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Abstract—This is a theoretical paper on conscious learning for
thoughts and creativity through general-purpose and autonomous
imitation of demonstrations. This conscious learning is end-to-
end (3D-to-2D-to-3D) and free from annotations of 2D images
and 2D motor images (e.g., a bounding box to be attended
to). The conscious learning algorithm directly takes that of
the Developmental Networks that has been previously published
extensively with rich experimental results. Apparently, humans
and animals do this type of fully automated learning daily,
but it is unclear a robot can do the same. Recently, [1], [2]
presented a theory of conscious learning rooted in emergent
universal Turing machines. It appeared to be the first algorithmic
level theory of holistic consciousness, other than many papers
in the literature about piecemeal consciousness. However, [1],
[2] proved only conscious learning in motor-imposed training
mode, namely 3D-to-2D taught by 2D motor impositions, free
from 2D annotations. This paper fills the challenging gap in
[1], [2] so the conscious learning is 3D-to-2D-to-3D (end-to-end)
without motor-impositions or computing “inverse kinematics”.
This is a major departure from traditional AI—handcrafting
symbolic labels that tend to be brittle (e.g., for driverless cars)
and then “spoon-feeding” pre-collected “big data”. Autonomous
imitations drastically reduce the teaching complexity compared
to pre-collected “big data”, especially because no annotations of
training data are needed. Furthermore, conscious learning allows
creativity beyond what is taught. This work is directly related
to consumer electronics because it requires large-scale on-the-fly
brainoid chips in future wearable robots/devices for consumers.

Index Terms—Machine learning, on-chip learning, on-the-fly
learning, inverse kinematics, brainoid chips, VLSI.

I. INTRODUCTION

This is a theory paper, supported by our published experi-
ments in vision, audition and natural language [3], [4].

There have been many papers about imitation learning [5]
but they are all of special purposes, not embedded with an
emergent universal Turing machine and are task-specific in the
sense it is a human programmer that designs a representation
for a given task. Our approach follows the task-nonspecific
paradigm in Weng et al. in Science 2001 [6]. This theory
presents the generality of a new kind of imitation mechanisms
for machine thinking [2] and creativity (see Theorem 4), called
autonomous imitations without 2D motor-impositions.

Due to the 6-page limitation, this paper cannot cover the
neural network DN (other than a sketch) or the 3D-to-2D
conscious learning. The reader is referred [3] for the former
and [1], [2] for the latter. The major novelty of this paper is to
fill the remaining huge gap from 3D-to-2D to 3D-to-2D-to-3D.

Specifically, this work presents a computational and neuro-
morphic model for conscious learning by autonomous imita-

tions without 2D motor-impositions. Importantly, this model
is meant for both robots and humans. The learner observes
demonstrations by a 3D physical world, which may include
human teachers such as in classroom teaching. He/it observes
3D demonstrations through the 2-D sensors (camera, cochlear,
etc.) and autonomously imitates the demonstrations by creating
a 2D motor program in muscle arrays. He executes the 2D
program back into the 3D world to generate 3D effects. Thus,
we call this kind of autonomous, on the fly, end-to-end learning
3D-to-2D-to-3D conscious learning.

Human infants can hardly survive without intensive parent
care. However, it is not true that they learn from a blank
slate. Typically, the lower the animal species, the more innate
behaviors are present in the newborns. We argue that such
inborn reflexes are autonomously developed prenatally. E.g.,
spontaneous retinal signals are required for wiring visual
circuits. Such innate behaviors do not need inverse kinematics.

First described by zoologist Konrad Lorenz in the 1930s
imprinting occurs when a newly hatched animal (e.g., duck-
ling) forms an attachment to the first moving thing it sees upon
hatching. Experiments have shown that imprinting appears to
be a quick-learning process—learning the appearance of the
first moving object, which is usually the mother.

Human infants do not present imprinting. However, human
infants display some innate behaviors too, such as rooting,
kicking, and sucking.

