
of tracking error summed over all future time.

This design has its origin in a Sep. 23, 1972, thesis
proposal to Harvard U., complete with details on how to
adapt all of the networks, using backpropagation. In this
design, the Model and Action networks are adapted exactly
the same way as in IAC, as can be understood from the
comparison of FIGS. 27 and 29. The only difference is that
the derivatives of J are calculated (using backpropagation)
instead of the derivatives of “Error”, in order to adapt the
Action network. See LANL for the equations and the history
of this and related methods. FIG. 29, “R” refers to a current
estimate of the actual (partially observed) state of the plant
to be controlled; for the initial work on universal stable
adaptive control, it will be good enough to prove results for
the (fully observed) case where R is the same as X.

Heuristic Dynamic Programming (HDP) refers to the
general method to adapt the Critic network in this design.
The goal is to adapt the parameters W in the network J(R,W)
so as to make J obey the Bellman equation, the basic
equation of dynamic programming, which may be written in
the following form:

J*RE)=Min {u}(UR@).u0)+<T*(R(t+1)>/(1+7)), @

where J* is the true function that the Critic is to approximate,
where U is the user-supplied utility function, where “r” is a
user-supplied interest rate (usually zero here, except when
useful as a kind of convergence tool), where the angle
brackets represent expectation values, and where the func-
tion is minimization instead of maximization because the
goal here is to choose u so as to minimize tracking error over
future time.

When the tracking problem can be solved at all (even
allowing for some delay), then the J* function will exist.
More precisely, when the process to be controlled is “con-
trollable” in the very broad sense described by Stengel, J*
will exist. For a deterministic system (like 9,=AX+Bu) and
a reasonable choice of U, J* is guaranteed to be a Lyapunov
function; in other words, it is guaranteed to stabilize the
system.

Thus, if a neural network J(,W) converges to the correct
function J*(R), for any controllable system 9,X=AX+Bu,
then it should stabilize that system. This design should
provide universal stable adaptive control in that case, if the
Critic converges correctly. In the linear case, the form of
J(R,W) is used as a general quadratic function over X, which
guarantees that J(R,W) will match J* exactly for some
choice of the weights W. But this leads to a key question:
will HDP always converge to the right weights W, at least for
controllable systems?

HDP does not always converge in a stable way to the right
weights, even for a linear deterministic process.
Furthermore, none of the consistent previous methods of
ADP or reinforcement learning would do so either. (See
LANL for an exhaustive survey and discussion, discussing
DHP, GDHP, TD, ADAC, Q, Alopex, etc.) There was only

10

15

20

25

30

35

40

45

50

55

60

65

46

one exception—a method mentioned in passing in a tech
report from Klopf’s group at Wright-Patterson, which
appears to have been implemented. In his PhD thesis, Danil
Prokhorov reports trying that method, and observing very
poor results, due to some obvious strong noise effects. (See
LANL for details.)

Crudely speaking, there are two general strategies for how
to make equation one “approximately true,” each discussed
at length in LANL. In HDP, one adjusts the weights W so as
to make J(R(t)) come closer to the right-hand side of
equation one, without accounting for the way in which
changing weights would change the right hand side as well.
In a “total gradient” approach (HDPG LANL), one simply
minimizes the square of the difference between the left hand
side and the right hand side, accounting for changes on both
sides. In LANL (and in a previous paper), it was shown that
the equilibrium value for the weights will be correct, using
HDP, but incorrect, using HDPG, for any linear stochastic
plant. This shows that HDPG is unacceptable as a general-
purpose ADP method for the stochastic case. But even
though HDP gives the right equilibrium value for the
weights, it turns out that this equilibrium will not be a stable
equilibrium, in general, in the strict sense required here.

Tsitsiklis did show that a modem form of “TD” (HDP
rediscovered) does converge to the right weights in general,
for systems which have a kind of “normal” training expe-
rience. A stronger, more unconditional guarantee of stability
is needed. HDP does not provide that stronger guarantee.
This is proven in excruciating detail in LANL.

Once the reasons for instability are explained, there are
actually a number of methods for overcoming them. Four
variations of HDP are discussed in LANL to solve the
problem (section 9.1), as well as two variations for each of
the four (section 9.2); and (section 9.3) how similar varia-
tions exist for Dual Heuristic Programming (DHP) and
Globalized DHP(GDHP). Considerable research will be
needed to decide which variants work best and when, and
whether there is any possibility that the brain uses or needs
anything like this degree of stabilization.

A critical task for future research is to repeat the same
kind of painstaking step-by-step development of total sys-
tem stability theorems here that Narendra performed long
ago, but without the same restrictions. GDHPO (defined in
section 9.3 of LANL) appears to be the most convenient
starting point for such efforts, in part because one can avoid
the need for interest rates.

However, to get the basic idea of one of these methods, it
would be easiest to consider HDP0. HDPO is a variation on
the following special case of HDP. In a common form of
HDP, the system starts from some initial state, R=R(t) at
time t. This may be a currently observed state of the external
world, or a state imagined in some kind of internal simula-
tion. Before the weights W,; are adapted, R(t+1); is obtained
either by observing the actual state of the plant at time t+1,
or by exercising a stochastic simulation model R(t+1)=f(R
®), u(t), e(t)), where e is a vector of random numbers. After
the value of R(t+1) is available, the weights by are updated:

de? 2

new Wj; = old Wi - learning_rates
i

where:

e=URH(R({+1)/A+1)-JRW) (©)]

US 6,882,992 B1

47
Thus:

aJ “)

new W;; = old Wj; + learning_ratex e = (R, W)
oWy

In HDPO, we must also train a deterministic neural network
model f, to try to predict R(t+1) as f(R(t),u(t)). The neural
network f would be a best-guess forecasting model, not a
true stochastic model. To adapt the weights W, equations 3
and 4 are used, except that the last term in equation 4 is
replaced by:

[)
(R, W)=J(f'(R, W) /(L +1)

learning_rates e =
g aw;

Both in equation 4 and in equation 5, all the calculations can
be done inexpensively by a proper use of backpropagation.

Both for equation 4 and equation 5, the weights reach
equilibrium whenever we meet the correct statistical
condition, <e>=0, is met. Thus as strange and ad hoc as
equation 5 may seem to be, it is just as precise in its
equilibrium requirements as HDP proper, even in the non-
linear stochastic case. However, the search direction used in
equation 5 is much closer to being a total gradient than is the
search direction for equation 4. That substantially reduces
the chance of the kind of instabilities in HDP discussed in
LANL. In particular, for the linear deterministic case, equa-
tion 5 yields the same results as HDPG which, as proven in
LANL, obeys a very strong test of stability (quadratic
stability) in that case.

Again, this is only one of many methods described in
LANL. These methods lead to a number of practical possi-
bilities and further research opportunities. Those in turn are
still only one of the very important streams of research
needed to bring us in the end to truly brain-like artificial
intelligent systems (See CEC99).

Hypersonics

It is possible to install on the leading edges and points of
an airframe (or other “hot spots™) electrical devices with the
following characteristics. The devices are designed to move
electrons and/or ions from the hot air near the airframe to
points more distant from the airframe, and to thereby move
the air molecules attracted to those ions as well, carrying
away their heat. The purpose of this is to move heat away
from the hot spots on the airframe, where excessive heating
would risk melting the surface or force the use of more
expensive materials to prevent melting, to the surrounding
airflow, where the heating may be used to shape the airflow
around the craft, in order to achieve certain purposes
described by Froning and others in the prior literature: most
notably to reduce drag, or to improve the quality of air flow
into the engine.