Inspired by biological mechanisms of development of
brain’s motor areas along with the corresponding limbs, de-
velopmental robots have two alternatives: (A) Developmental
effectors—developing effectors during lifetime, (B) Nondevel-
opmental effectors—Handcrafting effectors before inception.

Alternative (A) is necessary for those effectors that are so
sophisticated that handcrafted effectors do not allow conscious
learning to have the required degree of freedom needed
by human-level performance. Vocal effectors that make all
possible human sounds, not just speech of a pre-specified
prosody, are an example of sophisticated effectors. Wu &
Weng [7] employed the Candid Covariance-free Incremental
(CCI) Principle Component Analysis (PCA) to develop vocal
effectors directly from hearing sounds.

Alternative (B) seems to be sufficient for simpler effectors,
such as steering, acceleration, and braking, since each effector
is one-dimensional and typically changing one effector is
sufficient for many cases. This type of effectors can be directly
supervised on the motor end, as motor-imposed learning.
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Our main goal here is to solve a currently pressing need to
address that existing machine learning capabilities are weak,
too rigid, and not autonomous.

This paper seems to be the first, as far as the author is
aware, on autonomous learning by imitation. This subject
goes beyond the current three modes of learning, motor-
imposed, reinforcement, and unsupervised. In fact, the internal
mechanisms in the Developmental Networks (DNs) used as
a supporting learning engine is unsupervised—skull-closed.
As we will see below, the new kind of learning—conscious
learning by imitation—allows more sophisticated learning
subjects, such as sophisticated effectors and internal attention
that currently does not have a way to teach.

Thus, conscious learning by imitation is beyond what is
practical with the traditional three modes of machine learning.

A DN differs from many well-known neural networks, such
as CNNs [8]–[10] and LSTM [11] in many of the following
key properties:

Freedom from Post-Selections [12]—picking the luckiest
one from multiple networks trained. Well-popularized “deep
learning networks” [8]–[11] are incapable of conscious learn-
ing due to post-selections and batch learning.

Learning any finite-size Turing machines: error free.
LCA: Use dually optimal LCA (Lobe Component Analysis)

[13] neuronal learning, based on Hebbian mechanisms, instead
of error-backprop.

Emergent state-input: Learn a state-input transition instead
of a input-to-output mapping in the latter, where state and
input are emergent vectors to address the symbol-grounding
problem, also called the frame problem.

Emergent hidden areas: All patterns in the hidden area Y
emerge from activities.

Natural: All patterns z ∈ Z and x ∈ X are natural from
real sensors and real effectors, without using any task-specific
encoding.

Incremental: The machine incrementally updates at times
t = 1, 2, .... Namely DN uses the sensorimotor frame
(z(t),x(t)), for update the network and discard it before
taking the next frame (z(t+ 1),x(t+ 1)). We avoid storing
images for offline batch training (e.g., as in ImageNet) be-
cause what is called sensorimotor recurrence—the next image
x(t+ 1) is unavailable without first generating and executing
the current action z(t) which typically alters x(t+ 1).

Skull-closed: As the skull closes the brain to the envi-
ronment, everything inside the hidden Y area (neurons and
connections) are initialized at the inception time t = 0 and off
limit to environment’s direct manipulation after t = 0.

Attentive: In every cluttered sensory image x ∈ X only
the attended parts correspond to the current winning input.
New here is the attention to components in each cluttered
sensorimotor frame (x, z) is automatic from LCA neuronal
competition (without manual annotations of (x, z)) where the
attended parts correspond to the current winning attention
instead of task-specific attentions.

Motivated: Different neural transmitters have different ef-
fects to different neurons, e.g., resulting in (a) avoiding pains,

Fig. 1. A setting for a human teacher to teach while kids are autonomous.
Picture courtesy of britishcouncil.org.ua.

seeking pleasures and speeding up learning of important events
and (b) uncertainty- and novelty-based neuronal connections
(synaptic maintenance for auto-wiring) and behaviors (e.g.,
curiosity). Thus lower motivations develop higher motivations,
emotions and goals throughout lifetime.