The idea of shaping airflow by use of heat is not, by itself,
new. It has received considerable attention recently from the
Air Force and others, in part because of claims that the
Russian plasma-based Ajax technologies might provide a
mechanism for reducing drag. But the new category of
device discussed herein would be far more efficient than the
presently considered forms of heating, because the heat
provided in the desired location would be approximately
equal to the sum of the applied energy plus the heat
transferred from undesired locations. It also provides
(additional) cooling benefits.

In one embodiment of this invention, a voltage is injected
into a sharp edge (perhaps with a small spherical tip) so as

10

15

20

25

30

35

40

45

50

55

60

65

48

to create an E field along the edge of the craft, while also
ionizing the air near that tip in order to strengthen the effect
This design which can be optimized with the help of neural
network methods described in this application and previous
disclosures, is not only applicable to high-speed aircraft, but
also to lower speed aircraft where drag reduction is also of
interest.

Quantum Computing

Although quantum theory was first developed, in a simple
form, back in the 1920°s, it has taken decades to fully extend
this theory to account for experimental results in field theory
(see Werbos 1998) and to appreciate the full implications of
modem quantum field theory (QFT). Just in the past five
years, there has been an explosion of interest in “new”
possibilities for quantum computing, based on an exploita-
tion of ideas which were already present long ago
(implicitly) in experiments suggested by Einstein, Podolsky,
Rosen and Bohm (EPRB). Einstein’s early suggestions were
later translated into more concrete suggestions by Bell (Bell
1987, Chapter 10) and by Clauser et al. (1974), which helped
set the stage for the new interest in quantum computing and
communication.

In the past, some physicists like Eberhard argued that
EPRB effects could not be used to produce faster than light
communication. They argued, correctly, that this would
violate the principle of time-forwards causality. However, in
the quantum world, there is excellent reason to believe that
the common sense principle of time-forwards causality no
longer applies. By giving it up, one can actually arrive at a
simpler, more realistic formulation of the underlying theory.
(See Werbos 1973, 1988, 1998, 1999.)

More concretely, the “Bell’s Theorem™ experiments have
shown the following sorts of effects. Consider the case
where two entangled particles are each sent to two different
channels, where they first encounter a polarizer and then a
counter. Let Pr(A(a,b)) represent the probability that the
counter (A) on the left channel will record a “hit” when the
left polarizer is set to angle a and the right channel polarizer
to angle b. Pr(A(a,b)) simply cannot be reduced to a function
of a alone; it is a function of a and b both. (See Bell). Since
the probability of A is in fact a function of b, this relationship
provides a noisy but informative communication channel
which (in its overall input-output characteristics) may be
considered like any other noisy informative communication
channel in Shannon’s theory of communication channels. In
particular, it may be used to convey information, of arbi-
trarily high accuracy, using (1) multiple channels of this type
and (2) standard classical error correcting codes. This by
itself would imply the possibility of faster than light com-
munication using entangled photons.

Furthermore, the underlying physics would remain the
same, for two such photons, even if the actual times asso-
ciated with a, b, and A were chosen arbitrarily (subject to A
being later than a, and a and b being later than the creation
of the entangled particles). In particular, b may be later than
a and A both. This implies the possibility of a backwards
flow of causality. Yanhua Shih, one of the principle experi-
menters who works with Bell’s Theorem experiments
asserted at a recent open conference (ARO/NSA Program
Review, August 1999) that his experiments already are
enough to demonstrate this kind of “advanced wave” effect.
(See references co-authored by Shih.) These kinds of flows
of causality backwards through time, first discussed in
Werbos (1973), may be called “quantum backpropagation.”

Research at MIT on a Bose-Einstein condensate has been
used to slow down the speed of light very drastically. Using
the same technique and mirrors, it may be possible to slow

US 6,882,992 B1

49

down a Bell’s Theorem experiment so slow that it takes a
measurable time (e.g., at least 2 seconds) from emission to
measurement of either channel. This experiment then can be
extended to measure a first channel (e.g., the left channel)
based on a polarizer setting set by a human being after
emission (e.g., a fraction of a second after emission). In
other words, the experimenter flashes an instruction to the
human describing which way to set one polarizer (e.g., the
left polarizer) using a polarizer controller (e.g., a left button
versus a right button). Thus, the human is instructed to press
one of the buttons after some signal light is flashed.

The result of the measurement on the second channel (i.e.,
the right channel) may still be influenced by the polarizer
setting on the first channel (i.e., the left channel), even if the
human presses the button after that measurement is made
(e.g., a second or more after). In fact, this should be true
even if the human chooses a button to hit at random.
Experiments using both the instructed-human and
whimsical-human alternatives are possible, according to
quantum theory. The resulting statistics are precisely pre-
dictable in either case, and in either case they violate the
ordinary notions of time-forward causality.

The first step in building a QTM based on Bose-Einstein
condensates would be to demonstrate this effect with a
two-second delay. (Clearly, the choice of two seconds is
strictly for experimental convenience, and the present inven-
tion is not intended to be limited thereto. Delays can be
extended or reduced as necessary to fit the application.) For
a device, the time interval can be extended as far as the
Bose-Einstein materials permit. To permit a relatively reli-
able channel of communication from the future to the past,
multiple channels (Bose boxes) are used in parallel. (There
is an analogy here to fuel cell stacks made up of little
elementary fuel cells in parallel, but with more modem
switching and integration.) Each of these channels may be
considered as a kind of “time cell”. The integrated collection
of time cells may be considered as a “time stack.” The
information capacity or entropy of the entire stack should
simply equal the number of cells multiplied by the entropy
per channel. More importantly, this arrangement would
allow a direct application of traditional codes and other
techniques from communication theory to be applied
directly here. Furthermore, using multiple stacks as repeater
stations, it is possible to extend the time horizon further
back. More precisely, the contents of any channel are
maintained in an allowed, canonical state using a combina-
tion of error-correcting codes (quantum and classical),
retransmission, and NMR-like techniques. (These latter
techniques are analogous to the techniques used in digital
computer hardware, to make sure that all binary signals are
made to match a standard “1” or “07.)

Finally, the predictions of quantum theory are similar not
only for entangled photons, flying away from each other at
the speed of light, but also for entangled nuclear or elec-
tronic spins, for atoms which remain physically coupled in
a crystal or in a bath of molecules in a liquid. Because the
entangled state is easier to maintain for very long periods of
time when it is embodied into nuclear magnetic resonance
(NMR), and because liquid state NMR techniques are cur-
rently readily available to qualified experimenters in this
field, the preferred embodiment utilizes NMR techniques. In
an alternate embodiment, entangled photons (where one
channel is passed through mirrors on the sides of a Bose-
Einstein condensate) are used. In general, all of the usual
embodiments being considered for quantum computing
could be adapted based on the teachings herein when
decoherence times can be extended to a reasonably long

10

15

20

25

30

35

40

45

50

55

60

65

50

time interval. (At present, NMR states offer the longest
decoherence times.)

Although NMR is the preferred embodiment, other pos-
sibilities include any one of: entangled pairs of photons,
electron spins, or entanglements of spin or momentum or
position of any pair of particles (elementary particles or
compound particles such as Cooper pairs or excitons or
anyons) or of variables characterizing macroscopic quantum
states, such as the recently inferred macroscopic quantum
states in superconductors. Another alternate embodiment
uses entangled triplets (as in recent work on GHZ states) or
in similar simple compound states, using the same approach
to be described herein, following the analogy to the corre-
sponding multi-photon Bell’s inequality experiment.