Abstractive concepts with invariances: Each learned con-
cept (e.g., object type) in Z are abstracted from concrete
examples in z ∈ Z and x ∈ X , invariant to other concepts
learned in Z (e.g., location, scale, and orientation). E.g.,
the type concept “dog” is invariant to “location” on the
retina (dogs are dogs regardless where they are). Invariance
is different from correlation: dog-type and dog-location are
correlated (e.g., dogs are typically on ground).

The remainder of the paper is organized as follows. The next
section outlines what is conscious learning, for the purpose of
self-containedness, but the reader must read [1] first to get
the pre-requisite. Then, we discuss the theory of imitation
for conscious learning. The analysis of imitation is followed.
Finally, we conclude with some remarks.

II. CONSCIOUS LEARNING

A. Definition

Shown in Fig. 1 is a setting of conscious learning. A
developmental robot may start from birth and live to over 21
years. Let us define some conditions of conscious learning in
computational terms.

Definition 1 (Conscious learning conditions): Conscious
learning satisfies the eight (8) properties: GENISAMA
(grounded, emergent, natural, incremental, skull-closed, atten-
tive, motivated, abstract), plus two more: (1) life required
degree of real-time, (2) conducted by a general-purpose learn-
ing engine capable of learning an emergent universal Turing
machine.

The animal-like thinking is necessary since consciousness
requires thinking. (1) is needed for human sensory refreshing
rate. (2) enables the learner to learn any practical concepts and
procedures including Autonomous Programming For General
Purposes (APFGP) directly from the physical world. Unlike
a universal Turing machine, APFGP in DN learns programs
directly from the physical world, using the sensorimotor
training mode or the autonomous imitation mode.



B. SEB learning modes
Consider Supervised internal representation? Effector im-

posed? Biased sensors used? We have a new definition of 8
learning modes as SEB learning modes:

Definition 2 (SEB learning modes): Let a text string, seb,
be represented by a binary number. s=1: skull-internal repre-
sentation is partially human supervised, s=0 otherwise; e=1:
effectors are imposed, e=0 otherwise; b=1: biased sensors
(pain, sweet, instead of unbiased sensors like cameras and
microphones) are used; b=0 otherwise. Then, the seb binary
codes have 8 patterns, seb=000, seb=001, ... , seb=111.

Therefore, s=1 corresponds to symbolic representations—
human crafted task-specific representations, such as SLAM,
Markov Decision Process (MDP), Partially Observable MDP,
Graphical Models, as well as neural networks that have human
handcrafted features such as human selected features in CNN
and LSTM. s=0 corresponds to DN and other inside-skull-
unsupervised networks (e.g., some reservoir computing?).

The case e=1 means a human teacher imposes effector for
teaching purpose.

Note that eb in seb has four binary patterns, eb=11 is a
combination of supervised learning and reinforcement learn-
ing, which is not common in machine learning publications
but allowed.

We are interested in seb=000 during which imitation takes
place. seb=010 and seb=001 only occasionally occur like the
setting in Fig. 1.

There are some fundamental limitations in current machine-
learning methodology fed by static datasets: (1) The non-
sensorimotor recursive nature of any datasets. (2) Post-
Selections [12], picking the luckiest network without cross-
validation. (3) A lack of conscious learning further explained
below.

As shown in Fig. 1 or in a driver-less car, the environment
is cluttered which contains multiple components. At any time,
only relatively few items (e.g., the drawing that the teacher
shows in Fig. 1) are related to the current task that needs to
be attended to. Typically such related components occupy only
a small part of input image. Other components are distractors.

In computer vision, annotation of attended polygons [14] or
a rectangle is non-scalable to real-world deployments.

A more promising way is to set the learner free into
deployed settings, like two kids and a teacher in Fig. 1, so that
the learner learns from his own autonomous actions including
internal attentions which are not motor-imposable.

One concern is that the amount of computational power is
prohibitive due to the real world complexity. The availability
of brain-size and real-time learning chips—brainoid chips—is
indeed a current bottleneck.