One “real-world” application of this technique is to com-
municate into the recent past as part of a financial system.
For example, communicating reasonably and reliably even
just one half hour into the past. On the other hand, there are
obvious questions about the stability of the larger system
when one introduces resonant negative feedback, or “time
loops,” into the space-time system, particularly through a
single set of stacks. There may be improved performance,
under certain circumstances, if multiple systems of stacks
are used, in order to reduce the deterioration. Negative
feedback may or may not cause a problem. The feedback
problem affects the range of possible uses for this sort of
backwards-time communication device.

Another application is a military early warning system
providing a half an hour warning on early launch. If time
intervals become larger, the implications for defense against
weapons of mass destruction could be enormous, depending
on how the system is used.

Such a Quantum System has the additional advantage of
enabling SuperFast Recurrent Networks (SFRN), a form of
computing described in more detail in a provisional appli-
cation Ser. No. 60/152,167 filed Sep. 2, 1999, PROV, the
contents of which are incorporated herein by reference. For
the SFRN application, the issue of computational speed and
interface with classical electrical or electro-optic neural
network hardware is far more important than decoherence
time (so long as decoherence time is not less than the
computational cycle time). Therefore, the preferred embodi-
ment in that case would be different. (Entangled photons in
more ordinary electrooptic media, or entangled electron
spins, would seem preferable.) In the optical embodiment,
the environment of the problem includes four times.

(1) t- represents the earliest time (i.e., the time when
entangled pairs of photons are emitted). (2) t+ represents the
next time, i.e., the time when the right channel records
counts of photons, after some right channel polarization. At
t—, there are actually N parallel “time cells” working, each
with their own left and right channels and photon sources.
Let mi+ be the measurement taken at t+ on the right channel
in the ith cell. M+ would be an error-corrected amalgam of
the mi+. In the most trivial case, it would be just an average
of the mi+. In more complex cases, Shannon-style coding
would be used.

(3) At some time after t+, e.g., ta, an action may be taken
based on M+. (4) The human or other system would initiate
a message at time t, later than t,, by adjusting the left
channel polarizations at time t,.

The effect depends on correlation between the initial
times (t-) and the final measurement times (t, and t+). The
statistics of these correlations are essentially the statistics of
Markhov Random Fields (MRF), as described in section 6 of
LANL physics paper, xxx.lanl.gov/abs/patt-sol/9804003,
incorporated herein by reference and attached hereto as an

US 6,882,992 B1

51

appendix. Intuitively, space-time can be thought of as some-
thing like a long iron bar (ferromagnet), where the prob-
ability of any configuration over space-time is the product of
the probability of the “left hand side of the configuration”
(the configuration proposed up to and including t-), the
probability of the “right side” (t+ and beyond) and the
probability of the middle, divided by a scaling factor Z
(called the “partition factor”).

In the original effect, the propagation of entangled pho-
tons from time t- to t+ and t is the ONLY factor introducing
a correlation in the “interaction zone” (i.e., the time-slice
between times t— and t+(t,)). Using a full 4D treatment, the
interaction zone is not precisely a simple time slice . . . it cuts
in at t; on the left channel and at t+ on the right. However,
when actions are taken at time t, which may influence the
communication/measurement action taken at time t, this
introduces an additional correlation into the system!!.! It
changes the statistics!

This kind of action-response is a kind of “feedback”
effect, in the sense of control theory. But it is a feedback
from observations at time t—, via actions at a later time t,, on
a variable at the still later time, t.. This creates a
“retrofeedback”™—a feedback loop operating in a time-
forwards direction!

In any case, there is no time loop problem at all if the
action at t, does not change the information transmitted at
the later time t,. Thus, for example, if you transmit at time
t, the information “The Chinese launched a missile” or “the
price of Microsoft was $100 per share, there should be no
brutal feedback problem. The response would not be to
prevent the launch, but to launch counter-missiles or to
engage in small stock transactions. On the other hand, if you
try to transmit “Arab terrorists will set off a nuclear bomb in
the World Trade Center at 11 AM Wednesday,” it will still be
difficult to try to prevent that situation from occurring. That
kind of application would probably be impossible (or at least
extremely difficult).