The DN framework is optimal in the sense of maximum
likelihood (ML) (see [15] for a proof for DN-1 and [3]
for a proof for DN-2), conditioned on what is called the
Three Learning Conditions—(1) learning framework restric-
tions (e.g., incremental learning and task-nonspecificity), (2) a
learning experience, and (3) a limited computational resource.
A DN computes the ML-optional emergent Turing machine,

which is explainable. In other words, we only need to train
one single network for each lifetime training sequence without
a need of post-selections.

C. From Turing machines to DN

Turing machines by Alan Turing were not meant to explain
conscious learning. But they can assist us to understand how
consciousness arises from computations.

A Turing machine consists of an infinite tape, a read-write
head, and a controller. The controller consists of a sequence
of moves where each move is a 5-tuple of the following form:

(q, γ)→ (q′, γ′, d) (1)

meaning that if the current state is q and the current input is
γ, then the machine enters to next state q′, writes γ′ onto the
tape, and its head moves in direction d (left, right, or stay).

Weng [15] extended the state space Q = {q} to a new form
Q′ = {(q′, γ′, d)}. With Q′, he proved that the controller of
any Turing machine is an agent Finite Automaton (FA), where
agent means that the FA outputs its states.

A universal Turing machine reads only an input tape that
has two parts, a program and a data set. The program is
a sequence of transitions in Eq. (1). The universal Turing
machine is designed to emulate the input program on the input
data and produces the output to the tape. Because the program
can be any procedure in the Church-Turing thesis, it has been
widely accepted that the universal Turing machine is a model
for general-purpose computers.

Since a DN learns any agent FA ML-optimally, a DN learns
any universal Turing machines ML-optimally. See [16] about
how to extend the tape of Turing machine to the 3D real world
so that a DN learns APFGP.

Running in discrete times, t = 0, 1, 2, ..., a DN learns any
Turing machines by learning its FA transitions, but in a vector
form: Z(0)Y (0)

X(0)

→
Z(1)Y (1)
X(1)

→
Z(2)Y (2)
X(2)

→ ... (2)

where → means neurons on the left adaptively links to the
neurons on the right. Z(t) is the vector space corresponding
to the symbolic space Q′ at time t. X(t) is the vector
space corresponding to the symbolic input space {γ}. Y (t),
absent from the corresponding Turing machine, is the emergent
(learned) representation of the skull-closed brain that conducts
the interpolations of the vector space mapping from time t−1
to time t. Namely the numerical interpolation replaces the rigid
look-up table in the traditional Turing machine.

Define c = (x,y, z) ∈ X × Y × Z as a context. Thus, the
transitions in Eq. (2) corresponds to transitions:

c0 → c1 → c2 → ... (3)

where ct ∈ X(t)× Y (t)× Z(t), t = 0, 1, 2, ...
At each time t, the physical world provides a sensory

image vector xt−1 ∈ X(t − 1); the machine provides a
context (yt−1, zt−1) and its “brain” function ft−1 produces
a motor vector zt and internal response yt as (yt, zt) =



ft−1(xt−1,yt−1, zt−1). The motor vector z could be either
taught by a teacher or, more relevant to this work, to start
with, randomly selected from a set of “innate” motor vectors
during infancy (e.g., cluster vectors in the PCA space of innate
vocal tract) and later, self-generated (from an increasingly
more mature PCA space).

Unlike symbolic states in a Turing machine, a state as vector
z ∈ Z emerges autonomously without any humans in the loop
of defining and feeding symbols.

The hidden area Y (t) corresponds to the “brain” at time
t. It consists of a large number of neurons whose response
yt ∈ Y (t) is computed from each neuron’s receptive fields in
X(t− 1)× Y (t− 1)× Z(t− 1).

Learning in Y and Z takes place incrementally in real time
so that ft is different for each t.

In general, the Z area has a number of subareas, each of
which may correspond to a limb or a concept which has a
number of possible concept values but each time has only 1
concept value. Also, in general, each neuron in Y dynamically
learns its competition zone in the context space. Furthermore,
the X space is not be shift-invariant either, but z ∈ Z learns
invariant concepts.

Without loss of generality, we consider below that each of
the Y and Z areas uses only a global top-k (k = 1) mechanism
which self-picks the winner for the entire area.

At time t = 0, the life inception takes place. z0 is supervised
at the initial state (e.g., representing initial state “none”). x0

takes the sensory image at t = 0. y0 is a zero-vector without
top-k competition. Each neuron i in Y and Z starts with
random weights and firing age ai = 0.

From t = 1, the network starts to update forever. Every
neuron i in Y and Z computes their match between its weight
wi and input ci as a inner product of two normalized vector
ŵi and ĉi:

r′i = ŵi · ĉi.

A perfect match gives r′i = 1. Each area competes by finding
the best matching neuron j.

j = argmax
i
{r′i}.

The winner j files at rj = 1 and increment its firing age;
all other losers i 6= j do not fire and do not increment their
firing ages. The winner neuron updates its weight vector using
ML-optimal Hebbian rule:

wj ←
aj − 1

aj
ŵj +

1

aj
rj ĉj .

The above computes the incremental average of all response-
weighted inputs [13].

Why do random weights result in the same network? When
the neuron j fires for the first time its age aj = 1, its retention
rate aj−1

aj
= 0 and its learning rate 1

aj
= 1. The initial random

weight vector only effects whether it is the winner but does
not affect the updated weight which must be response-weight
normalized input rj ĉj . Yes, the ML-optimal estimate from the
first sample is indeed the input sample! The above expression

q0 q1 q2 qn...

v 11

v 12

v 1m

v 11

v 12

v 1m

...

. . .

Fig. 2. Abstraction in autonomous imitations of 1 demonstration (solid
curves) and m − 1 autonomous practices (dashed curves), whose meanings
are different from sensorimotor training and typically m� k for autonomous
imitations in later learning.

for the winner leads to the average of response-weighted inputs
conditioned on the firing of the neuron, which corresponds to
the minimum-variance estimate of response-weighted inputs.

Because early age experience is not as important as the
latest experience, an amnesic average increases the learning
rate 1

aj
and accordingly reduces the retention rate so that the

sum of them is still 1 [13].
In general, k > 1 for top-k competition so that a small

percentage of neurons fire each time.

D. Why Autonomous Imitation?

A human senses the 3D world using its sensors whose
receptors lie in a 2D sheet (retina, cochlea, skin). For general
applicability of our method, we do not need to model the
physical transformation from the 3D world to a 2D sensor
since our baby brains must work before they have a chance
later in life to learn physical laws that govern the mapping
from the 3D world to the 2D receptor array. Sometimes, this
mapping can be slightly changed, such as wearing a new pair
of glasses. But a human can learn quickly and get used to
the change. In summary, there is no need to calibrate the
transformation from 3D to the 2D.

There are three major reasons to model development of
brains in terms of autonomous imitation.

First, imitations are 3D-to-2D-to-3D. A 3D-world event can
be a temporal 3D event (e.g., finding how an attended car
moves within a time interval), or a combination of space and
time (e.g., how a car collision happened). The sensory input
to a learner is basically 2D. Autonomous imitations enable a
learner to sense a 3D event using its 2D sensors and convert the
2D sensory information into its effectors that generate another
but similar 3D event.

Second, autonomous imitations show whether the learner
understands the demonstration of a 3D event.

Third, autonomous imitations reduce teaching complexity
compared to motor-supervised training as we analyze below.

Let us analyze the imitation complexity. Let a 3D event
have n stages. Within each stage, the learner must deal with
m variations of stage-to-stage transitions (e.g., due to sensory
variations).