But there is an intermediate case. For example, extremely
large stock transactions influence the entire market. In that
case, there may be some correlation between the transaction
and the result, but not an absolute fixed link.

There is a relation in the intermediate cases, like stress
and strain, or like load and power in an electric generator. If
there are N time cells in a time stack . . . as N increases, the
degree of causation from mi+ to M+ and the action grows
smaller. This reduces the degree of correlation in each cell.
But the correlation due to entanglement is the same, per cell.
Thus, in effect, the number of cells provides a kind of
temporal “horsepower,” affecting how much resistance
power is needed to punch a message through. Only really
fixed, rigid correlation will resist any kind of message
getting through. At the limits of a really powerful commu-
nication system’s horsepower, truly weird things can hap-
pen. In fact, it is the very nature of such an arrangement to
generate weirdness, to locate situations where the ordinary
statistical correlation is broken. Using SuperFast Recurrent
Networks, where retrofeedback loops are an active, intended
part of the architecture, more changes occur.

Although the above embodiment is described in terms of
entangled photons, the presently preferred embodiment for
communication applications uses NMR techniques. In the
NMR-based embodiment, the Bell’s Theorem experiment
would use an NMR to preserve the entanglement (e.g., for
at least ten seconds, but preferably longer). In other words,
the time between the creation of the entanglement and the
measurements which fit the Shimony et al inequalities
should be at least ten seconds. Based on this disclosure, any

10

15

20

25

30

35

40

45

50

55

60

65

52

of the groups now active in NMR quantum computing may
perform this Bell’s Theorem experiment, using techniques
published in the open literature. (See, for example, the
references to Gershenfeld and Chuang, Cory et al, and Kane
et al.)

In the notation of Bell’s book, the first step in the method
would demonstrate unequivocally that Pr(A(a,b)) really does
depend on b, where a and b are the choices of measurement
operator on the “left” and “right” channels, respectively, and
where Pr(A) is the probability that a “1” is observed on the
left channel.

The second step would be to perform the same
demonstration, but with the left channel measurement per-
formed one second after entanglement, and the right channel
measurement 14X seconds later, where x is gradually length-
ened to 10 seconds. To ensure proper operation, it is critical
that the measurement on the left channel not be accompa-
nied by other, disentangling actions!

The third step would be like the second step, except that
the choice of measurement operators on the right channel—
choice of b=bl versus b=b2—would be controlled by a
switch set by a human. (In one embodiment, there would be
two buttons, one to engage bl and the other to engage b2.)
The goal is to demonstrate that a statistical relation can be
set up between the action of a human at a later time, and the
measurement on the left channel (not seen by the human!) at
an earlier time.

As discussed above, this method should be tried in various
different modes, ¢.g.,

(1) with the human choosing spontaneously and randomly
which button to push, (2) with the human following a
previously set schedule, and (3) with the human asked
to track an independent random number generator.
After the third and final step, the design is extended to
push the time gap as far as possible, without unduly
increasing the cost of the system. In an alternate design,
the method and system are structured to provide mul-
tiple channels (“test tubes” or “time cells”) in parallel,
operating off of a single spectral I/O apparatus used in
a multiplex mode. The communication channel from
the future to the past would be very noisy, of course, but
ordinary Shannon coding should take care of that
problem, if enough channels are provided.

Although the above has been described in terms of a
liquid state NMR, one of ordinary skill in the art, based on
this specification, would understand that a solid state NMR
apparatus is also possible. The liquid NMR technique would
allow a useful product to be produced in a short time (e.g.,
approximately five years or less), and is the preferred
embodiment for the short-term. For the long-term, it is clear
that solid-state NMR will offer more channels per dollar, and
a longer reach in time, after the required I/O interfaces are
developed. (Among the interfaces now envisioned for solid
state NMR in the quantum computing literature are the use
of Magnetic Resonance Tunneling Microscopes, and various
tricks for exploiting the Pauli principle. The MRTM reso-
lution is currently limited by problems in cantilever control,
which may be alleviated by used of advanced control
methods such as DHP.)