Let n = 10 and m = 10. If we use a brute-force data-fitting
network, the learning task requires mn=1010 = 1 billion of
event samples! Alternatively, if we use motor-imposed training
for each stage using human imposed-motor, the same task
requires mn = 10×10 = 100 teaching examples, 10 teachings



for each of the 10 stages. Finally, suppose that the machine is
able to autonomously imitate using correct states in contexts,
the teacher only needs to demonstrate n stages, one example
for each stage. Then, during a later homework session, the
learner is able to autonomously imitate for each of the remain-
ing m − 1 = 9 variations without a need for the teacher to
demonstrate more. Thus, it autonomously generalizes to real-
life experience of potentially mn = 1010 = 1 billion cases!

Theorem 1 (Imitations reduce teaching complexity): Sup-
pose a task consists of n stages, where each stage consists of
dealing with m variations. A bruit force data fitting requires
an exponential number O(mn) training samples and O(mnsb)
computations during training where s is the average receptive
field size of neurons and b the number of neurons in the
“brain” network. Motor-imposed teaching for an emergent
Turing machine in DN requires O(mn) motor-supervision and
O(mnsb) computations during training. Autonomous imita-
tion by conscious learning requires O(n) demonstrations and
O(mn) autonomous practices as well as O(mnsb) computa-
tions during demonstrations and autonomous practices.

Proof: We have already proven above for the train-
ing complexity. Let us deal with the number of network
weights. Each network update requires O(sb) computations.
The number of computations during learning is the number
of samples times the number of computations in the network.
Thus, we have O(mnsb) for brute-force data fitting, O(mnsb)
for motor-imposed training with abstraction, and O(nsb) for
n demonstrations plus mnsb − nsb = O(mnsb) practices
through autonomous imitations during homework. �

The most important concept in the above theorem is the
reduction of teaching complexity. Because autonomous imita-
tions directly interact with the real world, they do not need
a human teacher to collect a static and large data set and
then hand-annotation this data set. Psychologists are amazed
by how fast a child learns new sentences without much
teaching [17], [18]. Here is a computational account other than
“language instinct” [18].

III. AUTONOMOUS IMITATIONS

[1] established that using motor-imposed training, a DN
ML-optimally learns any grounded Turing machine. If the
Turing machine is universal, the DN conducts APFGP. The
author argues that APFGP is a computational characterization
of consciousness defined in dictionaries.

Let us formally define autonomous imitation.
Definition 3 (Autonomous imitation): A conscious learning

agent conducts autonomous imitation using memory learned
from its environment if its action sequence imitates a 3D event
from the environment and a human expert judges that the
action sequence indeed resembles the 3D event. The imitation
is autonomous if the agent’s effector is not motor-imposed.

Fig. 3 shows an example of autonomous imitation. The 3D
event is “A hand places a phone on an ear”. The child sees
that and her action sequence caused “a hand places a phone
on an ear”.

Fig. 3. Autonomous imitation. Picture courtesy of Jerry Corley at standup-
comedyclinic.com.

Definition 3 does not specify how the 3D event is projected
onto the agent’s sensors. Neither does it specifies how the
agent’s effector sequence is judged to resemble the 3D event.
Such detail is filled according to the goal of teaching. Defi-
nition 3 does not forbid a use of biased sensors to motivate
the learner. In animal training, use of reinforcers (e.g., food
or touch) is typical.

If the imitation only involves external effectors, motor-
imposed teaching is still possible.

However, if the imitation involves skull-internal behavior
such as attention (e.g., attention to phone), motor-imposed
training is not directly available. A human teacher may use
body signs or verbal languages as part of 3D event to facilitate
the emergence of imitative behaviors. For example, the teacher
could say, “notice the phone” or simply “phone”.

IV. ANALYSIS

a) Single-motor imitation: A single motor involves a
single segment of the body, such as a vocal tract, a hand, an
upper arm, etc. For driverless cars, individual motors include
steering, acceleration, braking, etc.

When each Z vector zinnate is innately firing in the motor,
the corresponding physical effect as the corresponding 3D
event is simultaneously sensed by the learner’s sensors as a
sensory event xeffect. After learning xeffect → zinnate, later
zimitate is invoked from a similar sensory event xsound as
automatically self-generated zinnate from xsound, namely, the
“mirror neurons” of xsound.