The references cited above, and incorporated herein by
reference are:

J. S. Bell, Speakable and Unspeakable in Quantum

Mechanics, Cambridge U. Press, Cambridge, U.K., 1987.
J. F. Clauser, M. A. Home, A. Shimony and R. A. Holt,

Proposed experiment to test local hidden-variable

theories, Physical Review Letters Vol. 23, p.880-884,

1974

US 6,882,992 B1

53

D. Cory, A. Fahmy and T. Havel, Ensemble quantum com-
puting by NMR spectroscopy, Proc. Nat’l Academy of
Sciences, Vol. 94, p.1634-1639, March 1997.

Neil Gershenfeld and Isaac L. Chuang, Quantum computing
with molecules, Scientific American 278, pp. 66—71 (June
1998).

B. E. Kane, A silicon-based nuclear spin quantum computer,
Nature, vol. 393, May 14, 1998.

Y. Kim, M. Chekhova, S. Kulik and Y. Shih, Quantum
interference by two temporally distinguishable pulses,
Physical Review A, Vol. 60, No.1, p. R37-R40, July 1999

D. V. Stekalov and Y. Shih, Two-photon geometrical phase,
Physical Review A, Vol. 56, No. 4, p.3129-3133, October
1997

T. B. Pittman, D. Strekalov, A. Migdall, M. Rubin, A.
Sergienko and Y. Shih, Can two-photon interference be
considered the interference of two photons?, Physical
Review Letters, Vol. 77, No.10, p.1917-1920, Sep. 2,
1996.

P. Werbos, An approach to the realistic explanation of
quantum mechanics, Nuovo Cimento Letters, Vol.29B,
Sep. 8, 1973.Vol. 8, No.2, p.105-109.

P. Werbos, Bell’s theorem: the forgotten loophole and how
to exploit it, in M. Kafatos, ed., Bell’s Theorem, Quantum
Theory and Conceptions of the Universe. Kluwer, 1989.

P. Werbos, Can ‘soliton’ attractors exist in realistic 3+1-D
conservative systems?, Chaos, Solitons and Fractals, Vol.
10, No. 11, July 1999 (particularly section 6)

P. Werbos, New Approaches to Soliton Quantization and
Existence for Particle Physics, xx.lanl.gov/abs/patt-sol/
9804003, April 1998.

P. Werbos, The Backwards-Time Interpretation of Quantum
Mechanics—Revisited With Experiment, xxx.lanl.gov/
abs/quant-ph/0008036, August 2000.

As will be appreciated by one of ordinary skill in the art,
numerous modifications are possible in light of the teachings

20

25

35

54

of the present application. Accordingly, the present inven-
tion is not limited by the above disclosure and is only limited
by the appended claims.

What is claimed is:

1. A computer program product, comprising:

a computer storage medium and a computer program code
mechanism embedded in the computer storage medium
for causing a neural network to control an external
device, the computer program code mechanism com-
prising:

a first computer code device configured to represent
U(u,X) in computer-readable form, where U(u,X) is a
family of max problems;

a second computer code device configured to implement
a learning algorithm; and

a third computer code device configured to utilize the
second computer code device on the computer-readable
form of U(u,X) to learn to find u which maximizes
U(u,X).

2. The computer program product as claimed in claim 1,
wherein the first computer code device comprises a
computer-readable form of U(u,X) that represents a family
of all traveling salesman problems.

3. An artificial neural network to control an external
device, comprising:

means for representing a family of max problems, U(u,X);
and

learning means for learning to find u which maximizes
U(u,X).

4. The artificial neural network of claim 3, wherein

U(u,X) represents a family of all traveling salesman prob-
lems.

	Bibliography
	Abstract
	Drawings
	Description
	Claims