Theorem 2 (Early imitation): Early practiced action zinnate

is automatically invoked later from an associated sensory event
xeffect:

zinnate
phy−→ xeffect

y→ zinnate ⇒ xeffect
y→ zinnate (4)

Proof: The proof follows from the above reasoning. In
the above expression, “phy” is stands for physics; y means
internal hidden neurons in Y . ⇒ means the left side practice
causes later autonomous imitation on the right side. �

b) Multi-motor imitation: A multiple-motor event in-
volves more than a single segment of the body, such as dancing



by a humanoid robot and braking while making a turn by a
driverless car.

Theorem 3 (Multimotor imitation): A multimotor imitation
capability is a later-time extension from the early imitation
theorem, by extending the zinnate to an early practiced mul-
timotor action zmulti and requiring more fine-tuned neurons
ym in the neural network that tune their receptive fields to
more relevant sensory objects xmulti that are also sensed from
multimotor concepts of the event.

zmulti
phy−→ xmulti

ym→ zmulti ⇒ xmulti
ym→ zmulti (5)

If the autonomous imitation is for a long sequence of event,
the above arrows indicate triggering the starting context of
the corresponding emergent Turing machines that display the
event.

Proof: From Eq. (4), let zinnate be replaced by zmulti

and xeffect by xmulti. Assuming that early experience has
enabled the neural network to fine turn its hidden feature
neurons using Hebbian learning based LCA plus synaptic
maintenance by cutting off irrelevant sensory inputs from X
and irrelevant concepts inputs from Z. Thus, replacing the
symbol y in Eq. (4) is by ym, we have the above expression.
�

Theorem 2 can be verbally summarized as “practice makes
perfect”. For example, to learn how to drive cars one must try
driving.

c) Generality and creativity of imitation: In Fig. 3,
three concepts are attended to: hand, phone, and ear, and
two concept-relationships are attended to, phone-in-hand and
phone-at-ear. Two concepts are associated as human type but
substituted, “I” substitutes “teacher”.

Theorem 4 (Generality and creativity of imitation):
Thoughts by a natural or artificial agent via autonomous
imitations of 3D real-world events are of general purposes per
universal Turing machines. If the imitation result is judged
considerably different but creative, such autonomous imita-
tions correspond to creativity of the agent in the judge’s eyes.

Proof: Conscious learning in Definition 1 involves learn-
ing a universal Turing machine modeled as context transitions
in Eq. (3). According to Theorem 3, an imitation composes
a program as context transitions, regardless of a computer
program or a task plan, which involves attending to some com-
ponents in contexts, but substituting some associated concepts.
According to Eq. (5), this process includes learning to convert
a 3D event (e.g., what is taught in a college class) sensed as a
sequence of 2D sensory images in the form of xmulti and then
to create a program as a sequence of motor signals in the form
of zmulti, and finally to carry out the program back to the real
world. Such compositions of programs correspond to human
thoughts [2]. Therefore, the context transitions in Theorem 3
are of general purposes per universal Turing machines. The
real-world result of the imitated program might not be a 100%
duplication of the original 3D event and may be considerably
different due to a variety of limitations in the real-world
environment and the agent. If the difference is judged by a
human expert as creative, the agent is creative in his eyes. �

Whether an imitation is a children’s play or a hypothesis of
a scientific principle depends on how experienced the imitator
is. The more experienced the imitator is, typically the more
valuable the imitation is.

V. CONCLUSIONS

This paper has established a general theory of autonomous
imitation as (1) learning 3D events, (2) creatively generating
a program in 2D motor, and (3) carrying out the program to
3D. The major advance from [1] is that the learner observes
teacher’s demonstrations using its sensors without motor-
imposed training. This is a paradigm shift in AI, addressing the
current prevailing problems of Post-Selections in AI. Human-
like autonomous learning has become theoretically sound.

This line represents a revolutionarily new direction for
future development of consumer electronics—brainoid chips to
practically conduct on-the-fly conscious learning at ≈100Hz.
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